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ABSTRACT 

Soil is an essential nature resource. Management of this resource is vital 

for sustainability and the continued functioning of earths atmospheric, 

hydrospheric and lithospheric functioning. The assessment and continued 

monitoring of surface soil state provides the information required to effectively 

manage this resource. This research used a simulated Environmental Mapping 

and Analysis Program (EnMAP) hyperspectral image cube of an agricultural 

region in semi- arid Mediterranean Spain to classify soil erosion states. Multiple 

Endmember Spectral Mixture Analysis (MESMA) was used to derive within 

pixel fractions of eroded and accumulated soils. A Classification of the soil 

erosion states using the scene fraction outputs and digital terrain information. 

The information products generated in this research provided an optimistic 

outlook for the applicability of the future EnMAP sensor for soil erosion 

investigations in semi-arid Mediterranean environments. Additionally, this 

research verifies that the launch of the EnMAP satellite sensor in 2018 will 

provide the opportunity to further improve the monitoring of earth finite soil 

resources. 
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1 Introduction 

Soil, next to water, is the most vital resource for the continued prosperity of 

human populations (Morvan et al.,2008; Yang et al.,2003; Doran, 2002).  The 

primary threat to the continued productivity of the soil resource is the 

mismanagement of it (Boellstroff and Benito, 2005; Herrick, 2000; Martinez-

Casaanovas and Sanchez-Bosch, 2000), for example, by employing unsustainable 

farming practices. Regular monitoring of the soil resource is necessary for the 

early identification of degradation, which would allow ample time for the 

implementation of countermeasures. 

It is estimated that 77 billion tons of soil is lost each year to soil erosion at an 

estimated cost of $400 billion annually (Eswaran et al., 2001). It is also estimated 

that nearly one third of the world’s arable land has been lost to erosion in the last 

40 years (Yang et al., 2003). The loss of arable land has devastating effects on both 

food production and sustainability (Pimentel, 2006). Soil erosion effectively 

diminishes soil quality, which in turn has devastating effects on the productivity 

of not only agricultural ecosystems but also forest and rangeland ecosystems 

(Pimentel and Kounang, 1998; Pimentel, 2001). 

There are various physical, chemical and biological mechanisms that 

contribute to overall land degradation (Lal, 1994). Soil erosion is among the 

many physical mechanisms and is considered highly indicative of severe stages 

of land degradation. There are four primary drivers of soil erosion (Lal, 2001). 
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These drivers are physical by means of wind and water, chemical, gravitational 

and agricultural such as tillage. Soil erosion in semi-arid Mediterranean 

environments, like those found in many regions of Spain, are closely related to 

geographical and geological factors, such as lithology, topography and 

climatology, as well as extensive anthropogenic activities.  Among the many 

mechanisms influencing and affecting soil erosion in Spain are anthropogenic 

impacts such as deforestation and intensive agricultural practices (Garcia-Ruiz, 

2010). 

  Spain has been subject to major changes in land use and land cover over 

the last several decades, resulting in increasing susceptibility to soil erosion 

(Symeonakis et al., 2007). Various biophysical, socio-economic and political 

changes have greatly influenced the intensity of soil erosion in the semi-arid 

Mediterranean region of Spain (Symeonakis et al., 2007). Biophysical activities 

include forest fires, agricultural intensification and tillage practices (Govers 1994; 

Lindstrom, 1992 and 1990). Socioeconomic and political examples include 

relocation of the human population to coastal areas, the rapid expansion of 

tourism and the European Common Agricultural Policy (CAP) set-aside policy 

and financial incentives (Garcia-Ruiz, 2010; Boellstorff and Benito, 2005).  

1.1 Remote Sensing of Soil Erosion 

Remote sensing of soils was established with the use of aerial 

photography. The known relationship between the patterns of the soils and the 
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terrain (e.g., relief, drainage conditions, vegetation, etc.) provided the necessary 

information for the analyst to build a soils inventory (FAO, 1967). Digital soil 

mapping emerged as a reliable soil mapping alternative when the availability of 

both digital spatial data (e.g., Digital Elevation Models and Landsat) and 

computing power increased (Minasny and McBratney, 2014).  

Hyperspectral image analysis is a more recent tool that has proven itself 

valuable for mapping and monitoring soil erosion processes (Ben-Dor et al., 2009; 

Shrestha et al., 2005). Hyperspectral data introduced narrow, contiguous spectral 

bands that made it possible to resolve the very narrow absorption features of soil 

spectra (Escribano et al., 2010). 

Hyperspectral remote sensing identifies the presence of eroded soils based 

on differences in spectral reflectance. These differences in spectral reflectance can 

be seen on the surface as alterations in the physical state of the soil for example 

increased stoniness or lack of organic matter.  Other physical soil states include 

salinity or alkalinity of low-lying areas due to poor infiltration to deeper soil 

horizons, crusting and the exposure of mineral horizons at the surface (Shrestha 

et al., 2005; Lal, 2001).        

Traditional methods of monitoring land degradation through field 

observations are time consuming and expensive (Tromp and Epema, 1999). 

Remote sensing methods have proven to be more economical while providing 

reliable information. Multispectral sensor systems such as Landsat Enhance 
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Thematic Mapper Plus (ETM+), Satellites Pour lèObservation de la Terre (SPOT) 

and Advanced Very High Resolution Radiometer (AVHRR), have successfully 

been applied to soil mapping (Cole and Boettinger, 2007; Barnes and Baker, 2000; 

Odeh and McBratney, 2000). The advent of operational space-borne 

hyperspectral remote sensing systems promises to enhance the ability of remote 

sensing to retrieve key biophysical and biochemical soil variables. These  systems 

also provide frequent revisit times (e.g., 3-4 days for the Environmental Mapping 

and Analysis Program (EnMAP; Kaufmann et al., 2012)) which allows for the 

continual monitoring of the environmental conditions at a specific site.  

For future monitoring of soil erosion and other land degradation 

processes, it is important to assess the capability of upcoming hyperspectral 

Earth Observation (EO) systems for detecting and mapping degradational 

features. It can contribute in this assessment. Scene simulation software is 

important for not only the design of new EO systems, but it also allows for the 

understanding of the effects of different instrument and environmental 

parameters on image characteristics, aids in the development and validation of 

data processing algorithms and can also assists in the investigation of possible 

scaling issues (Segl et al., 2012; Cota et al., 2010; Parente et al., 2010; Peisker et al., 

2010).  

Within the scope of the EnMAP mission, the extraction of information on 

and the monitoring of sediment properties, soil erosion status and land 

file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Acronyms.docx%23Acro_EnMAP
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/REFERENCES.docx%23Ref_Kaufmann_2012
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Acronyms.docx%23Acro_EO
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Acronyms.docx%23Acro_EO
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/REFERENCES.docx%23Ref_Segl_2012
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/REFERENCES.docx%23Ref_Cota_2008
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/REFERENCES.docx%23Ref_Parente_2010
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/REFERENCES.docx%23Ref_Peisker_2010
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/REFERENCES.docx%23Ref_Peisker_2010
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Acronyms.docx%23Acro_EnMAP


 

5 
 

degradation are core priorities (Stuffler et al., 2008). Simulation software, such as 

the EnMAP end-to-end Simulation (EeteS) tool, can be used to produce EnMAP 

reflectance image cubes, which in turn can be used to investigate the capabilities 

of the future EnMAP satellite data for soil erosion and land degradation 

applications and to act as a test bench for similar scientific exploration using the 

EnMAP system (Segl et al., 2012). Simulation studies, as presented in this 

research, are essential for understanding how future satellite image products will 

be useful in the future.  

The availability of spaceborne hyperspectral sensors, such as EnMAP, will 

allow for frequent and effective collection of hyperspectral image data. Increased 

access to hyperspectral image data will provide a basis for the generation of 

more effective soil erosion detection methods as well as possibly act as a starting 

point for procedural and product standardization in remote sensing soil erosion 

investigations.   

This research utilized the Airborne Imaging Spectrometer for Applications 

(AISA) data collected from the Soil Erosion Detection within MEDiterranean 

agricultural areas using Hyperspectral data (SEDMEDHY) test site located in 

central Spain to simulate an EnMAP reflectance image cube. The simulated 

image cube was then used to investigate the mapping capabilities of the future 

EnMAP satellite in semi-arid Mediterranean soil erosion applications. 
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1.2 Objectives 

The main objectives pursued in this research were: 

1. Discriminate bare soil, crop residue and sparse vegetation in simulated 

EnMAP hyperspectral data using image analysis. 

2. Effectively map soil erosion states using hyperspectral decomposition 

techniques. 

The following chapters will provide an overview of relevant existing 

literature, outline the procedures and methods employed in this research and 

present the results obtained. The work will be concluded with an in depth 

discussion of the procedures leading to the results as well as of the results 

themselves. 
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2 Literature Review 

2.1 Soil-Introduction 

Soil formation is described as the transformation of rock, or parent material, 

into soil (Jenny, 1941). Simonson (1959) describes the process of soil formation as 

consisting of two processes: 1) the accumulation of parent material, and 2) the 

development of soil horizons. Although the processes may occur at different 

rates and in different sequences in various regions, they are consistent on a 

global scale. Compositionally, all soils are a combination of mineral material, 

organic material, water and air. However, the proportions and characteristics of 

each component may vary by region (Cambardella et al., 1994; Robertson et al., 

1993; Simonson, 1959) as a result of the spatial variation of soil forming factors ( 

e.g., parent material, climate, topography and organisms; Jenny, 1941). 

Soils support the planets terrestrial vegetation and contains a significant 

portion of the world’s carbon as organic matter (Nature Geoscience, 2010). All 

soils also play an important role in ecosystem wellbeing, namely through 

partitioning rainfall, maintaining habitat diversity and stability, buffering against 

toxins, and storing, recycling and partitioning nutrients and energy (Warkentin, 

1995).  In addition to the atmospheric, hydrospheric and lithospheric functions of 

soils, they also serve as an essential component of any functioning ecosystem 

(Lal, 2013; Doran and Parkin, 1994).  
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2.1.1 Land Degradation 

Land degradation is a process, which decreases the capacity of the soil to 

perform its atmospheric, hydrospheric and lithospheric functions, as well as 

threatens food production and other ecosystem goods and services (Stewart and 

Lal, 1992). It is largely a human-induced process (UNEP, 1988), with contributing 

effects from natural phenomena, such as floods, drought and landslides (UNEP, 

2013). Human activities such as unsustainable agricultural practices, poor soil 

and water management practices and vegetation removal by means of 

deforestation and burning, all contribute to the degradation of the soil (UNEP, 

2013). Included in this is the expansion of almond and olive orchards into 

marginal lands which are comprised mainly of steep, stony hill slopes (Garcia-

Ruiz, 2010). More so than water erosion, it is tillage erosion which is the main 

cause of land degradation in these marginal lands (Poesen et al., 1997). 

In some instances this has resulted in mass movement of and, in extreme 

cases, the complete destruction of civilizations, as occurred with the ancient 

civilizations of Mesopotamia and the Indus Valley (Hillel, 1991; Adams, 1981). 

In arid, semi-arid and dry sub-humid regions, land degradation is also 

referred to as desertification (UN, 1994; Stewart et al., 1991) and can lead to 

permanent loss of land productivity (Wang et al., 2006;Yang et al. 2005). 

However, in some instances the productivity of the land can be reclaimed, 

depending on variables, such as the degree of degradation, continued human 
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involvement and climatic factors (Toky and Ramakrishnan, 1981; Bazzaz, 1968). 

Maintaining and managing land productivity will be essential in the years to 

come in regards to the issue of global population growth and the growing 

pressures on farmlands to increase food and/or livestock outputs (Gilland, 2002).  

2.1.2 Soil Erosion 

The natural soil erosion process has been occurring since the development 

of the first soils, which occurred approximately 450 million years ago (Favis-

Mortlock, 2007). Soil erosion is one of many natural processes that contributes to 

global land degradation. It is defined as the detachment and transport of soil 

particles by wind or water (Favis-Mortlock, 2007; Poesen and Hooke, 1997), but 

can also be influenced by such things as tillage and mass movement (Poesen and 

Hooke, 1997). Soil erosion is a completely natural process; however, the rate of 

soil erosion poses an environmental issue (Favis-Mortlock, 2007). Both natural 

and anthropogenic influences determine the rate of soil erosion (Lal, 2001). 

Broad examples of natural factors that contribute to soil erosion include 

climate, vegetation and topography (Lal, 2001). More specifically the drop size 

distribution and intensity of rain and the slope gradient, length, aspect and shape 

of the terrain (Lal, 2001). The threat to the Earth’s soil resources by natural 

erosion processes is minimal since the rate of soil erosion is often equivalent to 

the rate of soil formation (Favis-Mortlock, 2007). 
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This is not the case with accelerated soil erosion processes. Anthropogenic 

factors, such as land-use, farming practices and soil management (Lal, 2001), 

accelerate the soil erosion process, which results in the removal of soil at a rate 

that is much faster than it can be replenished (Favis-Mortlock, 2007). The earliest 

accounts of accelerated soil erosion are associated with the implementation of 

early agriculture practices (Favis-Mortlock, 2007). In addition to the direct 

anthropogenic factors influencing soil erosion, there are also socio-economic 

factors that influence soil erosion such as poverty and rapid population growth 

(Lal, 2001; Richards, 1990). 

There are several countries in the world that are affected by accelerated 

soil degradation. These include, the Sahelian and Chinese arid and semi-arid 

regions, followed by the Iranian and Middle Eastern drylands (UNEP, 2012). 

Common to each of these areas is a high-spatial and temporal variability in 

rainfall and intensive grazing (UNEP, 2012), which both largely affect vegetation 

cover. 

At a local level, soil erosion can reduce the productivity of the soil, alter 

plant composition and negatively impact biodiversity, both above and within the 

soil (Pimentel et al., 1995). The far reaching effects of soil erosion can be 

devastating, particularly when the soil particles enter the water systems (USDA, 

1990). Once this happens, the negative effects can reach regional scales (Favis-

Mortlock, 2007). These off-site disturbances include eutrophication of water 
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bodies, siltation of harbours, loss of reservoir storage, flooding, disruption of 

stream ecology and loss of wildlife habitat (Lal, 1998; Gray and Leiser, 1982). 

2.1.2.1  Soil Erosion in Semi-Arid Mediterranean Environments 

Semi-arid Mediterranean environments are characterized by warm to hot, 

dry summers with mild to cool winters and relatively low annual rainfall 

(between  25 cm – 50 cm). The rainfall is concentrated mainly in the winter 

months, with the heaviest rainfall occurring in November.  Globally, arid and 

semi-arid environments account for 40 % of the land surface (Deichmann and 

Eklundh, 1991) and contain approximately 38 % of the global population 

(Reynolds et al., 2007; Veron et al., 2006).  

Soil erosion rates in Mediterranean arid and semi-arid environments 

range between 0.4 mm to 1.7 mm annually (Benito et al., 1992). Erosion by water 

is the largest natural form of soil erosion found in Mediterranean arid and semi-

arid environments (Poesen and Hooke, 1997; Schlesinger et al., 1990). Erosion by 

wind is uncommon and is only known to occur on costal sandy soils and as a 

result of tillage, which produces local dust clouds (Poesen and Hooke, 1997). 

The Mediterranean has a long and spatially expansive history of soil 

erosion and land degradation (Butzer, 2005). Both natural and anthropogenic 

factors play a role in the Mediterranean’s high susceptibility to soil erosion. High 

rainfall intensity, low average annual precipitation, fragile soils with low organic 

matter content and poor nutrient content, steep slopes, removal of vegetation 
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resulting from deforestation and mining, and land-use changes have all 

contributed to an unstable soil situation (Grove and Rackham, 2003; Thornes and 

Wainwright, 2003; Kosmas et al., 2000; Poesen and Hooke, 1997).  

Natural soil erosion processes commonly found in semi-arid 

Mediterranean environments include rain splash erosion and rill and gully 

erosion. Although these erosion types are all forms of water erosion, the 

consequences of each are vary greatly (Favis-Mortlock, 2007).  

Rain splash erosion is common in these types of environments because of 

the typical heavy rainfall events, sloped surfaces and lack of vegetation cover. 

Similarly, the same environmental characteristics also play a dominant role in rill 

and gully erosion. However, the areal effects of this type of erosion extend much 

further than that of rain splash erosion (Favis-Mortlock, 2007).  

The effects of the latter remains quite localized, whereas rill and gully 

erosion can affect entire watersheds if the sediments end up being deposited in 

adjacent water systems (Favis-Mortlock, 2007).  In many cases, this can be quite 

devastating to the surrounding ecosystem because the erosion debris is often 

known to clog parts of streams and silt up reservoirs, resulting in higher 

magnitude and frequency flooding (Poesen and Hooke, 1997; Bennett, 1960). 

In Mediterranean environments, vegetation cover is one of the main 

determinants controlling the extent of soil erosion (Lacaze, 1996). To significantly 
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reduce soil erosion in semi-arid environments, a plant cover exceeding 60 % is 

required (Sauer and Ries, 2008). Accordingly, soil erosion develops in areas 

where the vegetation has been seriously damaged or drastically altered over a 

short period of time (Hill et al., 1995; Francis and Thornes, 1990).  

Agriculture has been a prominent land-use in the Mediterranean for 

centuries (Stevenson and Harrison, 1992) and has had adverse impacts. 

Accordingly, past and present soil erosion issues in Spain are strongly tied to 

agricultural activities (Ortega and Simo, 2007). In Spain, the main agricultural 

land-uses are vineyards, olive groves and rain-fed cereal crops (Garcia-Ruiz, 

2010).  

These agricultural land-uses are highly susceptible to erosion. Vineyards 

and olive groves are often cultivated on steep slopes and even in peek growing 

season, a large amount of soil in between rows is exposed leaving not only 

sufficient area for water erosion, but also influencing the direction of the soil 

transport (Garcia-Ruiz, 2010; De Graaf and Eppink, 1999; Garcia-Ruiz et al., 

1995). In contrast, rain-fed cereals, although providing sufficient soil cover in the 

growing season, are often cycled through years of fallow, which leave the entire 

surface exposed for long periods of time (Garcia-Ruiz, 2010). 

It is not only the type of cultivation that influences soil erosion in Spain, 

but also the rapid land-use change associated with agriculture and the 

agricultural practices employed. Rapid land-use change, particularly in semi-arid 
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environments, is devastating to soil health because it is often associated with the 

destruction of natural vegetation cover, which protects the soil from raindrop 

impact (Pugnaire et al., 2006; Dunjo et al., 2003).   

Historically, rapid land-use change in Spain has been associated with the 

expansion of agriculture to meet international demands, such as the increasing 

American demand for wheat and wood in the 19th century, and to evade financial 

hardships (Puigdefabregas and Mendizabal, 1998; Darby, 1956). More recently, 

rapid land-use change has been associated with farmland abandonment, 

resulting from the depopulation of rural areas, the inability to use modern 

machines on the land and issues regarding soil fertility (Garcia-Ruiz, 2010; 

Kosmas et al., 2000; Puigdefabregas and Mendizabal, 1998). Farmland 

abandonment is particularly devastating in semi-arid environments because of 

the scarcity of rainfall which makes plant colonization difficult (Pugnaire et al., 

2006). However, the addition of fertilizers at the time of abandonment has been 

proven to encourage plant colonization which, would decrease the risk of soil 

erosion associated with farmland abandonment (Lasanta et al., 2000). Other 

agricultural practices that have had a devastating effect on soil erosion are those 

associated mainly with the intensification of agriculture, such as irrigation, 

pesticides and most importantly, tillage (Aidoud et al., 1998). 

Currently, agriculture provides 2.8 % of Spain’s Gross Domestic Product 

(GDP) and accounts for 12.7 % of the total European agriculture sector (European 

Commission, 2012a).  Maintaining healthy soils is mandatory if production is to 
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be sustained at current levels. However, the low-risk perception farmers have 

towards agriculturally induced soil erosion may interfere with the introduction 

and implementation of soil erosion control measures (Ortega and Simo, 2007).  

 In the province of Castilla-La Mancha, a recent survey revealed that 

farmer’s had a low risk perception of erosion control factors, such as framing on 

sloped areas, minimum soil cover and maintenance of terraces (Ortega and Simo, 

2007). It also revealed that the compliance measures put in place to help mitigate 

soil erosion processes are not strictly followed and that the farmers low risk 

perceptions correlated to a perceived lack of information. There was also a 

similar correlation in the data regarding farmer’s perceptions concerning water 

use. In contrast, the Good Agricultural and Environmental Conditions (GAEC; 

Ortega and Simo, 2007) involving water use had a high risk perception, high 

level of information provided and high level of compliance. These correlations 

illustrate that, with high levels of information, there is the potential for improved 

soil erosion risk perception and a higher levels of compliance.  

Tillage practices, in particular, should be perceived as high risk in terms of 

soil erosion impact. The effects of tillage on soil erosion can be both indirect and 

direct. The indirect effect of tillage is related to the disruption of key soil 

characteristics, such as reduction of soil organic matter, decrease in aggregation 

and stability of the aggregates, disruption of macropores, as well as negative 

impacts on soil biodiversity and macrofauna (Lal, 1993). By drastically altering 
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these characteristics, the soil is left more vulnerable to erosive processes and 

becomes more susceptible to compaction and erosion by wind and water, 

particularly rain drop impact (Lal, 1993).  Deterministic erosion models such as 

the Water Erosion Prediction Project (WEPP) Model and the European Soil 

Erosion Model (EUROSEM) try to account for the indirect effects of tillage 

practices on soil erosion (Morgan et al, 1992; Nearing et al., 1989).  

The severity of the erosion related directly to tillage is highly dependent 

on topography. It has been implied by Govers et al. (1994) that within the hilly 

landscapes of Western Europe, sedimentation rates associated directly with 

tillage were greater than those associated with water erosion. Hilly landscapes 

are so drastically impacted by tillage-induced soil erosion, because the 

movement of soil, as a result of tillage, is directly related to the slope (Lindstrom 

et al., 1990). As the tillage alternates upslope and downslope, a greater amount of 

soil was observed to move downslope than upslope, resulting in a net 

downward motion (Govers et al., 1994; Lindstrom et al., 1990). In this case, the 

soil traveled from the convex slope positions and deposit in the concave slope 

positions (Lindstrom et al., 1992).  

The main property of the slope that influences the movement of soil by 

tillage is changes in the slope gradient (Govers et al., 1994). This means that the 

accumulation of soil can occur along the side of a hillslope as long as the 

difference in slope between two adjacent positions is the same.  The Water and 

file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_lal_1993
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_WEPP
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_EUROSEM
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Moran_1992
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Nearing_1989
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Govers_1994
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Lindstrom_1990
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Lindstrom_1990
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Govers_1994
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Lindstrom_1990
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Lindstrom_1990
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Govers_1994


 

17 
 

Tillage Erosion Model (WATEM; Oost et al., 2000) is capable of assessing the 

effects of landscape type and its change on tillage and water induced soil 

redistribution at a watershed scale. Considering both water and tillage erosion 

simultaneously is beneficial, because each erosional process is influenced by 

different topographical characteristics, and the effects can often become 

compounded at a larger watershed scale (Oost et al., 2000). 

2.1.2.2 European Common Agricultural Policy- Set-Aside Policy 

Europe is the second largest food exporter and the largest food importer 

in the world (European Commission, 2012a), and thus it is crucial that the 

productivity of the land be maintained. The Second World War resulted in the 

destruction of large areas of European agricultural land. To help remediate the 

damage to the land, the European Economic Community (a precursor of the 

European Union (EU)) implemented the CAP in the 1950’s (European 

Commission, 2012b). It was initially implemented in Western Europe and 

focused on encouraging better agricultural productivity through subsidies and 

higher prices for goods to promote greater production (European Commission, 

2012a). 

Since the 1950’s, the CAP has expanded and evolved to accommodate 

changing agricultural needs and marketplace demands. The CAP that people are 

familiar with today was developed largely in the 1980’s to early 1990’s and was 

chiefly influenced by the MacSharry reform (European Commission, 2014). The 
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changes that the reform brought about focused mainly on marketplace 

stabilization and environmental protection.  

The most drastic change relating to the marketplace was the shift from 

product support, through guaranteed prices, to producer support, through 

income compensation. This was done primarily to curb the surplus and stabilize 

the agricultural markets. There was also a shift to increase the competitiveness 

between EU farmers and diversify production (European Commission, 2014).  

Many incentives and measures were put in place with the MacSharry 

reform to help with environmental protection. Incentives were provided for the 

adaption of agricultural practices to support environmental sustainability, such 

as reducing inputs into the land, such as fertilizers and pesticides, leaving field 

boundaries uncultivated and introducing landscape features that increase 

diversity and reduce erodibility (European Commission, 2012a). 

 Other agro-environmental measures that have been implemented include 

afforestation, early retirement, diversification and compulsory set-aside. The set-

aside in particular, requires some of the land to be taken out of production if a 

certain output threshold is exceeded (European Commission, 2002). The 

anticipated result of the set-aside policy included curbing production and 

reducing surplus, preserving small farmers and maintaining the environment 

(European Commission, 2002). 
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The effectiveness of the set-aside policy on environmental protection, 

particularly soil erosion, varies substantially on a regional basis, because the 

policy does not consider or allow for flexibility to account for the varying 

climatic, environmental and economic conditions of the different agricultural 

regions throughout Europe (Boellstorff and Benito, 2005). In many countries soil 

protection has been effectively incorporated into the set-aside policy through 

mandatory cover of the set-aside land. However, this was done under the 

national laws of individual countries.  

