
LOOMING OBJECT DETECTION WITH EVENT-BASED CAMERAS

IFFATUR RIDWAN
Bachelor of Science, Military Institute of Science and Technology, 2015

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Iffatur Ridwan, 2017

LOOMING OBJECT DETECTION WITH EVENT-BASED CAMERAS

IFFATUR RIDWAN

Date of Defence: December 7, 2017

Dr. Howard Cheng
Supervisor Associate Professor Ph.D.

Dr. John Zhang
Committee Member Associate Professor Ph.D.

Dr. Matthew Tata
Committee Member Associate Professor Ph.D.

Dr. Amir Akbary
Chair, Thesis Examination Com-
mittee

Professor Ph.D.

Dedication

I dedicate this thesis to my parents and my sister for believing in me.

iii

Abstract

We present a looming object detection method for event-based cameras. Event-based cam-

eras detect events asynchronously which eliminates the unnecessary computation required

for the conventional frame-based cameras. There are two main parts of this method. In the

first part, we develop an event-based optical flow algorithm. The algorithm is based on Re-

ichardt motion detectors inspired by the fly visual system and has a very low computational

requirement for each event received from the event-based camera. In the second part, we

develop an algorithm to detect looming objects using the output from the first algorithm.

This proposed method is only sensitive to significant log-luminance changes, which results

in low energy consumption. We have performed several experiments with our method using

the Davis Dynamic Vision Sensor (DVS) which is an event-based camera. Experimental

results show that our event-based looming detection algorithm accurately detects looming

objects in all cases when there is a single object moving in the scene. It also does not re-

port looming when no objects are looming. Our algorithm is fast and operates in real-time,

requiring only microseconds to process each event.

iv

Acknowledgments

First and foremost, I would like to thank Allah for bringing me where I am today. After

that, my deep gratitude goes first to Dr. Howard Cheng, whom I cannot thank enough.

Thank you for being patient when I was difficult to handle. Thank you for offering me this

wonderful opportunity, for believing in me, even if it only was for just a fraction of seconds!

I am grateful to my committee members, Dr. John Zhang and Dr. Matthew Tata, for

their guidance and support throughout my research. I would also like to thank the Tata lab

for providing me research equipment. Thanks to Scott Stone and Cody Barnson for all their

help.

My appreciation also extends to the people I met in my home far away from home,

Lethbridge. Thank you everyone who kept supporting me during my mood-swings. Special

note of thanks to those awesome people who never showed any sign of resentment even

when I was wrong.

Finally, my parents, along with my sister and my brother-in-law. Without the inspiration

and the drive they have given me, I might not be the person I am today. My sister has been

my defender, counsellor and motivator by all means. Thank you for being there. Ammu,

Abbu and Suappi - I love you.

“Allah does not burden a soul beyond that it can bear...” (Qur’an, 2:286)—Thanks to

them who made me believe this.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Contribution . 3
1.2 Organization of Thesis . 3

2 Background 4
2.1 Reichardt Detector . 4
2.2 Optical Flow . 7
2.3 Looming Object Detection . 8
2.4 The Davis Dynamic Vision Sensor (DVS) 10
2.5 Address Event Representation . 12

3 Event-based Optical Flow Algorithm 14
3.1 Motion Detection by Dynamic Vision Sensor 14
3.2 Our Approach . 15
3.3 Data Structure . 17
3.4 Algorithm . 18
3.5 Relationship to Reichardt Detectors . 21
3.6 Experiments . 24

3.6.1 Thresholds and Parameters . 24
3.6.2 Experiments on simple objects . 25
3.6.3 Experiments on simulated DVS 32
3.6.4 Summary . 34

3.7 Variations . 34
3.7.1 Definition of the “most recent event” and the timestamp threshold . 35
3.7.2 Size of the data structure . 36
3.7.3 Reporting the direction of detected motion 36

4 Looming Object Detection 38
4.1 Our Approach . 38

4.1.1 Object Detection . 38
4.1.2 Classifying the type of Movement 41

4.2 Data Structure . 44

vi

CONTENTS

4.3 Algorithm . 45
4.4 Experiment and Analysis . 48

4.4.1 Thresholds and Parameters . 49
4.4.2 Experiments on Simple Objects 49
4.4.3 Summary . 55

4.5 Limitations . 56

5 Conclusion 59
5.1 Future Work . 59

Bibliography 61

vii

List of Tables

3.1 Properties of all constants and thresholds for all experiments. 25
3.2 The system specifications used for experiments. 26
3.3 The Davis Dynamic Vision Sensor camera specifications [14] used for ex-

periments. 26
3.4 Results of the experiment with round looming object. 26
3.5 Results of the experiment with round object moving sideways. 27
3.6 Results of the experiment with square object with little movement. 28
3.7 Results of the experiment with square object moving from top to bottom. . . 29
3.8 Results of the experiment square object moving sideways. 30
3.9 Results of the experiment with looming square object. 30
3.10 Results of the experiment with round object with looming. 31
3.11 Properties of the test videos for simulated DVS. 32

