
LARGE-SCALE OPTIMIZATION FOR DATA PLACEMENT PROBLEM

LAZIMA ANSARI
Bachelor of Science, Military Institute of Science and Technology, 2010

A Thesis

Submitted to the School of Graduate Studies

of the University of Lethbridge

in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science

University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Lazima Ansari, 2017



LARGE-SCALE OPTIMIZATION FOR DATA PLACEMENT PROBLEM

LAZIMA ANSARI

Date of Defence: August 17, 2017

Dr. Daya Gaur

Supervisor Professor Ph.D.

Dr. Shahadat Hossain

Committee Member Professor Ph.D.

Dr. Robert Benkoczi

Committee Member Associate Professor Ph.D.

Dr. Howard Cheng

Chair, Thesis Examination Com-

mittee

Associate Professor Ph.D.



Dedication

I dedicate this thesis to my loving parents. I cannot express how lucky I am to have

parents who love endlessly. Thank you so much for believing in me.

iii



Abstract

Large-scale optimization of combinatorial problems is one of the most challenging areas.

These problems are characterized by large sets of data (variables and constraints). In this

thesis, we study large-scale optimization of the data placement problem with zero storage

cost. The goal in the data placement problem is to find the placement of data objects

in a set of fixed capacity caches in a network to optimize the latency of access. Data

placement problem arises naturally in the design of content distribution networks. We report

on an empirical study of the upper bound and the lower bound of this problem for large

sized instances. We also study a semi-Lagrangean relaxation of a closely related k-median

problem. In this thesis, we study the theory and practice of approximation algorithm for the

data placement problem and the k-median problem.

iv



Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Daya Gaur for his guid-

ance and support throughout the whole learning process. I would also like to thank my

supervisory committee members Dr. Robert Benkoczi and Dr. Shahadat Hossain for their

precious advice and inspiration.

I am thankful to all the members of optimization research group of the University of Leth-

bridge for their support. I am grateful to Nabi and Umair for their help. I also want to thank

Anamay Sarkar with whom I worked on some important parts of my thesis.

A very special thanks goes to my husband and best friend Imtiaz, who has been a constant

source of support and encouragement during all the challenges of my life. This accom-

plishment would not have been possible without him. Thanks for making me realize that

the dreams can actually come true. Thanks for everything.

I would also like to thank my family for the support they provided me through my entire

life. I must acknowledge my parents, sister, parents-in-law. Without their unconditional

love, sacrifices, and prayers, I would not have finished this thesis.

I want to thank my friends Fatema, Tasnuba and Jeeshan who made my life easier in

Canada.

v



Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries and Related Concepts 4
2.1 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Simplex method . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Integer programming (IP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Integer programming solution methods . . . . . . . . . . . . . . . . . . . . 11

2.5 Lagrangean relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Basic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.2 Subgradient optimization . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3 Semi-Lagrangean relaxation (SLR) . . . . . . . . . . . . . . . . . 17

2.6 Local search heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 General algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 k-median problem 21
3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Related research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Computing the upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Local search method . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 A simpler analysis of local search method for the k-median problem 26

3.4 Computing the lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Semi-Lagrangean relaxation for k-median . . . . . . . . . . . . . . 30

3.4.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



CONTENTS

4 Data placement problem 40
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Related research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Computing the upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Local search method . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 A simpler analysis of local search method for the uncapacitated

facility location problem . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Computing the lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Lagrangean relaxation 1 (LR1-DP) . . . . . . . . . . . . . . . . . 53

4.4.2 Lagrangean relaxation 2 (LR2-DP) . . . . . . . . . . . . . . . . . 56

4.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Generation of test instances . . . . . . . . . . . . . . . . . . . . . 58

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusion and Future works 68
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 70

vii



List of Tables

2.1 Notations used in subgradient procedure . . . . . . . . . . . . . . . . . . . 16

3.1 Notations used in the analysis of local search method for the k-median prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Experimental results for k-median problem . . . . . . . . . . . . . . . . . 35

3.2 Experimental results for k-median problem . . . . . . . . . . . . . . . . . 36

3.2 Experimental results for k-median problem . . . . . . . . . . . . . . . . . 37

4.1 Notations used in the analysis of local search method for the uncapacitated

facility location problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Experimental results for the data placement problem . . . . . . . . . . . . 61

viii



List of Figures

3.1 An example mapping η : F∗ → F . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Assignment of clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Assignment of client to facility . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Assignment of client to facility . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 A comparison of duality gap for two Lagrangean relaxations while varying

the number of caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 A comparison of time for two Lagrangean relaxations while varying the

number of caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 A comparison of duality gap for two Lagrangean relaxations while varying

the cache capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 A comparison of time for two Lagrangean relaxations while varying the

cache capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 A comparison of duality gap for two Lagrangean relaxations while varying

the number of clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 A comparison of time for two Lagrangean relaxations while varying the

number of clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 A comparison of duality gap for two Lagrangean relaxations while varying

the number of objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 A comparison of time for two Lagrangean relaxations while varying the

number of objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



Chapter 1

Introduction

Facility location problems have occupied a major place in Operations Research since the

early 1960s. They model situations such as the placements of warehouses [35], factories,

fire stations, hospitals and so on. Every location problem consists of four basic components

[13].

• A set of locations where the facilities are placed. For each such location, we are given

a cost of opening (or storing) the facilities.

• A set of demand points or clients who need certain services from the facilities and

have to be assigned to a facility such that their requirements are fulfilled.

• A list of requirements to be met by the facilities and assignment of clients to facilities.

• A cost function associated with the assignment of the demand points to the facilities.

A typical objective is to select a set of facilities to open in order to optimize the given func-

tion. Various types of facility location problems can be obtained using the above mentioned

features. The location problem that we study in this thesis is the data placement problem

[3]. Data placement problem have been studied extensively in the areas of database man-

agement [24] and cooperative caching in networks [18, 4, 33]. This problem also arises

naturally in the modeling and operation of Content Distribution Networks [10, 9, 50, 19].

In such a network, the computer systems need to optimize the distribution of Internet pack-

ets to the users by replicating and caching the data at multiple locations in the network. This

reduces the load on the server and also helps to eliminate network congestion. Due to the

1



1.1. CONTRIBUTIONS

enormous growth of applications such as Netflix, the data placement problem has received

considerable attention. Let us consider a distributed network, where some nodes serve as

a cache (facility) to store the data objects (services installed in a facility), and some nodes

(clients) need to access the data objects. The goal is to find an assignment of clients and

objects to caches such that the total object storage cost and client access cost is minimized.

The optimal placement of data objects to caches and assignment of users to cache is an

NP-complete problem. We formally define the data placement problem in Chapter 4. We

relate the data placement problem with the red-blue median problem [27], and the k-median

problem [15].

In this thesis, we study a semi-Lagrangean relaxation for the k-median problem. We com-

pare this semi-Lagrangean lower bound with the optimal value for large test instances [7] of

k-median problem. This study was motivated by Beasley’s work on computing an efficient

lower bound to the k-median problem [15, 5]. We compute an upper bound and a lower

bound for the data placement problem where the cost of storing objects in caches is negli-

gible. For computing an upper bound, we use a local search approach, and for computing

the lower bound, we use a Lagrangean relaxation. We perform an empirical study of the

duality gap for large instances of the data placement problem.

1.1 Contributions

To the best of our knowledge, no previous empirical study of approximation algorithms

for large sized instances of data placement problem has been carried out. The following are

some of our specific contributions in this thesis:

• We formulate a semi-Lagrangean relaxation for the k-median problem. We compute

a lower bound and report on the duality gap for a set of test instances [7].

• We develop two Lagrangean relaxations for the data placement problem by selecting

a different set of constraints to relax.

2



1.2. ORGANIZATION OF THE THESIS

• We study a local search based method to compute an upper bound and compare it to

the two Lagrangean lower bounds.

• We generate large sized test instances for the data placement problem and report on

an empirical study on those large instances of the problem.

Some of the results in this thesis were presented as a poster paper at the The 19th Confer-

ence on Integer Programming and Combinatorial Optimization (IPCO) held in University

of Waterloo, Ontario, June 26-28, 2017.

1.2 Organization of the thesis

Including this chapter, there are four more chapters in this thesis. We start by discussing

the terminology to be used in this thesis in Chapter 2. We describe the fundamentals of

linear programming and the methods used to solve a linear program in this chapter. We

also discuss Lagrangean relaxation and local search heuristics in Chapter 2. Local search

heuristics are known to give constant factor approximations algorithms for the k-median

problem [2] and the red-blue median problem [27].

In Chapter 3, we define the k-median problem. We discuss the previous research on k-

median. Then, we explain the local search approach we use to compute an upper bound and

a semi-Lagrangean relaxation we use to obtain a lower bound. We discuss our experimental

study on the k-median problem and compare our results with the results of Beasley [15, 5].

In Chapter 4, we define the data placement problem. We discuss the related research.We

explain the local search approach we use to compute an upper bound. We present two

Lagrangean relaxations to compute the lower bounds. Finally we report on the empirical

study of large sized instances of the problem and discuss our results.

We conclude the thesis in Chapter 5 with a summary of the findings of this research and list

possibilities for future research.

3



Chapter 2

Preliminaries and Related Concepts

In this chapter, we discuss the terminology and concepts related to this thesis.

2.1 Optimization problem

An optimization problem is to determine the “best” solution from a set of all possible

“feasible” solutions.

Definition 2.1. Optimization problem [42]

An instance of an optimization problem is a pair (F,c), where F is the domain of feasible

solutions and c is the cost function, c : F → R. The problem is to find a function f ∈ F for

which,

c( f )≤ c(y) ∀y ∈ F (2.1)

Function f is called an optimal solution to the given minimization problem. The cost of the

optimal solution lies between an upper bound and a lower bound. For a minimization prob-

lem, values which are larger than the cost of an optimal solution are called upper bounds and

values which are smaller than the optimal solution are called lower bounds. The quality and

gap between these bounds is important for the computational success of any approximation

algorithm. We prefer the bounds to be as close as possible to the optimal solution.

Depending on the type of variables, optimization problems can be divided into two

categories: continuous optimization problems which contain continuous variables and com-

binatorial optimization problems which contain discrete variables. The methods for solving

4



2.2. LINEAR PROGRAMMING

these two kinds of problems are quite different. In this thesis, we focus on combinatorial

optimization problems.

2.2 Linear programming

Linear programming plays a unique role in optimization theory, and it is fundamental

to the study of many combinatorial problems. A linear program (LP) is an optimization

problem designed to maximize or minimize a given linear objective function by satisfying

a given set of linear inequality or equality constraints. Linear programming was first in-

troduced by Leonid Kantorovich in 1939 [47]. The basic elements of a linear program are

[14]:

• Decision variables: The decision variables is a set of quantities that need to be deter-

mined in order to solve the problem. The goal is to find values of the variables that

provide the best value of the objective function.

• Objective function: This is a mathematical expression that combines the variables to

express the goal of a problem. We need to either maximize or minimize the objective

function value.

• Constraints: Mathematical expressions that combine the variables to express limits

or restrictions on the possible solutions.

A generalized form of the linear objective function is given below [53]

ζ = c1x1 + c2x2 + .....+ cnxn (2.2)

Here ζ is the objective function value. x1,x2, ....,xn and c1,c2, ....,cn are the decision vari-

ables and their coefficients respectively. Linear programming is by far the most widely

used method for constrained linear optimization. The constraints are in the form of either

inequalities or equalities and they are broadly defined into two sub-categories: technologi-

cal constraints (equation 2.3) and non-negativity constraints (equation 2.4). Technological

5



2.2. LINEAR PROGRAMMING

constraints usually define limitations on the decision that is made in the solution of the

problem and non-negativity constraints ensure that the variables are non-negative.

ai jx1 +ai jx2 + .....+ai jxn

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≤

=

≥

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

bi i = 1,2, ....,m (2.3)

x j ≥ 0 j = 1,2, ....,n (2.4)

In Equation (2.3), ai j is the coefficient and bi is the right side value for the i-th constraint.

We combine the objective function with constraints to get the following complete linear

programming model.

maximize or minimize ζ =
n

∑
j=1

c jx j (2.5)

s.t.
n

∑
j=1

ai jx j

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≤

=

≥

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

bi ∀i = 1,2, ....,m (2.6)

x j ≥ 0 ∀ j = 1,2, ....,n (2.7)

In this LP model, the goal is to optimize the objective function such that the given con-

straints are satisfied. The number of decision variables is represented by n and number of

constraints, is denoted by m.

There are two canonical forms taken by linear programming problems, a maximization

canonical form and a minimization canonical form. [51].

Canonical form of maximization problem:

maximize
n

∑
j=1

c jx j (2.8)

6



2.2. LINEAR PROGRAMMING

s.t.
n

∑
j=1

ai jx j ≤ bi ∀i = 1,2, ....,m (2.9)

x j ≥ 0 ∀ j = 1,2, ....,n (2.10)

Canonical form of minimization problem:

minimize
n

∑
j=1

c jx j (2.11)

s.t.
n

∑
j=1

ai jx j ≥ bi ∀i = 1,2, ....,m (2.12)

x j ≥ 0 ∀ j = 1,2, ....,n (2.13)

To describe properties and algorithms for LP, it is convenient to use the standard form. A

linear program in the standard form is a maximization or a minimization problem subject

to linear equalities. The transformation of an LP from canonical to standard form can be

easily done by using slack or surplus variables [42]. If we use the canonical form of a

maximization LP using a matrix representation we get the following standard form.

Standard form of maximization problem:

maximize cT x (2.14)

s.t. Ax+ s = b (2.15)

x ≥ 0, s ≥ 0 (2.16)

Standard form of minimization problem:

minimize cT x (2.17)

s.t. Ax− s = b (2.18)

7



2.2. LINEAR PROGRAMMING

x ≥ 0, s ≥ 0 (2.19)

Here, cT x is the objective function where x is the vector of decision variables and c is the

vector of coefficients of x. A is an m× n matrix called the coefficient matrix, while b is a

column vector that represents the right-hand side of the constraints. For the maximization

problem, we use a slack variable s which is a vector in the constraint (Equation 2.15) to

convert it to an equality constraint. On the other hand, in case of a minimization problem,

we subtract a surplus vector to convert the constraint (Equation 2.18) to an equality con-

straint.

A set of specific values for the decision variables (x1,x2, ....,xn) is called a solution to the

LP [53].

Feasible solution: A solution is called feasible if it satisfies all the constraints.

Optimal solution: A solution is called optimal if in addition the objective function attains

the maximum (or minimum) value.