Unfortunately, Spain has not established any such law in order to control 

soil erosion on set-aside land (European Commission, 2002). In Spain, two forms 

of set-aside can be implemented, the first being unseeded fallow and the second 

being seeded fallow (Boellstorff and Benito, 2005). The majority of Central Spain 

uses unseeded fallow and the percentage of arable land kept under unseeded 

fallow between the years of 1992, when the set-aside was put into effect, and 1995 

increased by 7 % (Boellstorff and Benito, 2005). Unseeded fallow is frequently 

chosen, because it increases soil moisture, which is a limiting factor on crop 

yields especially in arid and semi-arid regions. However, this type of fallow is 

highly susceptible to soil erosion. Boellstorff and Benito (2005) revealed that the 

soil loss rate of seeded fallow is 50 % less than that of unseeded fallow.  

Boellstorff and Benito (2005) also concluded that, due to the economic incentives 

offered, farmers put greater percentages of their land into set-aside. The rationale 
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is that the economic incentives are more favorable than the income from the crop 

yields as a result of the lower land quality. The lack of a formal and enforceable 

soil protection policy in Spain has created a situation that promotes agricultural 

practices that hinder soil protection and conservation. 

2.1.2.3 Soil Erosion Assessment/Monitoring/Management 

The assessment, monitoring and management of soil erosion are strongly 

interconnected. Assessment allows for an understanding of the current state of 

the soil and, when the assessment is conducted for a location more than once 

over a period of time, it results in the monitoring of the soil condition overtime. 

Both the assessment and monitoring of the soil condition can then be 

incorporated into establishing an appropriate management scheme for a specific 

location.  

Assessment  

Many methods exist for the assessment of soil condition. Examples of such 

methods include the employment of expertise knowledge, factor scoring and 

modeling (van der Knijff et al., 2000; Morgan, 1995). The Soil Erosion Risk Map of 

Western Europe by De Ploey (1989) is an example of a product generated using 

individuals’ expertise, by which experts in a location use their extensive 

knowledge to delineate erosion risk locations (van der Knijff et al., 2000).  
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Factor scoring is a method that has been employed by both Coordination 

of Information on the Environment (CORINE) for their soil erosion risk 

assessment of the Mediterranean region (Briggs, 1992) and the Food and 

Agriculture Organization ( FAO)/ United Nations Environment Programme 

(UNEP) for their assessment of desertification (Dregne and Boyadgiev, 1983). 

Unfortunately both methods, although providing an assessment of the soil 

condition, come with their limitations.  

The Soil Erosion Risk Map of Western Europe provides no explanations of 

the methodology or criteria used to evaluate soil erosion (Yassoglou et al., 1998). 

Without providing a stable definition of the characteristics and criteria used to 

evaluate soil erosion the interpretation of the Soil Erosion Risk Map of Western 

Europe is left to each individual interpreter. This is similar to factor scoring 

which, although providing very well defined qualitative erosion classes, the 

interpretation of these classes are often subjective and can sometimes be quite 

difficult to interpret (van der Knijff et al., 2000).  

Models provide an advantage over the aforementioned soil assessment 

methods, because they are able to assess risk over large areas without the need 

for extensive ground survey (van der Knijff et al., 2000). Models used to assess 

soil erosion and soil erosion risk are designed based on a range of temporal and 

spatial scales, as well as empirically or physically based model types and 

investigation of different types of erosion (van der Knijff et al., 2000). Examples 
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of erosion models include Areal Nonpoint Source Watershed Environment 

Response Simulation (ANSWERS; Beasley et al., 1980), WEPP (Nearing et al., 

1989), the Universal Soil Loss Equation (USLE; Jager and Rickson, 1994) and the 

Soil Erosion Model for Mediterranean Regions (SEMMED; Morgan, 1984; De 

Jong, 1994).  

Certain limitations also exist when using models to assess soil erosion. 

Firstly, uncertainties of any type, for instance in the input data and definable 

variables or model requirements, can propagate as errors through the entire 

modelling process and have a negative impact on the end result (van der Knijff et 

al., 2000). Although it is understood that the purpose of a model is not to provide 

a perfect solution to any one problem, these uncertainties still influence the final 

product and should be kept in mind.  Secondly, the application of models in soil 

erosion assessment are further complicated by the lack of field validation, which 

is a difficult and often disregarded aspect of the modelling process (van der 

Knijff et al., 2000). 

Currently, there is no consensus on the correct way to assess 

desertification (Veron et al., 2006). The United Nations Convention to Combat 

Desertification (UNCCD, 2000) has also indicated that although there is a large 

amount of data available, gathering a clear understanding of land degradation at 

regional or national levels has not been possible. The main reason for this is a 

file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_ANSWERS
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Beasley_1980
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_WEPP
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Nearing_1989
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Nearing_1989
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_USLE
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Jager_1994
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Moran_1984
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_DeJong_1994
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_DeJong_1994
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_knijff_2000
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_knijff_2000
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_knijff_2000
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_knijff_2000
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_veron_2006
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_UNCCD_2000


 

23 
 

result of inconsistent assessment methods and excessive subjectivity, producing 

different estimates of soil erosion (Veron et al., 2006; Agnew and Warren, 1993). 

Monitoring 

The monitoring of soil erosion consists in providing an assessment over 

time.  The main issues to overcome to make soil erosion monitoring more 

applicable to management purposes, are providing information at appropriate 

scales and maintaining a standardization of methods and techniques between 

studies.  Not only are soil surveys at meaningful temporal and spatial scales rare 

(Lacaze, 1996), there is also a lack of sufficient reference information about the 

initial condition of the landscape to which desertification, or soil degradation in 

general, can be compared (Veron et al., 2006). A situation such as this has been 

observed in southeastern Spain by Boer and Puigdefabregas (2003).  

The temporal scale of soil erosion monitoring depends on the type of 

erosion being monitored. Erosion over longer time periods can be caused by 

wind-blown events, whereas a large rain storm can cause extensive erosion in a 

short time period (Favis-Mortlock, 2007). Spatial scales of soil erosion are also 

variable, ranging from a localized scale to affecting an entire catchment area 

(Favis-Mortlock, 2007; Poesen and Hooke, 1997). Accordingly, both the spatial 

and temporal scales of the monitoring need to be suited to the type of erosion 

occurring in order for any meaningful results to be derived. 
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Similarly to how a lack of standardization in soil assessment limits the 

compatibility of data over space, a lack of standardization in the methods and 

techniques used for soil monitoring are also a limiting factor in  that they restrict 

the compatibility of different data sources over time (Lal, 2001). 

Management 

Methods of soil management and conservation currently used in 

agriculture are generally short-term strategies, such as fertilizers and irrigation. 

To effectively combat soil degradation, long-term management strategies need to 

be implemented. However, this is often difficult because long-term strategies are 

difficult to quantify and will only make a visible impact after several decades 

(Herrick, 2000). Methods such as biomass mulches, crop rotations, no-till and 

added grass strips, all support soil conservation by protecting the soil from wind 

and rain erosion (Pimentel et al., 1995; Pimentel, 1993; Troeh et al., 1991).  

Truly managing soil degradation is going to take much more than simply 

understanding the processes of soil erosion and reciting the necessity of 

conservation. It will require an understanding of human-environment 

interactions (Reed et al., 2011). To gain a comprehensive insight into the impact 

of human-environment interactions on soil erosion, both the biophysical and 

socio-economic realms of the soil degradation process will need to be 

investigated simultaneously (Reed et al., 2011; Reynolds et al., 2007). In addition 

to the human-environment interactions, society will need to begin to view soil as 
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an essential and irreplaceable natural resource (Doran and Zeiss, 2000; 

Warkentin, 1995). This will not only involve making information accessible to the 

masses, but also making it easily understandable and the solutions easily 

applicable (Weiskel, 1989).  

Successfully combating soil degradation and desertification will not only 

require the involvement of the government, businesses, Non-Government 

Organizations (NGO’s) and international organizations (Yang and Wu, 2010), it 

will also demand involvement of local communities and greater acceptance and 

utilization of local environmental knowledge (Reed et al., 2011; Reynolds et al., 

2007).  

2.2 Remote Sensing 

Remote sensing is defined by Colwell et al. (1983) as, the measurement or 

acquisition of information of some property of an object or phenomenon, by a 

recording device that is not in physical contact with the object or phenomena 

under study.  In the scope of earth sciences, remote sensing is focused towards 

the collection of information regarding the Earth’s surface and its constituents. 

Gathering information about the Earth’s physical, chemical and biological 

systems using remote sensing techniques is referred to as Earth Observation (EO; 

NRCAN, 2013).  

A series of sensor types can be used for EO. The two broad categories of 

sensors used for EO are active and passive sensors. Active sensors produce and 
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receive their own signal, whereas passive sensors record electromagnetic 

radiation reflected or emitted from the scene (Shippert, 2002). Examples of active 

sensors include Light Detection and Ranging (LiDAR) and Radio Detection and 

Ranging (RADAR). Passive sensors include aerial photography, multispectral 

sensing and hyperspectral sensing. Remotely sensed images can be described in 

terms of a series of characteristic resolutions. The four main resolutions are 

radiometric resolution, spatial resolution, spectral resolution and temporal 

resolution.   

The radiometric resolution of a sensor describes the detectors sensitivity to 

the magnitude of the electromagnetic energy (NRCAN, 2013a). A sensor with 

low radiometric resolution will only be able to detect large differences in the 

magnitude of the radiant flux. This will result in less contrast within the scene 

and, thus, a loss of information.  

Spatial resolution is a measure of the smallest angular or linear separation 

between two objects that can be resolved by the remote sensing system (Jensen, 

2005). The pixel size is the smallest unit of an image and is typically used to 

describe the spatial resolution. Another method to portray the spatial resolution 

of a sensor is the Ground Sampling Distance (GSD), which is the distance 

between pixel centers on the ground. The spatial resolution of a satellite sensor is 

fixed by the Instantaneous Field-of-View (IFOV) and the altitude. However, the 
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spatial resolution of an airborne sensor can vary because the altitude is variable 

(Atkinson, 1997; Barnsley and Curran, 1990). 

The spectral resolution of a sensor describes its ability to delineate 

wavelength intervals (NRCAN, 2013b). Spectral resolution is defined by the 

number and dimension (eg. position or width) of the specific wavelength regions 

that the sensor is sensitive to (Jensen, 2005). These specific wavelength regions 

are referred to as spectral bands.  

Finally, temporal resolution describes how often a remote sensing system records 

data from a particular area. Temporal resolution is controlled by the sensor 

capabilities. For example, airborne imagery can collect image data when from a 

location whenever it is desired, however airborne flights require preparation and 

can be financially exhaustive. On the other hand, satellite sensors are continually 

collecting data but collection from a certain location is limited by the satellite 

revisit time, off-nadir pointing capabilities and environmental factors such as 

cloud cover.   

Although these resolutions are used to describe the image data, there are 

many other sensor components and characteristics, such as the Signal-to-Noise 

Ratio (SNR), that contribute to the final image product. It is the trade-off between 

these resolutions and the other sensor characteristics that defines the capabilities 

and limitations of each type of sensor (Goetz et al., 1985).  

file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Atkinson_1997
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Barnsley_1990
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/REFERENCES.docx%23Ref_NRC_2013b
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/REFERENCES.docx%23Ref_Jensen_5005
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_SNR
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Goetz_1985


 

28 
 

2.2.1 Hyperspectral Data  

Hyperspectral remote sensing or imaging spectroscopy is defined by 

Goetz (1985) as the acquisition of images in hundreds of narrow contiguous, 

spectral bands such that for each pixel a radiance spectrum can be derived. 

Conversely, multispectral sensors record in a limited number of broad spectral 

bands (e.g., Landsat 8 - Band 4 (red), 300 nm band width).  

The shift from multispectral sensors (e.g., Landsat 7 ETM+), to 

hyperspectral sensors (e.g., Hyperion, Airborne Visible/ Infrared Imaging 

Spectrometer (AVIRIS)) has allowed for image analysis to move from merely 

identifying what surface cover is present within a pixel, to having the ability to 

estimate what proportion of the surface cover (fractional cover) is there and 

derive information about biophysical and biochemical characteristics. Techniques 

such as spectral unmixing are often employed in hyperspectral data analysis  

(Malenovský et al., 2007; Shrestha et al., 2005; Clark, 1999). The ability to identify 

fractional cover within a pixel is a valued capability of hyperspectral remote 

sensing because most pixels include several surface materials (Malonorvsky et 

al., 2007; Shippert, 2002).  

Many applications, such as soil studies, are beginning to explore the vast 

benefits available through hyperspectral remote sensing image analysis. 

Hyperspectral data greatly increases the accuracy of soil mapping in comparison 

to multispectral sensors (Clark et al., 1990; Kruse, 1989), because broad-band 
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sensors cannot provide the spectral detail that is required to detect the high 

variability exhibited by soils (Deventer van et al., 1997; De Jong, 1994; Irons et al., 

1989).  

Because most techniques applied to image data of broad-band sensors are 

not ideal for use with hyperspectral sensors, there is a lack of availability of 

automatic and easy to use toolboxes applicable to hyperspectral data (Chabrillat 

et al., 2011; Cloutis, 1996). This, along with the lack of an operational 

hyperspectral mission, has been a great limitation to the expansion of the use of 

hyperspectral imagery (Chabrillat et al., 2011).  

2.2.2 LiDAR 

For the collection of terrain data, LiDAR is considered the most efficient 

and reliable sensor available due to its high geometric accuracy, high sampling 

density and active illumination (Liu, 2008; Raber et al., 2007; Forlani and 

Nardinocchi, 2007). Analysis of terrain data provides information on certain 

landform characteristics that can later be used for soil prediction (Odeh et al., 

1993).  This is especially useful in soil erosion investigations because a strong 

predictive relationship has been identified between environmental variables, 

particularly derived from Digital Elevation Models (DEM)’s (Wilson and Gallant, 

2000), and soil properties (Gessler et al., 1995; Odeh et al., 1993).   

Most LiDAR systems used for EO are airborne LiDAR systems, the 

alternative being ground based LiDAR systems and some satellite LiDAR 
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systems. The LiDAR system works by sending out a series of rapid laser pulses 

towards the surface and measures the time it takes for each of the laser pulses to 

reflect back. The measured time duration can then be used to calculate the 

distance the laser pulse traveled, effectively giving a series of elevation measures 

(e.g., from bare earth or canopy height).  

The collective set of data points retrieved by a LiDAR system is called a 

point cloud. The point cloud is essentially made up of a series of three 

dimensional spatial coordinates (X, Y and Z) that correspond to each collected 

laser pulse.  The point clouds are used to produce multiple products such as 

digital elevation models, surface canopy-models and contours (NOAA, 2013), 

which can then be used in an endless number of hydrological, urban, forest and 

geomorphological applications (Charlton et al., 2003). 

2.2.3 Ground Data 

Ground data collection is ideally conducted concurrently to the remotely 

sensed data acquisition (McCoy, 2005) and involves the observation, evaluation 

and measurement, as well as geographic position, of the phenomena under 

question (Lillesand et al., 2004; Reif et al., 2012). The data collected from the 

ground is used to assist with the calibration, interpretation, analysis and 

validation of the remotely sensed data (Teillet, 1997). 

Methods and techniques of ground-data collection are highly application 

specific and are influenced by project details, such as the location and size of the 
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area, scale of the final maps and the required accuracy of the final results 

(McCoy, 2005; Campbell and Browder., 1995). General observations, such as 

slope gradient, aspect, date, time, a reference photograph and coordinates, are 

commonly collected for most applications (McCoy, 2005).  Observations, such as 

vegetation species, percent-ground coverage and sky conditions, are slightly 

more application specific (e.g., forest investigations using spectral mixture 

analysis). 

Spectroscopic ground measurements are often taken, amongst other 

measurements, to be used as auxiliary information for remote sensing 

investigations (Jensen, 2005). Sky condition observations are particularly 

important when collecting spectroscopic ground measurements because constant 

irradiance is one of a series of major assumption made concerning the accuracy 

of the measurements (McCoy, 2005; Schapeman et al., 1997).  

Collecting appropriate ground data, be it spectroscopic measurements or 

chemical and physical measurements and observations, require an in-depth 

knowledge of the biophysical/biochemical variables being collected and the 

corresponding spectral response. Consideration must also be given to the 

potential influences of sampling and scaling procedures that may be required for 

utilization with the image data (McCoy, 2005). 
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2.3 Hyperspectral Data Pre-Processing 

Inconsistencies as a result of sensor, platform and environmental influences 

make pre-processing, particularly radiometric, geometric and atmospheric 

correction, essential steps for the extraction of information from hyperspectral 

data (Chakravortty and Chakrabarti, 2011; Jensen, 2005).  

2.3.1 Sensor Radiometric Calibration 

Sensor radiometric calibration deals with the conversion of incident 

Digital Numbers (DN) values to radiance, the calibration of the image detector 

responses and the spectral calibration (Rogass et al., 2011). Sensor radiometric 

calibration is an ongoing process, involving ground methods prior to launch, 

onboard methods post-launch (e.g., reference lamps, solar illumination) and 

vicarious approaches using earth calibration sites and sensor-cross calibration 

(Teillet et al., 2001; Kastner and Slater, 1983). Uncorrected for, sensor radiometric 

calibration produces its greatest limitation for quantitative remote sensing 

applications (Teillet and Coburn, 2010; Teillet, 1986). 

2.3.1.1 Destriping 

Noise introduced into a remote sensing system interferes with the 

radiance recorded by the system. With too much noise in the system, the 

radiance recorded by the system may no longer be representative of the radiance 

leaving the observed surface. Common forms of noise introduced by the sensor 

system itself include, for example, shot noise, line start and stop problems, 
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full/partial line or column drop outs and line or column striping. Noise is often 

introduced as a result of the individual detectors not functioning properly or 

improper calibration (Teillet, 1986).   

Striping artifacts are a form of noise and may still remain prior to the 

radiometric correction due mainly to uncertainties and variations in the 

calibration of the detector elements (Tsai and Chen, 2008). This is particularly 

common with pushbroom sensor technology because each detector element is 

calibrated separately. Even small variations in the calibration of a detector array 

can result in striping (Rogass et al., 2011).  

The incorrect or missing data in the striping can be accounted for by either 

adjusting for the miscalibration or by using techniques to generate new data 

(Rogass et al., 2011). Some examples for destriping include histogram matching 

(Wegener, 1990), inverse regression (Chander et al., 2002), interpolation (Tsai and 

Chen, 2008), moment matching (Sun et al., 2008) and Fast Fourier Transformation 

(FFT; Liu and Morgan, 2006). Ideally, the procedure chosen for destriping would 

perform a recalibration of the data rather than generate new data to maintain 

their integrity (Rogass et al., 2011). 

The goal of destriping is to correct for striping artifacts in the data without 

altering non-affected pixels (Tasi and Chen, 2008). If not adjusted for, striping 

will reduce the quality and interpretability of the data (Tsai and Chen, 2008), and 
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have a negative effect on classification (Datt et al., 2003; Landgrebe and Malaret, 

1986).  

2.3.2 Atmospheric correction 

Atmospheric corrections are used to compensate for the scattering and 

gaseous effects of the atmosphere in remotely sensed data, such as water 

absorption and Rayleigh scattering. It should be noted that certain applications, 

such as particular types of classification and change detection, do not always 

require atmospheric correction, however it is best practice to atmospherically 

correct the data (Song et al., 2001; Cracknell and Hayes, 1993). However, 

atmospheric compensation is necessary when applications require the extraction 

of physical parameters (Haboudane et al., 2002; Thiemann and Kaufmann, 2002) 

or when the data are used in variable temporal or spatial studies (Song et al., 

2001). Depending on the application purposes, compensation for atmospheric 

effects can be done in either an absolute or relative manor.  

2.3.2.1 Relative Atmospheric Normalization 

Relative atmospheric compensation methods are used to normalize the 

atmospheric effects either among different bands within an image or between 

bands of different images. Relative correction methods are beneficial when there 

is not extensive knowledge of the atmospheric or scene characteristics (Hajj et al., 

2008). Examples of relative atmospheric normalization techniques include linear 

regression (Schott et al., 1988) and dark object subtraction (Chavez, 1988). 

file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Datt_2003
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Landgrebe_1986
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Landgrebe_1986
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Song_2001
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Cracknell_1993
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Haboudane_2002
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Thiemann_2002
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Song_2001
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Song_2001
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Hajj_2008
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Hajj_2008
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Schott_1988
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Chavez_1988


 

35 
 

Although relative atmospheric normalization methods are beneficial in 

applications such as time series (Hajj et al., 2008), they are not suitable for 

applications requiring physical reflectance units. 

2.3.2.2 Absolute Atmospheric Correction 

The general goal of absolute atmospheric correction is to convert DN 

values into scaled surface spectral reflectance by removing the unwanted effects 

of the atmosphere (Griffin and Burke, 2003; Du et al., 2002). Reflectance is the 

fraction of incoming radiation that is reflected from Earth’s surface. Physical 

reflectance units are necessary to retrieve quantitative values and extract 

biophysical and biochemical parameters from remotely sensed data (Haboudane 

et al., 2002; Thiemann and Kaufmann, 2002; Teillet, 1986). Empirical Line 

Calibration (ELC) is an example of absolute atmospheric correction in which 

information about the atmospheric parameters are neither required nor derived 

in the correction process (Griffin and Burke, 2003; Smith and Milton, 1999; 

Roberts et al. 1986).  

However, physics-based methods requiring a priori knowledge of 

atmospheric and surface characteristics are another approach for full 

atmospheric correction (Griffin and Bruke, 2003). This is typically achieved using 

Radiative Transfer (RT) codes that model the propagation of electromagnetic 

radiation through the atmosphere. Examples of such RT codes include the 

MODerate resolution atmospheric TRANsmission (MODTRAN; Guanter et al., 
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2009; Alder-Golden et al., 1999; Berk et al., 1998) or Second Simulation of the 

Satellite Signal in the Solar Spectrum (6S; Vermote et al., 1997).  

2.3.2.3 ATCOR 

Atmospheric and Topographic Correction (ATCOR) for airborne imagery 

is an atmospheric correction software based on MODTRAN.  It performs the 

combined atmospheric and topographic correction of remote sensing imagery 

taking into account the atmosphere, solar illumination, sensor viewing geometry 

and terrain information (Richter, 2004; Richter and Schläpfer, 2002). Surface 

reflectance is derived using a series of look up tables of the atmospheric 

correction functions calculated using MODTRAN, such as path radiance, 

atmospheric transmittance, direct and diffuse solar flux, and DEM derived 

terrain shape (Richter and Schläpfer, 2002). Examples of other approaches that 

correct for both atmospheric and topographic effects are offered in Sandmeier 

and Itten (1997) and Staenz and Williams (1997). 

2.3.3 Geometric Correction 

The objective of geometrically correcting a remotely sensed image is to 

link pixels in the image to coordinates on the ground (Lee and Bethel, 2001). Due 

to advancements in off-nadir viewing and finer spatial resolution (Chong and 

Pearson, 1998), as well as temporal and multi-source data integration and 

quantitative information extraction (Rocchini and Di Rita, 2005) geometric 
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correction is becoming a greater focus in the pre-processing of remotely sensed 

data (Toutin, 2004).  

The sources of geometric distortions can originate both internally and 

externally of the sensing system. Distortions relating to the sensing system as a 

whole include variations in platform movement and miscalibrations of the 

Inertial Measurement Unit (IMU) and Global Positioning System (GPS) devices. 

Characteristics of the Earth, such as the rotation, curvature and topography, are 

examples of external sources (Toutin, 2004). The sources and magnitudes of 

distortion also vary greatly based on factors such as the type of sensor 

(Visible/Infra-Red (VIR), Synthetic Aperture RADAR (SAR), high or low 

resolution), the Field of View (FOV; Toutin, 2004; NRC, 2008; Schläpfer et al., 

1998). The type of platform used for data collection also affects the magnitude of 

the distortions. The issue of distortions introduced into the image data as a result 

of the platform is a much more complex problem with airborne data than it is 

with satellite platforms. 

The process of georectifying an image includes; 1) the compensation for 

the image distortions (geometry), and 2) the resampling of the data, which 

assigns spectral values to the pixels. Two techniques can be used for the 

geometric correction: 1) deriving mathematical relationships between the image 

pixel and the corresponding coordinate on the ground, or 2) by modeling the 

nature and magnitude of the sources of distortion (Richards, 2013). 
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The former technique is often chosen when the parameters of the image 

acquisition required for a physical model are not available (Toutin, 2004). 

Accordingly, this model does not reflect or correct directly for the source of the 

distortions and the models have no actual physical meaning (Toutin, 2004). These 

techniques often use polynomial functions to warp the imagery in a way that will 

account for the distortions present.  

Coordinates used in the polynomial functions are gathered using ground 

control points, which relate a feature in the image to the corresponding feature 

on a map or image of known coordinates (Richards, 2013). First, second and third 

order polynomials are commonly used in geometric corrections.  

First order polynomials are able to account for simple rotation, scaling, 

translation and obliquity of the image, whereas a second order polynomial adds 

to those movements by also allowing for corrections of torsion and convexity 

(Toutin, 2004). Third order polynomials, although providing lower error 

estimates often introduce errors in the form of image contortions in areas of the 

image that have been poorly defined by the polynomial (Toutin, 2004). It has 

been demonstrated that polynomial functions are quite powerful with flat terrain 

imagery. However, they have been found to be inappropriate for cartographic 

applications (Rocchini and Di Rita, 2005) due to their poor performance in 

rugged terrain imagery (Cheng et al., 2000) as well as with airborne imagery. In 

the case of airborne imagery, triangulation is often suggested (Exelis, 2014c). In 
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rugged terrain applications, it is suggested a more powerful geometric correction 

method be applied such as orthorectification (Rocchini and Di Rita, 2005). 