4.1 Values of all thresholds and constants for all experiments on Algorithm 2. . 49
4.2 Results of the experiment with round looming object. 50
4.3 Results of the experiment with round object moving sideways. 51
4.4 Results of the experiment with square object with little movement. 51
4.5 Results of the experiment with square object moving from top to bottom. . . 52
4.6 Results of the experiment square object moving sideways. 54
4.7 Results of the experiment with looming square object. 55
4.8 Results of the experiment with round object with looming. 56

viii

List of Figures

2.1 A model of Reichardt Detector. 5
2.2 Neighbourhood of (x, y). Here s is the spatial displacement. 5
2.3 (∆x,∆y) for each pixel in the neighbourhood of (x,y), where s = 1. 6
2.4 An example of checkerboard pattern before and after horizontal movement. 7
2.5 A simulated example of looming. 9
2.6 A ball approaching towards the viewer. 9
2.7 Example of DVS output. Here, positive illumination change in a pixel is

shown as a green dot and negative illumination change is shown as a red dot. 12

3.1 DVS events generated from simple horizontal movement. (a) Object at time
t = 0. (b) Object after moving one unit of time. (c) Polarity changes. 15

3.2 DVS events generated from simple movement. (a) A square object at time
t = 0. (b) Object is moving, at time t = 1. (c) Object moved two columns, at
time t = 2. (d) Showing the polarity change at time t = 1. (e) Showing the
polarity change at time t = 2. Note that the edge of the object has significant
changes in polarity along the direction of the movement. 16

3.3 Vectors in eight compass directions. 19
3.4 An arrow with green line and red head used to visualize the direction of

detected movement. 25
3.5 A round looming object. 27
3.6 A round object moving sideways. 27
3.7 A square object with little movement. 28
3.8 A square object moving from top to bottom of the scene. 29
3.9 A square object moving from left to right. 29
3.10 A looming square object. 30
3.11 A looming round object. 31
3.12 Two example frames from the second test video. 33
3.13 DVS events corresponding to the example frames in Figure 3.12. Pixels

with DVS events are shown in white. 33
3.14 A visualization of the output of Algorithm 1 on Video 1. 34
3.15 A visualization of the output of Algorithm 1 on Video 2. 35
3.16 (a) Showing the polarity change of a moving square object at time t = 0. (b)

Showing the polarity change at time t = 1. Note that the edge of the object
has significant changes in polarity along the direction of the movement. The
circled pixel will be matched with any of the three pixels with − polarity.
This will create multiple vectors originating from a single pixel. 37

ix

LIST OF FIGURES

4.1 (a) and (b) The angle between the arrows is 45 degree which can be consid-
ered as similar direction (c) Angle between the arrows is more than 45 and
they are not considered as similar direction. 39

4.2 Linking the pixels. 39
4.3 Group of pixels forming a square region (red area). The areas in green

boundary are too isolated to be considered. 40
4.4 Linking pixels to form an edge. 41
4.5 (a) A round object at time t = 0. (b) Object is moving away, at time t = 1.

(c) Object is moving away, at time t = 2. 41
4.6 (a) A round object at time t = 0. (b) Object is moving towards, at time t =

1. (c) Object is moving towards, at time t = 2. 42
4.7 (a) A round object at time t = 0. (b) Object is moving horizontally, at time

t = 1. (c) Object is moving sideways, at time t = 2. 42
4.8 ~u is the vector from interior point C to pixel P. ~a is the direction vector at

pixel P. 43
4.9 A round looming object. 50
4.10 A round object moving sideways. 51
4.11 A square object with little movement. 52
4.12 A square object moving from top to bottom of the scene. 53
4.13 A square object moving from left to right. 53
4.14 A looming square object. 54
4.15 A looming round object. 55
4.16 (a) A single object in a scene, the interior point computed lies inside the

object. Therefore the direction of movement can be calculated accurately.
(b) Multiple objects in a scene, the interior point is in the middle of the
scene. The direction of different objects cannot be reported accurately. . . . 57

4.17 (a) A convex object in a scene, the interior point lies inside the object.
Therefore the direction of movement can be calculated accurately. (b) A
non-convex object in a scene, the interior point does not lie inside the ob-
ject. Also, the number of arrows pointing towards the interior point is
smaller than the number of arrows pointing away from the interior point,
even though the object actually is looming. 58

4.18 Objects with bold patterns. 58

x

Chapter 1

Introduction

Computer vision is a field in which algorithms are designed to analyze images or videos, in

order to extract useful information. Video processing is characterized by the extraction of

information from a video stream to generate some useful information and decisions. There

are many applications of video processing including object tracking, video enhancement,

motion detection, information retrieval, object identification, etc. In robotics, there are

a number of problems that require extracting particular information from a video stream

obtained from cameras on the robot. One such problem is looming object detection.

Looming is an optical phenomenon of rapid expansion of any object. Looming detection

is a particular type of motion detection which detects whether an object is approaching

towards the viewer or vice versa [25]. Traditionally frame-based cameras are used for such

tasks. However, they have a relatively low frame rate. Thus, the speed of looming detection

on systems based on these cameras is limited by the frame rate. These cameras capture data

regularly even when there is no motion in the scene, wasting both computational resources

and electrical power. Conventional algorithms often need to perform processing to identify

regions of interest, and to ignore the static background. This processing requires extra

computation and storage.

