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Abstract

In an attempt to test the hypothesis that rat's can perform very similar 

behaviours to episodic memory in humans, we here develop a novel 

Paviovian conditioning procedure demonstrating integrated what- 

where-when representations. Rats explored two distinctive contexts, 

one in the morning and the other in the evening. Subsequently, either 

in the morning or the evening, they received a foot shock immediately 

upon entry into a third context that equally resembled the two 

explored contexts. When conditioned freezing was measured at an 

intermediate time of day, rats showed significantly more fear of the 

context congruent with the time of day of the foot shock. Thus, rats 

automatically form an integrated time-place memory that can be 

flexibly updated by future events, essential characteristics of episodic 

memory. Furthermore, it is shown that these memories rely upon 

some of the same neuroanatomical structures, including the medial 

prefrontal cortex and the hippocampus, as are specifically required for 

episodic memory in humans.
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CHAPTER 1 - INTRODUCTION

The purpose of this thesis is to experimentally examine the idea 

that nonhuman animals, (specifically rats) engage imcognitive 

processes that closely resemble episodic memory in humans. Included 

in this will be an examination of whether these processes rely upon the 

same fundamental neural circuits in humans and in our rat model of 

episodic memory. This section will define some of the common terms 

used in the episodic memory field, then set forth the idea that episodic 

memory exists in nonhuman animals, particularly the rat, as a 

cognitive process physiologically distinct from other putative memory 

systems. Contrary to many skeptical claims in the literature, it is the 

position of this thesis that episodic memory exists in the rat and is 

very closely related both functionally and neuroanatomically to the 

process given the same name in humans.

Learning is defined as the process by which an experience 

results in a relatively permanent change in behaviour, while memory is 

the process by which information gained in that experience is retained 

and later recalled. Memory is not a unitary process.. It is generally 

separated into two distinct categories - declarative and non­

declarative (Squire 1992; Squire and Cohen 1980). Non-declarative
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(or implicit) memory includes procedural memories and priming, as 

well as some forms of learning procedures such has habituation, 

sensitization, and simple forms of Pavlovian and operant conditioning. 

By definition it involves learning that cannot be communicated to 

others. Declarative memory includes memories for facts and events, 

and involves two branches - semantic memory, that is comprised of 

general facts about the world, independent of the context in which 

they were learned, and episodic memory, that refers to a 

representation of experiences including rich contextual components, 

such that upon retrieval one has a conscious experience of relevant 

components of the original experience. These categories are distinct 

not just in terms of function, but also in the cerebral networks they 

rely upon to perform their operations. In humans it is for the most part 

accepted that episodic and semantic memories refer to separate 

processes relying upon distinct circuitry for both storage and retrieval 

(Aggleton and Brown, 1999).

The term 'episodic memory' was originally coined by Canadian 

cognitive psychologist Endel Tulving (1972). He originally defined it as 

another branch of declarative memory, but one that referred not just 

to knowledge, but also to a recollection of the context and time in 

which that knowledge was acquired. Tulving (2001) later re-defined 

the term to include a component of autonoesis, meaning that episodic
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memory involved not just storage and retrieval of information, but that 

the retrieval was also was accompanied by an essential 

phenomenological experience of transporting one's conscious self 

mentally backwards in time, having an experience in mental space 

very similar to the original one which actually took place.

There were some sound reasons for this. Awareness outside the 

present is not a trivial thing by any means, it is central to our 

conceptions of reality. In fact the majority of human communication is 

directed via language tense either to the past or the future (Szagun, 

1978 as cited in Suddendorf and Busby 2003). An important issue is 

that it is currently impossible to empirically demonstrate any form of 

consciousness in non-linguistic species, never mind a special "time 

traveling consciousness". The present paper then will focus first on 

other more recent formulations of episodic memory and their essential 

criteria for establishing the presence of episodic memory. Importantly 

these are criteria that can in principle be satisfied experimentally.

Later, the issue of autonoetic consciousness, and what its existence in 

humans means for research attempting to show episodic memory in 

animal models, will be returned to and addressed from a theoretical 

perspective.

Tulving's claim is that only humans could possibly have episodic 

memories, because only humans have a sense of self or "autonoetic
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awareness" with which they could perform this mental time travel. As 

the very term "episodic memory" was defined to include this criterion, 

researchers on animal models coined the term "episodic-like" to refer 

to memories that meet all the criteria except autonoetic awareness. 

Tulving proposes that the essential circuitry underlying autonoetic 

awareness includes specific regions of frontal cortex (Wheeler, Stuss 

and Tulving 1997). In contrast to his view of episodic memory and its 

definition based on the phenomenological aspects of subjective 

experiences, more recent approaches to episodic memory in 

nonhuman animals identify the types of information that are 

specifically involved. This paper will not use the term 'episodic-like' 

except when repeating other author's descriptions of their studies. 

When we read about any cognitive function of an animal it is 

understood that the processes are not going to be identical to those in 

humans.

A group of experiments reviewed in Chapter 2, and lauded as the 

original and still the best demonstration of episodic memory processes 

in animals, are the now classic scrub jay studies of Clayton, Dickinson 

and colleagues. In 1998 they were able to show all but the autonoetic 

criterion for episodic memory in a non-human species. They adopted 

the lesser mantle of 'episodic-like memory' to describe these 

behaviours in recognition of this purported deficiency. Even if scrub
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jays do exhibit episodic memory in the strict sense however, they are
$ .

far from the ideal experimental model from the perspective of 

modeling human disease that affects episodic memory systems. For 

one, aves and primates made their evolutionary split more than two 

hundred million years ago. Without convincing evidence of episodic 

memory in a more closely related species, one from the same class at 

least, it is possible that bird episodic memory is an example of 

convergent evolution rather than having roots in the same biology as 

humans. A potential consequence is that the same neuroanatomical 

systems may not be involved. For this and other reasons it is 

important to establish if another mammal, and for the practical 

considerations of neuroscience modeling, especially a rat or mouse, 

can meet the information-based criteria for episodic memory. There is 

no perfect model, but the rat offers many clear homologies in neural 

structure and functions and has been the focus of the majority of 

behavioural neuroscientific experimentation for many decades 

(Whishaw 2006).

The advantages of such a model are clear and numerous. Not 

only does would it challenge longstanding theory, but there are 

numerous types of neurological insults to which episodic memory 

seems particularly susceptible over and above other declarative 

memory processes. A model in animals then will provide a means of
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detecting these subtle insults and observing the effects of 

manipulations which may affect changes in both humans and rats.

There are three main conditions for demonstrating the existence 

of episodic memory in nonhuman animals, and all will be addressed in 

this paper. First, animals must be able to represent, aspects of an 

experience which include spatial and temporal dimensions bound into 

an integrated representation. In other words, what happens must be 

represented along with when and where. This must be explicitly 

demonstrated as a behavioural alteration in response to a learning 

episode (Clayton et al., 2003). Second, if we are to believe that this is 

a very similar episodic memory system to that present in humans, it 

should also be true that the brain regions underlying this behaviour in 

humans should also be implicated in nonhuman animals. Third, the 

historical condition which states that episodic memory recall must 

involve a conscious re-experiencing of the original event, must be 

acknowledged (Tulving, 2002). As this cannot be tested empirically, 

strong arguments must be presented as to why it is not a valid 

mandatory criterion.

In the next portion of this manuscript (Chapter 2) an experiment 

will be described that, on the most straightforward interpretation, 

indicates that rats can satisfy accepted criteria for episodic memory.
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Accepted components of episodic memory will be reviewed and 

whether rats demonstrate these components will be evaluated.

In Chapter 3 evidence will be provided that the episodic abilities 

demonstrated in the first section do indeed rely upon very similar 

neural structures used by humans to perform the same functions. If 

episodic memory processes in a nonhuman animal are a close 

evolutionary relative to the version of the trait observed in humans, it 

is likely to rely upon the same conserved brain system that originally 

facilitated the types of computations necessary. Although there are 

already a number of models purported to be demonstrations of 

episodic memory in the rat (reviewed in chapter 2), and there is also a 

large body of literature pertaining to the brain areas used in humans 

to perform episodic memory in humans (reviewed in chapter 3), no 

research has yet combined these two avenues of research. Thus a 

purpose of the present thesis is to test for the contribution of the 

cortical areas used by humans, and also present in animals, to 

performance of episodic memory. The second function of this paper 

will be to conduct said experiments, testing the assertions of Tulving 

(2002) and Suddendorf and Corbalis (1997) that episodic memory 

represents an evolutionary discontinuity akin to human language.

The third problem is not one that can be resolved empirically with our 

current technology, nor that available in the foreseeable future, and so
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will primarily be addressed theoretically in the closing discussion. As
!E;

perTulving's definition of the term 'episodic memory', an awareness of 

self is essential. He argues episodic memory is not just the ability to 

recall personal experiences, it is necessary that the experience of 

recall involves a cognitive reenactment of the learning episode, with 

the person remembered as the actor, but aware that he is simply 

acting and not actually physically transporting himself back in time. 

He/she must not only be able to have a representation of himself, but 

a meta-representation as well. Thus, you must be able to remember 

yourself - your psyche. As things stand, it is impossible to prove 

mammals (at least lower order ones) have a concept of self; it is thus 

impossible to prove animals have episodic memory if this criterion 

cannot be rejected on other grounds. This is more a philosophical 

point, and will be dealt with as such.

The position of this paper is that episodic memory in animals is a 

close relative of episodic memory in humans, performing the same 

functions through use of the similar neural circuitry to solve similar 

sorts of problems. It comprises a distinct, though somewhat 

overlapping system from regular semantic memory, and can be 

defined and evaluated based on the types of information it represents 

and the circuits involved in doing so, without recourse to additional 

phenomenological or first-person experiential criteria.
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CHAPTER 2 - BEHAVIOURAL EVIDENCE FOR EPISODIC

MEMORY IN THE RAT

Several commentators have suggested that the key properties of 

episodic memories are that they represent when an episode occurred 

as well as what the event relationships were and where the episode 

took place. Furthermore, the reactivation of an episodic memory 

representation can occur outside of the relevant context. Clayton et al. 

(2003) suggest three related criteria for establishing episodic memory 

competence in nonlinguistic species: what, where, when content: an 

integrated representation of these three elements of content; and, 

flexibility in updating memory representations in light of new 

information gathered after the original episode. It has since been 

argued that flexible deployment of learned information is a 

characteristic of all declarative memory, and hence need not be 

explicitly demonstrated in an episodic task that obviously cannot be 

solved by implicit processes (Dere et al., 2006). Replacing this 

criterion are several other requirements put forth by various 

researchers in the field, including that: the test be novel and 

unexpected; the test be performed at a time point that exceeds the 

capacity of short term memory storage (Dere et al., 2006); that the 

task cannot be solved by familiarity judgments or comparison of
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memory trace strength (Gallistel, 1990); and that the memory be 

ideally formed in a single, unique, one-trial learning episode to 

preclude the possibility of performance being mediated by a strategy 

of semantic rule learning (Morris 2001).