Orthorectification is a reprojection of an image excluding the influence of 

topography. It is not only more powerful in rugged terrain situations than 

polynomial functions, but it is also more appropriate when dealing with airborne 

imagery (Schläpfer, 1998). The distortions in airborne imagery as a result of the 

complex flight path and attitude movements cannot be approximated accurately 

by polynomial transformations (Schläpfer, 1998).  

The auxiliary data used in the modelling of the geographic distortions is 

commonly gathered from the GPS and IMU systems onboard the aircraft. These 

systems provide information on the platform (position, velocity and attitude), 

sensor (viewing angles and panoramic effect), earth (ellipsoid and relief for 3D) 

and cartographic projections (Toutin, 2004). Being able to account for, not only 

the platform and sensor distortions, but also the relief and topographic 

distortions is important, because elevation and slope are terrain characteristics 

that can seriously impede the final accuracy of the geometric correction (Paine, 

1981). There are various different types of 3D physical models available, many of 

which are listed in Toutin 2004. 

Parametric Geocoding and Orthorectification (PARGE) for airborne 

optical scanner data is an example of a program that offers a 3D 

orthorectification which fully reconstruct the geometry of the scanning process 
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(Schläpfer et al., 1998). Similarly to most 3D orthorectification software, PARGE 

is based on the collinearity condition and equations (Schläpfer et al., 1998), which 

defines the geometry connecting the center of a sensor, an image point in two 

dimensions and an object on the ground in three dimensions (Wong, 1980; 

Konecy, 1972). 

Once the image geometry has been corrected, the image then needs to be 

resampled to a regular grid. This is the second process in the geometric 

correction of image data. The common resampling methods used in remote 

sensing are Nearest Neighbour (NN), Bilinear Interpolation (BI) and Cubic 

Convolution (CC).  NN resamples the data by assigning the newly transformed 

pixel the value of the nearest pixel from the input layer. With NN none of the cell 

values from the original input layer are changed and for this reason is commonly 

used with categorical or integer data. BI resamples the data by using a weighted 

average of the four nearest cells. With BI the values from the original input layer 

are not maintained. CC uses the surrounding 16 pixels to determine the pixel 

values in the output grid. The resulting image when resampling using CC often 

has a much smoother appearance than when resampling using NN or BI. Each 

resampling method has its benefits and drawbacks. NN is often preferred when 

working with spectrometry data, because the original spectra are maintained 

from the input layer which in turn maintains the spectral integrity of the data 

(Schläpfer et al., 2000). However, NN can also be associated with a loss of spatial 
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quality and smoothing due to resampling artifacts (Schläpfer et al., 2000). This 

results from the reality that, once the data has been corrected for distortions, an 

original image pixel may be the nearest neighbour for more than one of the 

corrected image pixels. Consequently, this results in the smoothing of features in 

the image. CC, on the other hand, tends to alter the brightness values from the 

original input and for this reason is not recommended if classification is to follow 

(Richards, 2013). 

Assessing the accuracy of the geometrically corrected data against a 

known source is necessary for understanding the outcomes of future image 

processing steps. Geometric accuracy is often evaluated using the Root Mean 

Square Error (RMSE; McGwire, 1996). The RMSE is a measure of average error, 

calculated using the observed and forecasted (or actual) value of a number of 

validation points. Calculation of RMSE for an image uses the calculated distance 

between Ground Control Points (GCP) from a map, representing the actual 

location of the point, and the corresponding GCPs on the transformed image.  

Unfortunately RMSE is not the best indicator of geometric accuracy 

because it can be influenced by many external factors, such as poor location and 

distribution of GCP, making it a poor indication of true registration accuracy 

(McGwire, 1996). For this reason, it is suggested to gather as many GCPs as 

possible when calculating the RMSE of an image in hopes of accounting for 

possible errors in location and unevenness of distribution. As well, substituting 
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GPS points for the map GCPs has been suggested for improving the accuracy of 

the RMSE calculation (Cook and Pinder, 1996), which by improving the accuracy 

of the error calculation can give further insight into the limitations of the data 

and data derived products (Townshed at al., 1992). 

2.3.4 Bidirectional Reflectance Distribution Function (BRDF) 

Reflectance anisotropy is defined as the directionally dependent intensity 

of reflected light. This can be described more simply as changes in the reflectance 

of an object (e.g., a particular land-cover) when viewed from different directions. 

The Bidirectional Reflectance Distribution Function (BRDF) is used to describe 

reflectance anisotropy. It is defined by Niodemus (1977) as a distribution 

function, relating the irradiance incident from one given direction to its 

contribution to the reflected radiance in another direction. The BRDF can be 

derived from goniometric measurements which, in remote sensing, are used in 

combination with a sensor to measure the reflectance of an object from all 

possible angles (Coburn and Peddle, 2006; Sandmeier et al., 1998).  

BRDF effects depend on illumination and viewing geometry as well as 

wavelength (Coburn and Peddle, 2006; Beisl and Woodhouse, 2004). These 

effects, as well as radiometric distortions (as well as other effects, such as object 

displacement), are becoming a much larger issue with the introduction of wider 

FOV sensor systems (Feingersh et al., 2007; Schiefer et al., 2006). An example of a 
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BRDF effect that is found exclusively in pushbroom sensors is a brightness 

gradient in the across-track direction (Schiefer et al., 2006).  

The radiometric bias introduced into remotely sensed imagery by BRDF 

effects, such as the aforementioned across-track brightness gradient, interferes 

greatly with processing and information extraction from remotely sensed 

imagery. Without correction, the across-track brightness gradient prevents 

accurate comparison within and between images, effects spectral ratios such as 

vegetation indices, complicates image mosaicking, hinders spectral library and 

field spectra integration and can confuse image classification (Schiefer et al., 

2006; Beisl and Woodhouse, 2004). Furthermore, BRDF introduces uncertainty 

into quantitative analysis of hyperspectral imagery (Ben-Dor et al., 2010; 

Feingersh et al., 2007; McDonald et al., 2002). 

Correction for BRDF is complicated as a separate correction for each land-

cover type is required for producing accurate results (Richter and Schläpfer, 

2012; Beisl, 2001; Kennedy et al., 1997).  It is further complicated by topographic 

influences on illumination intensities and local variations of the angular positions 

of the Sun and the angular variation within the FOV (Feingersh et al., 2010; 

Feingersh et al., 2007).  Accordingly, Feingersh et al., (2007) proposed that two 

pieces of information are needed to properly correct for BRDF; 1. A detailed 

solar-ground-sensor geometry model and 2. a calculated anisotropy dataset for 

the land-cover of interest. 
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2.4 Sensor Simulation 

Sensor simulations are used in the scope of both existing and future sensor 

systems (Parente et al., 2010; Sandberg et al., 2005; Verhof and Bach, 2003; van 

der Meer et al., 1999). Existing sensors are often simulated used to determine the 

detection capabilities and mapping accuracies under varying scene 

characteristics.  Such was the purpose of the post-launch simulations for the 

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) sensor 

(Parente et al., 2010). 

SPOT is a sensor system that was thoroughly simulated pre-launch for the 

purpose of evaluating the land-use/ land-cover application capabilities (Betts et 

al., 1986; Buchan and Hubbard, 1986; Essery and Wilcock, 1986). Sensor 

simulations used in the scope of future satellite systems are largely used for 

evaluating detection and mapping capabilities (Peisker et al., 2010;  Segl et al., 

2010; Aktaruzzaman, 2008; Verhof and Bach, 2003; van der Meer et al., 1999; 

Kerekes and Landgrebe, 1988; Betts et al., 1986; Buchan and Hubbard, 1986) and, 

for the purpose of trade-off studies for defining system parameters (Cota et al., 

2010; Kaufmann et al., 2006; Sandberg et al., 2005; Broner et al., 2001). 

Additionally, as with the SPOT simulation campaign, pre-launch simulated data 

are also used to find and develop a market for the data products (Binger and 

Ory, 1984). 
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2.4.1 Sensor Simulations – Future Sensors 

Sensor simulations for the investigation of future sensor systems are 

focused on producing sensor-like output data by modelling the characteristics, 

both known and estimated, of the sensor being investigated (Segl et al., 2012). 

Simulation end products are often in the form of Top-of-Atmosphere (TOA) DN 

values. The process of simulating artificial raw sensor data from existing 

reflectance data is commonly considered an “end-to-end” simulation. Examples 

of end-to-end simulations include the Parameterized Image Chain Analysis and 

Simulation Software (PICASSO; Cota et al., 2008), Software ENvironment for the 

Simulation of Optical Remote sensing systems (SENSOR; Broner et al., 2001), 

Surface Processes and Ecosystem Change Through Response Analysis 

(SPECTRA; Verhoef and Bach, 2003), and EeteS (Segl et al., 2012). Simulation 

software package will be described further in sections 2.4.2 and in the methods 

chapter. 

2.4.2 EeteS Sensor Simulation 

EeteS is a sensor simulation program which was developed at the 

Helmholtz Centre Potsdam, German Research Centre for Geoscience (GFZ), 

Potsdam, in the framework of the EnMAP satellite mission (Segl et al., 2012). 

Similarly to the aforementioned simulation software packages, they use existing 

spectrally and spatially oversampled data to produce simulated raw data. 

However, in the scope of the EeteS simulation software, an “end-to-end” 
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simulation includes both the simulation of TOA DN values (forward simulation) 

and the conversion from DN values to orthorectified reflectance values 

(backwards simulation) (Segl et al., 2012). Included in the EeteS simulation 

process is also the incorporation of sensor and calibration errors (Guanter et al., 

2009). This inversion process is necessary for realistic analyses of the simulated 

data, especially with a highly detailed sensor model such as used in EeteS (Segl 

et al., 2012; Segl et al., 2010; Guanter et al., 2009).  

EeteS simulated data products have been used for optimization of 

instrument design, in sensitivity analysis on the effects of different 

environmental and instrument parameters, and as a test bench for the 

development of algorithms for future information products (Segl et al., 2012; Segl 

et al., 2010; Peisker et al., 2010; Guanter et al., 2009). 

2.5 Hyperspectral Image Processing 

The end goal of image processing is the extraction of information from the 

hyperspectral image cube. Image processing is carried out using algorithms 

which, for example, can extract biophysical/biochemical information or thematic 

maps from the data (Jensen, 2005).  The information can then be introduced 

directly to application purposes or can be used for modelling purposes.  

 Although some techniques used for multispectral image processing can be 

applied to hyperspectral imagery, they are usually not capable of exploiting the 

hyperspectral data’s full potential (Plaza et al., 2009). Algorithms designed for 

file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_TOA
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_DN
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_DN
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Segl_2012
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_Eetes
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Guanter_2009
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Guanter_2009
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_Eetes
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Segl_2012
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Segl_2012
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Segl_2010
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Guanter_2009
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_Eetes
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Segl_2012
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Segl_2010
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Segl_2010
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Peisker_2010
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Guanter_2009
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Jensen_5005
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Plaza_2009


 

47 
 

hyperspectral data take advantage of the high-spectral dimensionality and are 

able to provide quantitative information such as fractional cover (sub-pixel 

classification) (Peddle et al., 1999).  

The need to quantify surface cover at a sub-pixel level results primarily 

from larger spatial resolution images and highly variable surface covers. 

Unfortunately, even though compositional information can be derived for an 

individual pixel using these algorithms, the spatial component defining the 

distribution of these components with in the pixel is lost (Plaza et al., 2009).  

2.5.1 Linear Spectral Unmixing 

Linear spectral unmixing is based on the assumption that a variety of 

surface covers reside within a single pixel (Tseng, 2000). These pixels are referred 

to as mixed pixels. The spectral signature collected from a mixed pixel is 

commonly assumed to be a linear combination of the spectral response of each 

surface component within the pixel (Keshava and Mustard, 2002). Variations 

from the linear mixture model include the non-linear mixture model, which 

refers to the interaction of light with multiple target materials (Ray and Murry, 

1996).   

What linear spectral unmixing attempts to do is estimate the abundance 

(or fraction) of each surface cover within a pixel by decomposing its spectral 

signature using a known set of scene endmembers. Endmembers referring to a 
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set of spectrally pure signatures representing each surface cover within an image 

(Du et al., 2008; Plaza et al., 2004). 

Sij =   X1 ∗  S1 +  X2 ∗  S2 + ⋯ + w,                                                      (2.1) 

where Sij is the surface reflectance of the pixel at ij, i is the image pixel number, j 

is the image line number, Xn is the abundance (fraction) of spectrum Sn, Si is the 

nth endmember spectrum, and w is the error term. 

Outputs from spectral unmixing are a series of abundance images (equal 

to the number of endmembers used to unmix the scene) and a Root Mean Square 

(RMS) error image. The abundance images show the spatial distribution of each 

endmember based on its abundance within each pixel. The RMS error image 

identifies areas and degrees of error associated with the unmixing of each pixel 

based on how well the pixel was modelled by the set of endmembers.  

When applying linear spectral unmixing, three main levels of constraint 

can be placed on the resulting fraction images: unconstrained, constrained and 

weakly constrained. Unconstrained unmixing does not apply any constraints to 

the fraction values, which is beneficial in as it gives the most accurate 

representation of the applicability of the model. However, the abundances can 

range between values below 0 and above 1, and the sum of the fractions for a 

pixel are not required to sum to unity (Exelis, 2014b). Constrained unmixing 

applies constraints both on to the range of fraction values for each surface cover 
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as well as constrains the pixel sum to unity. Weakly constrained unmixing is a 

hybrid of the previous two methods which constrains the fraction values 

between 0 and 1 and allows the sum of the pixel to fluctuate < 1. This in turn 

eliminates the requirement to have all spectral endmembers for the unmixing 

procedure (Staenz et al., 2001). 

Since traditional pixel-by-pixel accuracy assessment is not suitable for 

unmixing results (Shang et al., 2008), the validity of the results is determined 

using a set of criteria specific to the abundance images and the RMS error image. 

The incompatibility between pixel-by-pixel accuracy assessment and unmixing 

results is because traditional accuracy assessments can only assign one class for 

each pixel, whereas unmixing results identify within pixel fractional cover of 

multiple classes.  These criteria state that the fraction values range between 0 and 

1 (for constrained and weakly constrained), the average RMS error is low and 

there is a low spatial correlation in the RMS error image (van der Meer, 1995). 

Settle and Drake (1993) addressed four assumptions that are made when 

using linear spectral unmixing. These four assumptions are: 1) There is no 

significant occurrence of multiple scattering; 2) there is sufficient spectral 

contrast between surface components; 3) each pixel sums to unity; and 4) all 

image endmembers are known. Each of these assumptions is key to successfully 

applying linear spectral unmixing to an image. Failure to meet these assumptions 

file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Staenz_2001
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Shang_2008
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_RMS
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_RMS
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_RMS
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_vanderMeer_1995
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Settle_1993


 

50 
 

could result in incorrect modelling of the scene, rendering the unmixing results 

unreliable. 

2.5.1.1 Endmember Selection 

An endmember is the reflectance spectrum related to a pure surface cover 

within an image scene (Tompkins et al., 1997; Bateson and Curtiss, 1996).  

Representative endmembers are collected for all pure target materials in an 

image. The complete set of endmembers is then used as the fundamental 

components in the mixture modelling of image pixels.   

Endmember spectra can be collected from the image or from external 

sources such as in the laboratory or in the field. A major difference between 

endmembers acquired externally and those collected from the scene is that the 

external endmembers may not have been collected under similar conditions as 

the image data (Plaza et al., 2004). In the same way that image derived 

endmembers have the benefit of being collected under the same conditions, they 

also have the benefit of being collected at the same spatial scale as the image 

making them easier to associate with the image (Plaza et al., 2004). However, the 

ability to collect pure endmembers from within an image is complicated if the 

spatial resolution is too large, making it less likely that only a single surface 

cover is contained within the pixel boundaries. 

Difficulty often occurs when there are unknowns concerning how many 

endmembers are within a scene and what surface materials define those 
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endmembers. One method identified for estimating the number of endmembers 

within a scene is carried out using information derived from a Principal 

Component Analysis (PCA; Smith et al., 1985). It has been proposed that the 

number of endmembers within an image scene is equal to N+1, with N equalling 

the number of useful eigenvectors collected from the PCA.  

Identifying the actual endmembers from within the image scene can be 

done using a variety of methods. Included in these methods are visualizing 

endmembers in N-Dimensional (N-D) space (Matinez et al., 2006), the Pixel 

Purity Index (PPI; Boardman et al., 1995) and the Sequential Maximum Angle 

Convex Cone (SMACC; Gruninger et al., 2004). Many of the methods used to 

extract endmember spectra from within a scene are based on identifying the most 

‘extreme’ pixels (Veganzones and Grana, 2008), equating extreme to pure. The 

disadvantage to this assumption is that noise can often severely affect 

endmembers identifications (Boardman et al., 1995). 

The identification of accurate endmembers is essential to the accurate 

unmixing of the image data. However, this is complicated due to endmember 

signature variability (Schowengerdt, 2006). As a result, the identification and 

extraction of endmember has been acknowledged as being the most difficult 

procedure in the unmixing process (Tompkins et al., 1997). 

file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_PCA
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Smith_1985
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_PCA
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_ND
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Martínez_2006
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_PPI
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Boardman_1995
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/Acronyms.docx%23Acro_SMACC
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Gruninger_2004
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Veganzones_2008
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Boardman_1995
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Schowengerdt_2006
file:///C:/Users/bracken.bracken/Dropbox/Writing/Completed/Craig%20Edits/Karl%20Edits/REFERENCES.docx%23Ref_Tompkins_1997


 

52 
 

2.5.1.2 Multiple Endmember Spectral Mixture Analysis (MESMA) 

MESMA is built upon the foundations of basic linear spectral unmixing. 

However, it is adapted to compensate for endmember spectral variability 

(Roberts et al., 2007). Spectral mixture analysis uses an invariable set of 

endmembers (Myint and Orkin, 2009). MESMA, on the other hand, allows for the 

number and type of endmembers to vary on a per-pixel basis (Roberts et al., 

1998). Since MESMA allows for within endmember spectral variability, it is 

particularly beneficial in environments where endmember composition, such as 

with soils or urban environments, changes rapidly over space (Franke et al., 2009; 

Palacios-Orueta et al., 1999).  

Up to four endmembers (one being shade) can be selected for unmixing in 

MESMA. Within each of the endmembers, a series of spectra can be contained. 

This is how MESMA accounts for within class spectral variability. It works by 

applying a series of candidate unmixing models to the image on an individual 

pixel basis. These candidate-unmixing models are derived from all the possible 

combination of two, three and four endmembers chosen for the scene. The model 

that is chosen to unmix each pixel is selected based on minimum pixel fraction 

error (RMSE) (Roberts et al., 2007). 

A series of constraints can be placed on the fraction outputs including a 

fraction constraint model, which determines the minimum and maximum 

allowable fraction values and an RMSE constraint, which removes any model 
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that exceeds the maximum RMSE threshold value. Outputs from MESMA are 

similar to basic Spectral Mixture Analysis (SMA). However, it also includes a 

classified image, which shows the spatial distribution of each model selected for 

each pixel.  

Care must be taken when selecting endmember spectra for use in MESMA, 

because accommodating spectral variability can sometimes result in the selection 

of many endmember spectra, which will drastically increase computational 

times. When selecting endmember spectra the goal is to choose spectra that are 

the most representative of the particular class while remaining highly separable 

from the other classes (Roberts et al., 2007).  

Methods have been developed that essentially model potential composition 

of sub-scene elements of the input scene. These methods work directly with 

MESMA to help with the selection of endmembers. These are the Count-based 

Endmember Selection (CoB; Roberts et al., 2003), Endmember Average RMSE 

(EAR; Dennison and Roberts, 2003) and the Minimum Average Spectral Angle 

(MASA; Dennison et al., 2004). 

2.6 Remote Sensing of Soils  

Spatial and temporal variations in soil properties are the basis for many 

Earth and atmosphere process models (King et al., 2005; Mosier, 1998). 

Traditional approaches for collecting spatial data about soil properties and 

conditions is based largely on direct sampling and subsequent laboratory 
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processing (Helming et al., 1998; Merrill, 1998; Podmore and Huggins, 1981). 

However, these traditional methods are rarely able to account for all the different 

spatial and temporal scales at which soil properties vary and soil processes occur 

(Hopmans et al., 2002). 

Remote sensing techniques benefit from the large spatial coverage and, in 

the case of satellite sensors, temporal revisit time, which can provide the required 

information for many Earth-atmosphere models and soil mapping studies (Asner 

and Heidebrecht, 2003). Continued advancements in quantitative analysis and 

multi-sensor approaches expand the applicability of remote sensing to soil 

investigations (Ben-Dor, 2002; Moran et al., 2002). However, limitations do exist 

in the application of passive remote sensing to soil investigations. Examples of 

these include the ability to only detect the surface soil layer (Grunwald, 2010; 

Ben-Dor et al., 2002; Ben-Dor et al., 1999), which is further complicated by 

vegetation cover (Okin et al., 2001). Complications also exist as a result of 

atmospheric distortions (Ben-dor et al., 2009; Bodechtel, 2001) and BRDF effects 

within the image (Torrent and Barron, 1993). 

2.6.1 Soil Imaging Spectroscopy 

Hunt and Salisbury (1971) pioneered the interest in spectroscopy for the 

mineral composition in soils in the 1970’s and the interest was extended by 

Stoner and Baumgardner (1980) in the 1980’s with the development of the 

American Soil Spectral Library (Chabrillat et al., 2013). Spectroscopy has become 
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so popular for soil studies, because it is a quick, non-destructive method to 

derive predictions about the soil’s physical, chemical and biological properties 

(Viscarra Rossel et al., 2006; Reeves et al., 1999; Janik et al., 1998; Ben-Dor and 

Banin, 1995).  

Conventional methods of soil analysis involved the drying and crushing 

of the soil sample, as well as the occasional application of chemicals, which alters 

the integrity of the soil (Viscarra Rossel et al., 2006). Soil spectroscopy provides a 

less damaging and less expensive means of estimating soil properties than 

conventional methods (Chabrillat et al., 2013). 

The soil’s spectral signature originates from the combinations of minerals, 

organic matter and water molecules comprising the soil (Irons et al., 1989). It is 

the scattering and absorption properties as well as the arrangement of these soil 

properties that the spectral reflectance of a soil is derived from (Weidong et al., 

2002). Also contributing to the spectral reflectance are soil characteristics, such as 

the particle size and surface roughness (Chabrillat et al., 2013; Wang et al., 2012).  

The Visible Near Infra-Red (VNIR) and the Short-Wave Infra-Red (SWIR) are 

both sensitive to particular properties within a soil’s composition. The VNIR 

contains information on soil colour, iron content and composition, soil water and 

organic matter. The SWIR provide a larger portion of the information on the soils 

mineral content, including phyllosilicates, sulphates, amphiboles and carbonates, 

as well as soil water hydroxides and organic matter (Chabrillat et al., 2013; 
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Shepherd and Walsh, 2002). Identifying and quantifying soil components such as 

clay, soil organic matter, carbonates and salt is important, because they can give 

an indication about the fertility and erodibility of the soil (Melendez-Pastor et al., 

2008; Horn and Baumgartl, 2002; Hillel, 1980).  

2.6.2 Digital Soil Mapping  

Traditional soil mapping is based on thorough field survey that includes 

detailed descriptions of the soil profiles (chemical, physical, development, origin 

and formation) and is often complimented by laboratory analysis (Soil Survey 

Staff, 1999). Current needs for soil data require that they are accurate and 

inexpensive (Stenberg et al., 2010) which, due to its laborious and subjective 

nature, cannot be provided by traditional surveys (Beckett and Burrough, 1971). 

Digital soil mapping, on the other hand, can provide not only a quantitative 

characterization of the observed soils, but also a measure of accuracy to 

accompany the results (Scull et al., 2003). 

Hyperspectral data has been found to be much more suitable than 

broadband imagery as acquired with SPOT HVR and Landsat Thematic Mapper 

(TM) for mapping soil properties due to the much narrower spectral bandwidths, 

which are capable of detecting key diagnostic absorption feature present in soil 

spectra (De Jong, 1994). The application of hyperspectral data to digital soil 

mapping often employs methods that are found in a laboratory setting, and 

applied within a spatial domain (Chabrillat et al., 2013; Ben-Dor et al., 2009).  
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Generating a digital soil map from remotely sensed data can be done 

using many methods. Modelling is one method of digital soil mapping, which 

employs mathematical functions to make predictions about the soil 

condition/characteristics based on known surface properties (Bouma and van 

Lanen, 1987; Lamp and Kneib, 1981). Another method uses a geostatistical 

approach, which interpolates soil attributes using field samples, analysed data, 

or a combination of both (Matheron, 1962). Finally, a digital soil map can be 

generated by classifying the remotely sensed image based on similar soil 

attributes/characteristics (Behrens and Scholten, 2006; Moore et al., 1993). A 

limitation of remote sensing in regards to digital soil mapping is that only the 

surface soil condition/characteristics can be identified. As a result, information 

about the entire soil profile, which is required to provide a full and detailed soil 

map is lost (Grunwald, 2010; Ben-Dor et al., 2002; Ben-Dor et al., 1999). 

In addition to the inherently complex nature of soil reflectance, 

complications also arise as a result of the intrinsic principles of remotely sensed 

imagery. Interactions of the electromagnetic radiation with the atmosphere and 

noise within the data can cause distortion in the spectra which, if not adequately 

compensated for, can mask or be mistaken for important mineral absorption 

features (Ben-dor et al., 2009; Bodechtel, 2001). As well, anisotropy (BRDF) of the 

surface captured in a remotely sensed image can influence the assessment of 

deterministic soil properties such as soil colour (Torrent and Barron, 1993; Wang 
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et al., 2012). However, with the introduction of high-SNR sensors, particularly in 

the SWIR, soil spectroscopy is becoming increasingly applicable (Chabrillat et al., 

2013). 