Neuromorphic engineering is a concept in which biological nervous systems are simu-

lated by Very Large Scale Integration (VLSI) systems with electronic analog circuits [19].

This particular field works to replace conventional transistor-based circuits with neuron-

like architecture inspired by the human brain. The Davis Dynamic Vision Sensor (DVS)

1

1. INTRODUCTION

is an example of such a system. The DVS is a different type of camera designed to sim-

ulate the human retina [14]. It only sends data when there is a significant change in the

log-luminance in any individual pixel. Log-luminance value is the logarithmic value of

luminance. Logarithmic value is used to represent very high variations that could not be

represented efficiently on the linear curves. These significant changes in log-luminance are

called events, and they may be reported by the camera asynchronously at any time as soon

as the event is detected by the camera. The DVS is an event-based camera. Only significant

changes are reported and need to be processed, resulting in lower computational power re-

quirement, as well as faster reaction times. In contrast, frame-based cameras sample every

pixel for each frame and report the luminance of each pixel at regular intervals. However,

algorithms for frame-based cameras cannot be used directly for these neuromorphic cam-

eras. New event-based algorithms have to be developed.

In the modern world, we need faster reaction times in applications such as robotics or

vehicle navigation, or even for people with special needs to use in their regular life [27].

Our goal is to propose a system which can react significantly faster than systems based on

conventional frame-based cameras. In this thesis, we propose a combination of event-based

algorithms to detect looming objects. We show by experiments that the proposed algorithms

are accurate and fast.

To detect motion occurring in a scene, we design a modified version of Reichardt de-

tector [23]. The Reichardt detector is a non-linear mechanism which uses correlation

computation to find out the difference between two adjacent input signals in order to detect

motion. This model is inspired by the visual system of flies. We have designed our version

of Reichardt detector to compute optical flow, indicating detected motion in a scene.

For looming object detection, our approach is to detect the edges of the object first. In

order to identify the edges we group neighbour pixels with motion in similar directions.

Only the boundary pixels in the group are selected to be considered. Next the directions

of the edge or boundary pixels of the object are analyzed. If the direction is pointing away

2

1.2. ORGANIZATION OF THESIS

from the center of the object, our algorithm reports that a looming object is detected in the

scene.

Experimental results show that our optical flow algorithm is accurate and can be per-

formed in real time. Each event can be processed in about 2 microseconds on average. Our

looming detection algorithm is accurate in all cases tested in which there is a single object

in the scene, and it can also process each event in under 3 microseconds.

1.1 Contribution

There are several works already done on looming detection using conventional cameras.

The Davis DVS produces outputs that are very different from conventional frame-based

cameras. We have proposed a method to use the output of the DVS to compute optical flow

using our variation of Reichardt Detector. This optical flow algorithm detects motion in any

pixel of the scene. This information is then used to detect a looming object. To the best

of our knowledge, this is the first algorithm for looming object detection for event-based

cameras. Our approach takes advantage of the properties of the DVS in order to obtain an

efficient real-time algorithm that accurately detects looming objects.

Our proposed event-based optical flow algorithm has been published in the International

Conference Image Analysis and Recognition (ICIAR) 2017 [24].

1.2 Organization of Thesis

In this thesis, we will discuss the background and the motivations of our research in

Chapter 2. In Chapter 3, we will develop our event-based optical flow algorithm and demon-

strate its performance. In Chapter 4, we will explain our method of detecting looming ob-

jects as well as the algorithm with experiments and results. Finally in Chapter 5, conclusion

and possible future works of the thesis will be discussed.

3

Chapter 2

Background

In this chapter we discuss some backgrounds of the methods and terms we have used in this

research. We also explain the definitions and previous works on those topics.

2.1 Reichardt Detector

In 1956, Hassenstein and Reichardt proposed a correlation based movement detection

model which was originally inspired by the visual system of flies [23]. The mechanism

underlying this method of motion detection is non-linear. In this proposed method, move-

ment is detected by computing the correlation of the appropriately filtered signals of two

neighbouring retinal input channels.

The Reichardt detector consists of two mirror symmetric sub-units (Figure 2.1). In

each sub-unit, the luminance values as measured in two adjacent image locations (one of

them is delayed by a low pass filter) are multiplied together. The product can be viewed

as the correlation of the two locations at different times. The resulting output signal is

the difference between the multipliers of the two sub-units, and indicates the direction of

movement [6].

More formally, let f (x,y, t) be the luminance value at location (x,y) at time t. We also

let ∆x and ∆y be the offset between the locations of two adjacent sub-units, and ∆t be the

time delay. Then the output of the Reichardt Detector is

RD(f ,x,y, t, t ′) = f (x′,y′, t) · f (x,y, t ′)− f (x,y, t) · f (x′,y′, t ′), (2.1)

4

2.1. REICHARDT DETECTOR

Figure 2.1: A model of Reichardt Detector.

Figure 2.2: Neighbourhood of (x, y). Here s is the spatial displacement.