Infeasible LP: It is possible that there is no feasible solution to the given inequalities. In

this case, we call the linear program infeasible [52].

Unbounded LP: If the linear program is feasible, sometimes it is possible that, for a maxi-

mization problem, there are solutions of arbitrarily large value, or for a minimization prob-

lem, there are solutions of arbitrarily small value. In this case, we say that the linear pro-

gram is unbounded.

2.2.1 Simplex method

There are numerous methods available to solve a linear programming problem. The

first and the most widely used method introduced by George B. Dantzig [17] is the Simplex

method. It is an iterative process to find an optimal solution. In this section, we describe

the steps we follow to solve a linear program using the simplex method [53]. We start

with a general linear programming problem and transform it into the standard form. Let us

consider the linear program described in (2.8 - 2.10). We add a slack variable si to each of

8



2.2. LINEAR PROGRAMMING

the inequality constraints. Thus, we get the following standard form

maximize ζ =
n

∑
j=1

c jx j (2.20)

s.t. si = bi −
n

∑
j=1

ai jx j ∀i = 1,2, ....,m (2.21)

x j ≥ 0 ∀ j = 1,2, ....,n, si ≥ 0 (2.22)

We can consider

(x1,x2, .....,xn,s1,s2, .....,sm) = (x1,x2, ....,xn,xn+1, ...,xn+m) (2.23)

Thus, we can write,

maximize ζ =
n

∑
j=1

c jx j (2.24)

s.t. xn+i = bi −
n

∑
j=1

ai jx j ∀i = 1,2, ....,m (2.25)

x j ≥ 0 ∀ j = 1,2, ....,m+n (2.26)

The LP in the form of equations (2.24 - 2.26) is called a dictionary. The variables appearing

on the left-hand side of the equality constraints are called basic variables while the ones

on the right-hand side are called non-basic variables. Any solution obtained where all

the non-basic variables are set to zero is called a basic feasible solution. As the simplex

method progresses, it moves from one dictionary to another in its search for an optimal

solution. Within each iteration of the simplex method, exactly one variable goes from

nonbasic to basic, and exactly one basic variable becomes nonbasic. The variable that goes

from nonbasic to basic is called the entering variable, and the variable that goes from basic

to nonbasic is called the leaving variable. We examine the coefficients in the objective

function and pick the entering variable such that it has the largest non-negative coefficient.

Let B be the set of indices of the basic variables and N be the set of indices of the non-

9



2.3. INTEGER PROGRAMMING (IP)

basic variables. We select an entering variable from { j ∈ N | c j ≥ 0}. Once the entering

variable is selected, the leaving variable can be picked by finding the minimum value from

{bi/ai j | i∈B and ai j > 0} . Once the leaving and entering variables have been selected, the

transition from the current dictionary to the new dictionary requires suitable row operations

to achieve the interchange. This step of transition from one dictionary to other is called a

pivot. At the time of performing a pivot operation we may encounter two special cases:

• Degeneracy: We say that a dictionary is degenerate if bi = 0 for some i. Usually,

after a few degenerate dictionaries, we reach a non-degenerate dictionary that leads

towards an optimal solution. Sometimes by performing a sequence of degenerate

pivots, the simplex method returns to a previously generated dictionary which causes

an infinite loop. To avoid such a situation, we can use two well known pivoting

methods namely the perturbation method and the Bland’s rule [53].

• Unboundedness: This happens when all the ratios bi/ai j are non-positive or unde-

fined (ai j = 0). This means that there is no upper bound on the value of the entering

variable. This gives an infinitely large value of the objective function.

2.2.2 Other methods

Some other methods for solving linear programs are:

Primal-dual method: This method was first introduced by Kuhn in 1955 [36]. Associated

with every linear program is another called its dual. Thus, linear programs come in pri-

mal/dual pairs. Feasible solution for one of these two linear programs gives a bound on the

optimal objective function value for the other [53].

Interior point method: In 1984, Karmarkar [32] proposed an interior point method to solve

an LP. Contrary to the simplex method, it reaches the best solution by traversing the interior

of the feasible region [53].

10



2.4. INTEGER PROGRAMMING SOLUTION METHODS

2.3 Integer programming (IP)

In a linear program, if some or all the variables are constrained to be integers, such

problems are called Integer programming problems [53]. A large variety of real-life prob-

lems in practice are formulated as integer optimization problems. Even though the number

of solutions is reduced when the variables are restricted to be an integer, IP problems are

usually much more difficult to solve than LP problems. Depending on the types of variables

there are three possible IP models.

• Pure IP: All the variables take integer values.

• Mixed IP: Only some of the variables are restricted to integer values.

• Binary IP: All the variables are binary (restricted to the values 0 or 1).

The canonical form of an Integer program (maximization) is:

maximize
n

∑
j=1

c jx j (2.27)

s.t.
n

∑
j=1

ai jx j ≤ bi ∀i = 1,2, ....,m (2.28)

x j ∈ Z ∀ j = 1,2, ....,n (2.29)

2.4 Integer programming solution methods

Even though a bounded IP has only a finite number of feasible solution, the integer na-

ture of the variables makes it difficult to formulate an efficient algorithm. Solution methods

for IP can be categorized as:

• Optimal or exact methods

• Heuristic methods

11



2.4. INTEGER PROGRAMMING SOLUTION METHODS

An optimal algorithm guarantees to find the optimal solution. A heuristic algorithm finds a

feasible solution which is close to the optimal solution. Heuristic or approximate methods

are needed because exact methods cannot solve even moderately sized problems.

Exact solution strategies: The development of exact optimization methods for IP opti-

mization problems during the last 50 years was very successful [25]. Some of the ap-

proaches are described briefly.

Enumerative approaches: The simplest approach of solving a pure integer-programming

problem is to enumerate all the possibilities [29]. However, due to the combinatorial ex-

plosion resulting from the size of the problem, only relatively small-sized instances can be

solved within a reasonable computational time limit. The most commonly used enumera-

tive approach is called branch and bound. This algorithm was introduced by Land and Doig

[37]. This approach recursively splits the search space into smaller spaces, and tries to min-

imize the objective function value on these smaller spaces; this splitting is called branching.

The bounding refers to figure out the possible solutions by comparison to a known upper or

lower bound on the solution value.

Cutting plane algorithms: Cutting plane methods solve the linear relaxation of a given in-

teger program. Here the objective is to find a linear inequality that reduces the space of

feasible solutions while assuring that all the feasible integer points satisfy the inequality

[25]. Cutting planes are added successively until an integer solution is found.

Relaxation and Decomposition Methods: There are three basic approaches to relax an IP

problem: Linear Programming (LP) relaxation, Combinatorial relaxation and Lagrangean

relaxation. The first two approaches extend the feasible domain. In the third approach, a

set of constraints is included in the objective function. This approach is described in detail

in Section 2.5. Branch and Bound is typically used with cuts and relaxations.

Heuristic: The integer programming problems belong to the class of NP-hard optimiza-

tion problems. For large sized problems, exact methods do not work. In that case, we use

heuristic algorithms, to obtain good feasible solutions. Some of the widely used methods

12



2.5. BASIC FORMULATION

are described briefly.

Local search based metaheuristics: The research in heuristics began with the concepts of

local search [29]. Starting with a feasible solution, this method yields better solutions by

iteratively changing the current solution. This method is described in detail in Section 2.6.

Constructive algorithms: Constructive algorithms for finding a feasible solution pick the

best single move without any look-ahead. It always makes the choice that seems to be the

best at that moment. These algorithms are among the fastest approximate algorithms, but

they often achieve low-quality solutions which are far from the optimal solution.

2.5 Lagrangean relaxation

An important observation is that many hard integer programming problems can be

viewed as an easy problem complicated by a relatively small number of side constraints

[20]. These problems are difficult to solve using classical exact optimization methods. For

such types of problems, we can obtain a lower bound (for minimization problem) compara-

tively quickly by applying Lagrangean relaxation. Held and Karp [28] pioneered the use of

this technique for travelling salesman problem. In this section, we illustrate the Lagrangean

Relaxation (LR) method for solving a relaxation of the IP.

2.5.1 Basic Formulation

Lagrangean relaxation is generally used in combinatorial optimization to find a lower

bound for a minimization problem. For several problems, Lagrangean relaxation gives very

good lower bounds at reasonable computational cost. For a given optimization problem,

there can exist multiple different Lagrangean relaxations. At first, we take an integer pro-

gramming formulation of a problem. Then the general steps in solving the problem using

Lagrangean relaxation are:

• Select some constraints from the formulation to move into the objective function

using Lagrange multipliers.

13



2.5. BASIC FORMULATION

• Solve the resulting integer program either optimally or heuristically.

Let us consider the following integer program with complicating constraints A,

Z = min cT x (2.30)

s.t. Ax ≥ b (2.31)

Bx ≥ d (2.32)

x ∈ {0,1} (2.33)

We introduce a dual variable for every constraint we are going to relax. Let λ ≥ 0 be the

Lagrange multiplier which is the vector of dual variables that will be attached to constraints

A. If we consider a relaxation of this problem with respect to constraints (2.31), then the

Lagrangean program P´ is:

ZLR1
= min cT x+λT (b−Ax) (2.34)

s.t. Bx ≥ d (2.35)

x ∈ {0,1} (2.36)

In this relaxation, we add the term λT (b−Ax) to the objective function. Here λ ≥ 0 and

(b−Ax) ≤ 0 for a feasible solution, which makes the term λT (b−Ax) ≤ 0. Thus we are

adding a non-positive term with the objective function. Thus ZLR1
≤ Z. We need to find

a λ such that ZLR1 is maximum possible. This is achieved using the subgradient method

explained below.

Alternatively, we can also select constraint set (2.32) to relax. Then the Lagrangean relax-

ation is:

ZLR2
= min cT x+λT (d −Bx) (2.37)

14



2.5. SUBGRADIENT OPTIMIZATION

s.t. Ax ≥ b (2.38)

x ∈ {0,1} (2.39)

In this case, ZLR2
≤ Z. The program above is called the Lagrangean lower bound program

(LLBP).

There are two main concerns when using Lagrangean relaxation, which are:

• Selecting the constraint set to relax.

• Determining the values for the Lagrange multipliers.

Selecting constraint set to relax

There are many possible Lagrangean formulations depending on which constraint set

we relax. Selecting an appropriate constraint set for relaxation is a strategic issue. Typically

we choose to move the set of “complicating” constraints to the objective function.

Determining the Lagrange multiplier value

We try to find multipliers that gives us the possible maximum lower bound value. Thus,

for P´, we try to find multipliers such that,

max λ ≥ 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min cT x+λT (b−Ax)

s.t. Bx ≥ d

x ∈ {0,1}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

This program is called the Lagrangean dual program. There are two main approaches to

decide the value of the Lagrange multipliers.

• Subgradient optimization

• Multiplier adjustment

In this thesis, we compute a lower bound to the k-median problem and the data placement

problem using subgradient optimization. In the next section, we discuss the method briefly.

15



2.5. SUBGRADIENT OPTIMIZATION

2.5.2 Subgradient optimization

Subgradient optimization is an iterative procedure which attempts to maximize the

lower bound for a minimization problem. It starts with an initial set of multipliers and

updates the value of multipliers in a systematic way. Algorithm 1 describes the basic steps

[6] of the subgradient optimization procedure used by several people. The notations used

in this algorithm are described in Table 2.1. In this subgradient iterative procedure, m is the

number of relaxed constraints and n is the number of decision variables.

Table 2.1: Notations used in subgradient procedure

Symbols Description
Zmax Maximum lower bound found for a problem.

ZUB Upper bound for a problem (best feasible solution).

ZLB Lower bound for a problem.

π A parameter.

G Subgradient for the relaxed constraints.

T Step size.

λ Lagrange multiplier.

Algorithm 1: Subgradient iterative procedure

Input : A Lagrangean lower bound program P´ and ZUB.

Output: Maximum lower bound Zmax.

1 Initialize π, λ, and Zmax.

2 Solve the Lagrangean lower bound problem using the current set of multipliers and

get a solution ZLB, which is the lower bound of the problem.

3 Update the value of Zmax = max(Zmax,ZLB)
4 Evaluate the subgradient value G for the relaxed constraints using the formula:

Gi = (bi− ∑n
j=1 ai jx j) , i = 1,2, ..,m (considering P´)

5 Define step size T by : T = π(ZUB−ZLB)

∑m
i=1(Gi)2

6 Update λ using : λi = max(0,λi +T Gi), i = 1,2, ..,m and go to step (2) to recalculate

the value of the lower bound with new set of multipliers.

The terminating condition for this iterative procedure can be set in various different ways

as follows:

• We can limit the number of iterations.

16



2.5. SEMI-LAGRANGEAN RELAXATION (SLR)

• We can start with any value of the scalar parameter π > 0 then reduce the value of π

systematically and terminate when the value of π is sufficiently small.

2.5.3 Semi-Lagrangean relaxation (SLR)

Semi-Lagrangean relaxation is a modified form of the Lagrangean relaxation method.

The method of Semi-Lagrangean relaxation was introduced by C. Beltran et al. in the year

2006 [11]. The method has been used with success to solve large instances of combina-

torial problems, but the relaxed problem is more difficult to solve than in the case of the

standard Lagrangean relaxation [12] as original complicating constraints are still part of the

relaxation.

Problem formulation

Let S ⊂ X ∩N
n, where X is a polyhedral set, 0 ∈ S. Consider the primal problem:

Z∗ = min
x

cT x (2.40)

s.t Ax = b (2.41)

x ∈ S (2.42)

In the standard Lagrangean relaxation, if we relax the equality constraint we obtain the fol-

lowing problem:

LLR(λ) = min
x

cT x+λT (b−Ax) (2.43)

s.t x ∈ S (2.44)

The Lagrangean dual problem is :

ZLR = max
λ∈Rm

LLR(λ) (2.45)

17



2.5. SEMI-LAGRANGEAN RELAXATION (SLR)

s.t x ∈ S (2.46)

The solution to the Lagrangean dual yields a lower bound for the original problem.

ZLR ≤ Z∗ (2.47)

In the semi-Lagrangean relaxation, we relax the equality constraint but at the same time

keep a weaker form of the equality constraint in the subproblem.

LSLR(λ) is the semi-Lagrangean LB defined as,

LSLR(λ) = min
x

cT x+λT (b−Ax) (2.48)

s.t Ax ≤ b (2.49)

x ∈ S (2.50)

The Lagrangean dual problem is :

ZSLR = max
λ∈Rm

LSLR(λ) (2.51)

s.t Ax ≤ b (2.52)

x ∈ S (2.53)

Significance of SLR

If we contrast the Lagrangean and the semi-Lagrangean relaxation we see that semi-

Lagrangean relaxation is more constrained. Thus, the lower bound given by SLR is better

(no worse) than the standard Lagrangean relaxation.