Many believe that deficits in an episodic memory system are at 

the core of human medial temporal lobe amnesia, most memory 

disorders, and certain dementias. Certainly episodic representational 

processes appear to be highly susceptible to brain trauma and 

neurodegenerative disorders, over and above the loss seen in 

procedural memory (Scoville and Milner, 1957), priming (Schacter 

1987) or semantic knowledge (Vargha-Khadeem et al. 1997; Janowsky 

Shimura and Squire 1989) from a variety of insults. A model of 

episodic memory in animals that can be subjected to empirical 

manipulations then would provide an extra level of sensitivity, so that 

cognitive decline in models of neurodegeneration could be detected 

earlier, and effects of minor physical trauma currently below our 

detection threshold could be discerned. Thus, understanding the 

behavioural processes involved in episodic memory and its possible 

basis in rats is of considerable general importance.

There is little doubt that humans have such memories, but do 

nonhuman animals? It would be justified to conclude they are absent 

in rats after numerous strong attempts to demonstrate them have
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failed. Recently there has emerged a number of elegant 

demonstrations that rats can flexibly update integrated 

representations of what and where events occur (see for example 

Morris, 2006), or what, where and serial order or recency (Kart-Teke 

et al., 2006; Dere, Huston and De Souza Silva, 2005)), but an 

integrated representation that includes a "time-stamp" or explicit 

temporal context is not established.

Clearly the trick in such a demonstration is to show that a rat 

has an integrated representation of what, where and when, and that it 

can be adaptively updated in light of new, relevant events. We 

demonstrate here that rats spontaneously form such representations 

in the course of visiting new environments.

One way to arrange such a demonstration has been devised for 

the Western scrub jay (Clayton, et al., 2001). These investigators have 

taken advantage of the fact that these jays naturally cache both 

perishable and non-perishable food. It is well established that they 

remember where their caches are located, and because they find some 

foods more palatable than others, their cache site preferences reveal 

that they remember what was cached. By varying when the more 

palatable, but perishable, food (wax worms) were cached in relation to 

the opportunities to retrieve cached foods, one can use the cache site 

retrieval preferences to learn if the jays remember when they cached
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the perishable, but more palatable, foods. If allowed to recover food 4 

hours post-cache, jays will preferentially recover the worms. However, 

if the delay is extended to 5 days, long after the worms would have 

degraded, jays will instead retrieve non-perishable peanuts which were 

cached at the same time as the worms. All of the aforementioned 

criteria are met, and the "when" component or temporal context is 

shown not to be due to relative recency, serial order, forgetting, or 

strength of the memory. It is due to the animals being able to recall 

the experience of food caching. This represents a clear example of 

episodic memory in a bird species, though the authors give it the 

lesser mantle of'episodic-like', as they do not meet Tulving's defining 

criterion of autonoetic awareness (De Kort, et al., 2005; Griffiths & 

Clayton, 2001).

To address this issue, the authors later show that jays are 

sensitive to espionage by other member's of their species. A jay that 

detects that it is being observed during food caching will later rebury 

its food in another location (Clayton et al., 2003). One interpretation is 

that the jay is acting purposely to thwart thievery and is sensitive to 

the future need it will experience. A more recent study shows that jays 

can even possess prospective planning. In a very clever experiment 

(which could possibly be adapted to rats as well), jays were housed in 

a cage with three adjacent compartments between which they could
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move freely. Each morning for 6 days a bird would be confined to a
S';

single compartment for 2 hours, one that never contained food, and a 

second that provided access to powdered nuts, which could be 

consumed but not cached. On day 7 the powdered nuts were replaced 

with whole nuts, and it was found that jays would cache 3 times as 

many nuts in the food deprivation compartment as in the powder 

compartment, in anticipation of the next morning's predicted 

separation from food (Correia, Dickinson & Clayton, 2007; Raby et al., 

2007). This demonstration provides a strong challenge to the 

longstanding Bischof-Kohler hypothesis, which states that nonhuman 

animals cannot take actions to serve future motivational states, only 

present ones (Suddendorf and Corbalis, 1997).

However, birds are evolutionarily distant from mammals 

including humans, and it could be argued that these episodic abilities 

are an example of convergent evolution specific to birds, relying on 

radically different computations and neural substrates. It would not be 

prudent to use bird episodic memory as a model for the human 

variant, while a more closely related model species would clearly be 

helpful, and thus we look to the rat, the most well investigated 

mammalian model for behavioural processes.

It is already established that the rat's event representations can 

contain information about where events occur and, based upon the
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reinforcer devaluation experiments, it is clear that they remember
i-;

what outcomes are expected there (see Day et al., 2003 for a very 

nice demonstration of this in a novel learning procedure involving 

where-what paired associates). What remains to be demonstrated in 

the rat is that the same event representation can also contain 

information about when the event occurred. The "when" component 

should not be related to simple recency, familiarity, memory strength, 

serial order, but rather should be analogous to a "time-stamp" as in 

Gallistel's (1990) notion of a temporal context being provided by 

endogenous circadian oscillators. There has also been a suggestion the 

timestamp may be represented by temporal associations between 

event occurrence and the age of recently born granule cells in the 

dentate gyrus of the hippocampus (Aimone, Wiles and Gage, 2006).

It is the temporal component which defines an episodic memory as 

relating to a unique experience. While a given context or stimulus may 

be encountered any number of times in an animal's life, a moment 

that has passed never occurs again. The sense of subjective time is 

defined by the temporal order of representations of life experiences, 

though Eacott and Norman (2002) suggest 'occasion specifier' rather 

than actual timeline.

Crystal and Babb (2002) for instance used a modified version of 

the eight-armed radial maze to conduct an approximation of the
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original scrub jay experiments using rats. Rats were trained to learn a 

foraging paradigm where one arm baited with chocolate flavoured 

pellets was replenished after a long delay (4 h), but not a short one 

(30 min). The rat then altered its behaviour by visiting the chocolate 

arm preferentially after the long, but not short delay. They could also 

learn to avoid the arm by pairing the chocolate with lithium chloride 

(Babb and Crystal 2005). This experiment confirms that rats can use 

combined spatial and temporal duration to solve discriminations, 

though it requires extensive training and thus cannot be considered to 

represent a one-trial learning episode. The task may possibly be 

solved by a semantic rule learning strategy (Hampton and Schwartz 

2004).

Another recent demonstration of integrated what-where-when 

representations are novel object exploration experiments in mice 

(Dere, Houston & De Souza Silva 2005) and later in rats by Kart-Teke 

and colleagues (2006). The amount of time that a rat spends 

investigating one object over another is generally accepted to be 

inversely related to the strength or extent of memory for the object, 

all other things considered equal (Ennaceur & Delacour, 1988). Taking 

advantage of the fact that, given two very familiar objects, a Wistar 

rat will preferentially investigate the one it was least recently exposed 

to (showing rats can make serial order/recency judgements (Mitchell
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and Laiacona, 1998, Hanneson et al., 2004), and that rats will also 

show a preference for an object in a new location relative to an equally 

familiar but consistently positioned object (Ennaceur et al., 1997). 

They could remember objects, object locations, and presentation order 

at various time points. Memory about items, context and temporal 

sequence are thus demonstrated. A limitation of this design however is 

that animals could undoubtedly solve this discrimination using recency 

judgments - for instance by comparing strengths of memory traces, 

rather then the relative position of presentations along an 

autobiographical timeline, particularly when the time difference was 

limited to 50 minutes (Yonelinas 2002). While the Kart-teke 

experiment avoids the pitfalls of extensive training paradigms and 

reinforcement, object recognition paradigms such as this are also 

somewhat questionable as a model for episodic memories, as the 

maximum delay interval between exposure and testing at which a rat 

can still make temporal order judgments is only 3 hours (King et al., 

2004). Again, any task requiring an extensive training regimen is 

likely to be solved using semantic rule learning rather than event 

recollection. Effects were also eliminated by a pre-trial saline injection, 

attesting to a minimal strength of association.

A third and final recent experiment of note in rats was by Ergorul 

and Eichenbaum (2004). While they clearly show in their 2004
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experiment that rats can infer temporal order of odour presentations 

by using spatial cues and remembering odours, the extensive training 

paradigm used to teach rats about the scents means this experiment 

too falls short on the stricter qualification as an episodic memory.

Other species where episodic-like memory has been 

demonstrated include honeybees (Menzel et al., 2006), hummingbirds 

(Henderson et al., 2006), pigeons (Zentall et al., 2001) gorillas 

(Schwartz et al., 2005) and dolphins (Mercado et al., 1998). There are 

actually numerous strong examples of episodic memory in primates 

(reviewed in Scwartz & Evans, 2001), though if this manuscript can 

achieve its goal of demonstrating episodic memory is also present in 

rodents, such processes in primates should be of no surprise.

We have developed a simple way to examine aspects of episodic 

memory in the rat which addresses all relevant challenges by using a 

variant of the contextual fear conditioning procedure. It is known that 

robust fear of a previously explored context is acquired as a result of a 

single learning episode involving foot shock and that rats can acquire 

fear of an explored context if foot shock is paired with retrieval of the 

memory for that context (Rudy & O'Reilly, 2001). Fanselow (1990) 

showed that if rats receive a foot shock immediately upon entry into a 

novel context they do not acquire a conditioned fear response to that 

context. However, if the day before the immediate shock episode they
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explore the context for a few minutes then they do acquire robust 

conditioned fear of the context. Rudy et al. (2002) showed further that 

the fear becomes associated only with the mnemonic representation of 

the pre-exposed context, even if that context is not the same as the 

one the immediate shock actually occurs in. This implies that it is not 

actually the context which is being associated with the shock event, 

but rather a mnemonic representation of the context, likely retrieved 

by cues associated with transport of the animals.

The theory behind contextual fear conditioning is that a 

"conjunctive representation" of a context must be formed, and that it 

is to this representation that the aversive event (the shock) is 

associated. By 'conjunctive representation' we mean a single, unified 

representation of all the elements which compose the context (odour, 

luminance, texture, area, temperature, sound, etc.) (Fanselow and 

Rudy 1998; Young, Bonheneck and Fanselow, 1994). It is also our 

assertion that, in certain events, and possibly in all, time of 

occurrence/position along an autobiographical timeline is also one of 

the elements automatically encoded and bound to the other features 

to aid in pattern separation. Fanselow's "immediate shock effect" 

provides a particularly powerful means of investigating this 'context 

pre-exposure facilitation effect'.

The procedure is basically as follows: A naive rat is placed in a
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context in which it has never experienced, immediately (within
i ;

seconds) upon entrance the rats receives a footshock, and then is 

quickly removed. If the rat is subsequently returned to the context at 

a later time, it will not demonstrate any fear memory of the context. 