2.6.2.1 Soil Erosion Mapping in Semi-Arid Regions 

Semi-arid zones are prone to sever erosion as a result of the climatic 

conditions and geomorphological processes in the regions (Shrestha et al., 2005). 

The erosional features found in semi-arid zones are often quite similar to desert 

features (Rapp, 1986).  

Soil erosion mapping using remote sensing employs the same methods 

mentioned previously; however, the soil properties under investigation relate to 

the soil erosion features characteristic of the region. It is these desert-like features 

that are often used in remote sensing to detect and map soil erosion in semi-arid 

Mediterranean regions. These desert-like features include desert pavement and 

surface/biogenic crusts (Escribano et al., 2010; Shrestha et al., 2005; Margate and 

Shrestha, 2001), salinization which can be identified by a series of spectral 

features (e.g., 800 – 810 nm) (Shrestha et al., 2005; Raina et al., 1993), gypsum 

content which is identified by absorption at 1800 nm and 2300 nm, and finally, 

carbonate content which can be identified by absorptions at 2350 nm (Shrestha et 

al., 2005). Carbonate content is a particularly prominent identifier of soil erosion 

in semi-Mediterranean regions, because it comprises a large component of the 

regional parent rock and, therefore, its presence at the surface indicates either 
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weakly developed soils or the removal of developed soils (Hill et al., 1994; Barth, 

1982). 

Although these indicators of soil erosion can be effectively identified 

using remote sensing techniques, the heterogeneity of semi-arid Mediterranean 

environments makes the mapping of these features complicated (Schlesinger and 

Pilmanis, 1998; Puech, 1994). One of the main complications that arises is the 

creation of mixed pixels that result due to the complex mixtures of soils, rock and 

vegetation as well as due to the high-spatial variability of the soils themselves 

(Escribano et al., 2010; Stenberg et al., 2010; Puech, 1994; Tueller, 1987).  

Spectral unmixing is spectral decomposition methods often used to deal 

with the mixed pixel problem in semi-arid soil investigations (Schmid et al., 2012; 

Tromp and Epema, 1998).  When employing spectral decomposition methods, it 

is increasingly important to have detailed knowledge of the natural variability 

(compositionally, spatially, temporally, etc.) of all surface components as well as 

an understanding of the spectral variability associated with each (Escribano et al., 

2010). This is because the accuracy of such decomposition techniques relies 

largely on the ability to identify the spectral variability within the scene (van der 

Meer, 2002). 

2.6.2.2 Considerations in Agricultural Regions 

Vineyards, olive groves and rain-fed cereal crops dominate the main 

agricultural land-uses in Spain (Garcia-Ruiz, 2010). They are of particular interest 
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in soil erosion studies because they are all highly susceptible to erosion either 

due to extensive exposed soil surface during the growing period or because they 

are left exposed for extended periods of time due to years of fallow (Garcia-Ruiz, 

2010; De Graaf and Eppink, 1999; Garcia-Ruiz et al., 1995). However, there is 

difficulty in assessing these areas for soil erosion using remote sensing because 

the soil signal is often masked in mixed pixels due to the overlying vegetation 

(Daughtry, 2001; Roberts et al., 1993). Consequently, segregation of the 

vegetation dominated pixels from the soil-dominated ones is considered the first 

step to soil mapping in such situations (Hill and Schutt, 2000; Palacios-Orueta et 

al., 1999; Palacios-Orueta and Ustin, 1998). 

Spectrally, green vegetation and soils are distinct. Green vegetation has a 

low reflectance in the Visible (VIS) due to chlorophyll absorption, a high 

reflectance in the Near Infra-Red (NIR) which is related to leaf structure, and 

lower reflectance in the SWIR which is mainly due to water absorption 

(Escribano et al., 2010). However, discriminating between plant litter or senesced 

vegetation from soils is more complicated due to the spectral similarity in the 

VNIR (400 nm – 1100 nm) (Nagler et al., 2000).  Nevertheless, discrimination of 

senesced vegetation from soils is possible using the cellulose and lignin 

absorption features located at 2100 nm and 2300 nm (Figure 2.1) (Daughtry et al., 

2004; Nagler et al., 2003; Elvidge, 1990; Curran, 1989). 
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When discriminating vegetation cover from soils, it has been noted that 

any pixels with a vegetation proportion exceeding 30 % should be excluded from 

further soil analysis (Bartholomeus et al., 2007; Chabrillat et al., 2002; Tueller, 

1987). Discrimination of vegetation cover from soils can be done using many 

methods such as Vegetation Indices (VI) (e.g., Normalized Difference Vegetation 

Index (NDVI; Hurcom and Harrison, 1998) and Cellulose Absorption Index (CAI; 

Nagler et al., 2003)) or spectral mixture analysis (De Asis and Omasa, 2007; 

Tromp and Epema, 1998; Roberts et al., 1993).  

 

Figure 2.1: Comparison of green vegetation, dry vegetation and soil spectra. 
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Although these are widely used methods for discriminating between 

vegetation and soils, there are still concerns with the performance of these 

methods. NDVI values have been found to become unpredictable when the 

green vegetation cover of a pixel is below 80 % (Liu and Kafatos, 2005), 

introducing uncertainty in to the results. The CAI, and in particular the cellulose 

feature at 2100 nm, becomes unreliable in instances where the plant litter has a 

high water content or when the litter decomposes (Serbin et al., 2009; Daughtry, 

2001). 

The results of spectral mixture analysis are largely dependent on the 

understanding and accurate representation of the scene variability (van der 

Meer, 2002). Another consideration regarding the use of this approach for 

discriminating vegetation cover deals with the general assumption of linear 

mixing modeling the pixels, when in fact it is largely a non-linear mixing 

between soils and vegetation (especially desert-like vegetation) (Ray and 

Murray, 1996; Roberts et al., 1993; Smith et al., 1990; Huete et al., 1985). 

2.7 Terrain Analysis for Soil Applications 

Terrain information, typically in the form of a DEM, can provide substantial 

benefits when combined with optical remote sensing data (Florinsky, 1998; 

Dobos et al., 2000; Haboudane et al., 2002). Not only can a DEM be used to 

correct for distortions caused by topographic variations, it can also provide 
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additional data, such as slope, curvature and aspect, for modelling and analysis 

purposes (Franklin, 1987; Lee et al., 1988; Yuan et al., 1994).  

The additional data provided by a DEM have been found to greatly 

increase classification accuracy (Franklin, 1987). With soil applications in 

particular, topographic variations can be used as indicators of soil properties, soil 

erosion class and productivity (Chen et al., 2007; Florinsky et al., 2002; Chen et 

al., 1997; Daniels et al., 1985). Table 2.1 provides a description of certain 

topographic primary and secondary attributes.  

Table 2.1: Description of topographic variables. 

Topographic 
Variable 

Description Details Source 

Slope 
The rate of change 
of elevation 

 
Wilson and 
Gallant, 2000 

Plan Curvature 
The horizontal 
plane of a contour 
line 

In radians. 
>0 = divergence 
<0 = convergence 

Florinsky et al., 
2002 

Profile Curvature 
Vertical plane of a 
flow line 

In radians. 
>0 = acceleration 
<0 = deceleration 

Florinsky et al., 
2002 

Curvature 
Curvature of the 
surface 

Can be positive or 
negative with zero 
representing flat 

Wilson and 
Gallant, 2000 

Upslope 
Contributing 

Area 

An area of the 
pixels that flow 
into a single pixel 
on a DEM 

 
Wilson and 
Gallant, 2000 

 

Process-based relationships between terrain and soils are particularly 

strong in hilly terrain; however, as a landscape ages, the relationship between 
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soil variables and the terrain becomes increasingly unpredictable (Wilson and 

Gallant, 2000). The predictive capacity of the terrain can also be diminished when 

the spatial resolution of the DEM is low (McKenzie and Ryan, 1999; Gessler et al., 

1995). For erosional landscapes, it has been found that this threshold is reached at 

a 40-m resolution, indicating that erosional studies require a DEM with pixels of 

40 m or less (Gessler, 1996). 

2.8 Conclusion 

Soils serve as an indispensable component of any functioning ecosystem 

(Lal, 2013; Doran and Parkin, 1994). Accelerated soil erosion is a form of land 

degradation, which decreases the capacity of the soil to perform its essential 

atmospheric, hydrospheric and lithospheric functions (Stewart and Lal, 1992). 

Semi-arid Mediterranean regions are highly susceptible to accelerated soil 

erosion due to the high rainfall intensity, low average annual precipitation, steep 

slope, fragile soils and agricultural practices (Garcia-Ruiz, 2010;Thornes and 

Wainwright, 2003; Kosmas et al., 2000; Garcia-Ruiz, 2010; Poesen and Hooke, 

1997).  

 The assessment, monitoring and management of the vital soil resources is 

necessary for the continued prosperity of human populations (Morvan, et al., 

2008; Yang, et al., 2003; Doran, 2002).  Remote sensing provides an efficient and 

cost-effective method for collecting the information required to successfully 

accomplish this (Asner and Heidebrecht, 2003). Hyperspectral remote sensing 
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data is particularly useful for soil investigations due to its highly detailed 

spectral information (Deventer van et al., 1997; De Jong, 1994; Irons et al., 1989). 

Essential to the extraction of information from hyperspectral data is their 

radiometric, atmospheric and geometric correction (Chakravortty and 

Chakrabarti, 2011; Jensen, 2005). Algorithms such as linear spectral unmixing 

take advantage of the high spectral dimensionality inherent of hyperspectral 

imagery and are able to provide within pixel estimates of surface cover 

abundance. This is necessary for many soil investigations within semi-arid 

Mediterranean environments, because they are dominated by highly 

heterogeneous surface cover (Schlesinger and Pilmanis, 1998; Puech, 1994).   

Complications do arise with the remote sensing of soil mainly due to 

overlying vegetation cover (Okin et al., 2001), BRDF effects (Torrent and Barron, 

1993), and atmospheric and sensor artifacts (Ben-dor et al., 2009; Bodechtel, 2001). 

However, inclusion of auxiliary digital terrain data, has proven to be an asset to 

any soil investigation due to the high predictive relationship between 

environmental variables and soil properties which can provide further 

information about soil state (Wilson and Gallant, 2000; Gessler et al., 1995; Odeh 

et al., 1993) and, in combination with hyperspectral data, has shown to improve 

classification accuracy (Franklin, 1987). 
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3 Methods 

Soil management is a key for many of Earth’s atmospheric, hydrospheric and 

lithospheric functions. Assessing and monitoring the current and future state of 

our soil resources is an essential component to managing this resource. The use 

of hyperspectral data in soil erosion investigations is becoming more common 

due to its narrow, contiguous spectral bands, which are able to discern key soil 

minerals. The EnMAP satellite sensor builds on the foundation set by airborne 

hyperspectral imagers by providing high-spatial coverage and frequent temporal 

coverage. 

The methods used for this analysis can be separated into three major 

sections. Firstly, the pre-processing of the AISA Eagle and Hawk hyperspectral 

data; secondly, the simulation of the EnMAP data; and lastly, the processing and 

analysis resulting in the final soil erosion state map. Besides the AISA Eagle and 

AISA Hawk hyperspectral data, Leica ALS50 (II) airborne laser scanner data and 

field data of the Camarena study site in the province of Toledo, Spain were used 

in this study. Figure 3.1 shows an image of the location of Camarena study site in 

relation to Madrid. 
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The AISA sensor was flown by the National Environment Research Council 

(NERC) - Airborne Research and Survey Facility (ARSF) based in Plymouth, 

England. The Camarena study site is quite large and, for this reason, was subset 

after the completion of the pre-processing and simulation from its original 114-

km² area, to a smaller 0.978-km ² area covering only the main Southern field site 

(SU).  

3.1 Study Area 

The study area is located in the center of Spain, approximately 50 km 

Southwest of Madrid. The location is in the Northwest sector of the Autonomous 

Community of Castilla – La Mancha, Provence of Toledo (Table 3.1).  

Table 3.1: Geographic coordinates (Zone 30N, ERTS 89 datum) for the Camarena 

study site. 

Waypoint Geographic coordinates 

 Latitude Longitude 

Top left 40º 9’ 0.62” 4º 10’ 8.33” 

Top right 40º 9’ 4.14” 4º 4’ 3.54” 

Bottom right 40º 0’ 58.35” 4º 3’ 55.96” 

Bottom left 40º 0’ 54.85” 4º 10’ 0.03” 
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The site contains the town of Camarena and is a primarily agricultural 

region. Traditional agricultural activities within the study area include rain-fed 

crop cultivation, vineyards and olive groves.  

The study area has a Mediterranean climate with a continental variant, 

which is characterized by cooler winter temperatures with low precipitation and 

dry summers. Precipitation occurs mostly in the autumn and spring, particularly 

in the months of November and April (World Weather and Climate Information, 

2013).  The average annual precipitation is 429 mm and the average annual 

temperature is 14.6 °C.  

The dominant soils in the study area are highly developed alfisols and 

luvisols. Alfisols are typical to semi-arid to humid areas. Their subsoil is rich in 

clay and has relatively high fertility. Luvisols develop in climates that range from 

cold temperate to warm Mediterranean and typically in forests. They are 

characterized by a textual contrast between the A and B horizon, mainly a 

surface accumulation of humus, which overlies a layer that lacks clay and iron-

bearing minerals. 

Soil horizons that are highly calcic (horizons in which CaCO₃ has 

accumulated) are typically found in dry climatic regions such as the Camarena 

study area. Calcic haploxeralfs are the dominant alfisols present in the study area 
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(Soil Survey Staff, 2010). Haploxeralfs are a large group under the alfisol soil 

order.  Calcic haploxeralfs have an argillic or kandic horizon meaning that they 

are predominantly composed of clay or kaolinitic clay-like mineral. They are also 

characterized by a calcic horizon that has its upper boundary within 100 cm of 

the mineral soil surface.   

The predominant luvisol in the study area is the calcic luvisol. It is 

commonly found in Mediterranean climates on flat or gently sloping land. 

Similar to the calcic haploxeralfs, they are also heavily clay enriched. They 

contain a calcic horizon between 50 cm and 100 cm from the soil surface. 

Typically, due to their structure, luvisols on steep slopes require erosion control 

measures (IUSS Working Group WRB, 2006).  

The typical soil profile of the study area is composed of the A horizon, 

characterized by moderate organic matter content and coarse texture, the B 

horizon, characterized by fine texture and Fe oxides, and the C horizon 

characterized by high carbonate concentrations and coarse texture. Provided in 

Figure 3.2 is an example of a soil profile.  The A horizon described here is the 

area of maximum accumulation of humus and has the greatest exposure to soil 

forming processes. The B horizon is the maximum zone of accumulation and 

alteration, while the C horizon is the zone of minimal accumulation and 

alteration (Agriculture Canada Expert System on Soil Survey, 1987).  
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The location of the study site was chosen because it encompasses all of the 

desired requirements for the SEDMEDHY Transnational Access Project. They 

included: Mediterranean climate, extended agricultural rain-fed uses, and 

evolved soils and erosion features associated to contrasting soil horizons.  

 

Figure 3.2: A typical soil profile in the study with associated soil characteristics. The A 

hoizon is characterized by moderate organic material content and coarse texture. The 

B horizon is fine textured and is rich in Fe oxides. The Ck horizon is rich in carbonates 

and coarse textured. The C horizon is composed of arkosic rock. 
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3.2 Data Collection 

3.2.1 Airborne Data Collection  

Airborne hyperspectral and laser scanner data were collected for the 

Camerana study area. The flight was conducted by ARSF on August 8th of 2011. 

A summer flight was chosen, because it provided a compromise between ideal 

soil properties unaffected by the dry season and increased soil surface exposure 

due to reduced photosynthetic activity (EUFAR, 2010). The summer flight was 

also chosen, because the summer months offer increased weather stability. The 

data acquisition was carried under clear sky and stable, dry conditions. The 

overlap between flight lines is approximately 20 % for all flight lines. The 

duration of the flight lasted 58 min and, in that time, the solar azimuth and 

zenith angles changed considerably.  

The hyperspectral data were collected with the combined AISA Eagle 

VNIR and AISA Hawk SWIR airborne hyperspectral sensors. The LiDAR (digital 

terrain) data was collected with the ALS50 (II) airborne laser scanner.  A total of 

eight flight lines flown at an altitude of 5000 m were collected for the study area.  

The first and last flight lines of the acquisition were taken perpendicular to the 

main flight lines to provide additional information on changes due to 

illumination variation and the bidirectional reflectance properties of the surface. 

Figure 3.3 shows an initial mosaic of the six along-track flight lines and two 

across-track flight lines covering the Camerana study site.  
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Figure 3.3: A preliminary mosaic of the eight AISA flight lines acquired on 

August 8th, 2011. A = Main flight lines; B = Perpendicular flight lines.  
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The characteristics of the data collected by the AISA Eagle and AISA 

Hawk hyperspectral sensors, and from the LiDAR laser scanner are outlined in 

Tables 3.2 and 3.3, respectively: 

 

 

 

 

 

The data collected by the Leica ALS50 (II) laser scanner has an average 

point spacing of 1.5 m. The elevation differences in the LiDAR data between 

overlapping flight lines are within the range of 4 cm to 52 cm. A total of four data 

returns were recorded with 90 % of the data recorded coming from the first 

return. A larger number of second returns were recorded in the vineyards and 

olive groves.  

Table 3.3: Characteristics of the Leica ALS50 (II) LiDAR data. 

Laser Scanner FOV  Characteristics 

Leica ALS50 (II) 40.0° 
Multi-return height and 

intensity signals 

 

Table 3.2: Characteristics of the AISA Eagle and AISA Hawk data. SSI = Spectral 

Sampling Interval, FOV = Field Of View. 

Sensor 
Spectral 

Coverage 
# of 

Bands 
SSI 

Ground 
Pixel Sizes 

Spectral 
Resolution 

FOV 

AISA 
Eagle 

400–1000 
nm 

244 2.3 nm 3m 2.9 nm 37.7 ° 

AISA 
Hawk 

1000–2400 
nm 

254 6.3 nm 6m 8.0 nm 24.0 ° 
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The quality of the data collected by the combined AISA Eagle and Hawk 

sensors was evaluated by the ARSF and was satisfactory to good with striping 

found in the 1002-nm to 1154-nm range. 

3.2.2 Field Data Collection 

The field data was acquired between August 8th and 11th, 2011. It 

consisted of field spectroscopy, soil and vegetation sampling, estimation of 

vegetation residue coverage, and in-situ evaluation of soil conditions and 

horizons. Additionally, samples collected in the field were analysed in the 

laboratory to measure chemical and physical soil properties and to collect 

controlled spectral measurements. Measurements of the soil properties collected 

from the SU field site as presented in Table 3.4 (%w/w = Percentage 

weight/weight (grams of solute in 100 g solution), YR = Red-yellow.).  
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The field spectra were collected using an Analytical Spectral Devices 

(ASD) FieldSpec 3 full-range spectroradiometer and an ASD FieldSpec Pro 

spectroradiometer. The two spectroradiometers were cross-calibrated prior to 

taking field measurements. The measurements collected using these instruments 

cover the VNIR (350 nm – 1000 nm) and SWIR (1000 nm – 2500 nm) spectral 

range with a resolution of 3 nm and 10 nm, respectively. The resulting field 

spectra contained a total of 2101 spectral bands. 

 The spectral measurements were collected hand-held, taken at nadir at 

arm’s length from the operator and at one meter above the surface. 

Measurements were acquired on days with clear sky conditions at mid-day, 

between 11:00 and 15:00 when direct solar flux is at its highest. Care was taken 

by the field operator and the remaining crew and equipment to avoid any 

sources of shadowing near the measurement locations. Spectralon reference 

panel measurements were taken prior to commencing measurements at each 

field site.   

Two different sampling schemes were used to acquire spectral 

measurements to ensure a collection of measurements, which were 

representative of the conditions within the study site. The first sets of 

measurements taken were with the intention of gathering spectral information 

representative of the main land-use categories within the study area. The 

measurements were acquired at eight test sites representing the main land-use 
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categories within the study area. These categories include fallow, rain-fed 

cultivation of cereal crops, vineyards, olive groves and tilled land with organic 

residue left on the soil surface.  An example of each of these land covers is 

presented in Figure 3.4. The second set of measurements were taken along 

transects in bare soil with the intention of recording the spatial variability of the 

soil properties and relief characteristics. All measurements and samples collected 

were geolocated at the time of acquisition using GPS (Figure 3.1).  

 

 

Figure 3.4: Images of the 8 surface covers used for field data collection. a) Fallow 

land. b) Rain-fed cereal cultivation. c) Vineyard. d) Tillage. e) Organic matter on 

surface. 
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Each individual sample plot consisted of a central sampling point with 

three sampling points radiating outward each in the North, Southeast and 

Southwest directions. The first set of sampling points in the North, Southeast and 

Southwest directions were measured a distance of 3 m from the central sampling 

point. The second set of sampling points was measured out an additional 2 m, for 

a total of 5 m from the central sampling point. Figure 3.5 demonstrates the 

sampling scheme for each site, including sub-plots based on the design presented 

for vegetation sampling by Schmidtlein et al. (2007).  

 

Figure 3.5: Sampling schematic used in the Camarena field site. 
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The area covered by each sampling site was calculated as follows (Justice 

and Townshend, 1981):  

                                A = (P (1 + 2G))²,  (3.1) 

 

where A is the required sampling area (m²), P is the pixel size (m), and G is the 

geometric accuracy (pixels). The area was calculated for pixel sizes of 2 m and 6 

m with an estimated geometric accuracy of one pixel. 

3.3 Hyperspectral Image Pre-processing 

Upon collection, image data may contain a variety of inconsistencies as a 

result of sensor, platform and environmental influences. These inconsistencies 

can range from the introduction of noise from the sensor system, geometric 

distortions as a result of platform movement, topography and the influence of 

atmospheric absorption and scattering on the reflected radiance. The goal of 

image pre-processing is to compensate for all these distortion in order to make 

the image resemble the natural scene as closely as possible.  

The pre-processing of the AISA data included radiometric, geometric and 

atmospheric corrections as well as compensation for brightness variations, 

mosaicking and MNF (Figure 3.6). The final preprocessed ASIA data were then 

used as input into EeteS to produce simulated EnMAP data. A soils classification 
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of the preprocessed AISA data was also used for validation of the EnMAP 

classification results. 

 

3.3.1 Radiometric Calibration 

Radiometric calibration is designed to remove errors and inconsistencies 

in image DN’s by providing a common physical scale (Teillet and Coburn, 2010). 

The ARSF provided the AISA Eagle and AISA Hawk data in level 1b format. This 

format level entails the application of radiometric correction algorithms to the 

AISA Eagle and Hawk data with the resulting data in units of measured radiance 

 

Figure 3.6: Flow chart of the preprocessing steps performed on the AISA Eagle 

and AISA Hawk data. 
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(Wm-2 sr-1). The radiance data still contained further sensor radiometric 

inconsistences in the form of vertical striping in the SWIR and an across-track 

non-uniformity gradient in both the Eagle and the Hawk data. The destriping 

was corrected using software developed at the GFZ. 

3.3.1.1 Destriping 

Striping artifacts are a form of noise that are prevalent with pushbroom 

sensors and are the result of uncertainties and variation in the calibration of the 

detector elements (Rogass et al., 2011; Tsai and Chen, 2008). The stripes are 

created when an element in the detector produces no signal or is miscalibrated, 

which results in a line of no signal or miscalibrated pixels in the 2-D image. 

All bands within the six flight-line images acquired with both the AISA 

Eagle and AISA Hawk were examined for striping. No striping was found in the 

AISA Eagle datasets. Sporadic and non-uniform vertical striping was found in 

the AISA Hawk dataset as well as periodic column drop-outs. Figure 3.7 shows 

an example of the vertical striping that was present.  
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The destriping of the AISA Hawk hyperspectral data was conducted using 

an automatic detection of the linear features. Once all of the linear features were 

detected, either a recalibration or an interpolation correction was applied. The 

automatic detection of line features used differencing of adjacent bands to 

accentuate and locate the line features.  To identify the striping features, a 1 x 3 

window process the entire image, identifying the middle pixel as corresponding 

to one of four categories, local maxima (A), local minima (B), left linear increase 

(C) or right linear increase (D). These features can be seen in Figure 3.8. A 

 

Figure 3.7: An example of the vertical striping found in the AISA Hawk data. 

The striping shown is inconsistent in magnitude along the column. This is 

representative of all of the striping, excluding the dropped columns, in the 

AISA Hawk image. 
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histogram was then calculated for each image column identifying how often each 

of the four striping features occurred.  

 

The maximum occurrence was calculated for each column. For the column 

to be flagged as a striping feature, the maximum occurrence must exceed a user 

specified percentage, which for this research was set to a 60 % threshold.  The 

threshold value represents the percentage of the pixels in a column that were 

identified as a striping feature. Initially, the destriping was conducted using a 

40% threshold, meaning any column in which 40 % or greater of its pixels are 

identified as a striping feature is flagged as a stripe. The 40 % threshold was 

found to be too strong for the scene and would identify linear image features, 

 

Figure 3.8: Shows the four types of striping features identified in the destriping 

process. From left to right: local maxima (top and bottom) (A), local minima (B), 

left linear increase (C), right linear increase (D). 
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such as field boundaries and lines of olive trees, as striping. The threshold value 

used for the final data product was 60 %. Although a 60 % threshold value was 

not able to automatically detect all stripes in the image, it reduced the number of 

false positives. This value was collected through trial and error. 