ZLR ≤ ZSLR ≤ Z∗ (2.54)

18



2.6. LOCAL SEARCH HEURISTIC

Although the semi-Lagrangean relaxation is more powerful than the standard Lagrangean

relaxation, solving ZSLR is much more complex than solving ZLR.

2.6 Local search heuristic

Local search is a widely used and general approach to solve hard optimization prob-

lems. Computational studies of local search algorithms have been extensively reported in

the literature for various combinatorial optimization problems [31, 30]. Empirically, local

search heuristics appear to converge rather quickly, within a low-order polynomial time

[41]. Local search based approximation algorithms are known for uncapacitated facility

location problem, k-median problem [2], red-blue median problem [27] etc.

2.6.1 General algorithm

In this subsection, we describe a general scheme for local search [42].

Given is an instance (F,c) of an optimization problem, where F is the set of feasible solution

and c is the cost function. A good local search heuristic involves choosing an appropriate

neighbourhood. We choose a neighbourhood

N : F → 2F (2.55)

In order to find a neighbourhood, we need to explore at most 2F feasible solutions.

At point t ∈ F we improve the current solution as follows

improve(t) =

{
any s ∈ N(t) with c(s)< c(t)

“no” otherwise.

Finding efficient neighbourhood functions that lead to high quality local optima can be

viewed as one of the challenges of local search [1].

Algorithm 2 describes the general local search heuristic. We start with an initial feasible

solution and search for a better solution in neighbourhood. If such a solution is found,

it replaces the current solution, and the search continues. As long as the solution can be

19



2.6. LOCAL SEARCH HEURISTIC

Algorithm 2: General local search algorithm

1 t ← Some initial solution in F .

2 while improve(t) �= “no” do
3 t ← improve(t).
4 end
5 return t

improved we iterate. We stop when we reach a local optimum. A large neighbourhood

would provide a better local optima but searching a large neighbourhood requires more

time.

The terms discussed in this chapter will be used in the following chapters. In the next

chapter we explain the k-median problem.

20



Chapter 3

k-median problem

The problem of locating facilities in a manner so that they can effectively serve a set of

clients has been the subject of a lot of research [2]. There are many interesting variants

of facility location problems. One of the widely studied facility location problem is the k-

median problem. This chapter discusses in detail the k-median problem along with the local

search method and a semi-Lagrangean relaxation. At first, the k-median problem formula-

tion is presented in Section 3.1. The related works are described in Section 3.2, computation

of upper bound and lower bound is discussed in Sections 3.3 and 3.4 respectively. Finally,

the experiments and the results are described in Section 3.5.

3.1 Problem definition

The k-median problem has been extensively studied for decades, in computer science

and in operations research. The problem is to locate k facilities on a network such that

the sum of all the distances from each client to its nearest facility is minimized [15]. In k-

median problem, we are given a set of clients D, a set of facilities F and a positive integer k,

(0 < k ≤| F |) that is an upper bound on the number of facilities that can be opened. There

is a cost ci j of assigning client j ∈ D to facility i ∈ F . The goal is to open at most k facilities

and assign clients to open facilities such that the total assignment cost is minimized. We

consider the clients and facilities are in metric space and the assignment cost ci j is the

distance between client j and facility i.

The k-median problem can be formulated as an integer linear program [54]. Let us consider

21



3.2. RELATED RESEARCH

two binary variables yi and xi j such that,

yi =

{
1 if facility i is open

0 Otherwise.

xi j =

{
1 if client j is assigned to facility i

0 Otherwise.

Then the integer linear program of k-median problem is as follows:

minimize ∑
i∈F

∑
j∈D

ci jxi j (3.1)

s.t. ∑
i∈F

xi j = 1, ∀ j ∈ D (3.2)

xi j ≤ yi, ∀i ∈ F, j ∈ D (3.3)

∑
i∈F

yi ≤ k (3.4)

xi j ∈ {0,1} ∀i ∈ F, j ∈ D (3.5)

yi ∈ {0,1} ∀i ∈ F (3.6)

(3.1) is the objective function, where the goal is to minimize the total assignment cost

∑
i∈F

∑
j∈D

ci j. Constraint (3.2) indicates each client must be assigned to exactly one facility.

Equation (3.3) implies, a client j can be assigned to facility i only if that facility is open.

Constraint (3.4) indicates, at most k facilities can be opened. (3.5) & (3.6) are integrality

constraints.

3.2 Related research

There is a vast amount of research and empirical studies on the k-median problem both

in computer science and operations research. In the year 1982, Christofides and Beasley

presented two lower bounds for the k-median problem based on two separate Lagrangean

22



3.2. RELATED RESEARCH

relaxations in conjunction with subgradient optimization [15]. They formulated the k-

median problem as a zero-one program as follows:

Let V be the vertex set and di j the non-negative cost of allocating vertex j to vertex i.

ai j =

{
0 if vertex j cannot be allocated to vertex i

1 Otherwise.

xi j =

{
1 if vertex j is allocated to vertex i

0 Otherwise.

The problem is :

minimize ∑
i∈V

∑
j∈V

di jxi j (3.7)

s.t.∑
i∈V

xi j = 1 ∀ j ∈V (3.8)

∑
j∈V,i�= j

ai jxi j ≤ nixii, ∀i ∈V (3.9)

∑
i∈V

xii = k (3.10)

xi j ∈ {0,1} ∀i ∈V, j ∈V (3.11)

In equation (3.9),

ni = ∑
j∈V,i�= j

ai j ∀i ∈V (3.12)

The two Lagrangean relaxations considered by the authors were,

1. LR1 : relaxation of the constraint ∑
i∈V

xi j = 1, ∀ j ∈V

2. LR2 : relaxation of the constraint ∑
j∈V,i�= j

ai jxi j ≤ nixii, ∀i ∈V

For both relaxations LR1 and LR2, they start with an initial multiplier λ and progressively

update the value of λ by using the subgradient optimization technique. They use penalty

tests on the lower bound and a heuristically determined upper bound for the problem which

23



3.3. COMPUTING THE UPPER BOUND

results in a large reduction in the problem size. For the case when the subgradient procedure

does not optimally solve the dual problem, a reduction in the problem size is obtained

because the penalty tests will fix certain vertices as medians/non-medians, these removes

a large percentage of possible allocation. They used the depth first tree search procedure

on the reduced problem, to obtain an optimal solution. They tested their procedure for

arbitrary number of medians up to 200 vertices. In their experiments, relaxation LR1 was

found to be superior to relaxation LR2 and very few of the instances required branching for

relaxation LR1. Later in 1985, Beasley showed that it is possible to enhance their algorithm

to optimally solve instances up to 900 vertices [5]. In this work, the vector processing

capability of a super computer Cray-1S was used and some algorithmic enhancement was

done for relaxation LR1. Crowder et al. [16] reported that it is beneficial to abandon the

tree search after a certain stage and restart the problem. Beasley [5], followed a similar

strategy to restart the problem. In 1993, Beasley presented a framework for developing

Lagrangean heuristics based upon Lagrangean relaxation and subgradient optimization with

respect to location problems [8]. The basic idea was that the information contained in the

Lagrangean lower bound problem at each subgradient iteration can be used to construct

a feasible solution. The best feasible solution found is a heuristic solution to the original

problem. Beltran et al. studied a modified Lagrangean relaxation to generate lower bound

for the k-median problem [11]. For an instance I, let global(I) denote the global optimum

and local(I) be the loally optimum solution provided by a certain local search heuristic.

Then the supremum of the ratio global(I)/local(I), is called the locality gap [2]. In 2004,

Vijay Arya et al. [2] analyzed the local search heuristic for the k-median problem and they

proved the local search heuristic with a swap operation has locality gap of 5. We describe

the local search approach and the proof due to [26], as it form the basis of the work in

subsequent chapter on the data placement problem.

24



3.3. COMPUTING THE UPPER BOUND

3.3 Computing the upper bound

In this section, we describe a technique we use to compute the upper bound of the k-

median problem. First, we describe a local search heuristic to compute the upper bound

and then we discuss the analysis.

3.3.1 Local search method

Local search heuristics are very popular for hard combinatorial optimization problems.

The main idea of local search is that it is often possible to find an acceptable solution to

a problem by frequently improving the given solution locally. Different types of possible

local changes/moves represent various heuristics. In the local search heuristic for com-

puting the upper bound of the k-median problem, we use a local move called swap. In a

swap move, we can open a new facility which is currently closed and close a currently open

facility simultaneously.

Swap move

If F is the set of facilities and S ⊆ F is the set of currently open facilities, we can define

the swap operation as :

Swap(i, i′) := S− i+ i′ , where i ∈ S and i′ /∈ S.

In the swap operation, we close currently open facility i and open a new facility i′ which is

currently closed. All the clients j ∈ D are re-assigned to the nearest open facility.

Algorithm 3 describes the steps of the local search heuristic to compute the upper bound

of the k-median problem. We start with a feasible solution S ⊆ F by randomly opening k

facilities from the given set of facilities F . We repeatedly swap a median from S for an

element in F − S which minimizes the cost. We re-assign the clients to the nearest open

facility in S. By this way we continue to perform the swap operation until there is an

improvement in the total assignment cost.

25



3.3. COMPUTING THE UPPER BOUND

Algorithm 3: Local search for k-median

Input : Set of facilities F , set of clients D, positive integer k, cost matrix C.

Output: Set of open facilities S.
1 S ← an arbitrary feasible solution, where S ⊆ F and | S |= k
2 Assign all the clients to their nearest open facility.

3 Calculate the total assignment cost Ctotal = ∑
i∈F

∑
j∈D

ci j.

4 while ∃ Op(S) = S− s+ s′ such that s ∈ S and s′ /∈ S and Cost(Op(S)) < Ctotal do
5 S ← Op(S).
6 Ctotal ←Cost(Op(S)).
7 end
8 return S

3.3.2 A simpler analysis of local search method for the k-median problem

In 2008, Gupta and Tangwongsan [26] gave a simpler analysis of the local search algo-

rithm (Algorithm 3) for the k-median problem. We describe their proof in this section.

Table 3.1 describes the notations used in the analysis.

Table 3.1: Notations used in the analysis of local search method for the k-median problem

Symbols Description
F Local optimal set of facilities.

F∗ Optimal set of facilities.

D Set of clients.

kmed(F) = ∑ j∈D d( j,F) k-median cost which is the sum of the distance from each

client j to facility F given that, F has at-most k facilities.

η : F∗ → F Mapping of each optimal facility f ∗ to the closest facility

η( f ∗) ∈ F such that d( f ∗,η( f ∗))≤ d( f ∗, f ) for all f ∈ F .

R ⊆ F All facilities that have at-most 1 facility in F∗ mapped to it

by the map η.

ϕ : D → F Functions mapping each client to the closest facility in F .

ϕ∗ : D → F∗ Functions mapping each client to the closest facility in F∗.

O j = d( j,F∗) = d( j,ϕ∗( j)) Client j’s cost in the optimal solution.

A j = d( j,F) = d( j,ϕ( j)) Client j’s cost in the local optimal solution.

N∗( f ∗) = { j | ϕ∗( j) = f ∗} Set of clients assigned to f ∗ in the optimal solution.

N( f ) = { j | ϕ( j) = f} Set of clients assigned to f in the local optimal solution.

26



3.3. COMPUTING THE UPPER BOUND

Let us assume that |F |= |F∗|= k. We define a set of k pairs P = (r, f ∗)⊆ R×F∗ such

that,

• Each f ∗ ∈ F∗ appears in exactly one pair (r, f ∗).

• If η−1(r) = f ∗ then r appears only once in P as the tuple (r, f ∗).

• If η−1(r) = /0 then r appears in at most two tuples in P.

F

F∗ f∗

a b c d e f g

c∗b∗a∗ d∗ e∗ g∗

Figure 3.1: An example mapping η : F∗ → F

Procedure for construction of the k-pairs with an example:

For each r ∈ R (with in-degree 1), construct the pair ( f ,η−1(r)). Such pairs in Figure 3.1

are: {(c,c∗),(d,d∗),(g,g∗)}.
Let the optimal facilities that are already matched be denoted by F∗

1 . In this example, F∗
1 =

{c∗,d∗,g∗}.
Let R0 be the set of facilities in F with in-degree zero. Here, R0 = {b, f}.

A simple averaging argument shows that the number of unmatched optimal facilities

|F∗ \ F∗
1 | ≤ 2|R0|. In Figure 3.1, F∗ \ F∗

1 = {a∗,b∗,e∗, f ∗}. |F∗ \ F∗
1 | = 4 and |R0| = 2.

Thus we get, |F∗ \ F∗
1 |= 2|R0|.

Now, we arbitrarily create pairs by matching each node in R0 to at most two pairs in F∗ \
F∗

1 , so that the above conditions are satisfied. For example, we can construct the following

pairs : {(b,a∗),(b,b∗),( f ,e∗),( f , f ∗)}.

Finally, P = {(c,c∗),(d,d∗),(g,g∗),(b,a∗),(b,b∗),( f ,e∗),( f , f ∗)}.

When each facility in F is closest to exactly one facility in F∗ and far away from all other

facilities in F∗, opening facility f ∗ ∈ F∗ and closing the matched facility f ∈ F can be

27



3.3. COMPUTING THE UPPER BOUND

handled by re-assigning all the clients served by facility f to the facility f ∗. When a fa-

cility f ∈ F is closest to several facilities in F∗, closing f and opening only one of several

facilities in F∗ might still cost too much. This is the reason for creating the pairs as above.

Lemma 3.1. For each swap (r, f ∗) ∈ P,

kmed(F + f ∗ − r)− kmed(F)≤ ∑
j∈N∗( f ∗)

(O j −A j)+ ∑
j∈N(r)

2O j (3.13)

Proof. Left hand side is the change in the cost, where the initial cost was kmed(F) and the

new cost is kmed(F + f ∗ − r). In the right hand side, we consider the following possibly

suboptimal candidate assignment of the clients:

• Map each client in N∗( f ∗) to f ∗.

• For each client j ∈ N(r)\N∗( f ∗) we reassign as in figure 3.2.

F

F∗

j

f̂ ∗ = ϕ∗( j)

f̂ = η(ϕ∗( j))ϕ( j)

Figure 3.2: Assignment of clients

Let the facility f̂ ∗ = ϕ∗( j) : assign j to f̂ = η( f̂ ∗), the closest facility in F to f̂ ∗.