However, if the same procedure is conducted except that it is preceded 

by a period of exposure to a context, followed by a delay, and then 

immediate shock, the animal will demonstrate robust freezing on re­

exposure. Furthermore, the rat can even be immediately shocked in an 

entirely different context than the pre-exposed one (though one to 

which it is similarly transported), and it will display robust fear 

specifically to the exposed context and not to the one in which it 

actually experienced the aversive stimulus (Rudy and O'Reilly 2001). 

The idea then is that, at least in the rat, formation of the conjunctive 

representation requires a short, but non-negligible, period of time in 

which to instantiate itself into a neural trace. Without the time 

necessary to form this bound representation the subject has an 

incomplete pattern, consisting primarily of salient transport cues with 

a period of presence in an ambiguous context. (Rudy, Barrientos and 

O'Reilly). An important point to emphasize then is that it is a 

representation or memory of a context, likely retrieved by pattern 

completion of a subset of cues involved in transport (Marr, 1971; 

McNaughton and Morris, 1987), to which the shock is associated, not
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the actual physical features of the shock environment. (O'Reilly and 

Rudy, 2001; Rudy and O'Reilly, 2001).

Rudy and O'Reilly were also able to demonstrate that the few 

seconds pre-shock on the conditioning day given to allow detection of 

enough elemental cues to support pattern completion, could in fact be 

eliminated if specific transport cues are provided (2001). Using 

neurotoxic lesions of the dorsal hippocampus, Rudy Barrientos and 

O'Reilly demonstrated that this context pre-exposure facilitation effect 

is indeed dependant upon the hippocampus.

We took advantage of this "Fanselow effect" to show that 

contextual fear conditioning meets the criteria for episodic memory in 

rats in the following way. We allowed each rat to explore two distinct 

contexts at two different times of day (morning and night) for a total 

of three days. The rats subsequently received an immediate foot shock 

upon entry into a third, 'chimeric', context constructed out of equal 

elements of the morning and night contexts. Each rat received only a 

single shock in the chimeric box, at either the morning or the night. All 

rats were then tested for learned fear at a neutral time of day, either 

in the context that is congruent with the time of day that the shock 

occurred or in the context that is incongruent (see also detailed 

methods below).
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METHODS

Subjects:

Male Long-Evans rats (Charles River, Quebec; 300-350 g) were 

housed individually in standard laboratory cages, kept on a 12:12 

light-dark cycle (lights on at 07:00) and provided with food and water 

ad libitum. Rats were acclimated to vivarium conditions for at least one 

week prior to beginning of behavioural testing.

Apparatus:

Conditioning boxes were Plexiglas modular test chambers with 

steel grid floor (ENV-008 MedAssociates, Inc., Georgia, VT). Box A had 

black coloured walls and was scented with the cleaning agent Quatzyl- 

D-Plus. Box B was white and scented with Clinicide brand disinfectant.

A third context, C, was designed so as to be chimeric, containing equal 

elements of boxes A and B. It was half black, half white, and contained 

no added odour. All boxes were in the same spatial location, and the 

tops were left clear to allow for video recording via a ceiling mounted 

camera. Contextual components were counter-balanced.

Procedure:
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Figure 1.1 presents the three phases of experiment 1. In Phase 1,
i ;

22 rats repeatedly explored two distinctive boxes (A or B).

Box A was visited on three successive mornings and Box B on three 

successive evenings for 9 minutes each on Day 1, 7 minutes on Day 2 

and 5 minutes on Day 3, for a total exposure duration of 21 minutes 

per context. In Phase 2, all rats received a single immediate shock 

(1.0 mA for 2 s, commencing within 2 seconds of box entry and 

followed by 3 seconds of exposure for a total phase duration of 7 

seconds) in a 'chimeric' box composed of equal elements of Box A and 

B - it was half black, half white and was unscented. Exposures to all 

boxes occurred in the same spatial location. For half of the rats the 

shock occurred in the morning, for the other half the shock occurred in 

the evening. Exposure boxes and shock times were counter-balanced 

such that neither environment was better represented at the time of 

the shock across groups. In Phase 3, freezing was measured at a time 

midway between the morning and evening sessions in a box that was 

congruent with the time of the immediate shock for half of the rats, or 

incongruent for the other half.

Experiment 2, as shown in figure 1.2, involved the same 

procedure describe for experiment 1, except with all phases occurring 

at mid-day. In phase 1, 12 rats were consecutively exposed to boxes A 

and B. To establish a baseline assessment level for freezing, an
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additional 4 animals was run without receiving a footshock during the 

chimeric exposure in phase 2. The procedure in experiment 3 was also 

identical to that for experiment 1, with the exception that one group 

of 6 rats was tested for freezing in Box C (figure 1.3) and compared to 

12 treated as in experiment 1.

EXPERIMENT 1: Episodic Memory Model

If rats acquired an integrated representation of time and place at 

the time of exploration that is retrieved by cues related to the time of 

occurrence of foot shock, then fear of the congruent context should 

selectively emerge during fear testing. If the rat "automatically" 

changes its behaviour in the presence of the context with the same 

time-stamp as the shock, without any further direct experience with 

the context, we will have demonstrated that rats have an integrated 

representation of when, where and what that can be flexibly accessed 

and adaptively altered..

Results and discussion:

A repeated measure ANOVA was conducted on the percent of 

time spent freezing on the test day (Figure 2.1). Our observed power 

to detect a difference between congruent and incongruent groups was 

0.7. Rats showed robust freezing on the test day that declined reliably
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over the first three minutes of re-exposure to the contexts (F(2,40) = 

8.0, p < .001). The rats placed in the context that they had explored 

at the same time of day as the subsequent foot shock in the 

ambiguous context showed more freezing at each minute of testing 

compared to rats placed in the incongruent context (F(l,20) = 45.0, p 

< .001). The freezing shown by the rats in the incongruent context, 

especially during the first minute, likely reflects generalization. It is 

thus confirmed that rats can acquire the types of representations 

defined by previous investigators as constituting episodic memory 

processes (Clayton et al., 2003; Dere et al., 2006). Furthermore, that 

the learning episode consists of a single trial eliminates the possibility 

that performance of the task is mediated by rule learning or other 

semantic information, as would be suspect in tasks requiring an 

extensive training paradigm.

EXPERIMENT 2: Test for Requirement of Temporal Cues

It was predicted that without any temporal cues available to 

distinguish between the pre-exposed contexts animals would not show 

differential freezing between contexts during testing. The temporal cue 

should be necessary for retrieval of representations for the association 

of fear.
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Resu lts and D iscussion:

Repeated measures ANOVA on freezing revealed that there is a 

significant difference in freezing between groups (F(2,13) = 4.7, p = 

.03). There also a significant difference across the three minutes of 

testing (F(2,13) = 18.1, p < .001). Post hoc analysis by Tukey HSD 

detected no difference between conditioning to context A or B (p = 

.940). A borderline significant increase in freezing in the white box 

versus the unshocked rats was seen (p < .06), with a more robust 

difference observed between the black context tested animals and the 

unshocked rats (p < .05). This supports our interpretation that the cue 

used to discriminate between the two contexts was indeed temporal in 

nature, and that contextual components were not being used to 

differentially associate fear to the two boxes.

EXPERIMENT 3: Test for Conditioning to Shock Context

This control experiment was conducted to confirm Rudy and 

O'Reilly's (2001) postulation that it is the conjunctive representation of 

the pre-exposed context that is retrieved during the immediate shock 

phase, and that it is this representation to which the fear becomes 

associated.
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Resu lts and discussion:

Repeated measure ANOVA again confirmed a significant effect of 

freezing between groups (F (2, 13) = 7.11, p < .008). Post hoc 

analyses using Tukey HSD showed significantly less freezing in the 

chimeric condition as compared to the congruent (p < 0.05), with no 

differences between the chimeric and the incongruent groups (p =

0.5). That more fear is shown to the congruent context than the one 

where shock actually occurred also addresses the possible concern 

that rats in Experiment 1 simply conditioned to a box that somehow 

shared the most elements to the conditioning context.

GENERAL DISCUSSION

Like all classical conditioning paradigms, this task shows that a 

rat can learn information that can then be used to make predictions 

about future life events (Gallistel 1990), addressing to some degree 

the flexible deployment criterion set forth by Clayton, Bussey, 

Dickinson and De Kort (2003).

Suddendorf and Busby (2003) also require for true episodic 

memory that "(t)he memory should be shown to use a generative, 

reconstructive process at retrieval," even claiming that "accuracy is 

not imperative". While they may be correct in their further claim that 

the scrub-jay experiments do not meet this criterion, our experiments
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very clearly depend on event reconstruction by way of the fact that
$ .

conditioning is in some respects to a false memory. The only way this 

could possibly be occurring is if the memory truly was a reconstructive 

process as opposed to retrieval of an unalterable snapshot. As to their 

requirement of meta-representation and that episodic memory can be 

used to plan for the future, to some degree this is inherent in the fact 

that freezing, a response to an anticipated aversive event, will be 

expressed only if an aversive event would be expected in the given 

context. The "what, where and when" content criteria are clearly 

demonstrated, and structure is seen in the fact that the memory is a 

reconstructed integrated representation.

The actual Pavlovian conditioning trial was under 10 seconds in 

duration, with a single aversive stimulus to which emotional 

associations would be formed. Though pre-exposure sessions were 

necessary for the animal to learn about the contexts in which the 

event occurred (or in which they thought it occurred), it is clear that 

these exposures do not qualify as extensive training. The integration of 

what, where, and when was clearly achieved. The only way the rat 

could possibly have differentially attributed fear to the pre-exposure 

contexts is if it had a memory for the time of day at which it had been 

shocked (when) and that that cue served to pattern complete a unified 

memory which included the conjunctive context representation
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(where) that was activated at the moment of shock (what).

Experiment 2 precludes the possibility that somehow the test context 

was more similar to one pre-exposure context than the other - time is 

the critical factor. We focused on the temporal component as that is 

the most unique factor making up any episodic experience (the same 

time can only occur once) (in the case of our experiments however it is 

unclear whether simply time of day is being conditioned).

One conditioning session involving a single foot shock 

immediately upon entry into a context can lead to significant 

conditioned fear responses in similar, explored contexts. In preliminary 

work (data not shown) we found that rats receiving the same 

immediate shock episode but without prior context exploration did not 

show a learned fear response, confirming the reliability of the 

Fanselow effect observed by others (Fanselow, 1990; Rudy et al., 

2002). Significantly for our purposes, the rats in the present study 

discriminated between the two test contexts, in line with the episodic 

memory hypothesis. That is, they displayed significantly more 

conditioned freezing in the context that they had explored at the same 

time of day as the immediate foot shock session. It is important to 

emphasize that the non-temporal cues present at the time of the 

immediate shock were composed of equal elements of the two test 

contexts, thus the temporal cue (morning or evening) must have
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provided a basis for discrimination at the time of learning. Furthermore
$ .

the next day, at the time of testing, the temporal cues were 

completely ambiguous, thus only the nontemporal elements of the 

context could serve as a basis for discrimination.