The 60 % threshold was unable to identify all of the striping features 

because they were often both spectrally and spatially non-uniform. To account 

for this, a manual detection of the features was also conducted. For this step, 

every band in each flight line was manually examined and the remaining stripes 

were recorded and were reprocessed in the subsequent steps along with the 

previously identified stripes.   

Once all of the features were identified, the second stage in the process 

was recalculating the pixel values for the erroneous detectors. The general 

assumption for the recalculation of the pixel values was that the radiometric 

correction for the striped column was incorrect and as a result, can be corrected 

by a linear function using values from selected reference columns (Horn and 

Woodham, 1978). This in turn allows for the original data collected within those 

pixels to be preserved and only a moderate re-calibration to be applied to them 

instead of the removal of the data through full interpolation. 

The last stage of the process was to interpolate the detector stripes with no 

signal. A spline interpolation was used to correct these stripes (Tsai & Chen, 

2008). The validation of the destriping was done visually. Individual bands in 
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each flight line were examined for any uncorrected striping as well as for any 

false positives or spatial aberrations left as a result of the destriping.  

3.3.2 Geometric Correction 

The AISA Eagle and Hawk images for each flight line were geometrically 

corrected separately using software developed in-house specifically for this 

platform. It is customary to conduct the geometric correction after the 

atmospheric correction due to the resampling of the data that occurs in the 

orthorectification process. However, the procedure was reversed in this instance 

due to the additional files that were needed for the atmospheric correction. The 

software performed an orthorectification on each of the flight lines.  

The coordinate transformation calculated the height and position of each 

pixel in the image and produced the raw scan angle file. The collinearity 

equation was used to determine the X and Y positions of the pixels. This equation 

is a physical model representing the geometry between the sensor projection 

center, the map coordinates and the image coordinates (Konecny, 1972). The raw 

scan-angle file contains the scan angles for each of the detectors. These angles 

were calculated for each pixel using the FOV and the pixel location within the 

FOV.   

Nearest neighbour resampling was used to produce the geocoded image. 

This type of resampling was chosen over bilinear interpolation or cubic 
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convolution, because the original pixel values are maintained, preserving the 

spectral integrity of the data (Schlapfer et al., 2001).  

  The DEM and the scan angle files were resampled to match the spatial 

characteristics of the AISA Hawk data and were output as ATCOR-4 compatible 

files. The orthorectified AISA Eagle and AISA Hawk flight lines from this 

procedure were then fused to converge the two spectral ranges into a single 

image that cover the full spectral range from 400 nm  to 2400 nm. 

 Typically with the use of ATCOR-4 for the atmospheric correction, 

PARGE would have been used to generate the required scan angle files and 

additional ATCOR compatible output files (Schläpfer et al., 1998). However, the 

software was unavailable for this research.  

3.3.2.1 Data Fusion 

The data fusion was also conducted using in-house software. For each 

flight line, the last band of the AISA Eagle data (998.46 nm) was fused to the first 

band of the AISA Hawk data (1002.3 nm). The procedure consisted of 

establishing a spatial relationship between the AISA Eagle and AISA Hawk data 

by locating the center location of the Eagle pixels on the Hawk image. A pre-

defined Gaussian filter, including the sensor Point Spread Function (PSF), was 

then used to resample the AISA Eagle data to the spatial resolution of the AISA 

Hawk. Finally, as a result of the two different FOVs of the sensors, the AISA 

Eagle data needed to be cropped to fit the spatial extent of the AISA Hawk data.  
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3.3.2.2 Jump Correction 

A jump can be described as a spectral offset resulting in different radiance 

values between adjacent spectral bands. A spectral jump was detected in the 

spectra of the combined AISA Eagle and Hawk data as a result of the data fusion 

process. The jump introduced was an irregularity and was not actually in 

association with any surface cover within the image. Because the jump did not 

have a physical meaning, it needed to be corrected for in the image. 

The procedure consisted of 1) identifying the jump characteristics, such as 

magnitude and extent; 2) spectrally unmixing the scene using a predefined 

spectral library of scene surface covers; 3) generating an “ideal” (without a 

spectral jump) spectrum for each pixel in the image by mixing the spectra in the 

spectral library using the surface cover fractions estimated for each pixel in step 

2; and 4) replacing the section of the spectrum affected by the jump for each pixel 

in the image with the “ideal” spectrum generated for each corresponding pixel. 

  The jump was inconsistent in size and shape but occurred consistently in 

the same spectral location, at approximately 1000 nm. Official documents from 

the ARSF noted that the data collected using the AISA Eagle and AISA Hawk 

sensors were not reliable above 900 nm and below 1100nm, respectively (ARSF, 

2011). The characteristics of the jump were determined by comparing the 

radiance image spectra to geolocated reflectance field spectra. Because the jump 

correction was performed prior to the atmospheric correction, the reflectance 
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field spectra were converted into radiance using an in-house atmospheric RT 

software. By comparing the image radiance spectra to the converted field 

radiance spectra, the extent of the affected wavelengths was determined to be 

between 978 nm and 1096 nm.  

 Figure 3.9 shows a comparison between the radiance signatures gathered 

from the image and radiance signatures converted from field reflectance spectra 

for two field locations within the Camerana study site. The radiance spectra have 

been smoothed to remove a majority of the noise so that the jump can be more 

clearly visible.  

 

Figure 3.9: Two field location spectra converted to radiance and the 

corresponding image radiance spectra used to define the jump characteristics. 

The jump is located between 978 nm and 1096 nm. This is where the image and 

field radiance spectra differ greatly. This is the wavelength range where the 

image spectra were corrected. 
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The jump correction was conducted using unconstrained spectral 

unmixing/mixing techniques. It should be noted that an additional offset term 

(𝑋0) was included into the linear spectral mixture equation to allow for shifting of 

the spectral signature about the Y axis to account for variations in radiance 

intensity. The linear spectral mixing model applied in the jump correction is as 

follows: 

                                (3.2)     

 

where 𝑋0 is the additional term accounting for variation in the Y-axis. 

A spectral library was constructed using ASD spectra of various surface 

covers from both the Camerena study site and also from an additional Spanish 

study site. The spectral library was composed of two green vegetation, two 

mixed brown/green vegetation, two brown vegetation, one badlands, one 

riverbed, one pavement, three water and four soil spectra. The four soil spectra 

were collected from the Camarena site and accounted for the spectral variability 

in soil surface cover within the scene. 

The spectral library was converted from reflectance into radiance using 

the same in-house RT software as before. Since water vapour content was not 

measured in the field and had not yet been estimated using an atmospheric 

modeling software, the spectral library was converted to radiance eight times, 

Sij =  X0 +  X1 ∗  S1 +  X2 ∗  S2 + X2 … + w ,

= 𝑤𝑒𝑡𝑐  
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each time with different water vapour content.  These spectra were then 

resampled to the spectral resolution of the combined AISA Eagle and Hawk data. 

The optimal spectral library for the unmixing procedure was chosen based on the 

atmospheric water absorption band depth. The library with an absorption depth, 

which most closely resembled that of the image, was chosen for the unmixing 

procedure.   

Once the image had been unmixed, the same spectral library was then 

mixed based on the fraction values estimated in the unmixing to simulate an 

artificial spectrum for each pixel in the image. This in turn generated an “ideal” 

spectrum, without a spectral offset feature, which was used to replace the 

original combined AISA Eagle and Hawk spectra within the defined jump 

region, between 978 nm and 1096 nm. All regions of the spectra outside of the 

defined jump region were not altered.  

3.3.3 Atmospheric Correction 

Atmospheric correction compensates for the unwanted scattering and 

absorption effects caused by the atmosphere in remotely sensed data. 

Atmospheric correction is a particularly important pre-processing step when the 

data is going to be used in the extraction of physical parameters or when it will 

be used in variable temporal or spatial studies (Haboudane, et al., 2002; 

Thiemann and Kaufmann, 2002; Song et al., 2001). 
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The atmospheric correction was conducted using ATCOR-4’s rugged 

terrain option. Compared to the flat terrain option, this option includes a DEM to 

account for topographical influences and illumination effects. A low-pass filter 

was used to smooth the resampled DEM files generated in at the time of the 

geometric correction. Such a filter was applied because the original DEM output 

created artifacts in the ATCOR reflectance results. Topographic calculations 

including slope/aspect, sky view and shadow were included in the atmospheric 

correction. Each flight line was atmospherically corrected separately to account 

for the differences in heading direction and solar geometry. Table 3.5 details the 

flight and solar characteristics at image acquisition, which were used as input 

parameters into ATCOR-4. 

Table 3.5: Details of the flight and solar geometry parameters for the image 

acquisition. Flight lines 22001 and 22008 are the across-track flight lines. This can be 

seen by their heading directions in comparisons to the other flight lines. 

Flight Line Direction 
(degrees) 

Altitude 
(m) 

Time Solar Azimuth 
(degrees) 

Solar Zenith 
(degrees) 

22001 68 5085 14:34 239.6 37.3 

22002 347 5042 14:44 242.4 38.9 

22003 194 5043 14:52 244.5 40.3 

22004 346 5054 14:59 246.3 41.5 

22005 195 5030 15:07 248.2 42.9 

22006 345 5029 15:15 250 44.3 

22007 192 5036 15:23 251.8 45.8 

22008 269 5096 15:32 253.8 47.5 
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A rural atmosphere with an estimated water vapour content of 1.05 cm 

and a flying altitude of 5000 m were chosen for the scene. A water vapour map 

was generated from the scene by ATCOR-4 using the 820 nm atmospheric water 

absorption feature (D. Schlapfer, personal communication, June, 2012). Visibility 

was estimated by ATCOR-4 as being 80 Km. Bands in the 760 nm 𝑂2 region and 

the 725/825 nm, 940/1130 nm and 1400/1900 nm water vapour regions were 

interpolated. An empirical BRDF correction was also applied to the data to 

supress the brightness variation between/within the flight lines. 

The atmospheric parameters used in the atmospheric correction remained 

the same for all flight lines. The final reflectance image still contained a 

substantial amount of noise and large BRDF effects and non-uniformity effects in 

across-track and along-track directions. 

3.3.4 Cross-Track Illumination Correction 

Each individual flight line exhibited decreasing brightness from one edge 

of the imagery to the other in the across-track direction as a result of sensor non-

uniformity (Toivonen et al., 2006). Brightness variations also occurred between 

the different flight lines, which is a BRDF effect caused by the direction of the 

flight heading which alternated between the direction of the Sun and away from 

the Sun (Staenz et al., 1993 ). Lastly, there was a decrease in overall brightness in 
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the along-track direction from the top of the scene to the bottom of the scene. 

This is a topographical effect as a result of the overall decrease in elevation in the 

North/South direction within the scene. Influences such as the change in solar 

geometry, related to the long duration of the image acquisition (50 min), and the 

direction of the flight heading were also believed to have an effect on the 

brightness variations within the scene.  The change of solar position over the 

flight duration can be seen in Figure 3.10. 

 

Figure 3.10: Change in sun position in relation to Camarena, Toledo, Spain over 

the duration of the flight campaign. 
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Attempts were made to supress the brightness variations within each 

individual flight line, in both the across-track (non-uniformity) and along-track 

(topographical) directions using the cross-track illumination correction (Exelis, 

2014a) available in the Environmental Visualization software (ENVI). This 

correction was applied to each individual flight line (Dadon et al., 2010).  

The cross-track illumination correction was applied in the same manner in 

the across-track and along-track directions for all flight lines. It calculates the 

along-track mean values for each band and uses them to determine the mean 

illumination variation in the cross-track direction. The same is true when 

correcting for illumination difference in the along-track direction where the mean 

across-track values are calculated for each band and are used to determine the 

mean illumination variation in the along-track direction.  

The correction is a polynomial function of a user-defined order, which is 

fit to the means and is used to supress the brightness variation. A multiplicative 

method with a first-order polynomial was chosen for the correction. This 

combination of correction method and degree of polynomial were selected, 

because it balanced the brightness differences better in both the across-track and 

along-track directions than any other combination of correction method and 

polynomial order. A first-order polynomial was also chosen for the correction 

over any higher polynomials, because increasing the polynomial could 

potentially negatively affect the entire scene by removing local variation in the 
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data. This was evaluated by comparing horizontal and vertical profiles of the 

same location between all the combinations attempted.  

The cross-track illumination correction was conducted following the 

atmospheric correction because of the possible interference it may have with 

certain aspects of the atmospheric correction. This was particularly a concern 

with parameters that are estimated directly from the data for the atmospheric 

correction, such as water vapour content or visibility.   

3.3.5 Mosaicking 

Because the footprint of the individual flight line images is smaller than 

the study area, the orthorectified images were compiled into an image mosaic. 

Prior to mosaicking the flight lines, they were resized to remove the majority of 

the overlapping edges. This was done to eliminate the strong spatial and spectral 

inconsistencies inherent in pushbroom sensors that become more prominent 

away from nadir. The overlap between flight lines ranged from 53 pixels up to 

113 pixels, approximately 3.18 km to 6.78 km, respectively. The resized flight 

lines are shown in a mosaic template in Figure 3.11. 
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The substantial brightness variations mentioned in the previous section 

became more evident along the seam lines where the flight lines were mosaicked 

together. Neither feathering nor colour balancing was applied to the mosaic to 

try to suppress these effects. The option to feather the image scene was omitted 

from the mosaicking, because it requires a very good geometric accuracy. This is 

because the feathering calculates an average of the overlapping pixels between 

flight lines. If the overlap is not accurate enough, the feathering will average 

adjacent pixels creating unreal pixel mixtures along the seam lines. The RMS 

error for the geometric correction ranged from 5.96 m to 12.04 m, which would 

 

Figure 3.11: Flight line subsets used for the mosaicking of the Camarena study 

site. 
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result in unnecessary mixing along the seam line and as a result the feathering 

was not included in the mosaic.  

The colour balancing option was applied as a test to see if it could remove 

the drastic brightness differences along the seam lines, but there was 

unfortunately little to no improvement.  The albedo differences between flight 

lines can be seen in Figure 3.12, with drastic differences visible in the green 

vegetation between flight lines 2 and 3.   

 

 

Figure 3.12: A horizontal subset of the mosaicked flight lines (top) and a close up 

on a seam line (bottom) in the image subset shown on the top. The close up 

highlights the brightness variation between the two flight lines. 
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3.3.6 Minimum Noise Fraction  

A Minimum Noise Fraction (MNF) analysis was applied to the mosaicked 

image. An MNF consists of two cascading Principal Component Analysis (PCAs) 

(Chen et al., 2003). MNF was conducted to segregate the noise component and 

ultimately reduce the dimensionality of the data (Green et al., 1988) before 

proceeding to the EnMAP simulation to maximise efficiency and improve the 

results of the subsequent processing (Tseng, 2000).  

The number of coherent bands to be included in the inverse MNF was 

determined using a MNF normalization. The equation for the MNF 

normalization is as follows:  

(
∂

∑ ∂
) ∗ n ,                                                                                           (3.3)   

        

where 𝜕 represents the eigenvalue and n is the number of output MNF images. 

Using this Equation, all eigenvalues with a normalization value above 1.00 are 

selected as coherent. The first 38 components out of a total of 486 bands had 

normalization values above 1.00, which correspond to coherent image 

components. Accordingly, these first 38 bands were used in an inverse MNF to 

return back to the original dimensions of reflectance and wavelength, excluding 

incoherent components composed largely of noise. 
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3.3.7 Empirical Line Correction 

An Empirical Line Correction (ELC) was used to remove residual 

atmospheric absorption features in the data that remained after the atmospheric 

correction. The ELC was chosen over other smoothing methods such as the 

Empirical Flat Field Optimized Reflectance Transformation (EFFORT), because it 

was largely remnant atmospheric absorption features that needed to be removed 

in contrast to sensor noise. The ELC was conducted on the entire mosaic rather 

than on the individual flight lines because there were not enough field locations 

within each flight line to apply it individually. Correcting for the remnant 

atmospheric features is a critical issue since noisy reflectance products can render 

spectral-based classification products incorrectly (Goodenough et al., 2003).  

The ELC uses linear regression for each band to calculate gain and offset 

values that are then applied to the data (Farrand et al., 1994). Figure 3.13 shows 

how the gain and offset terms are determined. The gain values are a 

multiplicative term and the offset values are an additive term.  
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Figure 3.13: Linear regression used to derive the gain and offset coefficients for 

the ELC in one band. In this image, the points in the plot represent the spectra 

being used for the ELC. The point corresponding to X₁, Y₁ is a bright target and 

the one corresponding to X₂, Y₂ is a dark target. The positions of the points in the 

plot are determined by the value of the field spectra and the value of the 

corresponding image spectra in that particular band. The gain is calculated using  

Y1− Y2

X1− X2
 . 
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The equation below shows the application of the gain and offset values to 

the image data (Smith & Milton, 1999; Roberts et al., 1986) as follows: 

Sk = ρkAk + Bk,                                                                                         (3.4) 

where 𝑆𝑘 is the output value (reflectance) for a pixel in band k, 𝜌𝑘 is the field 

surface reflectance in band k, 𝐴𝑘 is the gain term in band k and 𝐵𝑘is the offset 

term in band k. 

A dark and a bright target are chosen as reference spectra for the 

correction to provide the most accurate linear regression. Including additional 

spectra also helps to improve the calibration. When more than one spectrum is 

used for the calibration, the regression for each band is calculated by fitting the 

regression line through all of the spectra.  

Four spectra were used for the calibration, a burned soil, an iron and clay-

rich soil, a highly calcitic/clay mix soil and a very sandy soil. These four spectra 

were chosen for the correction, because they spread a wide range of reflectance 

values.  Figure 3.14 shows the four field spectra used for the ELC.  
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The output AISA data from the ELC was included in the classification 

procedure and was used as the ground-reference image in the validation of the 

EnMAP results (Thomlinson et al., 1999).  

3.4 EnMAP Simulation 

The EnMAP data simulation was carried out using EeteS. The pre-

processed combined AISA Eagle and Hawk reflectance data cube was used as the 

input for the EeteS simulation software (Segl et al., 2012). The simulation process 

is comprised of two separate components, the forward and backward simulation. 

The final result of EeteS is a simulated Level-2 (L-2), atmospherically and 

geometrically corrected EnMAP reflectance image cube (Segl et al., 2012). Figure 

3.15 depicts the EeteS simulation process. The simulation was done for the 

Beginning of Life (BOL) of the EnMAP sensor.  BOL characterises the expected 

 

Figure 3.14: Field spectra selected for the ELC of the image data. 
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imaging characteristics of the sensor in the initial stages of its launch. End of Life 

(EOL) simulation, in contrast, would include the expected degradation of the 

sensor components over its life span.  

 

 

Figure 3.15: EeteS simulation process from input reflectance data to output EnMAP 

reflectance data. 
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3.4.1 Forward Simulation 

The forward simulation consists of four modules, atmospheric, spatial, 

spectral and radiometric. These four modules produced EnMAP DN values from 

the combined AISA Eagle and Hawk reflectance data cube.  

3.4.1.1 Atmospheric Module 

The first module in the forward simulation is the atmospheric module 

(Segl et al., 2012). The atmospheric module converts surface reflectance to TOA 

radiance data using atmospheric parameters estimated using the MODTRAN 4 

radiative transfer code. The atmospheric module uses as input the day, month 

and Greenwich Mean Time (GMT) of the image acquisition, the latitude and 

longitude of the scene, selected aerosol and atmospheric model,  and user-

defined AOT (0.8) and CWV (systematically varied between 1.85-2.15 cm). No 

additional parameters, such as cloud cover or shadow, were used in the 

simulation (Segl et al., 2012).  

3.4.1.2 Spatial Module 

The spatial module is the second module in the forward simulation. It 

performs the spatial recoding of the image data and simulates spatial aberrations 

caused by the telescope optics, slit and curved prisms (Segl et al., 2010). The 

spatial module employs both the geometry model and the optical sensor model. 

The former is defined by the pointing vectors of all VNIR and SWIR detector 

elements in relation to the target. Considerations for the geometry module 
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include the position, attitude, speed, heading and the off-nadir pointing 

capabilities of the sensor (Segl et al., 2010). The optical sensor module performs 

the spatial recording of the pixels by combining the spectral information with the 

specific PSF in the across-track direction (Guanter et al., 2009). The outcome of 

the spatial module is spatially resampled 30-m radiance data cube. 

3.4.1.3 Spectral Module 

The third component of the forward simulation is the spectral module. 

The spectral module considers the Spectral Response Function (SRF) of each 

band, as well as spectral non-uniformities, such as spectral smile and spectral 

shift when performing the spectral resampling (Segl et al., 2012). The first part of 

this module defines the central wavelength location, SSI and the bandwidth at 

Full-Width Half-Maximum (FWHM). The simulation was done separately for 

each of the two detectors to account for differences in the spectral performance. 

The VNIR detector ranges between 423 nm to 1000 nm. Its SSI ranges from 4 to 10 

nm, generally increasing with increasing wavelength, and the bandwidth ranges 

from 5 nm to 12 nm, also increasing with increasing wavelength. The SWIR 

detector covers a wavelength range from 900 nm to 2438 nm. It has a SSI of 7 to 

10 nm, typically decreasing with increasing wavelength and a bandwidth 

ranging from 8 nm to 14 nm, mainly decreasing with increasing wavelength. 

EnMAP SRFs were simulated using Gaussian functions, which had been 

generated specifically for each spectral band. The radiance was resampled along 
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each column in the data to ensure accurate simulation of the spectral smile 

(Guanter et al., 2009). The result of the spectral simulation was data, resembling 

the spectral configuration of the EnMAP sensor.  

3.4.1.4 Radiometric Module 

The radiometric module is the final module in the forward simulation of 

the EnMAP data. It transforms the at-sensor radiance to photons, electrons and 

finally to DN (Segl et al., 2012).  This module adds noise to the data and 

computes the calibration gain and offset coefficients (Guanter et al., 2009). It 

considers the quantum efficiency of the two detectors, optical transmittance, 

detector element size, spectral width and wavelength, the F-number of the optics, 

the readout noise for both detectors in low-gain and high-gain modes, shot noise, 

the dark current for each detector, and the Analog to Digital Converter (ADC) 

noise for both the high-gain and low-gain modes. The noise is based on 

parameters already measured for BOL (optical transmittance, quantum efficiency 

and readout noise) and parameters defined by the engineers. Variable non-linear 

responses for each detector element are also included in this module. The data 

output by the radiometric module simulated raw EnMAP data and was used as 

input for the backward simulation. 

3.4.2 Backward Simulation 

The next three modules are related to the backward simulation component 

of the EeteS simulation software. These modules reflect, but are not identical to, 
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the processing steps that will be employed once the sensor is launched to 

generate the EnMAP data products. The process consists of four core steps, the 

Level-1 (L-1) processor, co-registration of the two detector images, atmospheric 

correction (L2atm) and orthorectification (L2geo) (Segl et al., 2012). EnMAP L-2 

atmospherically and geometrically corrected data was simulated in this study. 

3.4.2.1 Level-1 Processor 

The L-1 processor is the first module to be applied in the backward 

simulation. Its purpose is to convert EnMAP DN values to TOA radiance and 

spatially co-register the two detector images.  Estimated calibration parameters 

were used to convert the data from DN values to TOA radiances (Segl et al., 

2012). Each detector element was calibrated using its own sensor calibration 

model. Four main processing steps are considered in the L-1 processor, the 

masking of saturated, bad and dead pixels, correction of non-linearity response, 

dark current subtraction and multiplication of gain coefficients (Segl et al., 2012).  

The spatial co-registration of the two detector images was done by shifting 

the SWIR lines to the VNIR lines using the coordinates of the projected scan line 

centers (Segl et al., 2012). No resampling was performed in this step.  

3.4.2.2 Level-2 Processor 

The second module in the backward processing is the L-2 processor, 

which is comprised of the L2atm and L2geo. The purpose of the L2atm module is 

to convert simulated TOA EnMAP radiance values to surface reflectance values.  
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The atmospheric correction was done using a modified version of the 

MODTRAN4 atmospheric RT code (Berk et al., 1998). These modifications were 

to generate faster executable files, with no changes made to the MODTRAN4 

physical formulations (Guanter et al., 2007). All input parameters for the L2atm, 

relating to the scene characteristics, were kept the same as for the AISA 

atmospheric correction. Input parameters relating to, or influenced by, the sensor 

characteristics were changed accordingly. A scene-DEM was not used for the 

L2atm. Parameters, such as the viewing zenith angle, the relative azimuth angle, 

the CWV and the visibility, were calculated on a per-pixel basis. Linear 

interpolation was used to generate the zenith and azimuth parameters, while 

exponential interpolation was used to generate the CWV and visibility 

parameters for each pixel (Guanter et al., 2007).  

For the data simulation neither spectral smile nor adjacency effects were 

added. The second module in the L-2 processor is the L2geo module, which 

performs the correction of all spatial aberrations within a parametric 

orthorectification process. The orthorectification was applied separately for each 

detector image. The individual pointing characteristics of each detector element 

and the position of the sensor are used in this process (Segl et al., 2012). For the 

orthorectification process, different resampling methods are available including, 

nearest neighbour, bilinear interpolation, and cubic convolution (Segl et al., 

2012). Bilinear interpolation was chosen for this simulation because it was a 
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compromise between the possible loss of spatial quality associated with nearest 

neighbour (Schläpfer et al., 2000) and the alteration of brightness values 

characteristic of cubic convolution (Richards, 2013). The result of the L-2 

processor was an orthorectified EnMAP surface reflectance data cube. Table 3.6 

outlines the performance characteristics of the future EnMAP satellite sensor.  