This is a valid new assignment ( f̂ �= r) because f̂ is not closed. All the other clients in

D\ (N(r)
⋃

N∗( f ∗)) are assigned as they were in ϕ.

For any client j ∈ N∗( f ∗), the change in the cost is exactly O j −A j. Summing over all

clients we get: ∑ j∈N∗( f ∗)(O j −A j).

For any client j ∈ N(r)\N∗( f ∗) change in the cost is,

28



3.4. COMPUTING THE LOWER BOUND

d( j, f̂ )≤ d( j, f̂ ∗)+d( f̂ ∗, f̂ ) (By the triangle inequality)

d( j, f̂ )−d( j,r)≤ d( j, f̂ ∗)+d( f̂ ∗, f̂ )−d( j,r) (Subtracting d( j,r) from both sides)

≤ d( j, f̂ ∗)+d( f̂ ∗,r)−d( j,r) ( f̂ is the closest vertex in F from f̂ ∗, so d( f̂ ∗,r)≥ d( f̂ ∗, f̂ ) )

≤ d( j, f̂ ∗)+d( j, f̂ ∗) (By the triangle inequality, d( f̂ ∗,r)≤ d( j, f̂ ∗)+ d( j,r))

≤ 2O j

Summing up the total change for all these clients is at most ∑ j∈N(r)\N∗( f ∗) 2O j.

Now, ∑ j∈N(r)\N∗( f ∗) 2O j ≤ ∑ j∈N(r) 2O j

Thus we get, kmed(F + f ∗ − r)− kmed(F)≤ ∑ j∈N∗( f ∗)(O j −A j)+∑ j∈N(r) 2O j

Theorem 3.2. At a local minimum F, the cost kmed(F)≤ 5 kmed(F∗).

Proof. The right hand side of the inequality (3.13) must be non-negative, otherwise we

have a move that decreases the cost. Summing (3.13) over all the tuples in P along with

the fact that, each f ∗ ∈ F∗ appears exactly once and each r ∈ R ⊆ F appears at most twice

gives us,

(O−A)+2.(2.O)≥ 0

5.O−A ≥ 0

A ≤ 5.O

Which proves that, cost kmed(F)≤ 5 kmed(F∗).

3.4 Computing the lower bound

In this section, we describe the semi-Lagrangean relaxation we use to compute the lower

bound for the k-median problem. Semi Lagrangean relaxation is a modified Lagrangean

relaxation, that closes the integrality gap for any combinatorial problem with equality con-

straint. Beltran et al. first introduced the concept of semi-Lagrangean relaxation [11] for

k-median problem. In order to strengthen the standard Lagrangean relaxation, they relaxed

the equality constraints that ensures that each client must be assigned to exactly one me-

dian. At the same time, that equality constrains were considered as “less than or equal”

29



3.4. COMPUTING THE LOWER BOUND

inequality. They called this formulation, a semi-Lagrangean relaxation. At first, we de-

scribe the semi-Lagrangean formulation and then we discuss the algorithms we use to solve

the Lagrangean lower bound problem.

3.4.1 Semi-Lagrangean relaxation for k-median

In order to determine the lower bound, we formulate the semi-Lagrangean relaxation

from the original integer linear formulation discussed in Section 3.1. We relax the equality

constraints (3.2) as well as constraints in (3.3). Thus, the semi-Lagrangean relaxation is

given by:

min ∑
i∈F

∑
j∈D

ci jxi j + ∑
j∈D

λ j(1− ∑
i∈F

xi j)+ ∑
j∈D

u j(∑
i∈F

xi j −1)+ ∑
i∈F

∑
j∈D

vi j(xi j − yi) (3.14)

s.t.∑
i∈F

xi j ≤ 1, ∀ j ∈ D (3.15)

∑
i∈F

yi ≤ k (3.16)

xi j ∈ {0,1} ∀i ∈ F, j ∈ D (3.17)

yi ∈ {0,1} ∀i ∈ F (3.18)

In the objective function (3.14), λ, u and v are non-negative Lagrange multipliers. Mul-

tipliers λ and u are associated with the equality constraints and brought into the objective

function. We also keep a weaker form of the equality constraints in (3.15). Multiplier v is

attached with the constraints (3.3). Equation (3.14) can be re-written as :

min ∑
i∈F

∑
j∈D

xi j(ci j −λ j +u j + vi j)− ∑
i∈F

∑
j∈D

vi jyi + ∑
j∈D

(λ j −u j) (3.19)

Now the goal is to minimize this objective function subject to (3.15) - (3.18). At first,

we start with a non-negative set of multipliers and calculate the first term of the objective

function. Since this is a minimization problem, we want the negative terms in this function

30



3.4. COMPUTING THE LOWER BOUND

to be as large as possible. We set xi j = 1 if its smallest coefficient value in (3.19) is non-

positive.

We consider the sum of the negative term ∑
i∈F

∑
j∈D

vi jyi in the equation and attach this

sum with constraint (3.16) and we get the following subproblem:

max ∑
i∈F

∑
j∈D

vi jyi ∀i ∈ F, j ∈ D (3.20)

s.t ∑
i∈F

yi ≤ k (3.21)

yi ∈ {0,1} ∀i ∈ F (3.22)

We have a total of n facilities (items) from which we can select at-most k facilities (items).

Each facility (item) i has a cost (profit) vi j, ∀i ∈ F, j ∈ D. We have to pick the facilities

(items) such that the total cost of selected facilities (items) is maximum. Here yi is a bi-

nary variable that is one when ith facility (item) is selected and zero otherwise. Then this

subproblem is exactly the 0-1 knapsack problem where each item has unit size.

3.4.2 The Algorithm

Solving the 0-1 knapsack subproblem

In the classic 0-1 knapsack problem, we are given n items and a knapsack of capacity

c. If each item j has a profit p j and size w j then the problem is to select a subset of n items

such that the total size does not exceed the capacity c of knapsack and the total profit is

maximum [39].

Now, in our subproblem given by (3.20), (3.21), and (3.22), we assume each item has a unit

size (w j = 1). We solve this 0-1 knapsack problem optimally using a greedy approach.

In Algorithm 4, we sort the items by non-increasing profit value. Then we fill the

knapsack by selecting items from the sorted list until the total number of items is exactly

equal to k. This greedy approach of solving knapsack problem gives us the optimal value

when the items are of uniform sizes.

31



3.4. COMPUTING THE LOWER BOUND

Algorithm 4: Knapsack Greedy algorithm

Input : Non-negative cost (profit) vi j, ∀i ∈ F and ∀ j ∈ D and number of facilities

(items) to select, k.

Output: Maximum cost, val and facilities (items) selected, y.

1 y ← 0

2 val ← 0

3 foreach i = 1, ...., | F | do
4 foreach j = 1, ...., | D | do
5 Si ← Sum(vi j)
6 end
7 end
8 T ← Sort(S).
9 idx ← Index of sorted elements of S

10 foreach l = 1, ....,k do
11 val ← val +Sl
12 y(idx(l)) ← 1

13 end

We get optimal solution for this semi Lagrangean formulation of the problem because in the

objective function (3.19), we are setting xi j = 1 only for the smallest non-positive coefficient

associated with it and we are also solving the 0-1 knapsack sub-problem optimally.

Subgradient optimization

In order to maximize the lower bound we use an iterative procedure. We start with non-

negative set of multipliers and update the value of multipliers in a systematic way.

Table 2.1 in Chapter 2 describes the notations used in subgradient procedure. In Algorithm

5, we initialize the value π = 7, Lagrange multipliers λ and u = min
i

ci j ∀ j ∈ D, v = 0 and

Zmax =−∞. Then we find an upper bound on the problem by solving either an integer linear

program where possible or by using a local search method. To calculate the lower bound,

we evaluate the term (ci j −λ j +u j + vi j) in equation (3.19) and if the value is less than or

equal to 0 then we set xi j = 1 such that ∑
i∈F

xi j ≤ 1,∀ j∈D. We obtain the maximum value

for the negative term in equation (3.19) by solving the 0-1 knapsack problem as described

in Algorithm 4. Finally, after computing the term ∑
j∈D

(λ j −u j), we calculate the value ZLB

which is the lower bound for the problem. Next, we update the value of Zmax which is the

32



3.4. COMPUTING THE LOWER BOUND

Algorithm 5: Subgradient optimization procedure

Input : A Lagrangean lower bound program.

Output: Maximum lower bound Zmax.

1 Initialize the values of : π, λ, u, v and Zmax.

2 Find an upper bound ZUB by solving the k-median problem using Integer linear

program or by the local search method described in Section 3.3.1 .

3 Compute the Lagrangean lower bound using the initial set of multipliers and by

solving the 0-1 knapsack sub-problem described in 3.4.2. Get a solution ZLB, which

is the lower bound of the problem.

4 Update the value of Zmax = max(Zmax,ZLB)
5 If the value of new lower bound is not better than the previous lower bound for

consecutive 30 iterations then π = π/2

6 Evaluate the subgradient value G.

7 Define the step size T = π∗1.05∗(ZUB−ZLB)
|G|2 .

8 Update the lagrange multiplier values and go to step (3) to re-calculate the value of

lower bound with new set of multipliers.

9 Repeat this process for a fixed number of iterations.

best lower bound found so far. In our next step, we determine the subgradient value G= [G1

G2 G3] by combining the following three subgradient vectors :

G1 = (1− ∑
i∈F

xi j), ∀ j ∈ D (3.23)

G2 = (∑
i∈F

xi j −1), ∀ j ∈ D (3.24)

G3 = xi j − yi, ∀i ∈ F, j ∈ D (3.25)

Using the value of G, we calculate the step-size T. This step size also depends upon the gap

between the current lower bound and the upper bound, and the user defined parameter π.

While calculating the step size, we use a multiplicative factor of 1.05 which ensures that T

does not become very small as the gap between the upper bound and lower bound closes.

After calculating the step size, we update the multiplier values as :

λi = max(0,λi +T G1(i)) i = 1, ...., | D | (3.26)

33



3.5. EXPERIMENTS AND RESULTS

u j = max(0,u j +T G2( j)) j = 1, ...., | D | (3.27)

vi j = max(0,vi j +T G3(i j)) i = 1, ..........., | F |, j = 1, ...., | D | (3.28)

We repeat the subgradient process with the new set of multipliers. Thus, we get a new value

for the lower bound. If this new lower bound is better than the previous value we update

the value of Zmax with the new lower bound. We continue for upto 500 iterations.

3.5 Experiments and Results

The semi-Lagrangean relaxation for the k-median problem described in section 3.4.1 is

tested on 40 different test instances from Operations Research (OR) library [7] with up to

900 vertices. The format of these data files is: number of vertices, number of edges, k, for

each edge: the end vertex and the cost of the edge. In these test instances, the number of

vertices n vary from 100 to 900 in steps of 100. Values of k is selected as 5, 10, n/10, n/5

and n/3. For each distinct pair of values (n,k), a new network is randomly generated with

n2/50 edges. Each edge cost is an integer uniformly generated in [1 : 100] and the transitive

closure of the cost matrix is computed using the Floyd Warshal algorithm [21] to ensure

that the cost matrix is triangular. To generate the complete allocation cost matrix before

passing it to the Floyd’s algorithm we follow the steps described in Algorithm 6.

Algorithm 6: Generate allocation cost matrix

Input : Number of vertices n.

Output: Symmetric allocation cost matrix c
1 Set c(i, j) = ∞ for i = 1, ...,n and j = 1, ...,n.

2 Set c(i, i) = 0 for i = 1, ...,n
3 Read each edge line from the data file in turn: if three numbers in the line are i, j,k.

4 Set c(i, j) = k and c( j, i) = k.

In this algorithm, we initialize every possible edge with a large cost (∞). Then we as-

sign a value of zero to all diagonal elements. We read each edge cost value in turn from the

input file. Finally we subject the cost matrix c to Floyd’s algorithm to get a symmetric cost

matrix.

34



3.5. EXPERIMENTS AND RESULTS

In Table 3.2, we give the optimal value, lower bound, duality gap and the time to compute

the lower bound for 40 different size test instances. We obtain the optimal value for the test

files from the OR library [7]. We compute the lower bound using semi-Lagrangean relax-

ation in conjunction with subgradient optimization method. The duality gap [5] is given by

the formula:

OPT −LBmax

OPT
×100% (3.29)

Here, OPT is the optimal value for the problem and LBmax is the maximum lower bound

for the problem. From the experimental results we can see that the optimal value and lower

bound values are relatively close to each other.

Table 3.2: Experimental results for k-median problem

Test file Size OPT Lower bound Duality gap Time(seconds)

1
Facility/client=100

k=5
5819 5816 0.05 395.36

2
Facility/client=100

k=10
4093 4059.2 0.83 393.69

3
Facility/client=100

k=10
4250 4235 0.35 391.32

4
Facility/client=100

k=20
3034 3034 - 390.37

5
Facility/client=100

k=33
1355 1342 0.96 392.78

6
Facility/client=200

k=5
7824 7754 0.89 1562.9

7
Facility/client=200

k=10
5631 5609 0.39 1549.9

8
Facility/client=200

k=20
4445 4408 0.83 1548.9

9
Facility/client=200

k=40
2734 2688 1.68 1551.8

10
Facility/client=200

k=67
1255 1211 3.5 1557.5

11
Facility/client=300

k=5
7696 7644 0.67 3491.8

12
Facility/client=300

k=10
6634 6598 0.54 3494.2

35



3.5. EXPERIMENTS AND RESULTS

Table 3.2: Experimental results for k-median problem

Test file Size OPT Lower bound Duality gap Time(seconds)

13
Facility/client=300

k=30
4374 4345 0.66 3490.2

14
Facility/client=300

k=60
2968 2897 2.39 3492.5

15
Facility/client=300

k=100
1729 1637 5.32 3493.7

16
Facility/client=400

k=5
8162 8078.2 1.02 6241

17
Facility/client=400

k=10
6999 6931 0.97 6222.9

18
Facility/client=400

k=40
4809 4731 1.62 6263.9

19
Facility/client=400

k=80
2845 2765.2 2.8 6269.3

20
Facility/client=400

k=133
1789 1638 8.44 6247.8

21
Facility/client=500

k=5
9138 9128 0.11 9778.9

22
Facility/client=500

k=10
8579 8502 0.89 9859.2

23
Facility/client=500

k=50
4619 4534.3 1.83 9851.5

24
Facility/client=500

k=100
2961 2835.4 4.24 9622.5

25
Facility/client=500

k=167
1828 1619 11.43 9911.8

26
Facility/client=600

k=5
9917 9812 1.05 13860

27
Facility/client=600

k=10
8307 8265 0.5 14004

28
Facility/client=600

k=60
4498 4388 2.45 14132

29
Facility/client=600

k=120
3033 2863 5.61 13799

30
Facility/client=600

k=200
1989 1760.3 11.49 14563

31
Facility/client=700

k=5
10086 9974 1.11 19192

32
Facility/client=700

k=10
9297 9235.3 0.66 19194

33
Facility/client=700

k=70
4700 4561.1 2.96 19386

36



3.6. DISCUSSION

Table 3.2: Experimental results for k-median problem

Test file Size OPT Lower bound Duality gap Time(seconds)

34
Facility/client=700

k=140
3013 2821 6.37 19270

35
Facility/client=800

k=5
10400 10252 1.42 25381

36
Facility/client=800

k=10
9934 9785 1.5 25283

37
Facility/client=800

k=80
5057 4894 3.22 25215

38
Facility/client=900

k=5
11060 10876 1.66 32111

39
Facility/client=900

k=10
9423 9275 1.57 32073

40
Facility/client=900

k=90
5128 4944.4 3.58 31969

We implemented the subgradient method (Algorithm 5) for computing Lagrangean

lower bound in Octave 4.0.2. The machine has an Intel Xeon processor with a clock speed

of 3.40 GHz and 8GB of RAM running CentOS. The local search approach (Algorithm 3)

is implemented in C++.