The fact that the rats showed clear learned fear of the context 

congruent with the time of day of the shock supports the following 

notions. During exploration rats acquire a memory that contains an 

integrated representation of the elements of the context, including the 

time of day. The time of day cue during the immediate foot shock 

session selectively retrieves the memory of the congruent context.

This memory is updated by the association with foot shock, such that 

when the rats are exposed the next day to the elements of the context 

at a neutral time of day, they respond defensively to the congruent 

context. Because of the design of this experiment we know that rats 

are not using differential familiarity, recency, memory strength, or 

serial order of the contexts or interval timing to solve this problem. 

Instead, a parsimonious account is that rats have an integrated 

representation of place and temporal context that can be accessed via 

temporal or non-temporal cues, leading to adaptive future behavior.

There is some uncertainty about the nature of the temporal cues 

due to a lack of research, but one possibility is that they are based 

upon information from endogenous circadian oscillators as suggested
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by Gallistel (1990). Howvever, it can not be the case that circadian
$ .

rhythms are the sole temporal cue as this would allow for only a 24 

hour cycle of uniqueness. Another suggestion is that the time-stamp 

may be represented by temporal associations between event 

occurrence and the age of recently born granule celts in the dentate 

gyrus of the hippocampus (Aimone et al., 2006). Whatever the nature 

of the 'time-stamp" contributed by the mPFC, it is likely an integrated 

association of various cues which together form a distinct 

representation of a unique moment in subjective time, just as the 

hippocampus integrates various spatial elements into a single context 

representation. It is important to note that while the midday time- 

point may not be exactly equally different from morning and night 

tests in terms of contextual elements, there was no difference between 

animals within congruency groups, regardless of the time of day at 

which they were shocked. Thus, the temporal cue outweighs slight 

contextual discrepancies in determining which context becomes 

associated with the shock episode. This is supported by the control 

experiment in which the temporal cue was removed by conducting all 

pre-exposures and the immediate shock at mid-day. This resulted in 

rats being unable to differentially attribute fear to the test contexts.

The task described here meets the criteria for episodic memory 

in rats. It combines the advantages of previous investigations while
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addressing some of their shortcomings. We conclude from this that 

rats have a sophisticated representational process in which temporal 

cues are integrated with "where" and "what" information to form 

distinct autobiographical memories of past experiences. With the 

exception of Tulving's (1983) criterion of'autonoetic awareness', a 

phenomenological quality that is currently un-testable in non-linguistic 

species, this task meets the qualifications required for a demonstration 

of episodic memory in the rat.
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CHAPTER 3 - NEUROANATOMICAL EVIDENCE FOR EPISODIC

MEMORY IN THE RAT

Chapter 2 presents evidence that rats have a memory system 

that resembles aspects of the human episodic memory system. In this 

chapter we seek to extend the resemblance from purely behavioural 

criteria to the level of neural structures that underlie this system in 

rats and humans. Establishing strong similarities at the behavioural as 

well as neuroanatomical levels would increase our confidence that 

manipulations of the rat model will have validity in respect to human 

conditions. The neural circuits underlying episodic memory in humans 

have been investigated in behavioural studies of brain damaged 

individuals, as well as functional neuroimaging studies involving PET 

and fMRI. The findings will be reviewed here with specific attention to 

fundamental features that can be tested in the rat model of episodic 

memory presented in the previous chapter. If it holds that the same 

brain regions that are important in human episodic memory make 

comparable contributions to performance of our episodic task, this will 

provide an additional source of support that the model may be useful 

in modeling human memory disorder and treatments. There are also a 

number of unresolved issues about the nature of differences between 

semantic and episodic memory which could benefit from study of an
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animal model. To our knowledge, this is the first empirical attempt to
f ;

bridge the gap between the robust findings on neurophysiology of 

episodic memory in humans and a potential model in a non-primate 

species.

The first brain region frequently associated with declarative 

memory or contextual representation is the hippocampus. This large 

piece of archicortex has been investigated so extensively with respect 

to these functions that it has become nearly synonymous with them. It 

is also frequently stated that the hippocampus and adjacent cortices 

are critically involved in memory for events in people's lives, or 

episodic memory (Eichenbaum and Cohen, 2001). The hippocampus, 

in concert with adjacent parahippocampal cortices, is generally 

understood to be an information binder, responsible for taking 

multimodal perceptual representations of any one experience, and 

then integrating and storing them as conjunctive representations or 

propositions (Sutherland and Rudy, 1989; Anagnosteras et al., 1999, 

Cohen and Squire, 1980). Additional important regions associated with 

explicit memory operations are found scattered throughout the 

neocortex, with the prefrontal cortical areas, or PFC, being of 

particular relevance to episodic memory. Numerous theories have 

been proposed to explain how the various physiological and functional
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components of the explicit memory system operate, though only three
t;

will be addressed in this paper.

Theories of Explicit Memory:

The first and probably most well known theory is referred to 

simply as "Declarative Memory Theory", and was initially proposed by 

Cohen and Squire in 1980. In its most simple form, this theory states 

that declarative memory formation and storage initially requires the 

hippocampus, in concert with other medial temporal lobe structures, in 

order to bind together all the many elements of a learning experience 

into a retrievable representation. Over time however, associations 

formed within neocortical areas are sufficient to mediate recall, via a 

process of consolidation directed by the hippocampus (Squire & 

Alvarez, 1995; Squire et al, 2004). The nature and necessity of this 

consolidative process is still somewhat unclear, though McNaughton's 

group probably provides the most plausible explanation, supported by 

computational models, in that the hippocampus is required to play a 

short term role in binding and maintaining various neocortical 

representations that are initially highly plastic and thus subject to 

decay and interference (McNaughton et al., 2003). The neocortex may 

acquire some simple, elemental memory representations through 

perceptual processing, but actual facts and events are initially
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recorded solely within the medial temporal lobe (Squire and Zola-
t;

Morgan 1991). Squire's theory does not recognize an anatomical 

distinction between semantic and episodic memory, claiming any 

differences are purely categorical, that is simply different components 

of a unitary function. In terms of processing then, both are simply 

propositional representations dealt with by the medial temporal lobe in 

the same manner. Squire does however concede that some 

propositional information necessary for source memory may be stored 

in the frontal cortex, as indicated by studies of amnesic patients 

(Shimamura and Squire, 1987).

"Configural" or "conjunctive" theory, proposed in its original form 

by Sutherland and Rudy in 1989, stated that the hippocampus plays a 

unique and essential role in combining incoming multimodal perceptual 

elements into unitary conjunctive representations. In light of new 

experimental evidence the theory was later modified (Sutherland and 

Rudy 1995) to allow for a role for the neocortex in forming conjunctive 

representations with storage and binding during retrieval being 

directed by the hippocampus. In contrast to Squire's theory, configural 

theory holds that two types of memory representations are set for any 

given experience - one which is rapidly established and stored in the 

hippocampus automatically and indiscriminately, and a second which is 

more slowly and purposefully set in various regions of the neocortex.
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The idea is that the hippocampal representation influences and 

enhances the neocortical representations by rapidly separating out 

similar memory patterns so as to prevent interference between and 

increase the efficiency of associations between traces (Sutherland and 

Rudy, 1995). The function of the hippocampus then is to separate out 

which of the elemental representations set in the neocortex need to be 

bound together during recall into the appropriate unitary 

representation (O'Reilly and Rudy 2001).

This theory does an excellent job of explaining the observation 

that while standard contextual fear conditioning (association of fear to 

a context in which an aversive stimulus has been experienced) can be 

observed in the absence of a hippocampus (Wiltgen et al., 2006), 

associations to context by way of Fanselow's (1990) immediate shock 

paradigm cannot. During the extremely short pre-shock interval an 

animal without the rapidly conjunctive hippocampal system available 

will be unable to efficiently retrieve the context representation to 

enable association with the shock. Neocortical systems can 

independently, but inefficiently, acquire different bits of elemental 

information and form associations between them, allowing for context- 

fear associations if given enough time, but they do so much more 

slowly. Similarly, it is well documented that simple associations such 

as the ones formed in non-conjunctive classical conditioning tasks are
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hippocampus independent (Beggs et al., 1999), whereas associations
i;

between events separated in time (i.e. trace conditioning) are not 

(Moyer et al., 1993). An episodic memory system must always be on 

line recording and updating events, due to the impossibility of 

predicting when and where an experience worth remembering might 

occur (Morris and Frey, 1997). Configural theory would then predict 

that damage to the hippocampus will result in severe impairment of 

episodic faculties, whereas it would have only a small to moderate 

impact on semantic functioning that can still be mediated, albeit less 

efficiently, solely by neo-cortical sites.

In Squire's model episodic and semantic memory are like two 

sides of the same coin - inseparable components of the same process 

that works to carry out the broader function of declarative memory. In 

contrast Tulving proposes a "Serial Parallel Independent" model (serial 

recording, parallel storage, and independent retrieval, SPI) (Tulving, 

1993, 1995; as cited in Tulving and Markowitsch 1998), in which 

incoming perceptual information is initially represented semantically, 

but that a second, episodic, representation is formed from the 

semantic one. Once both representations are set (during retrieval for 

example) they are basically equal and independent, though able to 

interact via reactivation into working memory (Baddeley 2001). In 

terms of damage induced retrograde amnesia the SPI model allows for

38



a complete dissociation of episodic and semantic knowledge (either 

can be impaired to any degree regardless of the other), though in the 

anterograde direction it predicts semantic impairment must necessarily 

cause episodic impairment, though the same does not hold in reverse. 

This is in contrast to Squire's theory, which allows no.dissociation 

whatsoever. Tulving's theory is a purely cognitive one, developed 

primarily from observations of amnesic humans, and does not specify 

what circuits are involved at each level of processing.

In light of these theories, there are a number of different ways in 

which the large body of research pertaining to the nature of episodic 

and semantic memory, their differences, and how they interact.