      Table 3.6: Performance characteristics of the future EnMAP sensor. Information 

was gathered from Kaufmann et al. (2012). 

Parameter Performance 

Satellite Characteristics 

Imaging Principle 
Pushbroom, two-prism imaging 

spectrometers 
 

Spectral Characteristics 
 

VNIR SWIR 

Spectral Range (nm) 420-1000 900-2450 

Bands 88 154 

SSI 6.5/10 10 

SNR >400:1 at 495 nm >170:1 at 2200 nm 

Spatial Characteristics 

GSD (m) 30 

Swath (km) 30 

Temporal Characteristics 

Repeat Cycle (days) 27 

Off Nadir Revisit Time 
(days) 

< 4 
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3.5 Image Processing 

A spectral soil classification was conducted on both the AISA and the 

simulated EnMAP data. To reduce complexity and computational times, both the 

AISA and the simulated EnMAP data, were subset to include only the SU field 

site. The SU subset and the SU field sampling sites can be seen in Figure 3.16. It is 

within the SU subset that the soil classification and validation was conducted. 

 

Figure 3.16: AISA SU subset (top) and EnMAP SU subset (bottom). Both images 

have the SU-field sampling sites highlighted with labeled red dots. 
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 The SU field site is a location where bare soil is known to be exposed at the 

surface. Within the areas of bare soil exposure, field data confirmed sites where 

stages of erosion, intermediate and accumulation are present. Also present in the 

image subset were areas of green vegetation and senesced vegetation.  

A series of procedures were required to successfully classify the soils within 

the SU subset. In the first step, the vegetation was masked due to the potential 

influence on the soil analysis (Daughtry et al., 2004 and 2005). The vegetation 

was masked based on its fractional cover within each pixel, which was estimated 

using MESMA (Franke et al., 2009).  

Once the vegetation was removed, the remaining soil dominated pixels 

were separated into erosion stages. The different stages used in this study were 

eroded, intermediate and accumulated. The intermediate class was defined by 

pixels, which have fraction values that fall outside the fraction range of the 

eroded and accumulated classes. Pixels in this class could also be referred to as 

areas of transition, because the class is largely defined by sloped positions that 

fall between the upper eroded area and the lower accumulation area.  

The separation of the soil dominated pixels into stages was a two-step 

process, requiring first the quantification of representative soil characteristics 

present in each pixel and, secondly, the identification of class boundaries. The 

identification of class boundaries from the fraction image outputs was carried 
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out using the topographic characteristics derived from the DEM (Irvin et al., 

1995; Moore et al., 1993).  

The unmixing of soil states was also conducted using MESMA. MESMA 

was chosen for the unmixing procedures for both the vegetation masking and the 

soils because of the high spatial variability of surface cover within the scene. By 

separating the image unmixing in to two modules, it created a hierarchical 

scenario, where the initial, less complicated unmixing procedure (vegetation and 

soils) provides a spatial constraint for the second, more complex unmixing 

procedure (soil erosion stages). This method was also applied in Franke et al. 

(2009) and Palacios-Orueta et al. (1999). 

3.5.1 Vegetation Mask 

Creating a vegetation mask is often the first step towards creating a soil 

classification map (Chabrillat et al., 2011; Hill and Schutt, 2000; Palacios-Orueta 

et al., 1999; Palacios-Orueta and Ustin, 1998). Spectral mixing of green and 

senesced vegetation with the underlying soil makes it difficult to identify or 

quantify the soils characteristics (Daughtry, 2001; Roberts et al., 1993). It has been 

observed that a vegetation cover exceeding 30 % is an adequate threshold as to 

not have the effect of vegetation cover on any further soil analysis (Bartholomeus 

et al., 2007; Chabrillat et al., 2002; Tueller, 1987). Accordingly, any pixels 

exceeding this threshold were removed from further analysis. As mentioned 

above, the same procedure was applied to the images with the only difference 
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being the spectra used for each endmember in the vegetation mask. This is 

because the endmember spectra were collected separately from both the AISA 

and the simulated EnMAP data sets.  

Visual comparison between the AISA vegetation mask and the sample 

field sites was conducted to evaluate the accuracy of the vegetation mask. CAI 

and the Red-Edge Normalized Difference Vegetation Index (RENDVI) were also 

calculated for both the AISA and simulated EnMAP images and were used in a 

visual comparison against the respective vegetation masks (Nagler et al., 2003; 

Hurcom & Harrison, 1998). The RENDVI index differs from NDVI only in the 

sense that is intended to be used with high-spectral resolution reflectance data, 

whereas NDVI was designed for broadband sensors. 

3.5.1.1 Endmember Selection and Unmixing 

The endmembers selected for the unmixing were green vegetation, dry 

vegetation, including burned vegetation, soils and shade. The spectra selected for 

each endmembers were chosen using the PPI (Boardman et al., 1995). A total of 

49 and 38 pixels with the largest PPI values were selected for the AISA and 

simulated EnMAP images, respectively. The spectral characteristics of the 

selected PPI pixels as well as the spatial positioning of the pixels were examined 

to select the final spectra for each endmember. The unmixing was run with the 

default constraints for maximum fraction value (1.05), minimum fraction value (-

0.05) and maximum shade fraction value (0.80).  
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Through iteratively unmixing and selecting spectra from high RMSE 

areas, a total of 26 spectra for both the AISA and simulated EnMAP image were 

chosen for the final unmixing. For this purpose, two green vegetation 

endmember spectra, 12 dry and burned vegetation spectra, 12 soil spectra and 

the default photogrammetric shade were included for unmixing the AISA data, 

while four green vegetation spectra, 11 dry and burned vegetation spectra, 11 soil 

spectra and the default photogrammetric shade were utilized for the simulated 

ENMAP data. Figures 3.17 and 3.18 show the endmember spectra used for the 

unmixing of the AISA and simulated EnMAP data, respectively.  
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Figure 3.17: Endmember spectra used for unmixing the AISA data with the green 

vegetation endmember (top), dry vegetation endmembers (middle) and soil 

endmembers (bottom). 
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Figure 3.18: Endmember spectra used for unmixing of the EnMAP data with 

the green vegetation endmembers (top), dry vegetation endmembers 

(middle) and soil endmembers (bottom). A simulation effect can be seen in 

the SWIR region of the green vegetation spectra. 
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A Red, Green and Blue (RGB) composite image for both the AISA and 

simulated EnMAP fraction images can be seen in Figure 3.19. It shows the 

distribution of green vegetation, soil and dry vegetation within the scene. The 

resulting fraction maps from each unmixing procedure were then shade 

normalized. 

 

Figure 3.19: RGB composite of the endmember fractions for the AISA (top) and 

EnMAP (bottom). R = dry vegetation, G = green vegetation and B = soil. 
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3.5.1.2 Mask Generation 

To determine the total combined vegetation fraction cover for each pixel, 

the shade-normalized green vegetation and dry/burned vegetation fraction 

maps were added. Following the summation a 0.3 (30-%) threshold was applied 

to mask pixels with a total vegetation cover greater than 30 %. Images of the 

masked AISA and simulated EnMAP data can be seen in Figure 3.20. Although a 

similar pattern can be seen in both of the vegetation masks, it is clear that a 

substantial amount of detail is missing from the simulated EnMAP vegetation 

mask compared to the AISA vegetation mask.   

 

Figure 3.20: AISA (top) and EnMAP (bottom) images with the vegetation mask 

overlaid. Only visible in these images are the soil dominated pixels. 
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3.5.2 Soil Unmixing 

A three-endmember model in MESMA was applied to both the AISA and 

simulated EnMAP images. The goal of the soil unmixing was to quantify the 

contribution of both the eroded and the accumulated surface cover based on the 

spectral signature of each pixel in the scene. Assuming that the reflectance of 

each pixel in the image is a linear combination of the reflectance of each material 

present within the sensor’s IFOV, the abundance of eroded material and 

accumulated material within each pixel can be estimated (van der Meer, 2002; 

Settle & Drake, 1993). The erosion state of each pixel was then determined and 

classified based on the abundance of each of these materials within the pixel (Hill 

et al., 1994).  

Validation of the AISA classification was carried out directly against the 

field data, while the validation of the simulated EnMAP classification was 

compared to the AISA classification using a confusion matrix. In this case, the 

AISA classification represented the reference image. For the confusion matrix to 

be generated, it required a rescaling of the AISA fraction images to 30 m. 

3.5.2.1 Endmember Selection and Unmixing 

The endmembers used in the model were eroded, accumulated and shade. 

They were selected to represent the two extreme stages of soil erosion. Only the 

two classes instead of including a third, intermediate class, were chosen because 

no precise definition for the intermediate soil erosion class could be identified 
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from the ground data. As a result, by employing only the two extreme soil 

erosion stages in the unmixing procedure, the soil condition at each pixel could 

then be defined as a function of the mixing ratio of the two endmembers. 

Endmember spectra were collected based on the known field locations in 

the scene. Attempts were made to collect endmember spectra using other 

methods such as PPI  and SMACC. Consequently, the endmembers needed to be 

selected using independent knowledge of the scene. For both scenes, the 

endmembers were selected based on the SU2 (eroded) and SU4 (accumulated) 

field sampling sites.  

The pixels at these locations as well as the three surrounding pixels for 

each were collected and used to define the endmembers for the AISA image. This 

equals four spectra, representing the eroded endmember and four spectra 

representing the accumulated endmember. The spectra selected for the AISA 

unmixing are shown in Figure 3.21.  
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Only three spectra were collected for the EnMAP image unmixing, 

because there are far fewer pixels within the image. Accordingly, one spectrum 

representing the eroded endmember and two spectra representing the 

accumulated endmember were extracted from the imagery. Only the pixel at the 

location of the SU2-field site was used for the eroded endmember, because the 

surrounding pixels were spectrally very similar. There were two spectra used to 

represent the accumulated endmember in the unmixing, the SU4 location and the 

adjacent pixel. Two pixels were chosen for the accumulated endmember, because 

the two pixels varied in brightness. The spectra used for the EnMAP unmixing 

can be seen in Figure 3.22. 

 

Figure 3.21: Spectra collected for both the eroded and accumulated endmembers 

used for unmixing the AISA image. 
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The scene was unmixed using MESMA with the default constraints for 

maximum fraction value (1.05), minimum fraction value (-0.05) and maximum 

shade fraction value (0.80). The fraction maps for the eroded and accumulated 

endmembers from both unmixings were then shade normalized. The fraction 

maps for the AISA and simulated EnMAP unmixing can be seen in Figure 3.23.  

 

Figure 3.22: Spectra collected for both the eroded and accumulated endmembers used 

for unmixing the EnMAP image. 
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3.5.3 Terrain Analysis 

A DEM was generated using the LiDAR data collected during the 

campaign flight. The DEM was created using a 30-m by 30-m search radius and 

an X, Y grid line spacing of 30 m. Inverse Distance Weighting (IDW) was chosen 

for the gridding of the data (Gotway et al., 1996; Weber and Englund, 1992). IDW 

is a method of interpolation where the assigned values are calculated using a 

weighted average of the values of the available points.  IDW was chosen over 

 

Figure 3.23: AISA accumulated fraction map (top left), AISA eroded fraction 

map (top right), EnMAP accumulated fraction map (bottom left) and EnMAP 

eroded fraction map (bottom right). In all images, brighter areas represent 

higher fraction values. 
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other methods such as kriging and triangulation for two main reasons. Firstly, 

triangulation often causes artifacts or noise in the grid when used with LiDAR 

data, because of the inherent quantity of points in these types of data sets. 

Secondly, unlike kriging, IDW does not generate new data values, which 

maintain the overall integrity of the data.  The resulting 30-m DEM removed 

unnecessary surface detail, while still providing useful topographic information. 

The DEM shown in Figure 3.24 provides a visual of the elevation differences 

present in the scene. The DEM was used to derive curvature, upslope 

contributing area, and slope. The values of each derivative gathered from the six 

field locations are listed in Table 3.7. These outputs, excluding the surface 

elevation, were then layered into a single image file and used to define the soil 

class boundaries. Images of the curvature, upslope contributing area and slope 

are shown in Figure 3.25. 
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Figure 3.24: SU site DEM (top) and a 3D view of the SU site DEM (bottom). The 

SU field sites are highlighted with red dots. 

 

Table 3.7 Elevation, curvature, upslope contributing area and slope values 

collected for each of the SU field sites. The definition of curvature is taken from 

Wilson & Gallant (2000). 

  Elevation 
(m) 

Curvature Upslope 
Contributing 

Area (m) 

Slope 
(deg) 

SU2 Most 
Advanced 

Erosion 

624.29 Concave 60 4.316 

SU6 Advanced 
Erosion 

619 Concave 90 2.52 

SU5 Erosion 622 Convex 30 1.15 

SU1 Intermediate 618.45 Convex 30 2.27 

SU3 Intermediate 617.14 Concave 90 3.47 

SU4 Accumulation 613.02 Concave 180 1.51 

 



 

127 
 

 

3.5.4 Spectral Soil Erosion Class Generation 

The classes chosen for the study site were eroded, intermediate and 

accumulated. The output fraction maps for the eroded and accumulated 

endmembers provided information about the proportion of each endmember 

within the pixel. The class boundaries were defined based on maximum and 

 

Figure 3.25: Images of curvature (top), upslope contributing area (middle) and slope 

(bottom). 
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minimum allowable fraction values of the eroded and accumulated endmembers. 

The maximum and minimum fraction values were determined by classifying the 

SU site based on the terrain derivatives, using the respective range of fraction 

values within each class to define the spectral class boundaries. The resampled 

30-m AISA data were used to generate the class boundaries for the AISA 

validation data.  

 The classification of the terrain derivatives was carried out using the 

Spectral Angle Mapper (SAM; Boardman & Kruse, 1994). Because SAM is a 

supervised classification method, it was important to first identify the 

topographic characteristics associated with each soil state so that valid training 

data can be collected for the classification. This was done by creating a transect 

between the SU2 and SU5 field locations. Because all the field locations generally 

fall in a straight line between those two sites, the transect is able to provide an 

indication of the characteristics of the identified soil states. Figure 3.26 shows the 

transect that was taken across the scene.  
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Figure 3.26: Contour map of the SU site (top) with the SU field locations indicated 

with black crosses and the transect line shown in red with elevation profile of the 

transect (bottom). In the elevation profile you would expect to see erosion 

occurring in the regions of higher elevation and the areas of lower elevation to be 

predominantly areas of accumulation.  
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Training sets for the SAM terrain classification were selected for each soil 

erosion state. The training sets were selected based on their relative location to 

the field sampling locations. These training sets were used to classify the terrain 

into the three classes of eroded, intermediate and accumulated. The terrain 

classification was then overlaid on both the AISA and simulated EnMAP fraction 

images. The fraction values contained within each of the terrain classes were then 

recorded for both images. The maximum and minimum fraction values, means 

and standard deviations were calculated. These values are summarized in Table 

3.8.   

 

 

Table 3.8: Maximum and minimum fraction values, means and Standard Deviation 

(Stdev) values collected for each erosion state from each fraction image. 

Erosion State Class 
AISA Accumulation 

Fraction Image 
AISA Erosion Fraction 

Image 

  
Range Mean Stdev Range Mean Stdev 

Eroded 1 0.29-0.86 0.64 0.11 0.13-0.79 0.36 0.13 

Intermediate 2 0.32-0.93 0.70 0.16 0.06-0.67 0.29 0.16 

Accumulation 3 0.54-1.02 0.82 0.14 -0.05-0.45 0.16 0.14 

 
Class 

EnMAP Accumulation 
Fraction Image 

EnMAP Erosion Fraction 
Image 

  
Range Mean Stdev Range Mean Stdev 

Eroded 1 -0.04-0.71 0.22 0.22 0.28-1.04 0.77 0.22 

Intermediate 2 -0.06-0.96 0.32 0.29 0.37-1.06 0.67 0.28 

Accumulation 3 0.69-1.00 0.53 0.26 0.0-0.93 0.46 0.26 
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The values indicate that there is a substantial amount of overlap in 

fraction value ranges between the classes. The mean values, although 

demonstrating an appropriate trend, are still very closely clumped in both the 

AISA and the simulated EnMAP fraction images.  Because there is such a high 

level of overlap between the ranges, the means and standard deviations were 

used to select appropriate fraction ranges for each class.  

The class ranges were identified by defining one ± standard deviation 

from each of the class means then further refining the classes based on the 

remaining overlap. Any overlap between classes was defined as the intermediate 

class because no distinct class could be distinguished. The fraction values that fell 

only into the eroded or the accumulated classes, with no overlap, were classed as 

eroded and accumulated, respectively. The final fraction ranges for each class are 

listed in Table 3.9. A confusion matrix was calculated between the AISA and the 

simulated EnMAP classifications to evaluate the accuracy of the results. 

  

Table 3.9: Maximum and minimum fraction values used to define the erosion classes. 

 
Class 

AISA 
Accumulation 

Fraction 
Image 

AISA 
Erosion 
Fraction 
Image 

EnMAP 
Accumulation 

Fraction 
Image 

EnMAP 
Erosion 
Fraction 
Image 

  
Min Max Min Max Min Max Min Max 

Eroded 1 0 0.539 0.461 1 0 0.038 0.962 1 

Medium 2 0.540 0.868 0.132 0.46 0.039 0.615 0.385 0.961 

Accumulation 3 0.869 1 0 0.131 0.616 1 0 0.384 
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3.6 Summary 

AISA Eagle and Hawk hyperspectral and Leica ALS50 (II) airborne laser 

scanner airborne data were collected for the Camarena study site. The methods 

used for this analysis can be separated into three major sections. The first of these 

sections is the pre-processing of the AISA Eagle and Hawk hyperspectral data. 

The pre-processing consisted of radiometrically, geometrically and 

atmospherically correcting the data. Also included in the pre-processing was the 

cross-track illumination correction, mosaicking, MNF and ELC. 

The second distinct section within the methods was the simulation of the 

EnMAP data. The EnMAP data simulation was carried out using EeteS. The pre-

processed combined AISA Eagle and Hawk reflectance data cube was used as the 

input for the EeteS simulation software. The simulation process was comprised 

of two separate components, the forward and backward simulation. The final 

result of EeteS was a simulated Level-2 (L-2), atmospherically and geometrically 

corrected EnMAP reflectance image cube. 

The final section of the methods consisted of the processing and analysis of 

the combined AISA Eagle and Hawk data and simulated EnMAP data, resulting 

in the final soil erosion state map. This consisted of the masking of dry and green 

vegetation, estimation of soil fractions and classification of the image scene into 

soil erosion states. 
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4 Results 

The results presented in this section assist in accomplishing the main goal of 

this research, which is to evaluate the capability of the future EnMAP satellite 

sensor to detect and map soil erosion in semi-arid Mediterranean agricultural 

regions. The process consisted of segregating soil dominated pixels (defined by a 

soil fractions > 70 %) and spectrally unmixing the resulting pixels to determine 

the eroded and accumulated fractions. Terrain analysis using a DEM determined 

from the collected LiDAR data assisted in generating the class boundaries for the 

soil erosion state classes. The results cover the three main segments discussed in 

the methods; the pre-processing of the AISA data, the EnMAP simulation and 

soil mapping, analysis and validation of the soil erosion state map.  

4.1 Image Pre-processing 

Many pre-processing steps required to generate the final combined AISA 

Eagle and Hawk reflectance data cube (Figure 3.6). The results present the 

evaluation of the output from the pre-processing components as well as any 

accuracy evaluation conducted on the output. The results for the pre-processing 

are presented in the order they were conducted. 

4.1.1 Radiometric Correction - Destriping 

The destriping procedure removed all of the striping features from the 

AISA image data (Figure 4.1). The validation for the destriping was conducted 

using a variety of methods. One method included the comparison of horizontal 
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profiles that crossed one or more line features in the pre- and post-destriped 

images. The second method compared the spectral profile of a corrected stripe 

with the spectral profile of a neighbouring pixel within a homogeneous area to 

evaluate how closely the destriped spectra resemble the original image spectra. 

Lastly, the images were visually examined for any artifacts remaining from the 

destriping procedure. Validation was concentrated mainly in areas with ground 

reference data and in bands considered to be of interest, such as the 2300-nm 

region, where the carbonate feature is present.  

Both the horizontal profiles and the spectral profiles confirmed that the 

destriping procedure adequately compensated for the stripes present in the 

original AISA Hawk flight lines. Figure 4.2 gives an example of a pre and post-

 

Figure 4.1: Example from before (left) and after (right) the destriping procedure. 
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destriping horizontal profile. The horizontal profile is for a single row in the 

22004 flight line and extends the entire width of the flight line. Visual 

examination of the individual flight lines confirmed that there were no stripes 

remaining; however, some artifacts were found. This was done by looking at the 

bands that were previously recorded as having stripes and noting any missed 

stripes or artifacts. 

 

 

Figure 4.2: Comparison of a horizontal profile from flight line 22005 at 1443.8 nm 

before and after destriping. The horizontal profile extends the width of the flight 

line. The red spikes are the result of striping. Their locations show the columns 

where striping occurs. 
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Visual inspection of spatially and temporally invariant features, such as 

roads and field boundaries, in each of the bands showed that there were a few 

instances of artifacts  as a result of the destriping. Comparison between the 

striped image and the destriped image showed one instance of a false positive 

where destriping occurred in a location without stripes. From the visual 

examination conducted only two instances of blurring artifacts and one false 

positive were identified.  An example of the blurring artifact can be seen in 

Figure 4.3.  

 

 

Figure 4.3: The artifact in flight line 22009, column 35 at 2232.4 nm. The artifact 

is circled in red. 
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4.1.2 Geometric Correction 

Extensive geometric correction is required for images collected from 

airborne platforms before any further processing or analysis can be conducted. 

This is due to the complex geometric errors introduced by the dynamic 

movements experienced when collecting remotely sensed data using an airborne 

platform. In this research, the data was orthorectified using an in-house 

developed software.  The results of the geometric correction were evaluated both 

visually and based on the RMSE. A preliminary mosaic of the combined AISA 

Eagle and AISA Hawk flight lines showed that the geometry of each flight line 

coincided accurately with one another with discrepancies of one or two pixels 

occurring at sporadic locations though the mosaic seam lines. 

RMSE values for airborne images with GSDs between 1 m - 10 m are 

ideally in the range of one pixel (Palubinskas et al., 2003). However, acceptable 

RMSE values range between 1 - 3 pixels (Schlapfer & Richter, 2002). The RMS 

error for the geometric correction was calculated for both the individual flight 

lines and for the final mosaicked scene. The Spanish government online map, 

Sigpac (sigpac.mapa.es), was used for the geometric RMS error calculation. The 

GCPs collected from the Sigpac online map were gathered from digital 

orthophotos with a pixel sizes between 0.25 m to 0.50 m. However, the geometric 

accuracy of the map is unknown. 
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  A total of 26 GCPs were collected for the RMSE evaluation of the 

individual flight lines and 72 GCPs were acquired for the RMSE calculation of 

the mosaicked scene. The average RMS error calculated for the individual flight 

lines was 11.33 m, while the error for individual GCPs ranged from 2.00 m to 

17.49 m. The GCPs with the largest residuals were concentrated along the edges 

of the flight lines, decreasing towards nadir (Figure 4.4).  

 

Figure 4.4: Individual GCP error increased towards the outer edges of the 

flight lines. In this example, GCP 3 will have a substantially larger residual 

than GCP 1 and GCP 2. 
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The average RMS error for the final mosaicked scene was 5.96 m, while 

the residuals for individual GCPs from the mosaicked scene ranged from 0 m to 

12.04 m. The drastic decrease in average RMS error between the individual flight 

lines and the final mosaic is a result of the spatial sub-setting of the flight lines 

prior to mosaicking. The removal of the edges, in turn, removed the more severe 

spatial offsets in the images.  

4.1.2.1 Data Fusion 

The data fusion was conducted for the purpose of combining the AISA 

Eagle and the AISA Hawk data into a single image file. The result of the data 

fusion was an image containing the both the AISA Eagle and Hawk data, 

covering the spectral range between 400 nm and 2400 nm. 

4.1.2.2 Jump Correction 

The jump correction was conducted to account for a spectral offset 

introduced in the data fusion process. The results of the jump correction was the 

removal of the spectral offset, which can be seen in Figure 4.5 through the 

comparison of jump corrected and pre-jump corrected radiance spectra from a 

known field locations. 
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Two potential causes of the jump were investigated during the correction 

procedure. The first being the difference in pixel sizes (2 m and 6 m) and FOV 

angles (37.7 degrees and 24.0 degrees) between the AISA Eagle and AISA Hawk 

sensors. This would indicate an error in the co-registration of the images, thus, 

fusing the VNIR spectrum of one pixel to the SWIR spectrum of an adjacent 

pixel. The second cause that was investigated was a potential miscalibration 

between the VNIR and SWIR detectors in the 978 nm to 1096 nm region. Neither 

of the potential causes were successfully confirmed as the cause of the jump 

within the 900 nm to 1100 nm region. The final choice to replace the data between 

978 nm and 1096 nm with the mixed spectrum was made as a result of the failure 

 

Figure 4.5: A comparison of the pre-and post- jump corrected spectra for the 

SU2 field location. 
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to recalibrate the data and by evaluation of the quality assessment provided by 

the ARSF.  

4.1.3 Atmospheric Correction 

The goal of an atmospheric correction is to remove all atmospheric 

scattering and absorption influences on a remotely sensed image and allow for 

the calculation of surface reflectance. ATCOR’s rough terrain model was chosen 

because of topographically induced reflectance anisotropy. This concern has been 

made evident by Feingersh et al. (2007), indicated that slopes up to 25 degrees 

can change the results of a spectral interpretation of remotely sensed data 

considerably. A rural atmosphere with a water vapour content of 1.05 cm, a 

flying altitude of 5000 m and a visibility of 80 km was applied to the scene. The 

rural atmosphere was chosen based on the largely agricultural land use within 

the scene. The 820 nm water absorption feature was chosen to estimate the water 

vapour content in the scene.  