3.6 Discussion

• We used the test instances by Beasley [7] to experimentally study the computation

of lower bound. The relaxations LR1 and LR2 as described in Section 3.2 were

tested for a maximum of 200 vertices [15]. The relaxation LR2 was able to handle

up to 100 vertices with 5 medians, and the maximum duality gap was 7.396 [15]. In

our experiment, we can see the duality gap for the same instance is 0.05 (test file 1

in Table 3.2). Beasley enhanced relaxation LR1 and solved the k-median problem

for up to 900 vertices [5]. If we compare their results with ours then we see that,

they received an optimal value for 8 test instances out of 40 instances where we get

optimal value for 1 instance. While comparing the duality gap we see, the gap we get

is very close to their duality gap for 22 test instances out of 40 instances. They used a

37



3.6. DISCUSSION

super computer Cray-1S to perform their calculation. We can solve the instances on a

laptop given Moore’s law. Beltran et al. [11] tested their semi-Lagrangean relaxation

by using data from the traveling salesman problem library [46] to define k-median

instances. The objective of their numerical experiments was to study the influence

of using a good starting point to maximize the dual function, the solution quality of

semi-Lagrangean solution and study its performance. In their experiment, at first they

formulated the standard Lagrangean relaxation of the k- median problem by relaxing

constraints (3.2) and (3.4) while considering (3.4) as equality constraint. Then they

formulated the semi-Lagrangean relaxation by keeping a weak form of constraints

(3.2) and (3.4) in the problem. After solving the Lagrangean relaxation dual problem,

if the optimal solution to the dual problem is also feasible for the original ILP of

k-median problem, then they used the associated Lagrange multiplier for this dual

solution as the starting point for solving the semi Lagrangean dual problem. By this

way, they studied how to find a good starting point to maximize the dual function. So

a direct comparison to the work of Beltran [11] is not possible.

• Our work differs from Beasley’s [15, 5] on the following aspects. Our problem

formulation for k-median problem is different. We formulate the constraints in-

dicating a client j can be assigned to facility i only if that facility is open by us-

ing, xi j ≤ yi,∀i ∈ F, j ∈ D whereas Beasley uses ∑ j∈V,i�= j ai jxi j ≤ nixii,∀i ∈V , where

ni = ∑ j∈V,i�= j ai j,∀i ∈V . The constraints set we select to relax are also different from

them. We relax the equality constraints (3.2) and constraints (3.3) while keeping a

weaker form of (3.2) but for LR1 they relaxed only equality constraint (3.8) and for

LR2 constraint (3.9) is relaxed. Beltran et al. [11] relaxed only the equality con-

straint in their semi-Lagrangean formulation. The solution strategy they used is also

different as the subproblem is different. In [15], Beasley compared two different

Lagrangean relaxations (LR1 and LR2) by developing penalty tests for reducing the

problem size and by incorporating the lower bounds in a tree search procedure. In the

38



3.6. DISCUSSION

enhanced LR1 algorithm [5] if, at any stage of the tree search, they find an improved

feasible solution then they restart the problem from scratch with a new initial tree

node.

• In the standard Lagrangean relaxation, we relax the linear equality constraints and

solve a dual problem. On the other hand, in semi-Lagrangean relaxation, we re-

lax the equality constraint but keep a weaker form of that equality constraint in the

subproblem. Thus the semi-Lagrangean relaxation is more constrained and stronger

than standard Lagrangean formulation and that is the main advantage of using semi-

Lagrangean relaxation.

39



Chapter 4

Data placement problem

This chapter discusses in detail the data placement problem. We examine a local search

method and a Lagrangean relaxation. At first, a formulation is presented in Section 4.1.

The related research is described in Section 4.2. Computation of upper bound and lower

bound is discussed in Sections 4.3 and 4.4 respectively. Finally, the experiments and the

results are described in Section 4.5.

4.1 Problem Definition

Let us consider a distributed network of caches that have some storage capacity and a

set of clients who need to access certain data objects from those caches. A way to improve

the performance of such a network is cooperative caching. This cooperation can reduce

the average access cost and can improve the space utilization. A vital problem in such a

cooperative system is to determine the placement of the data objects to caches such that the

average access cost is minimized. The goal is to place data objects in fixed capacity caches

in a network to optimize the storage and the access cost where each client has a demand

for a specific object. Thus, we can consider the following mathematical formulation of the

problem.

Given a set of caches F, a set of data objects O and a set of clients D. Each cache i ∈ F has

a capacity ui, that limits the total number of data objects that can be stored in the cache.

Each client j ∈ D has demand d j for a specific data object o( j) ∈ O and has to be assigned

to a cache that stores the object. Storing an object o in cache i incurs a storage cost of f o
i ,

40



4.2. RELATED RESEARCH

and assigning client j to cache i incurs an access cost of d jci j proportional to the distance

ci j between i and j. The goal is to place the data objects in caches that satisfies the cache

capacities, and compute an assignment of clients to caches, so as to minimize the total stor-

age and client access cost [3].

More precisely, we want to determine a set of objects O(i) ⊆ O to place in each cache

i ∈ F satisfying | O(i) | ≤ ui, and assign each client j to a cache i( j) that stores object

o( j),(i.e.,o( j) ∈ O(i( j))) so as to minimize ∑i∈F ∑o∈O(i) f o
i + ∑ j∈D d jci( j) j.

Let us define two binary variables xi j and yo
i as:

xi j =

{
1 if client j is assigned to cache i
0 Otherwise.

yo
i =

{
1 if object o is stored in cache i
0 Otherwise.

The integer linear program (ILP) for the data-placement can be written as:

minimize ∑
i∈F

∑
o∈O

f o
i yo

i + ∑
i∈F

∑
j∈D

d jci jxi j (4.1)

s.t.∑
i∈F

xi j = 1, ∀ j ∈ D (4.2)

xi j ≤ yo( j)
i , ∀i ∈ F, j ∈ D (4.3)

∑
o∈O

yo
i ≤ ui, ∀i ∈ F (4.4)

xi j ∈ {0,1} ∀i ∈ F, j ∈ D (4.5)

yo
i ∈ {0,1} ∀i ∈ F,o ∈ O (4.6)

Equation (4.1) is the objective function to minimize the total storage and client assignment

cost. The first constraint (4.2) indicates that each client must be assigned to exactly one

cache. Equation (4.3) states that a client j can be assigned to a cache only if the cache

contains the object o( j). Equation (4.4) is the capacity constraint. Equations (4.5) and (4.6)

are the integrality constraints.

41



4.2. RELATED RESEARCH

4.2 Related research

The problem of data management in a distributed network has been extensively studied.

Bartal et al. [4] studied the competitive analysis of algorithms for data management in a

distributed environment . They examined competitive algorithms to minimize the commu-

nication cost over arbitrary sequences of reads and writes and also defined the constrained

file allocation problem to be the solution to many individual file allocation problems. Var-

ious studies have incorporated routing information into the caching problem. Maggs et al.

[38] considered the problem of placing and accessing shared objects that are read and writ-

ten from the nodes in a network. They introduced new static and dynamic data management

strategies for tree connected networks and for the Internet. In 2001, Meyerson et al. [40]

considered the natural theoretical problems of assigning pages to caches and determining

the optimal cache locations on the web. They considered a generalization of the data place-

ment problem called the page placement problem where each cache has a client capacity

that limits the number of clients that can be assigned to a cache. They gave a constant fac-

tor approximation algorithm, but with a logarithmic violation of the client capacity and the

object capacity. Shmoys et al. [48] introduced a problem closely related to the data place-

ment problem which is motivated by applications in facility location. In their study, each

facility i has a opening cost fi and service installation cost f l
i for every facility-service pair

(i, l). They provided a primal-dual 6 factor approximation algorithm under the assumption

that, if i comes before i′ in ordering then for every service type l, f l
i ≤ f l

i′ . In 2004, Ravi

and Sinha [45] proposed approximation algorithms for multicommodity facility location

(MCFL) problem which is an extension of the facility location problem where different

clients have demand for different goods. They proved the hardness of the multicommodity

facility location by reducing from the set cover problem. They provided an O(log t) ap-

proximation algorithm for the t-MCFL problem where the maximum number of allowable

commodities in any facility’s configuration t equals the total number of commodities k. Qiu

et al. [44] studied the problem of web server replica placement. They developed several

42



4.3. COMPUTING THE UPPER BOUND

placement algorithms that use workload information to determine the placement decisions.

Data placement problem is a generalization of uncapacitated facility location (UFL) prob-

lem. There is a vast amount of literature that deals with designing approximation algorithms

for UFL. The first constant factor approximation for UFL was obtained via LP rounding by

Shmoys, Tardos and Aardal [49]. Closely related, k-median problem is discussed in chapter

3. In 2008, Baev et al. [3] presented a 10-approximation algorithm for the data placement

problem. Their algorithm is based on rounding an optimal solution to a natural LP relax-

ation. Data placement problem is also related to the red-blue median problem [27] which

is a generalization of the k-median problem [15]. In the red-blue median problem, we are

given a set of red facilities, a set of blue facilities, a set of clients in a metric space and

two integers kr, kb ≥ 0. The problem is to open at most kr red facilities and at most kb blue

facilities so as to minimize the sum of distances from the clients to their respective closest

open facilities [27]. The data placement problem can be motivated from a red-blue median

perspective. In the data placement problem, let us assume that there are only two objects o1

and o2 in the object set O. We can consider o1 as red facility and o2 as blue facility. Each

client requests either object o1 or object o2. The problem is to place objects in caches and

assign a client j to its nearest cache that contains the requisite object. We assume that the

placement cost is zero. If the number of clients requesting red facility (o1) is kr and number

of clients requesting blue facility (o2) is kb, then we can relate the data placement problem

with the red blue median problem. Krishnaswamy et al. [34] studied a generalization of

budgeted red-blue median known as matroid median, where a matroid structure is given

over the set of facilities and we can only open a set of facilities if they form an indepen-

dent set in the matroid. They obtain a constant-factor approximation for matroid median

by rounding an LP relaxation. The study of budgeted red-blue median from the perspective

of approximation algorithms was initiated by Hajiaghayi, Khandekar, and Kortsarz [27]. In

2016, Zachary and Yifeng [22] showed that a multiple-swap local search heuristic gives a

(5+ ε)-approximation for budgeted red-blue median for any constant ε > 0.

43



4.3. COMPUTING THE UPPER BOUND

4.3 Computing the upper bound

In this section, we describe a local search heuristic we use to compute the upper bound

for the data placement problem. Motivation for this is the success of local search for the

budgeted red-blue median problem [22].

4.3.1 Local search method

The data placement problem is a generalization of the uncapacitated facility location

problem. In the facility location problem, we are given a set of facilities with facility

opening cost and a set of clients. We want to open some facilities and assign clients to open

facilities such that the sum of facility opening cost and client assignment cost is minimized.

Local search heuristics can be used to solve hard combinatorial problems. They start with a

feasible solution and try to improve the solution repeatedly by applying some local changes.

We use the following local search for UFL as a subroutine in our local search. The local

moves for UFL we use are: add, delete and swap. If, S is the current set of facilities we can

define the local moves as follows.

i) Add move : Opens one additional facility. Add operation is defined as : S = S+ s′,

where s′ /∈ S. We add a new facility s′ which is currently not in S.

ii) Delete move : Closes one facility that is currently open. This operation is defined as:

S = S− s, where s ∈ S. We close the facility s which is currently open.

iii) Swap move : Opens one new facility and closes a facility that is currently open simul-

taneously. Swap operation is defined as: S = S− s+ s′, where s′ /∈ S and s ∈ S. We

close an open facility s, and at the same time we open s′ which is currently closed.

For the data placement problem, we can consider caches as facilities, objects as the services

installed in those facilities. A restriction that is imposed in the data placement problem is

on the capacity of caches which is the number of services that can be installed in a facility.

The data placement problem for a single object is an uncapacitated facility location (UFL)

44



4.3. COMPUTING THE UPPER BOUND

instance. Thus data placement problem is a generalization of the UFL problem. In our

approach for computing an upper bound to the data placement problem, we generate some

UFL instances as a subproblem and solve those instances by using the local search heuristic

for the UFL problem (Algorithm 8). Algorithm 7 describes the local search heuristic we

use to compute the upper bound for the data placement problem.

Algorithm 7: Data placement localSearch
Input : Set of caches F , Set of clients D, Set of requested objects o : D → O where

o is a function from clients to objects, Cost matrix C, Demand d : D → N
Output: Minimum total cost.

1 Place all the objects, randomly in different caches.

2 Assign all the clients to the nearest cache with the requested object. η : D → F .

3 Calculate the assignment cost, Ctotal = ∑
i∈F

∑
j∈D

d jci j given η.

4 while true do
5 foreach object l do
6 pick l and remove it from all the caches.

7 no f acility ← number of available empty caches.

8 clients ← set of clients requesting object l.
9 ηnew ← UFL localSearch(no f acility,clients,C,d)

10 Calculate the new assignment cost, Cnew from mapping ηnew.

11 end
12 if η = ηnew then
13 break.

14 η ← ηnew only if the cost is improving.

15 end
16 return Cnew.