The Hippocampus and Episodic Memory:

The first clear indications that the hippocampus and related 

medial temporal lobe structures played a role in memory are found in 

Scoville and Milner's (1957) classic studies on the patient H.M. He 

exhibited profound and selective amnesia for declarative memory 

following a medial temporal lobe resection undertaken to control 

intractable epilepsy. H.M.'s damage was quite widespread however, 

and thus specific contributions of the structures within the medial 

temporal lobe to memory could not be dissociated. In 1997, Vargha- 

Khadeem et al. described 3 case studies in which children with early
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life anoxic trauma localized bilaterally to the hippocampus (i.e. not 

including parahippocampal cortices) were still capable of acquiring a 

large amount of semantic knowledge (with school performance even 

approaching normal). Despite this sparing of learning general 

knowledge they had a complete inability to describe specific episodes 

in which they acquired their wealth of knowledge. One patient, K.C., 

for example could learn to play new games or memorize sentences 

without any recollection of the learning experience. They had profound 

anterograde amnesia for episodes, concurrent with normal (or at least 

non-pathological) semantic retention. A separate group of patients 

ranging in age from 6-14 at time of onset of hypoxic damage showed a 

similar pattern of severe episodic memory impairment coincident with 

comparatively mild semantic deficits (Kitchener et al. 1998; Holdstock 

et al. 2000). The young age of the children is an important part of the 

challenge this work presents for Squire's declarative model, as it 

precludes the possibility that a large repertoire of semantic knowledge 

could have already been consolidated in the neocortex before onset of 

the pathology. In line with Conjunctive and SPI theories, and patently 

pertinent to episodic memory, sparing for individual item memories 

was seen, but not for more complex associations involving relations 

between many items or the context in which they were located. This 

indicates that the dissociation between episodic and semantic memory
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is not simply a categorical one, but may have a true neuroanatomical 

underpinning. Their findings support a model localizing semantic 

functions to parahippocampal cortices but not to the hippocampus 

itself. It is in hippocampal circuitry that critical episodic functions are 

proposed to be instantiated (Tulving and Markowitscb 1998). Vargha- 

Khadem, Gadian and Mishkin (2001) conclude, based on this evidence 

and an additional review of 11 other amnesic patients that, "... 

regardless of age at onset of hippocampal pathology, there is a 

pronounced dissociation between episodic memory, which is severely 

impaired, and semantic memory, which is relatively preserved." (p. 

139).

These observations seem to be a significant blow to Declarative 

Theory, though in a commentary Squire and Zola (1998) argue that 

the results can also be interpreted in light of the possibility that 

enough hippocampal tissue remained to support traces of online event 

memory capacity which, though barely detectable, was still sufficient 

to facilitate formation of semantic traces. Configural association theory 

on the other hand is clearly supported by Vargha-Khadem's 

observations of a critical and dissociable role of the hippocampus 

proper in episodic versus semantic memory.

Tulving and others infer from these studies that the 

hippocampus plays a critical role in episodic, but not semantic
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knowledge. Semantic memories depend upon the adjacent medial 

temporal lobe cortices (Tulving and Markowitsch, 1998). More 

extensive medial temporal lobe damage then, such as that seen in 

H.M., would not show a dissociation between semantic and episodic 

processes, and for the most part this is in fact the case (Penfield and 

Milner 1958; Scoville and Milner, 1957). It has also been stated by a 

number of researchers that hippocampal damage is necessary and 

sufficient to cause anterograde amnesia for of episodic memory in 

humans (O'Keefe & Nadel 1978; Morris et al. 1982; Maguire et al. 

1996; Rosenbaum et al. 2000). Rats with hippocampal damage 

however can still acquire some configural associations if given enough 

exposure (Rudy and Sutherland 1995; Bussey et al 1998; Davidson et 

al. 1993), emphasizing the importance of the requirement for an 

episodic model to avoid extensive pre-training and ideally limit the 

learning episode to a single, short experience (Dere et al., 2006), as is 

the case in the model given here and in Chapter 2.

The Prefrontal Cortex and Episodic Memory:

Episodic memory requires binding of the many elements 

comprising an experience into a conjunctive contextual representation, 

a requirement all evidence indicates would depend on the 

hippocampus. Some form of temporal sequencing or time-stamping of
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these representations would also seem to be necessary. A contextual 

representation might be akin to a snapshot, fixed in time, whereas an 

episodic memory is more like a film clip, a sequence of events with a 

specific order of flow from beginning to end, and having a specific 

temporal position in relation to other such events which have been 

stored. Evidence stemming from functional neuroimaging (Knutson et 

al., 2004) and lesion studies (Canavan et al., 1989; Hanneson et al., 

2004 McAndrews & Milner 1990; Shimamura et al., 1990) suggests 

that this temporal sequencing capacity is critically dependent upon the 

medial prefrontal cortex (mPFC) via its numerous connections with 

medial temporal lobe memory systems (Aggleton & Pearce 2001). 

Fuster et al. (2000) for instance has demonstrated an essential role of 

the mPFC in association of stimuli separated in terms of both time and 

modality. It has also been demonstrated to be necessary for trace fear 

conditioning (Runyan et al., 2004). With temporal aspects being one of 

the things uniquely added in episodic representations, the prediction 

follows that damage to mPFC could allow another kind of dissociation 

of episodic and semantic memory functions.

In a commentary paper reviewing the findings of a number of 

clinical and neuroanatomical studies of amnesic patients, including the 

Vargha-Khadeem studies, Zola and Squire (1998) suggest that 

prefrontal effects are dissociable, with episodic-type memories being
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far more susceptible, if not uniquely susceptible to damage, although 

these two types of memory are not dissociable on their view in medial 

temporal lobe amnesia. There is an emerging consensus then that the 

PFC plays a critical role of episodic memory in humans (Wheeler et al., 

1995; Nyberg et al., 2000; Burgess et al., 2002; Wheeler and Stuss, 

2003; Schacter, 1987; Squire 1987).

While it is fairly certain that the PFC plays an important role in 

episodic memory, the exact nature of its involvement in formation and 

recall is somewhat unclear (it is possible that it plays a role solely in 

the latter). Lesions restricted to the frontal cortex do not generally 

result in identifiable amnesia, defined as an inability to acquire and 

later explicitly reproduce knowledge (Milner 1964). Deficits that are 

encountered typically have been attributed to the loss of mnemonic 

strategies or organizational capacity (Smith and Milner 1984), rather 

than loss of a site of information storage. The dorsolateral prefrontal 

cortex is also thought to provide essential circuitry underlying working 

memory (Goldman-Rakic 1987), and it may be that this type of short­

term memory is required for dealing with retrieved conjunctive 

representations of contexts and the additional information that must 

be bound to them as part of the memory reconstruction during 

episodic recall. It has also been proposed that the medial temporal 

lobe structures support the representation of the context and possibly
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associations of events to that context, whereas the prefrontal areas
4;

are responsible for association of temporal cues to the contextual 

representation (Nadel and Moscovitch 1997, 1998).

Tulving and colleagues claim that in humans the role is 

facilitation of an autonoetic consciousness that is essential for mental 

time travel during retrieval (Wheeler, Stuss & Tulving, 1997). He 

described for instance a frontal lobe patient lacking not only episodic 

memory, but also any capacity to imagine either past or future 

(Tulving 1985). This was taken as evidence that the PFC housed a 

faculty of special autonoetic conscious awareness necessary for 

representing one's self in mental space. Specifically, it is said to 

provide the ability to perceive one's own position along an 

autobiographical timeline, and mentally project in either direction away 

form the present "stream of consciousness". These issues have not yet 

been resolved in humans, and so should not be expected to be solved 

here, though the emergence of animal models of episodic memory 

may in future shed some light on these questions.

Further clarification of the frontal lobe's role in memory is 

provided by cases of source amnesia, in which factual information can 

be acquired without conscious recollection of where and when the 

actual learning experience occurred (Schacter, Harbluk and McLachlan, 

1984). Interestingly, it seems to be one of the only forms of memory
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impairment consistently demonstrated in lesions restricted to the 

frontal lobes. While subjects have no problem identifying items which 

had previously been presented to them as familiar, they have far more 

difficulty than controls in recollecting where the item was encountered. 

They make numerous false positive responses in which the learning 

location is misattributed. Consistent with the idea that episodic 

information is particularly susceptible to impairment, problems in 

source attribution (Glisky, Polster, & Routhieaux, 1995) or recency 

judgements (Milner Corsi and Leonard, 1991 as cited in Moscovitch 

1992) typically precede problems with recognition in normally aging 

individuals.

In a 1995 paper, Wheeler, Stuss, and Tulving conduct a fairly 

extensive empirical review of memory deficits in frontal lobe patients 

studied up until that point. The main findings included a small but 

detectable recognition impairment, possibly explained by minute septal 

damage, or a loss of organizational strategies. More drastic and 

important was a consistent trend of major impairment in recall above 

and beyond recognition. Similarly, in the animal literature, Hanneson 

Howland and Phillips (2004) have demonstrated that medial prefrontal 

lesions in the rat impair the ability to make temporal order judgments 

for objects they have explored, in the presence of intact object 

recognition ability.
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Neuroimaging Studies:

Functional neuroimaging studies provide an additional powerful 

means of examining the relationship between semantic and episodic 

processes. By monitoring brain activity during very similar tasks, one 

semantic in nature and the other episodic, one can identify all the 

shared areas of activity and subtract them, identifying the specific 

regions uniquely involved in one and not the other.

The most common means of testing for episodic/semantic 

distinctions in humans involves distinguishing between remembering 

and knowing using word lists. Participants are given a list of words to 

remember, and then at a subsequent time are presented with a new 

list containing some of the words from the original list mixed in with 

new ones. The participant is then asked to decide whether each word 

had appeared on the list or not, and for words they claim were on the 

original list, they are asked whether they remember the actual event 

of seeing the word on the list, or if they simply 'know' it was there 

(Tulving 1985; Gardiner and Java 1991). Thus confidence is used as 

the prime indicator of whether the memory was episodic or not. It is 

seen that the remembered items are subject to the same sorts of 

variables that are widely accepted as affecting episodic memory 

(Wheeler 2000). When these types of tests are conducted, it is
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consistently found by a variety of investigators that the frontal cortex 

is active during episodic, but not semantic representation.

In general, evidence obtained from such functional imaging 

investigations shows that episodic memory processes consistently 

involve activity in the PFC, whereas semantic processing does not 

(Nyberg et al., 1996; Schacter 1987; Tulving 1986; Kapur et al., 

2004). This confirms the trend observed in the lesion studies reviewed 

above. Specifically, episodic retrieval is selectively associated with 

increased blood flow in the right hemisphere PFC. A hemispheric 

asymmetry in acquisition has also been observed, with an increase in 

left medial frontal gyrus blood flow during episodic encoding, but not 

semantic (Fletcher et al., 1995; Nyberg, Cabeza & Tulving 1996).

Right frontal blood flow was equivalent (Kapur et al., 1995; Nyberg et 

al., 1995). Tulving states that the frontal lobes are involved in creating 

an 'episodic retrieval mode', an autonoetic state where the brain is 

primed to use retrieval cues specifically for experiences involving 

autonoetic consciousness (Tulving 1983).

The pattern of lateralization noted is also seen in other item 

recognition tasks, and is referred to as HERA (hemispheric 

encoding/retrieval asymmetry (Tulving et al., 1994; Habib et al., 

2003). Lateralization is not as prominent in non-primate mammals 

such as the rat however, and so was not tested for in this study.
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Just as the circuitry and function of the rat hippocampus is 

known to be very similar to that of humans, the basis for innumerable 

models in the memory domain (Whishaw & Kolb 2004), PFC circuitry 

and function between rats and humans also appear to be conserved 

(Dailey et al., 2004 for review). As reviewed above, tbe PFC seems to 

play a specific role in episodic memory in humans, while it makes 

minimal or no contributions to non-temporal or recollective, semantic 

aspects of declarative memory processes (McDonald et al., 2006; 

Wheeler et al., 1995; Squire 1987).