5

2.1. REICHARDT DETECTOR

Figure 2.3: (∆x,∆y) for each pixel in the neighbourhood of (x,y), where s = 1.

where x′ = x+∆x, y′ = y+∆y, and t ′ = t +∆t. If |RD(f ,x,y, t, t ′)| exceeds a threshold TRD,

motion is detected along the direction (∆x,∆y) or−(∆x,∆y), and the sign of RD(f ,x,y, t, t ′)

indicates the actual direction. Adjacent pixels inside stationary objects will not be detected

because the difference is close to zero.

Each Reichardt detector can only detect motion at a particular location with velocities

of ±(∆x/∆t,∆y/∆t). Different velocities can be detected by varying ∆x, ∆y, and ∆t. In

practice, this is accomplished by a grid of Reichardt detectors on the pixels of successive

frames, so that motion can be detected at all locations in a number of pre-defined directions

(e.g. the 8 compass directions).

A Reichardt detector detects motion at a specific location in a specific direction. The

proposed system by Hassenstein and Reichardt [23] is based on using multiple Reichardt

detectors in a grid to detect motion in multiple directions. The neighbourhood of a location

in the grid is shown in Figure 2.2 and Figure 2.3. The input to these sub-units are the signals

at (x,y) and its neighbours at time t and t ′. The vector (∆x,∆y) defines the direction in which

motion detection is done. The photoreceptors are placed at a distance of
√

(4x)2 +(4y)2

6

2.2. OPTICAL FLOW

apart.

There are some cases in which detection of motion by the Reichardt detector can be

ambiguous. For example in a pattern such as a checkerboard, in which the pattern is re-

peated symmetrically, the grid of detectors cannot identify the motion as the same pattern

is found throughout the whole frame (Figure 2.4). As it is seen in the figure, the centre cell

of the pattern strongly correlates with all four neighbourhood cells after horizontal move-

ment. As a result, it is very difficult to distinguish the new position of the center cell. The

new position can be any one of the four neighbourhood cells, and the grid of Reichardt

detector reports motion in all four directions. It is not possible to identify which of the four

movements actually took place. As for diagonal movement, no motion is detected at all.

This is because even after the movement the neighbourhood cells retain the same pattern

after ∆t. This problem can be solved by choosing smaller values of ∆t, ∆x and ∆y. If ∆t, ∆x

and ∆y are decreased accordingly, the changes in the pattern can be detected. because the

new pattern would not align with the original grid.

Figure 2.4: An example of checkerboard pattern before and after horizontal movement.

2.2 Optical Flow

Optical flow has different definitions in image processing and neuroscience. Though

this research is an interdisciplinary project, we are drawing definitions and using the termi-

nologies from image processing. In image processing, optical flow is a vector field indicat-

7

2.3. LOOMING OBJECT DETECTION

ing the apparent motion of each pixel in a scene. When objects in the scene move relative

to the viewer, a pattern of motion emerges.

It is of particular interest in visual neuroscience because there are optical flow sensitive

cells in certain parts of the visual system. That is, there are neurons that become excited

if and only if there is optical flow visible. This is interesting because such neurons must

integrate local texture and motion information across a relatively large field, yet they do so

very fast. These are some of the fastest responses in the visual cortex [29].

Optical flow is a typical solution for many types of movement detection. There are many

optical flow algorithms designed for conventional cameras [2, 26, 13]. These algorithms are

often based on the principles in calculus such as partial derivatives. SpikeNet Technology

[26] has developed an efficient processing algorithm [5], which is based on neurobiological

principles. This algorithm is capable of efficient real-time calculation of optical flow. At

each point in the image, the system can provide a direction of motion in 8 or 16 different

possible directions together with a value for the distance (in pixels) of movement between

two consecutive frames. Two threshold parameters are used: one is to determine the min-

imum amount of edge energy required to trigger a response, and the second one is used to

calculate the minimum luminance change between two frames for signal motion. In case

of very low values of thresholds, a dense motion map can be generated where all pixels are

generating a motion value. The noise can be controlled by changing the threshold value.

Even though the most significant advantage of this algorithm is its speed, this system is

designed only for conventional cameras.

2.3 Looming Object Detection

According to the theory of human visual system, a compelling illusion of motion in

depth is given by a retinal image that changes in size [25]. Examples are shown in Fig-

ure 2.5 and Figure 2.6. When the object increases in size, this phenomenon can be defined

as “looming.” Looming is referred to only those events where the object is coming towards

8

2.3. LOOMING OBJECT DETECTION

or approaching the viewer, or vice versa. After thousands of years of evolution, very so-

phisticated systems are used in nature. For example, the locusts visual system has a neural

structure which selectively responds to looming objects [34].

Figure 2.5: A simulated example of looming.

Regan and Beverly [22] presented a psychological evidence that there are some information-

processing channels in the human visual pathway which deals with visual looming detec-

tion. In this case, they have defined looming as a “change in the image size.”