At first, we open only the requested objects randomly in different cache locations and

assign clients to their nearest cache that contains the requisite object. Mapping η gives

us information about which client is assigned to which cache. Using the mapping η, we

calculate the total assignment cost Ctotal . From the list of requested objects rob j ⊆ O, we

pick an object l and remove it from all possible cache locations. Now, we consider empty

cache locations as number of facilities and the clients requesting object l as the total number

of clients and consider this subproblem as a UFL instance. Then we pass this information to

the local search procedure for solving an uncapacitated facility location problem described

45



4.3. COMPUTING THE UPPER BOUND

in Algorithm 8.

Algorithm 8: UFL localSearch
Input : Set of facilities K, Set of clients L, Cost matrix C, Demand d.

Output: Mapping η : L → K.

1 S ← an arbitrary feasible solution.

2 Assign all the clients to the nearest open facility.

3 Calculate the total assignment cost Cost(S) = ∑
i∈S

∑
j:η(i)= j

d jci j.

4 while true do
5 if ∃ op(S) = S+ s′, such that s′ /∈ S & Cost(op(S))<Cost(S) then
6 S ← op(S).
7 Cost(S) =Cost(op(S)).
8 else if ∃ op(S) = S− s, such that s ∈ S & Cost(op(S))<Cost(S) then
9 S ← op(S).

10 Cost(S) =Cost(op(S)).
11 else if ∃ op(S) = S− s+ s′, such that s ∈ S,s′ /∈ S &Cost(op(S))<Cost(S) then
12 S ← op(S).
13 Cost(S) =Cost(op(S)).
14 else
15 Compute η : L → S.

16 return η.

17 end
18 end

In this algorithm, the input is a set of facilities K, a set of clients L, the cost of assigning

clients to the facilities and demand d for each client. We start with a feasible set of facilities

S and assign all clients to their nearest open facility. Then we calculate the assignment

cost. We check if addition of a new facility to set S reduces the total assignment cost. If

it does, we perform the local move add. If not, we check whether deleting a facility from

S reduces the cost. If the delete operation does not help to reduce the cost, we check the

swap operation. In this way, we continue to perform the local changes until there is an

improvement in cost. Finally, we return the assignment of clients to the facilities to the data

placement problem. This UFL local search gives us a sub-optimal placement of objects into

caches. We perform this local search for all objects in set rob j to solve the UFL instances

as in Algorithm 7. After performing local improvements (if any) for all the objects in set

rob j, we get a new mapping ηnew and from this mapping we calculate the assignment cost

46



4.3. COMPUTING THE UPPER BOUND

by ∑
i∈F

∑
j∈D

d jci j. If the new mapping ηnew is exactly same as the previous mapping η, we

stop the local search. Otherwise, we iterate the whole process again.

According to Williamson and Shmoys [54], if the cost of the solution in the natural local

search for UFL improves by one with each local move, then the algorithm could take time

exponential in size of the input. If we want to speed up the algorithm rather than just

requiring the decrease in cost, we can consider the cost decrease in each iteration by some

factor. Let, ε > 0 be a constant, n =| F | be the number of facilities, m =| D | be the

number of clients and p(n,m) is a polynomial in n and m. According to Arya et al. [2],

any operation op in the local search is considered admissible for S if cost(op(S)) ≤ (1−
ε/p(m,n))cost(S). Then there will be at most a polynomial number of operations to be

checked for admissibility and during each admissible operation, the cost of the current

solution will also decrease by a factor of at least ε/p(m,n). Then the algorithm terminates

in polynomial time.

In 2004, Arya et al. [2] studied the local search heuristics for facility location problems.

They used a careful “coupling” argument to show that local optima had cost at most constant

times the global optimum. In most of the local search proofs, they showed that since a

carefully chosen set of local moves are non-improving, we can assume some relationship

between our cost and the optimal cost. In such case, the set of local moves has to be

carefully defined.

4.3.2 A simpler analysis of local search method for the uncapacitated facility location

problem

In 2008, Gupta and Tangwongsan [26] gave a simpler analysis of the local search al-

gorithm (Algorithm 8) for the uncapacitated faciility location problem. we describe their

proof in this section. Table 4.1 describes the notations used in the analysis.

Lemma 4.1. (Connection Cost): At a local optimum, the fact that “open new facility”

47



4.3. COMPUTING THE UPPER BOUND

Table 4.1: Notations used in the analysis of local search method for the uncapacitated

facility location problem

Symbols Description
F Local optimal set of facilities.
F∗ Optimal set of facilities.
C Set of clients.
f ac( f ) Opening cost for facility f .
f ac(F) ∑ f∈F f ac( f ).
O j Connection cost in an optimal solution for client j.
A j Connection cost in local-optimal solution for client j.
N( f ) Set of clients assigned to facility f in a local optimum solu-

tion.
N∗( f ∗) Set of clients assigned to facility f ∗ in an optimal solution..
ϕ ϕ : V → F , mapping client j ∈ V to closest open facility

f ∈ F .
ϕ∗ ϕ∗ : V → F∗, mapping client j ∈ V to closest open facility

f ∗ ∈ F∗.
η : F∗ → F Maps each optimal facility f ∗ to a closest facility η( f ∗)∈ F

such that d( f ∗,η( f ∗))≤ d( f ∗, f ) for all f ∈ F .
opt f ac(F∗)+∑ j∈C O j
alg f ac(F)+∑ j∈C A j

moves are non-improving implies that the connection cost:

∑
j∈C

A j ≤ f ac(F∗)+ ∑
j∈C

O j. (4.7)

Proof. At a local optimum, if we open each facility in F∗ then the change in the cost is

non-negative for opening each f ∈ F∗ that is not open. Here the change in cost is:

f ac( f ∗)+ ∑
j|ϕ∗( j)= f ∗

(O j −A j)≥ 0 (4.8)

Summing up (4.8) over f ∗ ∈ F∗ and C we get,

f ac(F∗)+ ∑
j∈C

O j − ∑
j∈C

A j ≥ 0 (4.9)

∑
j∈C

A j ≤ f ac(F∗)+ ∑
j∈C

O j (4.10)

48



4.3. COMPUTING THE UPPER BOUND

Lemma 4.2. (Facility Cost): The facility opening cost f ac(F)≤ f ac(F∗)+2∑ j∈C O j if F

is locally optimal.

Proof. A facility f ∈ F is called good if η−1( f ) = /0 (it has in-degree 0) and bad otherwise.

Case 1: If facility f is good, we can consider closing the facility and re-assigning the clients

assigned to f to f̂ = η(φ∗( j)). This is a valid assignment because f̂ �= f .

The reassignment cost is calculated as shown in Figure 4.1. Suppose currently the client j

j

f = φ( j)

f ∗ = φ∗( j)

f̂ = η(φ∗( j))

Figure 4.1: Assignment of client to facility

is assigned to facility ϕ( j). If we optimally assign j, it would have been assigned to ϕ∗( j)

which is not open. Let us assign j to η(ϕ∗( j)) which is the closest facility to the optimal

one ϕ∗( j). By the triangle inequality, d( j, f̂ )≤ d( j, f ∗)+d( f ∗, f̂ ).

Now subtracting d( j, f ) from both sides of the equation, we get

d( j, f̂ )−d( j, f )≤ d( j, f ∗)+d( f ∗, f̂ )−d( j, f )

Since f̂ is the closest facility to f ∗, so d( f ∗, f )≥ d( f ∗, f̂ ). We get,

d( j, f̂ )−d( j, f )≤ d( j, f ∗)+d( f ∗, f )−d( j, f )

By the triangle inequality, d( f ∗, f )≤ d( j, f ∗)+d( j, f ). So we get,

d( j, f̂ )−d( j, f )≤ d( j, f ∗)+d( j, f ∗)

49



4.3. COMPUTING THE UPPER BOUND

d( j, f̂ )−d( j, f )≤ 2d( j, f ∗). Thus,

d( j, f̂ )−d( j, f )≤ 2O j (4.11)

For all good facilities f ∈ F , we close f and open f̂ . The change in the cost is non-negative

because it is local optimum,

− f ac( f )+d( j, f̂ )−d( j, f )≥ 0. From equation (4.11) we get,

− f ac( f )+ ∑
j∈N( f )

2O j ≥ 0 (4.12)

Case 2: Facility f is bad. Let P∗
f be the set η−1( f ) = { f ∗0 , f ∗1 , ...., f ∗t } where t ≥ 0, and let f ∗0

be the closest one to f . We then consider t possible moves of opening facility f ∗i ∈ P∗
f \{ f ∗0 }

and assign any client j ∈ N∗( f ∗i )∩N( f ) to f ∗i . The local optimality ensures that,

f ac( f ∗i )+ ∑
j∈N∗( f ∗i )∩N( f )

(O j −A j)≥ 0 (4.13)

Moreover, consider the move of opening f ∗0 and closing f :

• Any client j ∈ N( f ) with ϕ∗( j) �∈ P∗
f is assigned to a facility η(ϕ∗( j)) �= f . This is a valid

assignment because η(ϕ∗( j)) �= f (ϕ∗( j) �∈ P∗
f ). Equation (4.11) implies that the increase

in the connection cost for such j is at most 2O j.

• Any client j ∈ N( f ) with ϕ∗( j) = f ∗i ∈ P∗
f for some (i ∈ {0,1, ..., t}) is assigned to f ∗0 .

Now the change in the connection cost is d( j, f ∗0 )−d( j, f ). The local optimality implies,

f ac( f ∗0 )− f ac( f )+∑ j∈N( f )∧ϕ∗( j)�∈P∗
f
2O j +∑t

i=0 ∑ j∈N( f )∩N∗( f ∗i )(d( j, f ∗0 )−d( j, f ))≥ 0.

f ac( f ∗0 )− f ac( f )+ ∑
j∈N( f )∧ϕ∗( j)�∈P∗

f

2O j +
t

∑
i=0

∑
j∈N( f )∩N∗( f ∗i )

(d( j, f ∗0 )−A j)≥ 0 (4.14)

Summing (4.14) over the t inequalities (one for each i ∈ {0,1, ..., t}) we get,

f ac( f ∗0 )+ f ac( f ∗i )− f ac( f )+∑ j∈N( f )∧ϕ∗( j)�∈P∗
f
2O j +∑t

i=0 ∑ j∈N( f )∩N∗( f ∗i )(d( j, f ∗0 )+O j −

50



4.3. COMPUTING THE UPPER BOUND

2A j)≥ 0.

From the fact f ac( f ∗0 )+ f ac( f ∗i ) = f ac(P∗
f ) we get,

f ac(P∗
f )− f ac( f )+ ∑

j∈N( f )∧ϕ∗( j)�∈P∗
f

2O j +
t

∑
i=0

∑
j∈N( f )∩N∗( f ∗i )

(d( j, f ∗0 )+O j −2A j)≥ 0

(4.15)

Consider the rightmost sum, ∑t
i=0 ∑ j∈N( f )∩N∗( f ∗i )(d( j, f ∗0 )+O j −2A j),

when i = 0, we get O j +O j −2A j = 2(O j −A j)≤ 2O j.

when i �= 0, the rightmost sum is d( j, f ∗0 )+O j −2A j.

F ∗

F

c
a

b

d

e

f (Bad) (Good)

Client j

f∗
i

f∗
0

Figure 4.2: Assignment of client to facility

Consider Figure 4.2, from triangle inequality, b ≤ a+ c.

Subtracting (d −2a) from both sides we get, b+(d −2a)≤ a+ c+(d −2a) or,

b+(d −2a)≤ d + c−a.

We know, f ∗0 is the closest one to f , so c ≤ e. Replacing c by e we get, b+(d − 2a) ≤
d + e−a.

Again by triangle inequality we get, e ≤ a+d or e−a ≤ d. So we get,

b+(d −2a) ≤ 2d or b+(d −2a)≤ 2O j. or,

d( j, f ∗0 )+d( j, f ∗i )−2d( j, f )≤ 2O j.

d( j, f ∗0 )+O j −2A j ≤ 2O j.

51



4.4. COMPUTING THE LOWER BOUND

Equation (4.15) can be written as,

f ac(P∗
f )− f ac( f )+ ∑

j∈N( f )
2O j ≥ 0 (4.16)

Summing up equation (4.12) over all good facilities f ∈ F we get,

− f ac(F)+ ∑
j∈N( f )

2O j (4.17)

Summing equation (4.16) over all bad facilities f ∈ F we get,

f ac(F∗)+ ∑
j∈N( f )

2O j ≥ 0 (4.18)

From (4.17) and (4.18) we get,

f ac(F∗)− f ac(F)+∑ j∈C 2O j ≥ 0

or f ac(F)≤ f ac(F∗)+∑ j∈C 2O j

Theorem 4.3. At a local optimum, UFL(F)≤ 3 UFL(F∗).

Proof. From lemmas 4.1 and 4.2 we get,

∑ j∈C A j + f ac(F)≤ f ac(F∗)+∑ j∈C O j + f ac(F∗)+2.∑ j∈C O j

UFL(F)≤ 2 f ac(F∗)+3.∑ j∈C O j

UFL(F)≤ 3( f ac(F∗)+∑ j∈C O j)

UFL(F)≤ 3 UFL(F∗)

Thus, for an uncapacitated facility location instance, the cost of any local optimal solution

is at most three times the cost of a global optimal solution.

52



4.4. COMPUTING THE LOWER BOUND

4.4 Computing the lower bound

In this Section, we describe the Lagrangean relaxations we use to compute a lower

bound on the cost of the optimal solution for the data placement problem. At first, we

describe two Lagrangean formulations of the problem by selecting a different set of con-

straints to relax. Then we discuss the algorithms we use to compute the lower bound.