Curiously, given the large number of recent animal models 

purported to be true demonstrations of episodic memory, there is 

virtually no literature on the effects of frontal cortex lesions on 

episodic memory performance outside of humans or primates. From 

what has been reviewed concerning their specificity of effect on 

episodic type processes over semantic ones in humans, performing 

anterograde tests of prefrontal dependency would seem a valuable and 

informative test of whether or not one's episodic model taps into the 

same brain regions involved in human episodic recall. An impairment 

in performance would provide some evidence that a task is not solved 

via some sort of semantic rule learning or simple associative strategy. 

In an effort to test our model for not just behavioural, but also
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neuroanatomical, parallels with human episodic memory, we here 

administer such a test in Experiment 6.

We also tested a conditioning procedure that closely resembled 

our basic episodic memory task, but we modified it so that it did not 

require an integrated what-where-when (episodic) representation. If 

the modified task does not require prefrontal involvement, but our 

basic episodic task does, this would provide good evidence that our 

model taps into very similar processes as in humans. We are then 

viewing the episodic memory system as an extension of the semantic 

system, both neuroanatomically and likely evolutionarily. An episodic 

representation will require the same types of configural/conjunctive 

associations required for forming semantic representation (mediated 

by the hippocampus and neocortex), plus additional information, or at 

least direction, from the PFC. Thus, it should be possible to observe a 

deficit in episodic memory in the presence of PFC damage, while 

semantic abilities remain intact. According to conjunctive theory, new 

associations amongst non-linear configural representations such as are 

required to associate conditioning to memory of a context during 

immediate shock will also necessarily require the hippocampus (Rudy 

et al., 2002), though Declarative Theory also predicts an essential 

hippocampal contribution.

METHODS
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Subjects:

Subjects were male Long Evans hooded rats (Charles River 

Laboratories) approximately 75 days of age (250-350 grams). Animals 

were housed in pairs in standard plastic housing tubs (45 cm x 25 cm 

x 25 cm) on a 12 h light/dark cycle (lights on at 7 a.m.). Food and 

water was provided ad libitum, and a single piece of PVC tubing was 

provided in the cage for enrichment.

Apparatus:

Plexiglas modular test chambers (ENV-008 MedAssociates, Inc., 

Georgia, VT) with steel bar floors were used as the context boxes for 

all experiments. In experiments 5 and 6, boxes were modified so as to 

provide three distinct contexts. Context A had black walls and was 

scented with Quatzyl-D-Plus brand disinfectant. Box B was white 

walled and sprayed for odour with Clinicide disinfectant. Box C was 

designed to be equally similar to boxes A and B - the walls were half 

white, half black, and the chamber was left unscented (a small amount 

100% ethanol was used for cleaning in between trials, and allowed to 

completely evaporate). Chamber ceilings were left clear to allow for 

top-down video recording of behaviour. Scents and wall shading were 

counterbalanced. Experiment one used only a single context, either A

i;
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or B depending on the subject. All boxes were in the same spatial 

location.

Surgery:

Nearly complete lesions of the hippocampus were created by 

stereotaxic infusion of n-methyl-D-aspartate (NMDA), conducted under 

isoflurane induced general anaesthesia (2% isoflurane delivered in 2 

L/min oxygen). Rat's heads were shaved and the skin was cleaned by 

three alternating applications of hibitane (4% chlorohexidine 

gluconate) and 70 % alcohol. 0.1 mg/kg temgesic was given s.c. 

immediately prior to stereotaxic mounting (David Kopf Instruments) as 

an analgesic, and .2 mg/kg diazepam was given immediately prior to 

NMDA infusion for the purpose of controlling seizure activity. Drugs 

were re-administered following recovery from anesthesia for the same 

purposes. An incision was made through the skin and periosteum, 

which were retracted from the skull and held using hemostats. Small 

holes were drilled above the desired injection sites into which 30 

gauge cannulae connected via PE50 plastic tubing to a 10 ul Hamilton 

syringe (Hamilton, Reno, NV) mounted on an infusion pump (Harvard 

Apparatus PHD2000, Holliston, MA) were lowered to the desired depth. 

Infusion rate was set to 0.15 ul/min, and 0.4 ul total of 7.5mg/ml 

NMDA in phosphate buffered saline was infused over 2 minutes and 40
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seconds to each of 7 sites per hemisphere. Injection cannulae were left
ft ;

in place for 2 minutes 20 seconds to allow for diffusion from the tip 

before retraction. Injection co-ordinates from bregma with skull flat 

were as follows: (AP -3.1, ML +-1.5, DV -3.6), (AP -4.1, LV +-3, DV - 

4), (AP -5, ML +-3, DV -4), (AP -5, ML +-5.2, DV -7.3), (AP -5.8, ML 

+-4.4, DV -4.4), (AP -5.8, ML +-5.1, DV -7.5,), (AP -5.8, ML +-5.1,

DV -6.2).

Medial prefrontal cortical lesions were performed using a very 

similar surgery procedure and drug regimens as used for the 

hippocampal lesion. lOmg/ml NMDA was infused at O.lul/min for 4 

minutes followed by 2 minutes diffusion time for each of 5 sites per 

hemisphere. Injection co-ordinates from bregma with skull flat were: 

(AP +4, ML +-0.7, DV -4.8), (AP +4, LV +-0.7, DV -2.8), (AP +2.7, ML 

+-0.7, DV -5.6), (AP +2.7, ML +-0.7, DV -3.5), (AP +1.7, ML +-0.7,

DV -3.2).

Sham surgery was performed on all control rats by performing 

the hippocampal lesion procedure with the omission of skull puncture 

or NMDA infusion. For Experiment 4, 6 hippocampal lesions, 8 mPFC 

lesions and 8 sham surgeries were conducted. Experiment 5 used 10 

hippocampal lesioned rats, and 10 shams; Experiment 6 subjects were 

12 mPFC lesioned rats and 12 shams.
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Procedure:

Rats were allowed 10 days of post surgery recovery time before 

training began. Experiment 4, as illustrated in Figure 4, was effectively 

just a replication of Fanselow's immediate shock protocol (figure 1.4), 

except with multiple pre-exposure sessions. During phase 1, animals 

were placed in a single context (A or B) for successive three days , 

with exposure times of 9, 7 and 5 minutes for days 1, 2 and 3 

respectively. In phase 3 (day 4) animals received a single immediate 

foot shock in the same context. They received a 1.0 mA footshock of 2 

seconds duration. There was a 2 second shock free interval before and 

a 3 second shock free interval after the shock. The shock was 

delivered through the floor bars. Phase 3 was a 3 minute exposure 

period in the shock context during which freezing behaviour was 

recorded and the percent of time spent freezing for each minute was 

calculated by an automated computerized video system. All phases 

were conducted approximately mid-day (between 3 and 5 p.m.).

Experiments 5 and 6 involved the same procedure as described 

in Chapter 2 and illustrated in Figure l.l.^Phase 1 involved two pre­

exposure phases per day, for each rat, over a three day period. One 

pre-exposure session was in box A and conducted between 9 and 11 

a.m., the other was in box B and given between 9 and 11 p.m. 

Exposure times were the same per context per day as in experiment 4
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(for a total duration of 21 minutes per context in phase 1). Phase 2 

was an immediate shock as described exactly for Experiment 4, but it 

was given in the chimeric context (Box C). For half of the rats the 

shock was provided in the morning exposure time, for the other half it 

was provided in the night. Phase 3 was a 3 minute test period scored 

for freezing using the same automated procedures as in all other 

experiments. Half of the rats were tested in the context that had been 

previously paired in Phase 1 with the time the animal ended up being 

shocked at in Phase 2 (i.e. the congruent context), the other half were 

tested in the incongruent context. Exposure contexts and times were 

counterbalanced across and within groups.

Histology:

After testing animals were euthanized by an overdose of sodium 

pentobarbital (Euthansol, Schering, Kenilworth, NJ) and then perfused 

intra-cardially first with 200 ml phosphate buffered saline (PBS) and 

then an equal volume of 4% paraformaldehyde in PBS. Brains were 

extracted and left in a 30% sucrose, 4% paraformaldehyde in PBS 

solution for at least 48 hours prior to being sliced coronally at 40 urn 

on a cryostat (MICROM HM560, Waldorf, Germany) and stained for 

cresyl violet. Section samples were taken to the full extent of the 

lesions.
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EXPERIMENT 4: The hippocampus, but not frontal lobes, is 

required for context conditioning using immediate shock

Hippocampal damage should disrupt acquisition of fear of a pre­

exposed context using the immediate shock procedure. However, 

unlike its predicted effect on time plus context fear memory, mPFC 

should not disrupt acquisition in this experimental task. This is based 

upon the idea that mPFC is hypothesized not to be important for 

context representation or fear association, but are necessary for 

permitting the use of temporal cues to distinguish between contexts. 

Our work here is essentially a successful attempt to systematically 

replicate previously published studies showing that the hippocampus is 

responsible for contextual fear conditioning, and that the medial 

prefrontal cortex is not (Gewirtz, Falls & Davis, 1997; Rudy and 

O'Reilly 2001). Here we use a set of conditioning parameters that are 

different from published work, but that are directly relevant to 

conditions in our previous experiments.

Results and Discussion

Results are presented graphically in Figure 3.4. A main effect of 

lesion on freezing behaviour was evident based on repeated measure 

ANOVA (F (2, 15) = 4.71, p < .05). The amount of freezing did not
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significantly change across the three minutes of testing. Post hoc 

analysis indicated significantly less freezing was exhibited by the 

hippocampal lesion group compared to the Sham control group (p < 

.05) or medial prefrontal cortex (mPFC) lesioned animals (p = .037) 

.No difference, however, was observed between the Sham control and 

Prefrontal lesion groups.

The hippocampus is thus confirmed to be necessary for the type 

of fast conjunctive/configural association involved in the immediate 

shock effect (Rudy and O'Reilly 2001), but the mPFC is not necessary 

for mediating learned fear of a context in a task with very similar 

parameters to our episodic memory task, with the exception that there 

is not a time-place conjunction.