Various algorithms have been developed for detecting looming [8, 20]. Subbarao [28]

proposed a method to calculate the time-to-crash of an object and a viewer by using the

first-order spatial derivatives of image motion. Park and Sowmya [21] followed three steps

to analyze and understand looming behavior. According to them, looming is an optical

phenomenon which defines rapid expansion of any object in an image, as it is getting larger

on the perceivers retina. For the understanding of looming, first a real time optical flow

algorithm is designed. Then, the retinal pixels in 2D space are clustered in order to segment

objects. Finally, the looming aspects of the objects are computed. To compute the optical

flow in the first step, each pixel has to be matched against other pixels in its neighbourhood

Figure 2.6: A ball approaching towards the viewer.

9

2.4. THE DAVIS DYNAMIC VISION SENSOR (DVS)

using correlation computations. Instead of computing the correlation of each pixel to all the

pixels in the neighbourhood, Park and Sowmya proposed to use “photo-signatures” as an

efficient way to eliminate irrelevant pairs of pixels that need to be matched. These photo-

signatures are based on the gradient of the video in spatial and temporal directions. For

the segmentation, Self-Organising Feature Map was used to cluster optical flow vectors.

For the last step which is the computation of the looming aspects, the focus of expansion

is computed for objects. In such a system, a robot will observe any possible obstacle or

looming objects by turning its head around. If some possible collision detected, the robot

will find a safer path.

Pedro and others [10] proposed an algorithm for the computation of the focus of ex-

pansion in a video sequence. Their main objective is to calculate the vanishing point of

multi-frame interest point trajectories in consecutive frames. The method consists of two

main parts: extracting the point trajectories simultaneously and projecting them into their

vanishing point by means of the cross ratio property. The cross ratio is a geometric invari-

ant for any perspective viewpoint such as translation, rotation, and scaling changes [12].

For the first part, they calculate the intersection points and the motion flow of the object(s).

After that, for each point they link the consecutive segments using the optical flow as long

as the points are visible to the viewer. Thus the point trajectories are collected. Later, they

use the point trajectories to determine the focus of expansion.

2.4 The Davis Dynamic Vision Sensor (DVS)

The human brain is composed of several slow asynchronous neural components [17]

which show exquisite performance in terms of cognitive behaviour in an uncontrolled en-

vironment. In neuromorphic engineering, the main concern is to design a system which

resembles the human brain architecture with neural components such as the retina. In most

situations where only a few objects are moving in the scene, conventional imagers such as

digital cameras capture many frames with redundant data. This is a waste of computational

10

2.4. THE DAVIS DYNAMIC VISION SENSOR (DVS)

power and time. It is found that biological retina is one of the most developed sensing

devices which asynchronously transmit relevant information [11]. If such sensory systems

can be built with circuits, it will reduce redundancy and will increase efficiency in power

dissipation and information transfer. The Davis Dynamic Vision Sensor (DVS) is a camera

that is modeled upon the human retina [14]. It uses a technology that works like the human

retina.

Unlike conventional image sensors where image data are transmitted synchronously

from the device, the DVS is an asynchronous device that only transmits events indicating

the sign of a significant change when a large enough change in log-luminance occurs in

any pixel. The output from the DVS camera is an event stream which is a packet container

of pixel information. The polarity of the event, the coordinates of the pixel location and

the timestamp of that event is carried by the event stream. There might be other informa-

tion contained in the event stream such as the motion of the camera, but only the polarity,

coordinate and the timestamp are important for this thesis. The DVS detects if there is

any significant change in any pixel. If there is no significant change, this system does not

produce any output. This particular difference from conventional video cameras makes it

extremely useful in robotic navigation and other applications. It provides lower power re-

quirements, lower computational requirements and faster reaction times. Since the DVS

only compares log-luminance levels instead of reporting the absolute log-luminance levels,

it has a higher dynamic range than conventional cameras.

On the other hand, working with this technology is sometimes difficult because only the

polarity of the relative changes in pixel values are reported. Only the outline can be seen in

this process, not the whole object. As a result the overall image is very hard to visualize if

needed (Figure 2.7). Recently there have been some works done on the reconstruction of

the original video from the data generated by the DVS. These methods [1, 15] allow recon-

struction of the original video. However, the video obtained is only a rough approximation,

requiring more computations and many movements in the scene.

11

2.5. ADDRESS EVENT REPRESENTATION

Figure 2.7: Example of DVS output. Here, positive illumination change in a pixel is shown
as a green dot and negative illumination change is shown as a red dot.

The events are generated independently by each pixel. The continuous-time photorecep-

tor output, which encodes luminance logarithmically, is constantly monitored for changes

since the last event was emitted by the pixel. A detected change in log-luminance exceed-

ing a threshold value results in the emission of an ON or OFF event. Communication of

the event to the periphery resets the pixel, which causes the pixel to memorize the new

log-luminance value. The pixels are arranged in an array and fabricated in a standard chip-

making process.

2.5 Address Event Representation

The Address Event Representation (AER) is a protocol for the DVS to transmit events

generated to the receiver. This technology uses a high speed multiplexor and a narrow

communication bus to transport event data by taking advantage of the low frequency of the

events and the high speed of the bus [7]. A bus is a type of communication channel in

computer architecture that transfers data between components. The pixel output from the

DVS consists of asynchronous + and - address-events that signal significant log-luminance

changes. Using AER, a structure similar to human brain architecture is provided to the

neuromorphic chips to transmit data for a long-range communication [30].