The 80-km visibility used in the processing of the combined AISA Eagle 

and AISA Hawk data was estimated by ATCOR . The reason ATCOR would 

overestimate the visibility is the result of a specification in ATCOR that requires 

that no reflectance values be negative. Reflectance values at 660 nm in the red 

and 850 nm in the NIR are measured to determing if there are negative values in 

the scene. The visibility is increased until the reflectance values in these bands 
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are preferably > 1 %. Bands in the 760 nm 𝑂2 region and the 725/825 nm, 

940/1130 nm and 1400/1900 nm water vapour regions were interpolated.  

The solar azimuth and zenith angles were a variable and needed to be 

taken into consideration in the atmospheric correction since the flight duration 

was approximately 60 minutes. The solar azimuth angles ranged between 

approximately 239 degrees to 253 degrees (varied 14 degrees during acquisition) 

and the solar zenith angles ranged between approximately 37 degrees and 47 

degrees (varied 10 degrees during acquisition). The main image acquisition was 

along the solar principal plane. 

The total change in illumination was calculated for the scene using 

hillshades generated from the 2-m DEM created from the LiDAR data. The 

hillshades are a shaded relief map of the scene based on the local illumination 

angle and local shadowing. The first hillshade was generated with the solar 

azimuth and zenith angles from the initial flight line and the second hillshade 

with the solar azimuth and zenith angles from the final flight line. The change in 

illumination was calculated by differencing the two hillshades. 

The results from the differencing reviled that 99.4 % of the scene 

experienced an increase in illumination, whereas only 0.4 % and 0.2 % of the 

scene experienced either a decrease in illumination or maintained the same 

illumination, respectively. An increase in illumination between 10-15 % was 

experienced by 94 % of the scene. The areas of the scene that experienced either a 
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decrease in illumination or no change in illumination were restricted to olive 

groves, and built-up areas. The same is also true for the most extreme instances 

of illumination increases and decreases, which were also restricted to trees and 

built-up areas. This is because shadows were modeled in the hillshade and it is 

the trees and the built-up areas that generated the greatest shadow in the image. 

A histogram of the illumination change in the scene from the beginning of the 

flight campaign to the end of the flight campaign can be seen in Figure 4.6. 

 

 

Figure 4.6: A histogram of the illumination change in the scene over the 

duration of the flight campaign. Negative values along the X-axis represent a 

decrease in illumination and positive values along the X-axis represent an 

increase in illumination. 
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ATCOR underestimated the reflectance values for all six field locations 

relative to the ground spectra. A maximum of 30 % absolute difference between 

field spectra and estimated ATCOR spectra was identified. These higher 

discrepancies in reflectance values were related with brighter surface covers. In 

contrast, darker surface covers were associated with smaller difference in 

reflectance values. It is believed that the underestimated surface reflectance 

values throughout the scene are the result of the overestimated visibility by 

ATCOR (Griffin and Burke, 2003). 

At the 690-nm water vapour and oxygen absorption feature there is a 4 % 

increase in the reflectance. This is followed by another 15 % increase in 

reflectance at the 940-nm water absorption feature location. Both the 690 nm and 

940 nm absorption features were interpolated in the atmospheric correction. The 

1270-nm oxygen absorption feature was not corrected in the atmospheric 

correction and is still present in the data.   

The empirical BRDF function in ATCOR was applied to the image. This 

function is intended for rough terrain and accounts for the BRDF effects as a 

result of the variations of the incident light beam (irradiance) (Richter and 

Schlapfer, 2012). However, the application of the empirical BRDF had no 

noticeable effects on the variations of the surface brightness within or between 

the flight lines.  
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Validation of the atmospheric correction was conducted against spectra 

collected in the field. Although a substantial amount of noise was still present in 

the data, the overall spectral shape and the absorption features were comparable. 

For the validation, spectral signatures were gathered from the ATCOR results for 

the SU1 though SU6 field locations and were compared against the respective 

field spectra (Figure 4.7).  

 

Figure 4.7: Comparison showing the difference in noise as well as overall 

reflectance values between the estimated ATCOR spectra and the field spectra for 

the SU1 through SU6 field sites. 
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In all field locations, the 2210-nm clay absorption feature is present, but it 

has been shifted 10 nm to 2220 nm. The 2349-nm calcite feature in the SU2 field 

spectra is not visible in the ATCOR spectrum, either because it was not able to be 

resolved by the sensor or it has been masked by the substantial amount of noise 

present in the data from 2300 nm to 2400 nm (Figure 4.8). 

 

Figure 4.8: Comparison of the field and AISA spectra from location SU2. The 

vertical line located at 2349 nm indicates the calcite feature present in the SU2 field 

spectra. The AISA spectra at this location contains a substaintial amount of noise 

and presents no clear calcite absorption feature. 
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The spectral shift in the bands was further identified by comparing 

radiance spectra from the AISA data to an atmospheric absorption spectrum 

generated by an inverse application of MODTRAN. The MODTRAN spectrum 

was generated with a mid-latitude summer atmospheric model, rural aerosol 

model, 50-km visibility, default water content, sun zenith angle of 30 degrees, 

nadir viewing angle and 1-cm⁻¹ spectral resolution. Evaluating the extent of the 

shift was done by comparing the position of the atmospheric absorption features 

from the image spectrum to the positions in the MODTRAN spectrum (Neville et 

al., 2008). Comparison of the 760-nm oxygen absorption feature and the 940-nm 

water absorption feature revealed no shift in the VNIR. Comparison of the CO₂ 

features centered at 1570 nm, 2010 nm and 2060 nm revealed a shift of on average 

7 nm towards the longer wavelengths in the SWIR. Figure 4.9 shows a 

comparison of the CO₂ absorption features between the AISA data and the 

simulated MODTRAN spectrum. The spectral mis-calibration (shift) is the cause 

of the spikes and dips in the atmospheric absorption regions in the ATCOR 

derived surface reflectance (Richter and Schläpfer, 2012). 
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The spectral shift could have been corrected for using the spectral 

calibration module offered in ATCOR-4. It is used to calculate new center 

wavelength positions and account for other non-uniformities, and modify the 

bands accordingly. This is to correct for any inconsistencies between the spectral 

calibration data and the actual center wavelength positions of the sensor since 

they often shift over time (Guanter et al., 2007; Green, 1998).  

 

Figure 4.9: A comparison of the CO₂ absorption features between the AISA data 

and the simulated MODTRAN spectrum. The AISA spectrum was collected 

from a road surface. The vertical lines in red and blue identify the center 

wavelength position of the MODTRAN and AISA CO₂ absorption features, 

respectively. 
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4.1.4 Cross-Track Illumination Correction 

The cross-track illumination correction was applied to the reflectance data 

in order to suppress brightness variation in the across-track (sensor non-

uniformity) and along-track (BRDF) directions. Many different correction 

methods were attempted to compensate for the reflectance variations, including 

the empirical BRDF and nadir normalization in ATCOR. However, the results 

showed that the cross-track illumination correction was the most appropriate 

method. 

The cross-track illumination correction was conducted following, and not 

before, the atmospheric correction because of the possible interference it may 

have with certain aspects of the atmospheric correction. This was a concern with 

parameters estimated directly from the image data such as water vapour and 

visibility. Although the cross-track illumination correction was able to reduce the 

effects of the across-track gradient, it was not able to remove them.  

The quality of the correction was evaluated by comparing horizontal and 

vertical profiles from the same location in both the corrected and original image. 

Figure 4.10 shows an example of the resulting change in brightness in the across-

track direction before and after applying the cross-track illumination correction. 

In the image it can be seen that the cross-track illumination results normalized 

slightly the reflectance values on the edges of the flight line. 



 

150 
 

 

4.1.5 Mosaicking 

The mosaicking combined all of the individual flight lines into a single 

image. An example of the mosaicked scene can be seen in Figure 3.12. The data 

was cropped further to remove the uneven edges along the top and bottom of the 

image before further processing. 

4.1.6 Minimum Noise Fraction 

A MNF consists of two cascading PCAs and was used in this thesis to 

segregate the noise component and ultimately reduce the dimensionality of the 

 

Figure 4.10: The x-profiles collected from the original ATCOR results and the 

cross-track illumination results. The x-profiles were collected from flight line 

22004, band 64, line 3483. 
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data. The first 38 MNF components out of a total of 486 bands were selected as 

coherent and were used in an inverse MNF. 

4.1.7 Empirical Line Correction 

An ELC was applied to the combined AISA Eagle and Hawk image data to 

remove residual atmospheric absorption features remaining from the 

atmospheric correction. The results of the ELC were still periodically noisy, but 

the remaining atmospheric absorption features were removed. It also resulted in 

clearer spectral shapes and better definition of the distinguishing soil mineral 

absorption features (Figure 4.11).  

 

Figure 4.11: Comparison between the ATCOR spectrum and the corresponding 

ELC spectrum for field location SU5. 
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Negative values were introduced into the data as a result of the ELC. This is 

a common outcome, which occurs when the dark target selected for the ELC is 

not dark enough, and as a result the offset term becomes negative. An example 

can be seen with the reflectance values at 1456.5 nm. In this instance, any 

reflectance values below 11.5 % will result in negative values in the ELC output 

(Figure 4.12).  

 

Because the negative values occurred in only the dark surface cover (dense 

green vegetation, burned fields, etc.), there was little interference with the bare 

soil cover. Nevertheless, the negative values were masked in both the AISA and 

 

Figure 4.12: The ELC plot for 1456.5 nm. Each of the points represents one 

of the four spectra used for the ELC. 
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simulated EnMAP data so that they would not affect further processing or 

statistics. 

4.2 EnMAP Simulation 

The EnMAP simulation produced a simulated EnMAP reflectance cube 

from the pre-processed combined AISA Eagle and Hawk data described in the 

previous sections. The EnMAP data were simulated to the BOL spatial, spectral 

and radiometric characteristics of the sensor. In comparison to the original AISA 

data, there was a decrease in both spatial resolution, from 6 m to 30 m, and in 

spectral resolution, from 486 bands to 244 bands.  

The only post-processing step conducted on the simulated EnMAP data 

was the removal of the sensor overlap. The sensor overlap occurred between 900 

nm – 1000 nm where both the VNIR sensor and the SWIR sensor collect radiance. 

Figure 4.13 shows the sensor overlap. The SWIR signal within the sensor overlap 

region was kept due to its greater sensitivity (quantum efficiency) in the 900 nm 

to 1000 nm range. A comparison of the AISA data and the simulated EnMAP 

data can be seen in Figure 4.14. 
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Figure 4.13: The contribution of the VNIR and SWIR detectors to the image 

spectra (top). A zoom in on the detector overlap region (bottom). 
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Figure 4.14: Images of the AISA data (6 m; left) and the simulated 

EnMAP data (30 m; right) (RGB composite R: 640 nm, G: 550 nm, B: 460 

nm) to compare the spectral resolutions between the two data sets. 
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Two spectral irregularities were introduced into the data by the simulation. 

The first irregularity manifest itself as ‘red’ vegetation in densely vegetated areas. 

This can be seen in Figure 4.15. This spectral irregularity was found to be a result 

of the negative values generated in the ELC. All negative values in the AISA data 

and the corresponding pixels in the EnMAP data were masked before further 

processing. 

 

Figure 4.15: An example of the ‘red’ vegetation in the simulated EnMAP data 

(top) (RGB composite; R: 640 nm, G: 550 nm, B: 460 nm) and the spectral 

signature associated with the ‘red’ vegetation (bottom). 
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The second spectral artifact introduced by the EnMAP simulation was an 

overestimation of the reflectance in the water vapour absorption features located 

at 940 nm and 1130 nm.  The water vapour overestimation artifacts and the 

associated spatial pattern can be seen in Figure 4.16. The wavelength regions 

containing the artifacts, between 905 nm - 975 nm and 1085 nm – 1179 nm, were 

removed because no effective method could be found to compensate for the 

overestimation within these features.  

 

Figure 4.16:  Purple areas contain the water vapour overestimation artifacts. Green 

areas do not exhibit the water vapour overestimation artifact. The figure on the left 

shows the maximum, minimum and mean reflectance of the Region of Interest (ROI) 

collected from both artifact affected and non-artifact affected areas. RGB image on the 

right; Red = 944 nm, Green = 1040 nm, Blue = 1132 nm. 
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4.3 Soil Mapping 

The purpose of image processing is to extract information from the image 

data. The image processing aimed to derive a soil erosion state map from the 

simulated EnMAP data and generate a validation image from the pre-processed 

combined AISA Eagle and Hawk data. The image processing was conducted 

only on the SU study site subset, unlike the data processing in sections 4.1 and 

4.2, which were conducted on the entire Camarena site. Results are provided for 

the three main image processing steps: 1) the masking of green and dry 

vegetation, 2) the classification of soil erosion states and, 3) the validation. The 

results for each of the main processing steps are separated into two sections, the 

results obtained from the AISA image processing and the results obtained from 

the EnMAP image processing. 

4.3.1 Vegetation Masks 

The vegetation masks were generated from MESMA soil, green vegetation 

and dry vegetation fraction images. The results presented focus mainly on the 

fraction and RMSE images used to generate the masks, because the masks 

themselves are just a representation of the MESMA output.  

Out of the total 288 models created from the four endmembers, 281 

models were applicable within the AISA scene. The largest proportion of the 

scene characterized by a single model was 9.5 %. This model accounted for 

nearly one tenth of the scene out of a total of 281 models. The need for 281 
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models to fully unmix the scene indicates that there is a substantial amount of 

small scale variability within the scene. This small scale variability could be a 

result of environmental or sensor, internal or procedural influences, such as noise 

or spectral miscalibration.  

All of the pixel fractions in the AISA image sum to unity, which is default 

for the MESMA unmixing. However, non-real fractions accounted for 

approximately 4 % and 7 % for the dry vegetation and soils endmembers, 

respectively. The green vegetation endmember had negative fraction values for 

approximately 26 % of the scene and contained no fraction values above one. 

Non-real in this instance refers to fraction values below zero and above one. One 

possible reason for this occurring is that a pixel within the ASIA image remains 

that is purer than the endmember pixels selected for the unmixing (Darvishsefat 

et al., 2002). The non-real fraction values can also indicate that either the 

endmembers chosen were not adequate for the unmixing or that there are 

additional endmembers missing from the model (Exelis, 2014b). Table 4.1 shows 

how deviant each endmember was from ‘real’ fraction values (0 - 1).  

Figure 4.17 shows the RMS error image from the unmixing. Table 4.2 

presents the RMS error, classified into ranges selected from Haboudane et al. 

(2002), and Figure 4.18 shows a histogram of the RMS error. 
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Table 4.1: Percent of the total AISA scene that has fraction values below zero and 

above one for each endmember. 

Reality Constraints 

Endmember Class Fractions < 0 
(%) 

Fractions > 1 
(%) 

Green Vegetation 26.3 0 

Dry Vegetation 1.4 2.4 

Soils 3.4 3.5 

 

 

Figure 4.17: RMS error image from the AISA vegetation unmixing. Brighter pixels 

represent higher RMS error values. There are pixels where the endmember models 

were unable to accurately unmix the pixel spectra. 
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The vegetation mask was validated against the six known field locations 

within the scene, because all field locations represented locations of bare soil 

exposed at the surface. The validation consisted of identifying whether any of the 

points resided beneath the vegetation mask, which was not the case in this study 

(Figure 4.19).   

Table 4.2: Percent of the RMS error image that falls in to each class. The 

class values are selected based on Haboudane et al. (2002). 

RMSE 
Class 

% 

0 - 0.5 13.82 

0.5 - 1.5 68.20 

1.5 - 5 17.87 

>5 0.09 

 

 

Figure 4.18: Histogram of the RMS error values from the AISA unmixing. 
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Figure 4.19: Vegetation mask generated from the AISA data. The black pixels 

compose the mask. All six SU sites (highlighted in red) do not reside under this 

mask. 

 

Out of the total 484 models created from the 4 endmembers used to unmix 

the simulated EnMAP image, only 277 models were applicable within the scene 

resulting in 5.9 % of the scene unclassified. The large proportion of the scene that 

remained unclassified gives an indication of scene complexity. The largest 

proportion of the scene characterized by a single model was 2.9 %.   
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In accordance with the AISA results, the pixels in the image sum to unity. 

However, the total non-real fractions for the dry vegetation and soils 

endmembers were approximately 4 % and 6 %, respectively. Likewise, the green 

vegetation endmember had negative fraction values much higher than was 

recorded for the other two endmembers. Approximately 35 % of the green 

vegetation fraction image contained negative values, with no fraction values 

exceeding one. Table 4.3 shows the deviation of each simulated EnMAP 

endmember from real fraction values. 

 

84.5% of the RMS error remained below 1.5 with no error values 

exceeding 5. Figure 4.20 shows the RMS error image for the EnMAP unmixing. 

The classified RMS error values can be seen in Table 4.4, and a histogram of the 

RMS error is presented in Figure 4.21. The low RMS error values seen in Table 

4.4 and Figure 4.22 mean that there was a good fit between the endmember 

models selected for the unmixing and the mixed signal from each pixel. 

Table 4.3: Percent of the total EnMAP scene that has fraction values below zero 

and above one for each endmember. 

Reality Constraints 

Endmember Class Fractions < 0 
(%) 

Fractions > 1 
(%) 

Green Vegetation 35.0 0 

Dry Vegetation 2.4 1.8 

Soils 5.0 1.2 
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Figure 4.20: RMS error image from the simulated EnMAP unmixing. Brighter 

pixels represent higher RMS error values. There are pixels where the 

endmember models were unable to accurately unmix the pixel spectra. 

 

 

 

Table 4.4: Percent of the RMS error image that falls in to each class. The class 

values are selected based on Haboudane et al. (2002). 

RMSE 

Class 
% 

0 - 0.5 17.3 

0.5 - 1.5 67.3 

1.5 - 5 15.4 

>5 0 

 

 

Figure 4.21: The histogram of RMS error values from the EnMAP unmixing. 
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Due to the different spatial scales between the simulated EnMAP data and 

the field data collection, the method used to validate the AISA data was not 

applicable to the simulated EnMAP data. The simulated EnMAP vegetation 

mask was visually examined against the AISA vegetation mask to identify 

whether similar patterns were expressed in both. The two masks did exhibit 

similar patterns; nevertheless, considerable differences exist between the two 

masks due to the difference in the GSD.  

4.3.2 Soil Erosion Status Classification 

The soil classification was conducted for the purpose of identifying soil 

erosion stages within the study area.  MESMA fraction images were used as the 

basis for the soil classification. The soil classification results for the AISA and the 

simulated EnMAP images will focus on the MESMA output as well as the final 

soil erosion state classification map.  

Three-endmember models were used for both the AISA and the simulated 

EnMAP unmixing procedures. The endmembers applied were eroded, 

accumulated and shade. The accumulated and eroded fractions were shade 

normalized prior to classification, which in essence eliminates the effects of 

illumination, soil moisture and surface roughness variation (Hill et al., 1994). 

A total of 16 models were created from the three endmembers selected for 

the AISA scene. All 16 models were used to unmix the AISA scene with 43.7 % 
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being the largest proportion of the scene characterized by a single model. The 15 

other models ranged from 15.8 % to less than 1 % of the scene.  

 All of the pixels in the image sum to unity however, non-real fractions 

accounted for approximately 3 % for both the accumulated and eroded fractions. 

The non-real fraction results can be seen in Table 4.5. 86 % of the RMSE falls 

below 1.5 with less than one percent exceeding 5 %.The categorized RMS error 

for the unmixing is listed in Table 4.6.  

Table 4.6: Percent of the RMS error image that falls in to each class 

for the AISA soils unmixing. The class values are selected based 

on Haboudane et al. (2002). 

RMSE 
Class 

% 

0 - 0.5 81.6 

0.5 - 1.5 4.2 

1.5 - 5 14.3 

>5 0.1 

 

Table 4.5: Percent of the total AISA scene that has fraction values below zero 

and above 1 for each endmember in the soils unmixing. 

Reality Constraints 
 

Endmember Fractions < 0 (%) Fractions > 1 (%) 

Accumulated 0.7 2.7 

Eroded 2.8 0.6 
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The validation of the AISA unmixing was conducted against the four field 

locations not included in the endmember selection (SU1, SU3, SU5, SU6). Table 

4.7 shows the eroded and accumulated fraction values calculated for each field 

site.  

 

In the final AISA classification map, 941 pixel of a total 1032 pixels in the 

scene, or 91.2 %, were masked. It includes masking of the negative values, the 

vegetation mask and the additional masking of pixels that fell outside the 

overlapping region with the simulated EnMAP data. This is equivalent to 0.84 

km², leaving only 0.08 km² of the original scene for the soil classification. Of the 

remaining 8.8 % of the scene, the eroded class accounted for 13 %, the 

Table 4.7: Eroded and accumulated fraction values from each field location within the 

AISA image. 

 Fraction Values 

Field Sampling Site Eroded Accumulated 

SU2 
Most Advanced Erosion 

0 1 

SU6 
Advanced Erosion 

0.07 0.93 

SU5 
Advanced Erosion 

0.29 0.7 

SU1 
Intermediate 

0.52 0.48 

SU3 
Intermediate 

0.79 0.21 

SU4 
Accumulation 

1 0 
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accumulated class for 18 % and the intermediate class for 69 %. The final 30-m 

AISA soil erosion state validation map can be seen in Figure 4.22.  

Two models were created from the three endmembers selected for the 

EnMAP scene. They accounted for 48 % and 9 % of the scene, respectively. 43 % 

of the scene remained unclassified. There was a high percentage of unclassified 

pixels, because of unidentifiable soil spectra. For example, an area located in the 

northern portion of the subset remained largely unclassified, because it had no 

other similarities to the other soils in the scene besides containing the 2200-nm 

clay absorption feature. Although these unclassified pixels could have been 

avoided by collecting an endmember spectrum from the region, there was no 

indication, spectrally or topographically, as to whether the area could be 

considered accumulated or eroded. The soil spectral signature representative of 

this area is shown in Figure 4.23. Topographically, the area displayed properties 

 

Figure 4.22: Final 30-m AISA soil erosion state validation map. Yellow = accumulated, 

orange = intermediate and red = eroded. 
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characteristic of both eroded (convex) and accumulated sites (concave). Figure 

4.24 shows elevation profiles of the area.  

 

Figure 4.23: Example of unidentifiable spectra, which remained 

unclassified in the soils unmixing of the EnMAP data. 
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Figure 4.24: Elevation profiles from a poorly identified region in the EnMAP 

unmixing. 
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All of the pixel fractions in the simulated EnMAP image sum to unity; 

however, non-real fractions accounted for approximately 12 % for both the 

accumulated and eroded fractions. The non-real fraction results are presented in 

Table 4.8. 89 % of the RMSE falls below 1.5 with no pixels exceeding 5 %. The 

categorized RMS error for the unmixing is listed in Table 4.9.  

The EnMAP final classification map also had 91.2 % of the scene masked. 

This is because both the 30-m AISA and simulated EnMAP classifications needed 

to cover the same extent for the confusion matrix.  

Table 4.9:  Percent of the RMS error image that falls in to each 

RMSE class for the EnMAP soils unmixing. The class values are 

selected based on Haboudane et al. (2002). 

RMSE 
Class 

% 

0 - 0.5 86.7 

0.5 - 1.5 2.77 

1.5 - 5 10.6 

>5 0 

 

Table 4.8: Percent of the total scene that has fraction values below zero and 

above 1 for each endmember in the EnMAP soils unmixing. 

Reality Constraints 

Endmember Fractions < 0 
(%) 

Fractions > 1 
(%) 

Accumulated 11.3 0.6 

Eroded 1.9 9.4 
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Of the remaining scene, the eroded class accounted for 16 %, the 

accumulated class for 18 % and the middle class for 66 %. The final soil state 

classification map can be seen in Figure 4.25. The accumulated class was equally 

represented in both the 30-m AISA and the simulated EnMAP classifications. The 

latter had more pixels classified as eroded and accordingly, less pixels classified 

as intermediate than the 30-m AISA classification. 

 

Effects of the remaining BRDF effect and non-uniformity were seen in the 

soil erosion classification results particularly when comparing the two mosaicked 

flight lines that make up the scene. The subsetting of the flight lines prior to 

mosaicking and the small area in which this research is focused (SU site) would 

both have reduced the overall influence of the BRDF and non-uniformity effects 

 

Figure 4.25: Final EnMAP soil erosion state map. Yellow = accumulated, orange = 

intermediate and red = eroded. 
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compared to if the research had been conducted on a larger area of the Camarena 

study site.  

4.3.3 Validation 

Validation was carried out to determine the quality of the information 

derived from the image data (Congalton & Green, 1999). Quantitative validation 

was conducted, meaning that the classified AISA data (representing the ground-

reference image and assumed to be 100 % correct) was used to measure the 

simulated EnMAP classification error. The validation of the simulated EnMAP 

classification was conducted using a confusion matrix comparing the classified 

EnMAP simulation data to the classified AISA data. The 30-m spatially 

resampled AISA classification map was used as the ground-reference image. 

Table 4.10 shows the confusion matrix generated for the classification. The spatial 

distribution of the simulated EnMAP soil erosion state map errors can be seen in 

Figure 4.26. 
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Table 4.10: Confusion matrix generated for the EnMAP final soil erosion state 

map. 