EXPERIMENT 5: Hippocampal requirement of episodic model

In this experiment we test Sham control and hippocampal 

damaged rats in the episodic memory task described in Experiment 1 

(Figure 1.1). Without an intact hippocampal formation it is predicted 

that rats will be unable to show discriminative learned fear involving 

the two contexts. Based upon the results of Experiment 4, it is 

hypothesized that rats with hippocampal damage should not even have 

a contextual representation that could be associated with fear in the 

immediate shock procedure, and so these rats should show equivalent 

conditioned fear responses to the congruent and incongruent test
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contexts, albeit at a reduced magnitude. With episodic memory 

requiring a multimodal conjunction of allocentric spatial context and 

integration of multiple elemental cues, the hippocampus should 

obviously play an essential role. As the hippocampus has been 

conclusively shown to have an important role in regular contextual fear 

conditioning (Maren et al., 1998; Phillips & LeDoux, 1992), as well as 

the immediate shock or "Fanselow effect" variant (Rudy and O'Reilly 

2001), it is predicted to be required for expression of fear in our model 

of episodic memory. The procedure used is the same as described in 

Figure 1.1 and discussed in detail in Chapter 2. Rats are given an 

exposure session to one context in the evening and a second in the 

morning for a period of three days. On the fourth day they are given 

immediate shock in either the morning or evening

Results and Discussion:

All rats displayed robust freezing behaviour which was seen to 

decline over the three minute test period (Figure 3.5). Repeated 

measures ANOVAs were conducted on the two different lesion groups 

tested either in the congruent or incongruent contexts. There was a 

significant difference in freezing between groups (F (3, 16) = 10.3, p 

= .001). The Post hoc tests showed that the Sham control group
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tested in the congruent box showed significantly more freezing than 

any of the other three groups (all p's < .007).

As has already been demonstrated in Experiment 1 intact rats 

show strong learned fear of a context previously paired with the time 

of day of a foot shock. As predicted, rats with hippocampal damage do 

not show this effect. Thus, the hippocampus is essential to this form of 

episodic memory. This should not be surprising given the results of 

Experiment 4 showing that the hippocampus is essential to simple 

contextual fear conditioning using the "Fanselow effect".

EXPERIMENT 6: Frontal lobe requirement for episodic model

We hypothesize that damage to the mPFC will impair performance in 

the episodic memory task to the same extent as that observed in rats 

with hippocampal damage. Episodic memory is understood as a unified 

representation of both a conjunctive contextual component along with 

some form of as yet unspecified temporal information provided by the 

mPFC. In the absence of this temporal information, the time 

appropriate context will not be retrieved to be associated with foot 

shock.

Results and Discussion
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As seen in Figure 3.6, mPFC lesions produced a similar pattern of 

effect on freezing behaviour as that observed with the hippocampal 

lesions conducted in Experiment 5. All rats displayed robust freezing 

behaviour which was seen to decline over the three minute test period 

(Figure 3.6). Repeated measures ANOVAs were conducted on the two 

different lesion groups tested either in the congruent or incongruent 

contexts. There was a significant difference in freezing between groups 

(F (3, 16) = 7.8, p = .002). The post hoc tests showed that the Sham 

control group tested in the congruent box showed significantly more 

freezing than any of the other three groups (all p's < .05).

From what we observed in Experiment 4, we know that this 

pattern of impairment is not due to the same reasons as seen with 

hippocampal lesions in Experiment 5. Frontal cortex damaged animals 

are still capable of quickly acquiring a conjunctive context 

representation and associating it with shock, but here it is shown they 

cannot use a temporal cue to differentially attribute fear between pre­

exposed contexts at time of testing. The medial prefrontal cortex then 

must mediate specific processes involved in our episodic model, but 

not very similar processes not requiring a what-where-when 

conjunction.
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General Discussion:

In the previous experiments we have demonstrated a form of 

context + time memory in rats that we interpret as a close relative of 

human episodic memory. We demonstated that both hippocampal 

damage and mPFC damage disrupt performance in our rat episodic 

memory task. Furthermore we demonstrated that hippocampal 

damage but not mPFC damage disrupts the rat's ability to form a 

contextual fear memory in the immediate shock procedure even when 

the contextual memory conditioning is independent of time. This 

supports the idea that performance of episodic memory in rats, as 

described in Chapter 2, is dissociable from semantic or episode- 

independent memory by way of exclusive involvement of the mPFC 

regions in the former, as compared to dependence of both memory 

types on an intact hippocampus. Impairment of episodic memory in 

the presence of intact semantic capabilities replicates the same pattern 

of results observed in brain damaged humans. This is the first 

demonstration of such a parallel in a rodent model of episodic 

memory.

We propose that episodic memory is an extension of the medial 

temporal lobe semantic system, dependent upon the same stimulus 

conjunctions used to represent declarative memory of the non-episodic 

variety (Sutherland and Rudy 1995; Rudy and O'Reilly 2001), but with
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the additional requirement of PFC circuitry necessary for associating
t.

the temporal components which distinguish the uniqueness of 

individual experiences. The addition of a distinct episodic memory 

system built upon a semantic framework is amenable to the Serial, 

Parallel, Independent theory of declarative memory progression 

proposed by Tulving (1993), although the present work is in obvious 

opposition to Tulving's notion that episodic memory is a uniquely 

human trait involving dependence upon phenomenological 

characteristics accompanying recall ((Tulving, 1989, 2002). Our 

findings are also in accord with the notions of Nadel and Moscovitch 

(1997; Nadel et al., 2000) that episodic memory involves co­

ordination of a contextual representation provided by the medial 

temporal lobe, and a temporal trace localized to the prefrontal cortex. 

We do not find support for the longstanding conjecture that declarative 

memory represents a single medial temporal lobe system dealing 

indiscriminately with any form of semantic or episodic knowledge 

heralded by Squire and colleagues (Cohen and Squire, 1980; Squire, 

1992; Squire & Zola Morgan, 1998). (Tulving, 1989, 2002). It seems 

somewhat contradictory that Squire maintains his position of a single 

declarative memory system, while publishing manuscripts attesting to 

the role of the frontal cortex in episodic but not semantic memory 

(Squire 1987). Though the claim can be made that the frontal lobes
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are simply assisting in performance of recall type processes but not 

recognition, with formation and processing solely mediated by a single 

medial temporal lobe network, the very fact that the frontal lobes can 

interact with one but not the other type of memory would seem to 

imply these types of memory are in fact distinct and dissociable.

Future work with this model should allow for a more in-depth 

investigation of specific brain regions involved in mammalian episodic 

memory as well as how it changes with age and pathologies. Precision 

lesions unethical to administer to humans may also allow investigators 

to test the assertion of Declarative Theory (Squire and Cohen 1980) 

that semantic and episodic memory are not differentially represented 

in the medial temporal lobe, by taking advantage of histological 

techniques that could remove any doubt as to lesion locale or extent.

An additional experiment of interest would be to conduct place 

cell studies in which hippocampal cell assemblies representing each 

pre-exposure context are noted and conditions of their individual 

retrieval examined. It would be very convincing, for example, if a cell 

assembly associated with a context was reactivated even without re- 

exposure to the context, upon provision of retrieval cues such as 

removal from the home cage at the time of day associated with pre­

exposure. Such a demonstration may convince even the most 

steadfast of skeptics that episodic memory is a shared characteristic of
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rats and humans, perhaps even accompanied by a richly imagined re­

experiencing of the event context accompanying recall. Finally, 

sensitivity of this task to frontal lobe impairment provides a novel 

means of assessing integrity of this structure in rats, which may be 

useful in combination with other models of prefrontal dysfunction.

In summary, we have shown here that the model for episodic 

memory as described in the previous chapter exhibits very similar 

general neuroanatomical underpinnings to those serving episodic 

memory in humans. Not only does our task meet relevant behavioural 

criteria for the various definitions previously set forth by a number of 

different researchers (reviewed in the previous chapter), but it also 

relies on some of the same neural circuitry as human episodic 

memory. To our knowledge this is the first time specific brain regions 

underlying episodic memory in a rodent model have been investigated. 

Based on this, and in accord with observations in the human domain, 

we conclude that both the hippocampus and medial prefrontal cortex 

are necessary for episodic memory function in the rat. Excepting the 

issue of autonoesis in animals (Tulving 2002), all characteristics of 

human episodic memory have been shown to be present in our rat 

model, and we feel that appropriate protocols now exist for doing 

animal research in the area that will be applicable to human disorders 

of episodic malfunction.
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In a recent and extensive text summarizing nearly all of the 

research to date concerning the hippocampus (aptly entitled "The 

Hippocampus Book"), a section reviewing theories of function 

concludes with the statement, "... we still do not understand the 

precise role of the hippocampus in episodic and semantic memory or, 

within the domain of episodic memory, in familiarity and recollection... 

[This] points to the need to develop new animal models of these forms 

or memory and of retrieval to help resolve the issues." (Andersen et 

al., 2007 p. 617).

It is our hope and belief that the model described here will 

contribute substantially to that project.
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CHAPTER 4 - CONCLUSION

In the previous two chapters it has been shown that: 1) the rat 

can demonstrate the behavioural characteristics associated with 

episodic memory in humans, and 2) the execution of these behaviours 

depends critically on at least some of the same cortical regions already 

known to sub-serve them in humans. Though that would seem 

sufficient to now state unequivocally that rats have episodic memory, 

one problem, which may prove to be insurmountable, still remains. 

That is the issue of autonoetic consciousness.

When Tulving first presented the concept of episodic memory in 

1972, he defined it based on the type of information it represented. He 

asserted that it was a form of declarative memory that was distinct 

from purely semantic knowledge in that it represented not just rules, 

or verbally expressible information, but also a rich spatio-temporal 

structure. He further asserted, quite correctly, that these differences 

were no small matter, and in fact were so distinct that they would 

comprise two separate, though overlapping systems, with episodic 

memory requiring all that underlies semantic memory plus additional 

circuits to deal with these spatiotemporal associations. However, in 

1983 Tulving revised the definition of episodic memory so that it must 

also necessarily include certain phenomenological qualia. If one
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retrieves an episodic memory, according to Tulving, he has the 

experience of reliving the event in the mental world, as the person it 

actually happened to, at the time it actually happened (though 

obviously as a mental representation of one's self rather than a 

physical being). He called this "Mental Time Travel". If we introspect 

on this, it has some intuitive appeal. If one thinks about the non- 

episodic question, "What is your favorite breakfast cereal," it is likely 

that a word, and just a word, is recalled, say 'Cheerios'. If, on the 

other hand one is asked "What did you have for breakfast this 

morning?" the recollective experience may change, such that instead 

of a list it is as if you have a mental image of actually eating the 

breakfast, within the spatial context of one's home, and with a sense 

of knowing that it is that morning and no other, while still of course 

remaining aware that one is really now at work, answering a question.

From this example we start to see why Tulving argues for three 

additional features of episodic memory to be explicitly shown, all 

implied by the concept 'autonoetic awareness': A sense of temporal 

awareness that centers on the individual,  ̂referred to as subjective 

time; the awareness of self as an acting agent; and autonoetic 

awareness, the ability to represent one's self so as to be able to create 

a second, mental self which can operate in mental space (Tulving, 

1983; Tulving and Markowitsch, 1998). Unfortunately (though

67



arguably not so importantly for our purposes), it is technically 

impossible to demonstrate these qualities in non-linguistic species. It 

is in fact not known whether these limitations are only technical. One 

simply cannot arrange to have a nonhuman animal tell you about its 

breakfast experience, nor prove that it has autonoetic awareness. 