12

2.5. ADDRESS EVENT REPRESENTATION

A frame-based process gathers all events in one frame and processes them all at once.

In an event-based system whenever an event occurs, it is transmitted and processed. The

DVS generates events containing information including the pixel coordinates whose log-

luminance has been significantly changed, the sign of the change and the timestamp. For

example: (x coordinate, y coordinate, +/-, timestamp) is a typical event packet that is ex-

tracted from the event stream in AER. There are two software libraries to access the DVS

output in AER format: Java Address-Event Representation (jAER) [32] and C Address-

Event Representation (cAER) [31]. jAER is based on Java platform and cAER is based

on C. Both libraries are still under development by iniLabs. Though jAER is the standard

one, it tends to be slower than cAER because of the platform it uses. Also, cAER uses the

low-level libcaer library API [33] which is easy to manipulate as libcaer is intended to give

direct low-level access to iniLabs devices. For this reason we have chosen to use cAER in

our research.

13

Chapter 3

Event-based Optical Flow Algorithm

In this section, an event-based optical flow algorithm is developed. The input to the algo-

rithm is an event stream reported by Davis Dynamic Vision Sensor (DVS) in Address Event

Representation (AER) format. The output is also an event stream indicating when motion

is detected along with its location and direction. Our algorithm is described, and exper-

iments are performed to evaluate its effectiveness in this chapter. We also show that our

proposed algorithm can be considered a variation of the Reichardt detector (Section 2.1) on

the original scene.

3.1 Motion Detection by Dynamic Vision Sensor

The DVS only reports an event when there is a significant change in the log-luminance

at a particular pixel. Objects in motion will cover and uncover background pixels. For

example, in Figure 3.1, a dark square object is moving horizontally in a lighter background.

As the object moves, the leading edge of the object covers up the background while the

trailing edge exposes the background. In this case, the background has an log-luminance

higher than the object log-luminance, so the leading edge will trigger changes with negative

polarity while the trailing edge will trigger changes with positive polarity.

Generally, when movement occurs in a scene, significant log-luminance changes will

occur only near the edges (boundaries) of objects. The background and the object must

have significantly different intensities for the motion to be detected. When an object moves

in the same direction for a period of time, the pixels along the leading edge will likely

14

3.2. OUR APPROACH

Figure 3.1: DVS events generated from simple horizontal movement. (a) Object at time t =
0. (b) Object after moving one unit of time. (c) Polarity changes.

produce the same polarity of changes along the direction of motion from one instant of

time to the next. This is true if we assume that the background surrounding the object is

relatively constant, which is a reasonable assumption if the detected changes occur close in

time. This is illustrated in Figure 3.2.

3.2 Our Approach

Based on the previous discussion, we propose to detect motion from DVS events by

finding events that are close to each other both spatially and temporally. If these events

have the same polarity, it may indicate motion. Other factors such as noise may also cause

the DVS to report events that will subsequently be detected as motion. By considering

only events with the same polarity, as well as changing the thresholds on what should be

considered “close” spatially and temporally, the effect of noise can be reduced. A spurious

polarity change will not result in motion being detected. Motion will only be detected when

there are two matching events detected close together.

Since the DVS generates events in the AER format, our optical flow algorithm will be

event-based—the algorithm performs operations for each event received from the DVS, and

generates motion events only when motion is detected. Our algorithm will also be online,

processing the input as they arrive instead of waiting until enough input for a “frame” to be

collected. To maintain the various advantages of the DVS, it is important that the proposed

15

3.2. OUR APPROACH

Figure 3.2: DVS events generated from simple movement. (a) A square object at time t =
0. (b) Object is moving, at time t = 1. (c) Object moved two columns, at time t = 2. (d)
Showing the polarity change at time t = 1. (e) Showing the polarity change at time t = 2.
Note that the edge of the object has significant changes in polarity along the direction of
the movement.

16

3.3. DATA STRUCTURE

algorithm does not convert the event stream into frames to apply conventional frame-based

algorithms. If no motion is detected, our algorithm produces no output. This reduces

processing and power requirement when there are no significant changes in the scene.

DVS events are generated as pixel changes are detected in time—they are ordered by

their timestamps but they may arrive in any order in terms of spatial coordinates. As each

event arrives, the algorithm needs to find recent events with the same polarity that are close

by. It is necessary to develop a method of storing recent events so that our algorithm can

efficiently locate recent events close to a particular location, as well as efficiently update

the stored data as events arrive.

3.3 Data Structure

The choice of data structure to maintain the received events can have a big impact on the

efficiency of the algorithm. The data structure used to maintain the received events needs

to support the following operations:

Insert: insert a new event received with a given timestamp t, location (x,y) and polarity

±.

Find: find recent events located close to a target event at (x,y) with a specific polarity.

Expire: remove events that are no longer recent.