In our study of the Lagrangean relaxation method, we consider the restriction that the place-

ment cost is zero, which means f o
i = 0, ∀i ∈ F and ∀o ∈ O. Thus the linear program of the

data placement problem with zero placement cost is:

minimize ∑
i∈F

∑
j∈D

d jci jxi j (4.19)

s.t.∑
i∈F

xi j = 1, ∀ j ∈ D (4.20)

xi j ≤ yo( j)
i , ∀i ∈ F, j ∈ D (4.21)

∑
o∈O

yo
i ≤ ui, ∀i ∈ F (4.22)

xi j ∈ {0,1} ∀i ∈ F, j ∈ D (4.23)

yo
i ∈ {0,1} ∀i ∈ F,o ∈ O (4.24)

4.4.1 Lagrangean relaxation 1 (LR1-DP)

In our first Lagrangean relaxation, we relax the equality constraint (4.20) as well as

constraint (4.21). Thus we obtain the following problem:

min ∑
i∈F

∑
j∈D

d jci jxi j + ∑
j∈D

λ j(1− ∑
i∈F

xi j)+ ∑
j∈D

u j(∑
i∈F

xi j −1)+ ∑
i∈F

∑
j∈D

vi j(xi j − yo( j)
i )

(4.25)

s.t. ∑
o∈O

yo
i ≤ ui, ∀i ∈ F (4.26)

xi j ∈ {0,1} ∀i ∈ F, j ∈ D (4.27)

53



4.4. COMPUTING THE LOWER BOUND

yo
i ∈ {0,1} ∀i ∈ F,o ∈ O (4.28)

In the objective function (4.25), λ, u and v are non-negative Lagrange multipliers. Mul-

tipliers λ and u are associated with the equality constraints. Multiplier v is attached with

constraints (4.21). We rewrite the objective function (4.25) as:

min ∑
i∈F

∑
j∈D

xi j(d jci j −λ j +u j + vi j)− ∑
i∈F

∑
j∈D

vi jy
o( j)
i + ∑

j∈D
(λ j −u j) (4.29)

Now the goal is to minimize this objective function subject to (4.26) - (4.28). We start with

a non-negative set of multipliers and calculate the first term in (4.29). We set xi j = 1 if the

coefficient for the first term in (4.29) is non-positive. Since this is a minimization problem,

we want the negative terms in this equation to be as large as possible. In order to maximize

the negative sum (second term), we solve the following ILP:

maximize ∑
i∈F

∑
j∈D

vi jy
o( j)
i (4.30)

s.t. ∑
o∈O

yo
i ≤ ui, ∀i ∈ F (4.31)

yo
i ∈ {0,1} ∀i ∈ F,o ∈ O (4.32)

Subgradient optimization

In order to maximize the lower bound we use an iterative procedure. We start with

non-negative set of multipliers and update the value of multipliers in an efficient way. We

use the notation from table 2.1 to describe the subgradient procedure. In Algorithm 9, we

initialize π= 2, λ, u=min
i

ci j ∀ j ∈ D, v= 0 and Zmax =−∞. We obtain an upper bound on

the data placement problem by solving either an integer linear program (where possible) or

by using the local search method described in Algorithm 7. To calculate the lower bound,

we evaluate the term (d jci j −λ j + u j + vi j) in equation (4.29) and if the value is less than

or equal to 0 then we set xi j = 1. We obtain the maximum value for the second negative

term in equation (4.29) by solving the sub problem described by the ILP in (4.30)-(4.32).

54



4.4. COMPUTING THE LOWER BOUND

Algorithm 9: Subgradient optimization procedure [6]

Input : A Lagrangean lower bound program.

Output: Maximum lower bound Zmax.

1 Initialize the values of : π, λ, u, v and Zmax.

2 Find an upper bound ZUB by solving the data placement problem using Integer linear

program or by the local search method described in Algorithm 7 .

3 Compute the Lagrangean lower bound using the initial set of multipliers and by

solving the sub-problem defined by the ILP in (4.30)-(4.32). Get a solution ZLB,

which is the lower bound of the problem.

4 Update the value of Zmax = max(Zmax,ZLB)
5 Evaluate the subgradient value G.

6 Define the step size T = π∗(ZUB−ZLB)
|G|2 .

7 Update the lagrange multiplier values and go to step (3) to re-calculate the value of

lower bound with new set of multipliers.

8 Repeat this process for a fixed number of iterations.

Finally, after computing the term ∑
j∈D

(λ j −u j), we calculate ZLB which is the lower bound

for the problem. Next, we update the value of Zmax, which is the best lower bound found so

far. Next, we determine the subgradient value G = [G1 G2 G3] by combining the following

three subgradient vectors :

G1 = (1− ∑
i∈F

xi j), ∀ j ∈ D (4.33)

G2 = (∑
i∈F

xi j −1), ∀ j ∈ D (4.34)

G3 = xi j − yo( j)
i , ∀i ∈ F, j ∈ D (4.35)

Using the value of G, we calculate the step-size T. After calculating the step size, we update

the multiplier values as :

λ j = max(0,λ j +T G1( j)) j = 1, ...., | D | (4.36)

u j = max(0,u j +T G2( j)) j = 1, ...., | D | (4.37)

vi j = max(0,vi j +T G3(i j)) i = 1, ..........., | F |, j = 1, ...., | D | (4.38)

55



4.4. COMPUTING THE LOWER BOUND

We repeat the subgradient process with the new set of multipliers. Thus we get a new value

for the lower bound. If this new lower bound is better than the previous value we update

the value of Zmax with the new lower bound. We continue for up to 500 iterations.

4.4.2 Lagrangean relaxation 2 (LR2-DP)

In the second Lagrangean relaxation, we consider the following modified data place-

ment problem : constraint (4.20) has been relaxed to an inequality and placement costs are

zero.

minimize ∑
i∈F

∑
j∈D

d jci jxi j (4.39)

s.t.∑
i∈F

xi j ≥ 1, ∀ j ∈ D (4.40)

xi j ≤ yo( j)
i , ∀i ∈ F, j ∈ D (4.41)

∑
o∈O

yo
i ≤ ui, ∀i ∈ F (4.42)

xi j ∈ {0,1} ∀i ∈ F, j ∈ D (4.43)

yo
i ∈ {0,1} ∀i ∈ F,o ∈ O (4.44)

We relax constraints (4.40), (4.41) and (4.42). Thus we get the following problem:

min ∑
i∈F

∑
j∈D

d jci jxi j + ∑
j∈D

λ j(1− ∑
i∈F

xi j)+ ∑
i∈F

∑
j∈D

vi j(xi j − yo( j)
i )+ ∑

i∈F
bi(∑

o∈O
yo

i −ui)

(4.45)

s.t. xi j ∈ {0,1} ∀i ∈ F, j ∈ D (4.46)

yo
i ∈ {0,1} ∀i ∈ F,o ∈ O (4.47)

In equation (4.45), λ, v and b are non-negative Lagrange multipliers. Multiplier λ is as-

sociated with constraints (4.40), v is attached with constraints (4.41), b is associated with

56



4.4. COMPUTING THE LOWER BOUND

(4.42). Equation (4.45) can be rewritten as:

min ∑
i∈F

∑
j∈D

xi j(d jci j −λ j + vi j)+ ∑
o∈O

∑
i∈F

yo
i (bi − ∑

j∈D|o=o( j)
vi j)− ∑

i∈F
biui + ∑

j∈D
λ j (4.48)

Now the goal is to find an integral solution that minimizes this objective function. We start

with a non-negative set of multipliers and calculate the first term in the equation. We set

xi j = 1 if the coefficient is non-positive. Similarly, we calculate the second term in the

equation and set yo
i = 1, if the value of the term associated with yo

i is non-positive.

Subgradient optimization

In order to maximize the lower bound we use subgradient optimization procedure. We

start with a non-negative set of multipliers and update the multipliers in a systematic way.

To solve the second Lagrangean relaxation, we use the subgradient procedure described

in Algorithm 9 except that in step 3, we do not solve any subproblem, because we re-

laxed all the constraints in this formulation. For this formulation, we initialize π = 2,

λ = min
i

ci j ∀ j ∈ D, v = 0, b = 0 and Zmax = −∞. We find an upper bound on the prob-

lem (4.39), by solving either an integer linear program where possible or by using a local

search method described in Algorithm 7. To calculate the lower bound, we evaluate the

term (d jci j −λ j + vi j) in equation (4.48) and if the value is less than or equal to 0 then we

set xi j = 1. We calculate the term (bi − ∑
j∈D|o=o( j)

vi j) and set yo
i = 1 if the value is less than

or equal to 0. Finally, after computing ∑
i∈F

biui and ∑
j∈D

λ j, we calculate ZLB which is the

lower bound for the problem. Next, we update the value of Zmax which is the best lower

bound found so far. In our next step, we determine the subgradient value G = [G1 G2 G3]

by combining the following three subgradient vectors :

G1 = (1− ∑
i∈F

xi j), ∀ j ∈ D (4.49)

G2 = (xi j − yo( j)
i ), ∀i ∈ F, j ∈ D (4.50)

57



4.5. GENERATION OF TEST INSTANCES

G3 = (∑
o∈O

yo
i −ui), ∀i ∈ F (4.51)

Using the value of G, we calculate the step-size T = π∗(ZUB−ZLB)
|G|2 . We update the multipliers

as :

λ j = max(0,λ j +T G1( j)) j = 1, ...., | D | (4.52)

vi j = max(0,vi j +T G2(i j)) i = 1, ..........., | F |, j = 1, ...., | D | (4.53)

bi = max(0,bi +T G3(i)) i = 1, ...., | F | (4.54)

As earlier, we repeat the subgradient process with the new set of multipliers. Thus we get a

new value for the lower bound. If this new lower bound is better than the previous value we

update the value of Zmax with the new lower bound. We continue for up to 500 iterations.

4.5 Experiments and Results

4.5.1 Generation of test instances

We generated the test instances to compare the upper bound computed using local search

and the lower bound computed using Lagrangean relaxation. For generating the cost matrix,

we use union-find data structure [43] to create random trees. An edge in the tree represents

the connection between a client and a cache. After generating the tree, we assign a cost

to each edge which represents the cost of assigning a client to a cache. Union-find is a

data structure that keeps track of a set of elements partitioned into some disjoint subsets.

Each set (tree) is identified by a representative (root) n, which is usually a member of that

set. Every member (node) of a set has an unique identity, a parent, and a rank value. The

disjoint set data structure allows for three operations: MakeSet, Find and Union [23].

• MakeSet: The MakeSet operation creates a singleton set by adding a new member

having a unique id, the rank value is set to zero and parent of the element is itself.

The pseudocode for Makeset operation is in Algorithm 10.

58



4.5. RESULTS

Algorithm 10: MakeSet(n,S)

1 if n /∈ S then
2 S ← S∪{n}
3 rank(n)← 0

4 parent(n)← n

• Find: The Find operation follows a chain of parent indices from a node upwards

through the tree until it reaches the root (element which is its own parent). This

element is the representative member of the set. The pseudocode for Find operation

is given in Algorithm 11.

Algorithm 11: Find(n)

1 if parent(n) �= n then
2 parent(n)← Find(parent(n))

3 return parent(n)

• Union: Union operation creates a new set by combining two existing sets and changes

the parent (root) of one set (tree) to another. In union by rank method, we maintain

an integer rank value for each node or element in a set. The set with the higher rank

value in the root node becomes the root of the newly merged set. If both sets have the

same rank value in the root node, then any one of them can be the new root node, the

rank value increased by one. The pseudocode for union by rank is given in Algorithm

12.

Algorithm 13 describes the generation of random trees with a random cost on each edge.

We pass the cost matrix to Algorithm 6 (in Chapter 3) to compute the transitive closure. The

transitive closure of the cost matrix is computed using the Floyd Warshal algorithm [21].

This ensures that the cost matrix is triangular. For each client, the requested object from the

object set is generated uniformly as random and the demand is also generated randomly in

the range [1−10].

59



4.5. RESULTS

Algorithm 12: Union(m,n)

1 mroot ← Find(m)
2 nroot ← Find(n)
3 if mroot = nroot then
4 return
5 if rank(mroot)< rank(nroot) then
6 parent(mroot)← nroot

7 else if rank(mroot)> rank(nroot) then
8 parent(nroot)← mroot

9 else
10 parent(nroot)← mroot
11 rank(mroot)← rank(mroot)+1

Algorithm 13: Generate random tree

1 S ← φ
2 Initialize no nodes in the tree.

3 foreach node n do
4 MakeSet(n,S)

5 while no edges < no nodes do
6 m ← random value from 1−no nodes
7 n ← random value from 1−no nodes
8 if m �= n then
9 Union(m,n)

10 no edges ← no edges+1

11 foreach edge of the generated tree do
12 Assign a random cost from range 1−100

4.5.2 Results

In Table 4.2, we give the upper bound, the time to compute the upper bound, the lower

bound, the time to compute the lower bound and the duality gap for different size large

instances of data placement problem. The test instances are generated using Algorithm

13. We compute an upper bound by solving the integer linear program of data placement

problem where possible or by solving the local search heuristic described in Algorithm 7,

as large instances cannot be solved optimally using ILP solvers. The upper bound for the

first two test instances in Table 4.2 is computed using ILP and the rest are computed using

60



4.5. RESULTS

local search. We compute the lower bound using the two Lagrangean relaxations studied in

Section 4.4.1 (LR1-DP) and 4.4.2 (LR2-DP).

Table 4.2: Experimental results for the data placement problem

Problem Size UB Time LR1-DP Time Duality gap LR2-DP Time Duality gap

Cache=100
Client=120 4087 5 3120 501.99 23.66 3036.7 412.98 25.69

Cache=100
Client=150 16265 80 14911 633.45 8.32 14708 522.73 9.57

Cache=200
Client=300 33695 1.07 26554 2509.1 21.19 25707 2988.5 23.7

Cache=300
Client=500 76135 4.57 60080 6305.4 21.08 58206 11500 23.55

Cache=300
Client=600 113805 5.15 91890 7870.5 19.25 89711 14481 21.17

Cache=400
Client=600 72807 11.95 53077 9914.7 27.09 50196 23570 31.05

Cache=500
Client=700 72129 25.64 47652 14435 33.94 43983 51189 39.02

Cache=600
Client=800 61292 33.72 38992 19844 36.38 35199 94498 42.57

Cache=700
Client=1000 104080 58.85 68864 28993 33.83 62390 168550 40.05

Cache=800
Client=1200 146969 80.09 97098 37982 33.93 88525 276460 39.76

Cache=900
Client=1400 170662 130.92 113540 53670 33.47 103870 624610 39.13

Cache=1000
Client=1500 188204 180.21 117150 64267 37.75 106470 901050 43.42

The duality gap [5] is given by the formula:

UB−LBmax

UB
×100% (4.55)

Here UB is the upper bound for the problem and LBmax is the maximum lower bound for the

problem. In Table 4.2, every test instance has a total of two objects and the cache capacity

is one for every cache. From the experimental results we can see that the upper bound

and the lower bound values are relatively close to each other for large sized instances of

the problem. The largest instance tested contains 1000 caches, 1500 clients, 2 objects and

cache capacity of one. This problem includes 1502000 variables and 1502500 constraints.

61



4.5. RESULTS

After 500 iterations of subgradient method we get the duality gap 37.75% using Lagrangean

relaxation LR1-DP. The time columns in Table 4.2 represents time in seconds. We can

compute the upper bound within a very small amount of time. When computing the lower

bound, the time increases substantially as the problem size increases.