Tulving claims there are not even analogues of these abilities outside 

humans, based on a lack of empirical evidence. One could however 

make the equally incontrovertible claim that humans without 

communication do not have autonoetic awareness either, though 

common sense seems to preclude this.

Tulving, however, does concede that, "In many ways, the 

relation between autonoetic consciousness and episodic memory can 

be thought of as much a matter of definition as a matter of empirical 

facts; we have defined episodic memory in terms of its dependence on 

autonoetic awareness." (Wheeler, Stuss and Tulving, 1997 p. 343). His 

solution to the seeming lack of room for empirical testing or support of 

this assertion is to outline the correlation in development of a sense of 

awareness and the advent of episodic memory functions. Children do 

not usually start expressing episodic memory until after certain 

benchmarks of development that can be interpreted as conscious self 

awareness or a theory of mind (Piaget, 1997). Most of this however is 

simply correlational, and correlating one trait that is found in animals
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and humans alike (episodic memory, as defined by function) to 

another that arguably is not (conscious awareness) does not prove one 

is required for the other.

Tulving does hypothesize that the circuits underlying autonoetic 

consciousness essentially involve the frontal lobes of humans 

(Wheeler, Stuss and Tulving, 1997), and performance of our task has 

been shown to be critically dependent upon a similar area in the rat 

(Chapter 3).

There is no consensus about non-linguistic behavioural 

indicators of conscious experience (Griffiths et al., 1999). However, 

one that would reasonably seem to indicate consciousness is the 

apparent presence of dreams in animals. Many people have 

anecdotes of their animals looking like they are acting out dreams 

in their sleep, but Louie and Wilson's (2001) group at MIT have 

given a much more convincing demonstration. They recorded cell 

activity in the hippocampus as animals ran a circular maze for food 

reward. Later, as animals were in REM sleep it was seen that the 

exact same patterns of cell activity recorded during the task was 

also seen in the dreaming animals, with firing rate and changes in 

firing patterns occurring at the same speed as was observed in the 

awake rats while running. Although the realm of dreaming is still 

considered by most to be outside the realm of empirical science, if
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this study's conclusions can be accepted that may actually solve the 

(unnecessary) problem of proving animals have a self concept, and 

even a meta-representation of themselves. If not, then who is 

dreaming? Frith et al. (1999) furthermore show that many of the 

other accepted neural correlates of conscious experiences are also 

present in animals. Thus it may even be the case that animals do 

exhibit some form of autonoetic consciousness, though lack of 

sufficient proof of this to date should be no more valid a reason for 

limiting animal models of episodic memory than it should models of 

pain or age related dementia.

Virtually any cognitive process can be said to be accompanied in 

humans by some sort of special awareness, but this is not essential, 

and may often not even be important to its function. It could be said 

when a person feels pain there is an essential qualia of agony that is 

additional to the outward manifestations such as grimacing, yelping, 

and subsequent avoidance of associated contexts, and that while 

animals may exhibit all the same observable features of pain, what 

they are experiencing is only 'pain-like' due to a lack of accompanying 

intangible phenomenological qualities. Even if this is true, it makes no 

difference in terms of the benefits that can be derived from using 

animal models of pain for research. If we did not, all of humanity 

would be many years behind in medical science and quality and
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duration of life.

Most certainly vision is not experienced the same way in humans 

and animals, nor pain or olfaction, yet we still refer to them by the 

same name in both species as they serve the same function using very 

similar, but not identical structures. Likewise we do not include 'being 

aware that one is viewing' as mandatory in animal models of vision. It 

may be that the animal just operates as a stimulus-response 

automaton to different patterns of photons on the retina, or it may be 

that it experiences a rich visual motion picture such as we do, but this 

difference has not been in any way an impediment to vision research. 

If the same functions can be shown to be served by very similar brain 

networks, that should be sufficient to advance claims about the utility 

of the nonhuman model for human processes. Autonoesis may not be 

an essential component of the function of episodic memories in 

humans. To say that we cannot use nonhuman animals to model 

episodic memory, given the considerations raised by the experiments 

conducted and the literature reviewed in this manuscript, is 

counterproductive to say the least.

It is important then to recognize that we are not claiming to 

have demonstrated autonoetic awareness in the rat, as would be 

required to classify the processes we are observing as "episodic 

memory" according to Tulving's definition. What we do show is that
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rats are capable of using the 'when' component of an experience to 

determine the 'what' and 'where', suggesting these components are 

linked together in an integrated representation. It is not difficult to see 

that non-human animals could benefit from a system that allowed 

them to discriminate life events, and remember specific experiences 

marked by time and place rather than just simple cause and effect 

generalizations about the world. It is also rare that a complex trait 

would suddenly occur in only a single species with little relevant 

evolutionary precursors or foundation.

While it may currently be impossible to show animals can meet 

the autonoetic criterion of Tulving's episodic memory, it does appear 

that at least two species other than humans can form memories that 

consist of an integrated representation of time, place and event nature 

(Chapter 2). Furthermore, these representations rely upon at least 

some of the same neural circuitry in nonhuman animals as they do in 

humans (Chapter 3). Like all animal models this one is only an 

approximation of the human processes, but this makes it no less 

useful in permitting experimental manipulations relevant to humans 

and possibly in elucidating the evolutionary history of the trait.

As to the importance of this work, episodic memory models are 

of particular clinical relevance because it is these memories which are 

most susceptible to nearly all forms of insult. When we think of
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memory loss resulting from neurodegenerative diseases such as 

Alzheimer's (Small et al., 2005), or even acute trauma such as a 

closed head injury, patients do not typically lose their lexicon or forget 

how to walk - they are most likely to lose recent portions of their 

autobiographical record in both the retrograde and anterograde 

direction. They may forget where they were, having met another 

individual, or what they had to eat. They will very rarely, however, 

forget how to eat, the name of their country, or the capital of France, 

etc.. (Evans et al., 1993; Duffy and O'Carroll, 1994; Greene et al., 

1996). A similar pattern of susceptibility is also seen in normal aging 

(Herlitz and Forsell 1996; Nilsson et al., 1997; Tulving & Markowitsch 

1998). Tulving and Markowitsch (1998) for example describe episodic 

memory as a system which develops late and decays early.

Memory deficits in autism have also been described to include a 

lack of ability to form episodic memories, while still maintaining an 

intact semantic repertoire. Autism is a developmental disorder which 

results in dysfunctional limbic-prefrontal connections, while largely 

preserving the integrity of the rest of the limbic system (Ben Shalom, 

D., 2003). Korsakoff's syndrome, attributed to damage of a system 

including the mammilary bodies and anterior thalamic nuclei that are 

important in connecting hippocampus with prefrontal cortex (Aggleton
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& Pierce, 2002), is an additional condition associated with specific 

episodic deficits.

It is possible that the episodic memory model presented in this 

manuscript could be combined with models of neurodegenerative 

disease or acute trauma in rats. It would be particularly convincing if it 

was shown that this behaviour, and other demonstrations of episodic 

memory in the rat or jay, are more susceptible to removal (failure? 

breakdown?) in models of dementia and cognitive decline both 

pathological and due simply to normal aging, as is clearly the case in 

humans. Combined with all the previous studies reviewed above, it can 

now more confidently be stated that episodic memory does exist 

outside of humans, and we should take advantage of this fact by using 

animal models for the benefit of human health and to further our 

understanding of human memory. The debate about autonoetic 

awareness may have benefit in a different realm of scholarly activity.
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FIGURES

Figure 1.1. In Phase 1 rats are exposed to one context in the morning, and a second in 
the evening for 3 days. During Phase 2 rats are shocked immediately either in the 
morning or evening in a context which equally resembles the two contexts from Phase 1. 
Phase 3 is an exposure at mid-day video recorded to monitor freezing behaviour of a 
subject in either the context experienced during the mornings o f Phase 1 or the evenings.

PHASE 1 l  PHASE 2 PHASE 3
Pre-Exposure - .̂Immediate Shock Testing

Figure 1.2. In phase 1 rats are exposed consecutively to two different contexts once a day 
for three days. During Phase 2 they are immediately shocked in a context comprised of 
equal elements of both Phase 1 contexts. Phase 3 is a motion recorded exposure session 
in either of the phase 1 contexts. All phases are conducted at approximately mid-day.
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PHASE 1 PHASE 2  PHASE 3
Pre-Exposure Immediate Shock Testing

Figure 1.3. In Phase 1 rats are exposed over three days to one context in the morning and 
a second in the evening. For Phase 2 they are immediately shocked either in the morning 
or evening in a context equally similar to the two phase 1 contexts. At Phase 3 rats are 
tested for freezing in the same context they were shocked in during Phase 2.

PHASE 1 PHASE 2  PHASE 3
Pre-Exposure Immediate Shock Testing

Figure 1.4. Rats are exposed to a single context once a day for 3 days (Phase 1), then 
given an immediate shock in that context during Phase 2 and subsequently tested for 
freezing behaviour in Phase 3. All exposures occur at the same time of day.

83



Figure 2.1. Tissue sections stained using Cresyl violet demonstrate typical lesion extent 
observed in animals given NMDA infusions to the medial prefrontal cortex (right) as 
compared to shams (left), arranged anterior to posterior in descending order.
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Figure 2. 2. Cresyl violet stained section demonstrating typical lesion extent observed in 
animals subjected to NMDA induced hippocampalectomy (right) as compared to shams 
(left), and arranged from anterior to posterior down the page.
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Figure 3. 1. Rats subjected to the episodic memory task illustrated in figure 1.1. show far 
more fear memory of the pre-exposure context congruent to the time of day at which they 
were shocked than the incongruent one, as indicated by percentage o f time in which they 
exhibit freezing behaviour. Bars represent standard error of the mean.
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35

Figure 3. 2. Rats given the same duration and order of exposures as in the episodic 
memory task, but without a temporal distinction between contexts (as seen in figure 1.2.) 
do not differentially attribute fear to one pre-exposure context over the other, though they 
do learn a generalized fear association.
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Figure 3.3. Rats exhibit more fear memory to the context in which pre-exposure time 
was congruent to shock time than to the chimeric context in which the immediate shock 
was actually delivered (procedure illustrated in figure 1.3).
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Figure 3. 4. When performing a version of immediate shock which does not involve a 
temporal association to context (as per figure 1.4), rats with hippocampal lesions show 
impaired fear memory while those with damage to the medial prefrontal cortex do not.

89



60

50

0>
C
N 40 O
£
U. 30

*
20

10

70 ■  Congruent Sham
■  Congruent HPX 

Incongruent Sham
■  Incongruent HPX

AVG

Test Minute

Figure 3. 5. Rats with hippocampal lesions do not discriminate between congruent and 
incongruent shock contexts in the model of episodic memory illustrated in figure 1.1.
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Figure 3. 6. Rats without an intact medial prefrontal cortex are impaired in the test of 
episodic memory described in figure 1.1.
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