If each event is considered as a 4-tuple (x,y, t,±), we may consider this problem as a version

of the dynamic nearest neighbour problem. Nearest neighbour algorithms search around a

specific point, and find the closest neighbour points which meet some criteria. Along with

the retrieval of possible nearest neighbours, this algorithm allows to insert and delete new

points [3, 16]. For example, the find operation can find the nearest neighbour event of the

target and report if it is close enough. Many data structures have been proposed in the

literature for the dynamic nearest neighbour problem, but generally solving this problem is

computationally challenging [16].

17

3.4. ALGORITHM

In our application, we have a restricted range of possible values in spatial coordinates

as they are limited by the resolution of the camera. This restriction allows us to simplify

our data structure in the same way sorting can be done more efficiently by bucket sort when

the range of values is restricted [4]. In our case, a deque1 can be used at each pixel location.

Each deque maintains the recent events corresponding to the location. Events are added

to the corresponding queues when they arrive, and are removed when they are too old and

expire. Searching for an event that is spatially close can be done by examining only the

queues corresponding to the locations close to the target location. Recent events at these

locations will be at the back of the corresponding queues.

The idea of using separate queues at each location can be extended even further as

there are only two possible values for polarity. As a result, we may use two queues at

each location—one for positive polarity and one for negative polarity. To search for a

recent event close to target, we simply have to examine the queues close to the targets

with the correct polarity. However, we do not use this extension in our algorithm because

experimental results show that it is not necessary to obtain good performance.

3.4 Algorithm

The input to our algorithm is an event stream in the AER format. Each event contains

the timestamp, the coordinates of the pixel and the polarity. We are also using a timestamp

threshold T and a low timestamp threshold Tlow to specify how recent we want the events

to be in order to be considered as a match.

The output of our algorithm is also an event stream, which contains information about

detected motion. An event is generated only when motion is detected and no output is

generated when no motion is detected. When motion is detected at a particular pixel, the

algorithm generates an event specifying the timestamp, the location (x, y), as well as the

direction of the motion. In our algorithm, only the eight compass directions are detected

1We are using “deque” to mean double-ended queue.

18

3.4. ALGORITHM

Figure 3.3: Vectors in eight compass directions.

(Figure 3.3), the directions are denoted by the vectors ~v0,= (−1,−1),~v1 = (0,−1),~v2 =

(1,−1),~v3 = (1,0),~v4 = (1,1),~v5 = (0,1),~v6 = (−1,1),~v7 = (−1,0). Thus, the output

of our algorithm is an event stream indicating the nonzero vectors in the optical flow at

specific times and location. The direction vectors are fixed and only these 8 directions can

be reported, but it is possible that multiple directions are reported at the same location and

time. If desired, the multiple directions at a location can be combined (e.g. by taking the

average of the detected directions).

For each pixel location (x,y), we maintain a deque Q(x,y) containing recent events re-

ceived for that particular location. As each event arrives, we examine the eight neighbour-

hood pixels and search for a recent event that has the same polarity in the deque. If a match

is found, an event indicating detected motion from the neighbour to the current pixel is re-

ported. This is described in Algorithm 1. The parameter T is used to control how “recent”

a neighbouring event is to be considered a match to the current event received. And the

parameter Tlow is used to make sure that the events which occurred very recently or at the

same time, are not considered as a match.

When a new event occurs, we examine the elements of the deque of neighbouring pixels

and check whether there is any event in the deque with the matching polarity. If there is a

match, motion is detected. Otherwise, no motion is reported. In the output stream, we have

19

3.4. ALGORITHM

Algorithm 1: Optical Flow Computation with DVS for a single event received.
1 Input: an event from the DVS consisting of timestamp t, location (x,y), and polarity

p ∈ {+,−}; a timestamp threshold T and a low timestamp threshold Tlow.
2 Output: if motion is detected, the event e = (x,y, t,~vi) is reported.
3 while Q(x,y) is not empty do
4 (t ′, p′)← event at the front of Q(x,y);
5 if t− t ′ > T then
6 remove (t ′, p′) from the front of Q(x,y);
7 else
8 exit the loop ;

end
9 Add (t, p) to the back of the deque Q(x,y);

10 for i← 0 to 7 do
11 (x′,y′) = (x,y)−~vi ;
12 found← false ;
13 j← 1 ;
14 while j ≤ size(Q(x′,y′)) AND NOT found do
15 (t ′, p′)← jth most recent event in Q(x′,y′) ;
16 if Tlow < t− t ′ ≤ T and p = p′ then
17 Output event (x,y, t,~vi);
18 found← true ;
19 j← j+1 ;

end
end

20

3.5. RELATIONSHIP TO REICHARDT DETECTORS

the coordinates of the matching pixel, the timestamp and the polarity of the event.

In Algorithm 1, expired events are removed from Q(x,y) at line 3 to line 8. The search

for a match is done in the second while loop which begins at line 14 and ends at line 19.

In terms of computational complexity, each input event requires a number of operations

proportional to the number of directions (fixed at 8) and the deque size. If a fixed limit on

the deque size is imposed, then the number of operations for each event is constant. The

number of pixels in the image is irrelevant. This is important because the output of the

DVS (the input of our algorithm) is generally sparse and the complexity of our algorithm is

directly proportional to the number of events in the input. Thus, the advantage of the DVS

is preserved by our algorithm.