Class 
AISA Erosion 

(Pixels) 

AISA 
Intermediate 

(Pixels) 

AISA 
Accumulation 

(Pixels) 
Total (Pixels) 

EnMAP 
Erosion 

6 9 0 15 

EnMAP 
Intermediate 

6 48 6 60 

EnMAP 
Accumulation 

0 6 10 16 

Total 12 63 16 91 

Class 
AISA Erosion 

(%) 

AISA 
Intermediate 

(%) 

AISA 
Accumulation 

(%) 
Total (%) 

EnMAP 
Erosion 

50.0 14.3 0 16.5 

EnMAP 
Intermediate 

50.0 76.2 37.5 65.9 

EnMAP 
Accumulation 

0 9.5 62.5 17.6 

Total 100.0 100.0 100.0 100.0 

Class 
Commission 

(%) 
Omission (%) 

Commission 
(Pixel) 

Omission 
(Pixel) 

EnMAP 
Erosion 

60.0 50.0 9/15 6/12 

EnMAP 
Intermediate 

20.0 23.8 12/60 15/63 

EnMAP 
Accumulation 

37.5 37.5 6/16 6/16 

Class 
Producers 

Accuracy (%) 
Users 

Accuracy (%) 
Producers 

Accuracy (Pixel) 

Users 
Accuracy 

(Pixel) 

EnMAP 
Erosion 

50.0 40.0 6/12 6/15 

EnMAP 
Intermediate 

76.2 80.0 48/63 48/60 

EnMAP 
Accumulation 

62.5 62.5 10/16 10/16 
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Figure 4.26: Map of the spatial distribution of classification errors overlaid by 

contour lines. Red = Intermediate classified as Eroded; Green = Accumulation 

classified as Intermediate; Blue = Eroded classified as intermediate; Yellow = 

Intermediate classified as Accumulated. 

 

 

 

Table 4.10 indicates that there was no confusion between the eroded and 

accumulated classes. This is apparent because no eroded or accumulated ground 

reference pixels were classified in the other class. Unfortunately, this is not the 

case between the eroded and the intermediate class or the accumulated and the 

intermediate class. 50 % of eroded pixels were classified as intermediate and 37 

% of accumulated pixels were classified as intermediate. 76.2 % of intermediate 

pixels were accurately classified as intermediate. A greater number of 
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intermediate pixels were classified as eroded than as accumulated. The larger 

portion of eroded pixels classified as intermediate and the larger portion of 

intermediate pixels classified as eroded indicates that there is greater similarity 

between the eroded and intermediate class than compared to the accumulated 

and intermediate class. The excessive confusion with the intermediate class is 

believed to be due to its much larger class range than the other of the two classes. 

These results are consistent with the physical characteristics of the scene and the 

soil, where there exists a greater chemical and physical difference between the 

eroded and accumulated soil erosion states than between either the eroded and 

intermediate or accumulated and intermediate. These chemical and physical 

characteristics include the calcite content and clay content. The calcite content 

influences the reflectance values of the soil, with brighter reflectance values being 

consistent with eroded soils states and the clay content influences the clay 

absorption feature characteristic and has a stronger presence in the accumulated 

soils. The intermediate soil state exhibits physical and chemical characteristics of 

both. The highest producers and users accuracy belongs to the intermediate class 

at 76.2 % and 80 %, respectively. The high producers accuracy, which is an 

evaluation of the ability to map the intermediate soil class, is the result of the 

large area of the map that is occupied by the intermediate class (Congalton and 

Green, 1999).   
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The overall accuracy calculated for the classification is 70.3 %.  It is 

calculated as the number of pixels classified correctly over the total number of 

pixels. In this instance 64 pixels out of a total 91 pixels were classified correctly. 

The kappa coefficient calculated for the classification is 0.40.  It is another 

measure of accuracy (agreement) used specifically for categorical data.  
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5 Discussion  

Spain is increasingly susceptible to soil erosion resulting from the long 

occurring changes in land use and land cover (Symeonakis et al., 2007). Remote 

sensing has the ability to provide timely data to assist in the management of this 

issue. Hyperspectral remote sensing, due to the narrow, contiguous spectral 

bands, has proven to be a valuable tool for identifying the very narrow 

absorption features characteristics of soils and, in turn, the mapping and 

monitoring soil erosion processes (Ben-Dor et al., 2009; Shrestha et al., 2005). This 

thesis research has investigated the utility of simulated EnMAP data for 

monitoring soil condition. This chapter discusses the importance of these results. 

A brief discussion of the findings presented on the pre-processing of the 

combined AISA Eagle and Hawk data will be followed by an in-depth discussion 

of the image processing results and the final accuracy assessment. 

5.1 Hyperspectral Image Pre-processing 

Standard pre-processing procedures were used to correct for common 

image errors and distortions (e.g., striping and geometric correction). Many 

errors and uncertainties remained following the pre-processing of the AISA 

Eagle and Hawk data used for the EeteS simulation, which was a concern as 

these errors may cause issues in the resultant simulated EnMAP data cube. While 

difficult to determine the magnitude of the various image error sources to the 

simulated data, the following errors were common to all images used in this 
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research: the across-track gradient effects present within each flight line, the 

North/South topographical influences and the BRDF between the flight lines, the 

geometric accuracy in relation to the field data, the loss of information due to the 

jump correction, and the spectral miscalibration.  

The cross-track illumination correction was applied to the data to remove 

both the across-track gradient and along-track topographical effects in the image. 

The results demonstrated that the image gradient effects were reduced using the 

cross-track illumination correction and, while other commonly applied 

techniques for this correction were evaluated, such as the nadir-normalization 

offered in ATCOR, they demonstrated no significant improvement and were not 

considered further. The cross-track illumination correction is similar to the nadir 

normalization in ATCOR but, instead of normalizing the across-track values to 

nadir, they are normalized based on the along-track mean values. Both correction 

methods were also designed for different FOVs. The nadir normalization was 

designed for a much wider FOV (20 degrees), whereas the cross-track 

illumination correction was designed for smaller (typically satellite) FOVs.   

The images used for this study were impacted by significant BRDF effects. 

These anisotropic reflectance effects produced visible differences between all 

flight lines used. The available BRDF corrections offered in ATCOR were not able 

to compensate for these reflectance differences. It was  limited because it applies 

a generalized correction for all surface covers when in fact, the best results are 
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generated when using a per-surface cover BRDF correction (Richter and 

Schläpfer, 2012; Beisl, 2001; Kennedy et al., 1997). Since the SU study site 

straddles the seam line between two flight lines, the across-track reflectance 

gradient and the between flight-line BRDF effects have an influence on the 

reflectance data in the study site. The two flight lines will be referred to as flight 

line A (Easterly portion of the SU study site) and flight line B (Westerly portion 

of the SU study site) (Figure 3.12).  

Flight line A accounts for approximately 75 % of the scene with the 

furthest west portion of the scene (25 %) composed of flight line B. Figure 5.1 

compares spectra from a homogenous land cover that extends over the seam line. 

As it can be seen in Figure 5.1, flight line A contains more noise in the SWIR 

spectral region. The difference in reflectance value and noise content between 

flight lines A and B complicated the spectral unmixing within the SU site. The 

topographical effects in the along-track direction were not as influential because 

of the small North/South extent the SU study site covered and the slower rate of 

change in brightness compared to the across-track gradient and the intra-flight 

line BRDF.  
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The final RMS error resulting from the geometric correction was 5.96 m, 

which is within one image pixel. Although an RMS error of one pixel is 

acceptable for a 6-m GSD (Palubinskas et al., 2003; Schläpfer and Richter, 2002), 

the scale at which the field data was collected does not allow for a one pixel 

offset in the image data. Figure 5.2 shows the area covered by the field plots used 

for the 2011 field data collection and the actual area required to account for a 

spatial offset of one pixel. 

 

Figure 5.1: Comparison of spectra from homogenous land cover that 

extends over the seam line. Flight line 22003 is referred to as flight line A 

in the text, while flight line 22004 is referred to as flight line B. 
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A potential implication of this geometric discrepancy on the final results 

concerns the accurate positioning of the fields in the AISA image data. The image 

endmember spectra for the soils unmixing were collected from the SU2 (eroded) 

and SU4 (accumulated) locations within the image. With the field plot size used 

 

Figure 5.2: Required field plot area to allow for a 1 pixel (6 m) offset if employing 

the field sampling method utilized in this thesis. The inner circle represents the 

79 m² plot area used for the 2011 Camarena field work. The outer circle shows 

the plot area (295 m²) required to allow for a 1 pixel error in the geometric 

correction. 
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in the 2011 Camarena field campaign, any offset in the AISA image data could 

result in an error locating the fields within the image, and ultimately, a spectral 

misrepresentation of the eroded and accumulated endmembers. Another 

limitation of the field plot size used in the 2011 Camarena field campaign is, due 

to the difference in spatial scale between the field plots and the simulated 

EnMAP data. The area covered by the simulated EnMAP pixel is far larger than 

that covered by the field data, meaning the field data would not accurately 

represent the surface cover contained within the 30-m simulated EnMAP pixel. 

The main implication of the jump correction on the research was the loss 

of the iron oxide absorption feature in the 750 nm – 1040 nm range (Chabrillat et 

al., 2011). This is because the majority of the data in that region was replaced to 

remove the spectral jump artifact from the data. This feature could have 

potentially assisted in more accurately identifying the soil erosion states, because 

there was a difference in iron content between the eroded and accumulated soil 

erosion states. While this error is present in this particular dataset do to the 

sudden shift from the VNIR to the SWIR sensor, the future EnMAP sensor will 

provide an overlap between the VNIR and SWIR sensors, allowing for more 

detailed information to be derived from this spectral region. 

A spectral miscalibration, in the form of a shift (Figure 4.11), was 

identified in the combined AISA Eagle and Hawk data. Past studies have 

indicated that careful spectral calibration of hyperspectral data is required for 
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high degrees of spectral accuracy (Cairns et al., 2003). Given the complications of 

processing the combined AISA Eagle and Hawk data, a degree of uncertainty 

related to the accuracy of the spectral calibration remains. Had the error been 

identified earlier, the spectral calibration available in ATCOR could have been 

applied to identify and correct for any spectral miscalibrations (Richter and 

Schläpfer, 2012).  

As a result of the spectral miscalibration, errors (spectral spikes) were 

introduced into the spectral signature following the atmospheric correction. The 

spikes in the spectral signatures are the main reason the ELC was applied to the 

data. The spectral miscalibration in the data would not have only affected the 

atmospheric correction in the pre-processing of the AISA data, but would also 

have influenced the atmospheric modules in the EeteS simulation and, 

subsequently, the soil classification.  

5.2 Image Processing 

The goal of the image processing was to segregate the predominantly soil 

pixels and, subsequently, determine their soil erosion state using a combination 

of SMA and terrain analysis. This procedure is possible due to the strong 

relationship between soil colour and terrain attributes and the soils physical 

properties.  

There was a lack of ground reference data available at the EnMAP spatial 

scale to validate the simulated EnMAP soil erosion state map. As a result, the 
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image processing was also conducted on the AISA image so that the resulting 

AISA soil erosion state classification map could be used as validation for the 

simulated EnMAP soil erosion state map. Both the AISA and the simulated 

EnMAP image processing will be discussed. The three main processing steps 

conducted on the two data sets will be reviewed as follows: 1) the masking of 

green and dry vegetation, 2) the classification of soil erosion states and 3) the 

validation.  

In the final AISA soil erosion state classification map, 18 % of the scene 

was classified as accumulated, 13 % was classified as eroded and 69 % was 

classified as intermediate. For the final simulated EnMAP soil erosion state 

classification map, 18 % of the scene was classified as accumulated, 16 % was 

classified as eroded and 66 % was classified as intermediate. The accumulated 

class was equally represented in both the AISA and the simulated EnMAP image 

classifications. The simulated EnMAP soil erosion state map had more pixels 

classified as eroded and, accordingly, fewer pixels classified as intermediate, 

than the AISA soil erosion state map. 

The validation of the final simulated EnMAP soil erosion state map was 

conducted against the final 30-m one derived from the AISA data using a 

confusion matrix. The overall accuracy calculated for the classification was 70.3 

%. Confusion occurred between the intermediate class and the two extreme 

classes (eroded and accumulated). A total of 50 % of eroded pixels were classified 
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as intermediate and 37 % of accumulated pixels were classified as intermediate. 

The highest producers and users accuracy belongs to the intermediate class at 

76.2 % and 80 %, respectively. 

5.2.1 Soil Unmixing 

The soil unmixing consisted of selecting appropriate endmembers and 

then unmixing the image data using MESMA. The endmembers selected for the 

procedure were eroded and accumulated. The objective of the soil unmixing was 

to quantify the contribution of both endmembers within each pixel in the image.   

Spectral brightness is the primary influence on spectral differences 

between soil erosion stages with spectral curve shape difference being secondary 

(Schmid et al., 2012; Huete and Escadafal, 1991). Spectral ambiguity and 

endmember similarity (correlation) contributed to the non-real fraction values, 

resulting from the soils unmixing because of the similar brightness ranges 

covered by the both the eroded and accumulated endmembers as shown in 

Figures 3.21 and 3.22 (van der Meer and De Jong, 2000; Gross and Schott, 1998). 

Nevertheless, based on the results, the endmembers selected for the soils 

unmixing were an acceptable compromise between providing meaningful results 

and maintaining satisfactory RMS error values.   

Three criteria were used to evaluate the validity of the unmixing results as 

follows: 1) the fraction values across the image are mostly between one and zero; 
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2) the average RMS error is low; and 3) the RMS error image shows a low spatial 

correlation or pattern in the error present (van der Meer, 1995). 

Non-real fraction values accounted for approximately 3 % of the AISA 

image and 12 % of the EnMAP image (Tables 4.5 and 4.8). Ideally, non-real 

fraction values would not be present within the fraction images. This would have 

been possible had a fully-constrained unmixing procedure been employed. 

However, MESMA does not place constraints on the fraction values, meaning 

values below zero and above one will occur.  

Linear spectral mixture analysis makes a series of essential assumptions 

including: 1) the landscape is composed of a few fundamental components, 

which are spectrally distinct, 2) the spectral signature of the component is a 

constant within the entire spatial extent of the scene, and 3) the remotely sensed 

signal of a pixel is linearly related to the fractions of the ground components 

(Song, 2005).   Each of these assumptions would contribute to the presence of 

non-real fraction values within an unconstrained linear unmixing unless all 

endmembers are accounted for. Endmember variability (assumption #2) is a 

fundamental component of MESMA so this can be excluded from the discussion. 

However, assumptions number one and number three are contributors to the 

non-real fraction values. With the majority of both the AISA and the simulated 

EnMAP fraction images falling between zero and one, the results from the 

unmixing are not uncommon. 
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The AISA unmixing was additionally evaluated against the known field 

characteristics of the four remaining sampling sites within the SU site (SU1, SU3, 

SU5 and SU6). The soil erosion states within the SU study site were defined 

based on physical and chemical properties of the soil, primarily calcite. Its 

increasing presence is indicative of a state of erosion (Schmid et al., 2012).This 

relationship was also seen in the remote sensing data, which provide evidence 

that hyperspectral data are able to detect differences in calcite concentrations. 

This is in accordance with existing literature, such as the detection of calcium 

carbonate using HYMAP in the La Peyne Valley area in southern France 

(Lagacherie et al., 2008). An r² value of 0.76 between the eroded fraction value 

and the measured calcite content from each sampling location was identified. 

Table 5.1 presents the eroded fraction values against the measured calcite 

content. 

Table 5.1: The eroded fraction values from each field location and the calcite 

content measured from soils samples collected from the field sites. 

Field 
Location 
Identifier 

Erosion State Eroded 
Fraction 
Value 

Calcite Content 
(semiquantitative %) 

SU2 Most Advanced Erosion 0 42 

SU6 Advanced Erosion 0.071 40 

SU5 Advanced Erosion 0.29 7 

SU1 Middle 0.52 5 

SU3 Middle 0.79 0 

SU4 Accumulation 1 0 
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5.2.2 Class Definition 

The soil erosion classes selected for this research were eroded, 

accumulated and intermediate. The soil erosion classes used were based on the 

soil erosion states identified in the SU site field data. Eroded and accumulated 

image endmembers were collected from the SU2 and SU4 field locations. The 

unmixing resulted in fraction maps for both of the endmembers. The soil erosion 

stages were generated based on the within pixel mixture of eroded and 

accumulated endmembers. 

Exploiting known relationships between topography and landscape 

elements through pre-classification can improve the results of image 

interpretation (Florinsky, 1998) and classification (Franklin, 1990; Hutchinson, 

1982; Richards et al., 1982).The relationship between soil properties and terrain 

characteristics is well documented and often applied in soil feature prediction 

and soil landscape modelling (Dobos et al., 2000; Bell et al., 1994; Moore et al., 

1993). 

Using a pre-categorization for defining the soil erosion classes was the 

best possible solution for this research, because classes could not be derived 

directly from the fraction maps and topography is a dominant factor contributing 

to soil properties in agricultural regions. 

file:///C:/Users/Taco/Dropbox/Writing/Completed/Acronyms.docx%23Acro_SU
file:///C:/Users/Taco/Dropbox/Writing/Completed/Acronyms.docx%23Acro_SU
file:///C:/Users/Taco/Dropbox/Writing/Completed/Acronyms.docx%23Acro_SU
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Florinsky_1998
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Franklin_1990
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Hutchinson_1982
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Hutchinson_1982
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Richards_1982
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Dobos_2000
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Bell_1994
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Moore_1993
file:///C:/Users/Taco/Dropbox/Writing/Completed/REFERENCES.docx%23Ref_Moore_1993


 

190 
 

5.2.3 Accuracy Assessment 

The accuracy of a classification is measured by the degree to which the 

derived image classification agrees with reality or the “truth” (Campbell, 1996; 

Janssen and van der Wel, 1994). The accuracy assessment for the EnMAP soil 

erosion state map was evaluated using a confusion matrix.  

The accuracy of the soil erosion state map was influenced by the 

compounding errors from the pre-processing of the AISA data (Lunetta et al., 

1991). Compounding errors such as that introduced due to sensor miscalibration 

(spectral shift and across-track gradient), BRDF, and scaling issues between the 

field data and the airborne data, are all believed to have had an impact on the 

final data product (Canters, 1997; Czaplewski, 1992). Without adequate 

understanding and quantification of the errors introduced by these sources, their 

effect cannot be appropriately compensated for in the final classification accuracy 

assessment. Furthermore, additional external error would have been introduced 

into the final accuracy assessment of the simulated EnMAP soil erosion state 

map, because it was conducted against a remotely sensed data product, the 30-m 

AISA derived soil erosion state map (Foody, 2002). 

The overall accuracy of the classification was 70.3% with a kappa 

coefficient of 0.40. Complete agreement between the simulated EnMAP 

classification and the AISA reference data would result in a Kappa coefficient of 

one. An overall accuracy of 85% with no individual class falling below 70% has 
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been defined by Tomlinson et al. (1999) as the minimum requirement for 

classification accuracy. However, in the evaluation of 25 papers published 

between 1994 and 1995, Trodd (1995) found that the accuracies obtained in the 

papers generally fell below the recommended 85%.  
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6 Conclusions 

This study investigated the potential of the future EnMAP satellite in the 

detection and mapping of soil erosion features in semi-arid Mediterranean 

environments. Monitoring of soil erosion is essential due to our dependence on 

this resource for the production of food and fiber, as well as for its required role 

in many atmospheric, hydrospheric and lithospheric functions. Due to the 

relative importance of the soils as a medium for plant growth, a recycling system 

for organic materials, and a storage system for the supply and purification of 

water, monitoring is critical to maintaining this vital natural resource. The 

monitoring of soil erosion is especially necessary in areas with a high 

susceptibility to soil erosion, such as semi-arid Mediterranean environments. 

A simulated EnMAP hyperspectral data cube was generated from 

airborne hyperspectral VNIR and SWIR image data for the purpose of this 

research. Detection and mapping of soil erosion features was achieved using 

spectral unmixing techniques (MESMA) and terrain derivatives for defining 

erosion class boundaries. The information products produced in this study 

include eroded and accumulated fraction maps and a final simulated EnMAP 

soil erosion state classification map portraying eroded, intermediate and 

accumulated soil erosion state classes. 

The overall classification accuracy of the soil erosion state map generated 

using the simulated EnMAP data was 70.3 %. The simulated EnMAP data were 
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able to successfully discriminate between soil and vegetation cover. They were 

also able to identify variations in calcite content which is a key identifier of soil 

erosion in semi-arid Mediterranean environments. Although the simulated 

EnMAP soil erosion state map did not meet the minimum accuracy requirement 

of 85 % as defined by Thomlinson et al. (1999), it can be concluded that the future 

EnMAP satellite will be able to map soil erosion states in these environments.  

Mapping involves the presentation of information within a spatial context. 

With this in mind, the evaluation of the research hypothesis and the research 

objectives consisted of the following questions: 

 1) Can a simulated EnMAP hyperspectral image provide information on soil 

erosion states, and  

2) Can a simulated EnMAP hyperspectral image effectively represent them 

spatially? 

EnMAP’s ability to spatially represent the soil erosion stages was 

successful because the broad class definitions (eroded, intermediate and 

accumulated) selected for the mapping could be detected effectively at a spatial 

scale that was compatible with the 30-m GSD of the image data.  

The confusion between soil erosion classes indicated that there is a 

potential limitation in the future EnMAP sensors ability to detect key spectral 

features related to soil erosion. This is largely related to high levels of noise in the 
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SWIR region between 2000 nm and 2500 nm of the simulated image spectra, a 

region which is heavily relied on for mineral characterization. However, the 

noise in this region may have been a remnant artifact from pre-processing 

measures and the original AISA data itself, and is not a sure indicator of 

potential limitations of the EnMAP sensor.  

High-spectral resolution and a high SNR in the SWIR region are required 

for soil erosion detection (Chabrillat et al., 2013; Escribano et al., 2010). EnMAP 

will provide coverage of the 400 nm to 2450 nm range with approximately 240 

bands and a peak SNR of 170:1 in the 2000 nm to 2500 nm region. Current 

satellite sensors such as Hyperion, which provides a peak SNR of 50:1 in this 

region, and the Compact High Resolution Imaging Spectrometer (CHRIS) which 

only provides information in the VNIR, do not have sensor characteristics 

appropriate for many soil investigations. EnMAP will be able to overcome these 

limitations by providing both high-spectral resolution data and a high SNR in the 

SWIR region.  

The conclusions formulated from this research were stated solely in the 

scope of the spatial scale to which the soil erosion process under investigation 

occurred and at the level of detail that the information had been extracted (Lam 

et al., 1992; Woodcock and Strahler, 1987). The conclusions derived from this 

research would not be applicable to investigations where the level of information 

being derived is at a much higher level of detail, such as narrower class 
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definitions, or if the spatial scale of the erosion process under investigation 

changes. 

It was assumed that the high- spatial variability related to soil erosion in 

semi-arid Mediterranean environments (Schlesinger and Pilmanis, 1998; Puech, 

1994) would not have been effectively discriminated by the moderate spatial 

resolution of the EnMAP sensor. However, the spectral characteristics of the 

sensor make inter-pixel estimations of surface cover possible (e.g., SMA, MTMF; 

Malenovský et al., 2007; Shrestha et al., 2005; Clark, 1999), which helps to reduce 

any possibly limitations related to the spatial resolution of the sensor. The 

fraction maps indicate that the high-spatial variability of surface soil state can 

effectively be captured within the EnMAP 30-m GSD using spectral 

decomposition techniques. 

 The final soil erosion stage map shows that discrete soil erosion state 

classes can be derived from soil surface composition fraction maps with the 

assistance of digital terrain data. As indicated in previous studies, such as that  

conducted by Dobos et al. (2000), the inclusion of terrain attributes in the form of 

terrain derivatives  are useful for enhancing upon solely spectral classifications of 

these features.   

The simulation of satellite data from airborne data is extremely difficult 

due to differences in sensor design, operation and spatial resolution.  All of these 

factors are well known and while complex and difficult to achieve, are possible. 
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Other difficulties were present as the EnMAP sensor is not yet launched and the 

parameters of the eventual sensor are only estimates from the design 

specification of the instrument. The quality of the input data into the EeteS 

simulation was not ideal and had direct effects on the output simulated EnMAP 

data. This being said, results identifying and discriminating between soil erosion 

stages were still obtained, demonstrating the robustness of the future EnMAP 

data product. Overall, this research showed that the applicability of the future 

EnMAP satellite sensor to soil erosion investigations in semi-arid Mediterranean 

environments is optimistic. Accordingly, these results confirm that EnMAP will 

make an important contribution to Mediterranean soil monitoring and 

management. 

Recommendations concerning future investigations into the capabilities 

and potential limitations of the future EnMAP sensor regarding soil erosion 

mapping in semi-arid Mediterranean environments include: 

1) Using simulated EnMAP data to map soil erosion in a variety of regions where 

the patterns of the soil erosion occur at different spatial scales, and 

2) Classifying soil erosion states using simulated EnMAP data at varying levels 

of class complexity.  

To successfully accomplish these research objectives it would be necessary 

to modify certain procedures introduced in this research. In particular, it would 
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be beneficial to include more detailed field observations such as density cover in 

vegetated areas and fractional land surface cover, especially if implementing any 

spectral decomposition methods in the study. As illustrated in this research, the 

input data quality directly affects the quality and accuracy of the output 

simulated EnMAP data and consequently, the results. Therefore, a focus on input 

data quality into the simulation would also be essential. With detailed attention 

given to the collection of appropriate field data and to overall data quality, future 

investigations such as these would provide further insight into soil erosion 

mapping using image data as provided by the future EnMAP satellite sensor. 
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