We implemented the subgradient method (Algorithm 9) for computing Lagrangean lower

bound in Octave 4.0.2. The test machine has an Intel Xeon processor with a clock speed

of 3.40 GHz and 8GB of RAM running CentOS. The local search approach in Algorithm 7

is implemented in C++. The ILP for data placement problem is implemented using GLPK

(GNU Linear Programming Kit) library for Octave.

We varied the number of caches from 50 to 350 and the duality gap is shown in Figure 4.3.

5

10

15

20

25

30

35

40

45

50

50 100 150 200 250 300 350

D
ua

lit
y 

ga
p 

(%
)

Number of caches

LR1-DP (Client=400, capacity=1, object=2)
LR2-DP (Client=400, capacity=1, object=2)

Figure 4.3: A comparison of duality gap for two Lagrangean relaxations while varying the

number of caches

There are 400 clients, the capacity of each cache is 1, and there are two objects. We see

from the graph that the duality gap increases with the number of caches for both LR1-DP

and LR2-DP. We get a lower duality gap for LR1-DP than for LR2-DP. In Figure 4.4, we

plot the time needed to solve the instance while we vary the number of caches. Here we see

LR2-DP takes more time than LR1-DP.

In Figure 4.5, we vary the cache capacity from 1 to 5. There are 100 caches, 150 clients

62



4.5. RESULTS

1000

3000

5000

7000

9000

11000

50 100 150 200 250 300 350

T
im

e 
(s

ec
)

Number of caches

LR1-DP (Client=400, capacity=1, object=2)
LR2-DP (Client=400, capacity=1, object=2)

Figure 4.4: A comparison of time for two Lagrangean relaxations while varying the number

of caches

and 5 objects. In this case, as we see from the graph, the duality gap decreases as the cache

capacity increases. We get a lower duality gap for LR1-DP than for LR2-DP. Figure 4.6 is

a plot of the time needed to solve the instance while varying the cache capacity. Here, we

see LR2-DP takes less time than LR1-DP.

1

5

10

15

20

1 2 3 4 5

D
ua

lit
y 

ga
p 

(%
)

Capacity of caches

LR1-DP (Cache=100, Client=150, object=5)
LR2-DP (Cache=100, Client=150, object=5)

Figure 4.5: A comparison of duality gap for two Lagrangean relaxations while varying the

cache capacity

63



4.5. RESULTS

450

500

550

600

650

1 2 3 4 5

T
im

e 
(s

ec
)

Capacity of caches

LR1-DP (Cache=100, Client=150, object=5)
LR2-DP (Cache=100, Client=150, object=5)

Figure 4.6: A comparison of time for two Lagrangean relaxations while varying the cache

capacity

In Figure 4.7, we vary the number of clients from 550 to 950. There are 500 caches,

each of capacity one and two objects. We can see from the graph that the duality gap

decreases as the number of client increases. We get a lower duality gap for LR1-DP than

for LR2-DP. In Figure 4.8, we plot the time needed to solve the instance while varying the

20

30

40

50

60

70

550 600 650 700 750 800 850 900 950

D
ua

lit
y 

ga
p 

(%
)

Number of clients

LR1-DP (Cache=500, capacity=1, object=2)
LR2-DP (Cache=500, capacity=1, object=2)

Figure 4.7: A comparison of duality gap for two Lagrangean relaxations while varying the

number of clients

64



4.5. RESULTS

number of clients. Here we see LR1-DP takes less time than LR2-DP.

11000

21000

31000

41000

51000

61000

71000

81000

91000

100600

550 600 650 700 750 800 850 900 950

T
im

e 
(s

ec
)

Number of clients

LR1-DP (Cache=500, capacity=1, object=2)
LR2-DP (Cache=500, capacity=1, object=2)

Figure 4.8: A comparison of time for two Lagrangean relaxations while varying the number

of clients

10

15

20

25

2 3 4 5 6 7 8

D
ua

lit
y 

ga
p 

(%
)

Number of objects

LR1-DP (Cache=200, Client=400, capacity=1)
LR2-DP (Cache=200, Client=400, capacity=1)

Figure 4.9: A comparison of duality gap for two Lagrangean relaxations while varying the

number of objects

In Figure 4.9, we vary the number of objects from 2 to 8 for 200 caches, 400 clients and

cache capacity of 1. In this case, we can see from the graph that the duality gap increases as

the number of objects increases. We get lower duality gap for LR1-DP than for LR2-DP. In

65



4.6. DISCUSSION

Figure 4.10, we plot the time needed to solve the same instance while varying the number

of objects. Here, LR2-DP takes more time than LR1-DP.

3000

3500

4000

4500

5000

2 3 4 5 6 7 8

T
im

e 
(s

ec
)

Number of objects

LR1-DP (Cache=200, Client=400, capacity=1)
LR2-DP (Cache=200, Client=400, capacity=1)

Figure 4.10: A comparison of time for two Lagrangean relaxations while varying the num-

ber of objects

4.6 Discussion

• The data placement problem with zero storage cost is an interesting problem to con-

sider because we can relate this problem to the red-blue median problem [27] which

is a generalization of the well-studied k-median problem described in Chapter 3. In

the red-blue median problem, facilities are partitioned into two sets (red and blue)

while clients have no types associated with them and can be served by any open fa-

cility. For the data placement problem, if we consider only two objects in the object

set O = {o1 (red), o2 (blue)} then clients can have demand for each object type. In

this case, a client can only be served by the requisite object. We have a constant fac-

tor approximation algorithm for the red-blue median problem based on simple local

search heuristic [27] and multiple swap heuristic [22]. A special case of the red blue

median problem where all the facilities have the same color (kr = 0 or kb = 0) is a

well studied k-median problem.

66



4.6. DISCUSSION

• From the experimental study, we infer that the upper bound can be computed within

a very small amount of time. The largest instance needed only 180 seconds (Table

4.2) to compute an upper bound using the local search method. On the other hand,

computing a lower bound using Lagrangean relaxation takes an enormous amount of

time as the problem size increases. We see LR1-DP gives a smaller duality gap than

LR2-DP for most of the test instances.

• The running time of the subgradient method can be reduced using a parallel imple-

mentation and it can be studied further. As a future research direction, our work can

be extended to non-zero storage costs and an experimental study would be natural.

67



Chapter 5

Conclusion and Future works

This chapter summarizes the results in the thesis. We discuss our findings, and also outline

directions for future research.

5.1 Summary

In this thesis, we studied a large-scale version of the data placement problem with zero

storage cost. We computed an upper bound for the problem using local search heuristic.

We also computed a lower bound using two Lagrangean relaxations. We conducted an

empirical study for large sized instances of this problem. Our experimental study shows

that the upper bound and lower bound values are relatively close to each other. Stated

otherwise local search gives very good solutions reasonably fast. Lagrangean relaxations

can be used to provide certificates of closeness.

5.2 Future work

There are many possibilities for extending the work in this thesis. It would be interesting

to investigate the following aspects of the data placement problem.

• In this thesis, we studied the data placement problem with the restriction on place-

ment costs. Our work can be extended naturally to non-zero storage costs and an

experimental study would be natural.

• We use an iterative subgradient optimization method to solve the Lagrangean relax-

ation. Our implementation of the method is sequential. The running time of the

68



5.2. FUTURE WORK

subgradient method can be reduced using a parallel implementation, and this can be

an interesting extension to our work.

69



Bibliography

[1] E. H. L. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Prince-

ton University Press, 1997.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Lo-

cal search heuristics for k-median and facility location problems. SIAM Journal on
computing, 33(3):544–562, 2004.

[3] I. Baev, R. Rajaraman, and C. Swamy. Approximation algorithms for data placement

problems. SIAM Journal on Computing, 38(4):1411–1429, 2008.

[4] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data man-

agement. Journal of Computer and System Sciences, 51(3):341–358, 1995.

[5] J. E. Beasley. A note on solving large p-median problems. European Journal of
Operational Research, 21(2):270–273, 1985.

[6] J. E. Beasley. A lagrangian heuristic for set-covering problems. Naval Research
Logistics (NRL), 37(1):151–164, 1990.

[7] J. E. Beasley. “OR-Library”. http://www.http://people.brunel.ac.uk/

˜mastjjb/jeb/info.html, 1990.

[8] J. E. Beasley. Lagrangean heuristics for location problems. European Journal of
Operational Research, 65(3):383–399, 1993.

[9] T. Bektaş, J. F. Cordeau, E. Erkut, and G. Laporte. Exact algorithms for the joint object

placement and request routing problem in content distribution networks. Computers
& Operations Research, 35(12):3860–3884, 2008.

[10] T. Bektas, O. Oguz, and I. Ouveysi. Designing cost-effective content distribution

networks. Computers & Operations Research, 34(8):2436–2449, 2007.

[11] C. Beltran, C. Tadonki, and J. P. Vial. Solving the p-median problem with a semi-

lagrangian relaxation. Computational Optimization and Applications, 35(2):239–260,

2006.

[12] C. Beltran, J. P. Vial, and A. Alonso-Ayuso. Semi-lagrangian relaxation applied to

the uncapacitated facility location problem. Computational Optimization and Appli-
cations, 51(1):387–409, 2012.

[13] A. Bumb. Approximation algorithms for facility location problems. PhD thesis,

Netherlands: University of Twente, 2002.

70



BIBLIOGRAPHY

[14] J. W. Chinneck. Practical optimization: a gentle introduction. Systems and Computer
Engineering), Carleton University, 2006.

[15] N. Christofides and J. E. Beasley. A tree search algorithm for the p-median problem.

European Journal of Operational Research, 10(2):196–204, 1982.

[16] H. Crowder, E. L. Johnson, and M. Padberg. Solving large-scale zero-one linear

programming problems. Operations Research, 31(5):803–834, 1983.

[17] G. Dantzig. Linear programming and extensions. Princeton university press, 2016.

[18] L. W. Dowdy and D. V. Foster. Comparative models of the file assignment problem.

ACM Computing Surveys (CSUR), 14(2):287–313, 1982.

[19] M. Drwal and J. Jozefczyk. Decomposition algorithms for data placement problem

based on lagrangian relaxation and randomized rounding. Annals of Operations Re-
search, 222(1):261–277, 2014.

[20] M. L. Fisher. The lagrangian relaxation method for solving integer programming

problems. Management science, 27(1):1–18, 1981.

[21] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345,

1962.

[22] Z. Friggstad and Y. Zhang. Tight Analysis of a Multiple-Swap Heurstic for Bud-

geted Red-Blue Median. In 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 75:1–75:13, Dagstuhl, Germany, 2016.

[23] Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set union prob-

lems. ACM Computing Surveys (CSUR), 23(3):319–344, 1991.

[24] B. Gavish and M. W. Suh. Configuration of fully replicated distributed database sys-

tem over wide area networks. Annals of Operations Research, 36(1):167–191, 1992.

[25] K. Genova and V. Guliashki. Linear integer programming methods and approaches–a

survey. Journal of Cybernetics and Information Technologies, 11(1), 2011.

[26] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility

location. arXiv preprint arXiv:0809.2554, 2008.

[27] M. Hajiaghayi, R. Khandekar, and G. Kortsarz. Local search algorithms for the red-

blue median problem. Algorithmica, 63(4):795–814, 2012.

[28] M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning

trees. Operations Research, 18(6):1138–1162, 1970.

[29] K. L. Hoffman. Combinatorial optimization: Current successes and directions for the

future. Journal of computational and applied mathematics, 124(1):341–360, 2000.

71



BIBLIOGRAPHY

[30] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by sim-

ulated annealing: an experimental evaluation; part i, graph partitioning. Operations
research, 37(6):865–892, 1989.

[31] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study in

local optimization. Local search in combinatorial optimization, 1:215–310, 1997.

[32] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceed-
ings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311.

ACM, 1984.

[33] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Placement algorithms for hierar-

chical cooperative caching. Journal of Algorithms, 38(1):260–302, 2001.

[34] R. Krishnaswamy, A. Kumar, V. Nagarajan, Y. Sabharwal, and B. Saha. The matroid

median problem. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 1117–1130. SIAM, 2011.

[35] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating warehouses.

Management science, 9(4):643–666, 1963.

[36] H. W. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[37] A. H. Land and A. G. Doig. An automatic method of solving discrete programming

problems. Econometrica: Journal of the Econometric Society, pages 497–520, 1960.

[38] B. M. Maggs, F. M. auf der Heide, B. Vocking, and M. Westermann. Exploiting

locality for data management in systems of limited bandwidth. In Foundations of
Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages 284–293.

IEEE, 1997.

[39] S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms for the 0–

1 knapsack problem. European Journal of Operational Research, 123(2):325–332,

2000.

[40] A. Meyerson, K. Munagala, and S. Plotkin. Web caching using access statistics. In

Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,

pages 354–363. Society for Industrial and Applied Mathematics, 2001.

[41] J. B. Orlin, A. P. Punnen, and A. S. Schulz. Approximate local search in combinatorial

optimization. SIAM Journal on Computing, 33(5):1201–1214, 2004.

[42] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1982.

[43] M. M. A. Patwary, J. Blair, and F. Manne. Experiments on union-find algorithms

for the disjoint-set data structure. In International Symposium on Experimental Algo-
rithms, pages 411–423. Springer, 2010.

72



BIBLIOGRAPHY

[44] L. Qiu, V. N Padmanabhan, and G. M. Voelker. On the placement of web server

replicas. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, volume 3, pages 1587–

1596. IEEE, 2001.

[45] R. Ravi and A. Sinha. Multicommodity facility location. In Proceedings of the fif-
teenth annual ACM-SIAM symposium on Discrete algorithms, pages 342–349. Society

for Industrial and Applied Mathematics, 2004.

[46] G. Reinelt. “tsplib”. http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/, 2001.

[47] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[48] D. B. Shmoys, C. Swamy, and R. Levi. Facility location with service installation costs.

In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms,

pages 1088–1097. Society for Industrial and Applied Mathematics, 2004.

[49] D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility loca-

tion problems. In Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing, pages 265–274. ACM, 1997.

[50] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. V. Steen. Replication for web

hosting systems. ACM Computing Surveys (CSUR), 36(3):291–334, 2004.

[51] J. K. Strayer. Linear programming and its applications. Springer-Verlag New York,

1st edition, 1989.

[52] L. Trevisan. Combinatorial optimization: Exact and approximate algorithms. Stand-
ford University, 2011.

[53] R. J. Vanderbei. Linear programming: Foundations and extensions. Springer US,

USA, 3rd edition, 2008.

[54] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cam-

bridge university press, 2011.

73