Our method is quite similar to the work of Park and Sowmya [21]. They have used a

gradient match to determine the neighbourhood, while we are using a polarity match. The

events generated from the DVS are considered as derivatives, or changes in log-luminance.

Though the concepts are similar, their method is designed only for conventional cameras.

Their frame-based algorithm is not applicable to the DVS output.

3.5 Relationship to Reichardt Detectors

Although the main approach in Algorithm 1 can be considered as “event matching,” the

algorithm is in fact closely related to the Reichardt detector. A single Reichardt detector

along the direction ~v = (∆x,∆y) for a conventional frame-based camera is described by

(2.1). Recall that the output of (2.1) is compared to the threshold TRD to determine if

motion is detected along the direction ±~v.

We first show that Algorithm 1 can be considered an application of the Reichardt detec-

tor on the output of the DVS (instead of the original scene). An event is generated by the

DVS at location (x,y) when the change in log-luminance is greater than TDV S. If we denote

21

3.5. RELATIONSHIP TO REICHARDT DETECTORS

this change ∆ f (x,y, t), then

|∆ f (x,y, t)|= | log f (x,y, t ′)− log f (x,y, t)|> TDV S, (3.1)

where t ′ = t + ∆t. When two events are matched in Algorithm 1, each of these events

corresponds to a log-luminance change exceeding TDV S at two times t1 and t2 with t1 < t2. In

the algorithm, the current event at (x,y) at time t2 is matched with a previous neighbouring

event of the same polarity at time t1. To simplify notation, we let t2 = t1 +∆t1, and let

t3 = t2 +∆t2.

A match in polarity of two events at (x,y, t3) and (x′,y′, t2) means that the product

∆ f (x,y, t2) ·∆ f (x′,y′, t1) is positive and greater than (TDV S)
2, which can be considered as

the threshold TRD that is used in (3.11) for detecting motion. The second term of (3.11)

may be assumed to be 0 as there are no events at (x′,y′) at time t3. Thus, our algorithm can

be viewed as applying the Reichardt detector to DVS events.

Next, we describe the relationship between the application of the Reichardt detector to

the DVS output and the application of the Reichardt detector to the original scene.

Theorem 3.1.

RD(∆ f ,x,y, t1, t2) = RD(log f ,x,y, t1, t2)+RD(log f ,x,y, t2, t3)

−RD(log f ,x,y, t1, t3).
(3.2)

Proof. We have

∆ f (x,y, t1) = log f (x,y, t2)− log f (x,y, t1), (3.3)

and

∆ f (x,y, t2) = log f (x,y, t3)− log f (x,y, t2). (3.4)

22

3.5. RELATIONSHIP TO REICHARDT DETECTORS

Applying (2.1) from time t1 to t3 , we have

RD(∆ f ,x,y, t1, t2) = ∆ f (x′,y′, t1) ·∆ f (x,y, t2)−∆ f (x,y, t1) ·∆ f (x′,y′, t2). (3.5)

Now, from (3.3), (3.4) and (3.5) we get,

RD(∆ f ,x,y, t1, t2) = [log f (x′,y′, t2)− log f (x′,y′, t1)] · [log f (x,y, t3)− log f (x,y, t2)]

− [log f (x,y, t2)− log f (x,y, t1)] · [log f (x′,y′, t3)− log f (x′,y′, t2)]

= log f (x′,y′, t2) · log f (x,y, t3)− log f (x′,y′, t2) · log f (x,y, t2)

− log f (x′,y′, t1) · log f (x,y, t3)+ log f (x′,y′, t1) · log f (x,y, t2)

− log f (x,y, t2) · log f (x′,y′, t3)+ log f (x,y, t2) · log f (x′,y′, t2)

+ log f (x,y, t1) · log f (x′,y′, t3)− log f (x,y, t1) · log f (x′,y′, t2)

= log f (x′,y′, t2) · log f (x,y, t3)− log f (x′,y′, t1) · log f (x,y, t3)

+ log f (x′,y′, t1) · log f (x,y, t2)− log f (x,y, t2) · log f (x′,y′, t3)

+ log f (x,y, t1) · log f (x′,y′, t3)− log f (x,y, t1) · log f (x′,y′, t2).

(3.6)

From (2.1), (3.3) and (3.4) we get,

RD(log f ,x,y, t2, t3) = ∆ f (x′,y′, t2) ·∆ f (x,y, t3)−∆ f (x,y, t2) ·∆ f (x′,y′, t3) (3.7)

RD(log f ,x,y, t1, t3) = ∆ f (x′,y′, t1) ·∆ f (x,y, t3)−∆ f (x,y, t1) ·∆ f (x′,y′, t3) (3.8)

RD(log f ,x,y, t1, t2) = ∆ f (x′,y′, t1) ·∆ f (x,y, t2)−∆ f (x,y, t1) ·∆ f (x′,y′, t2) (3.9)

23

3.6. EXPERIMENTS

Therefore, by combining (3.6), (3.7), (3.8), (3.9) we get

RD(∆ f ,x,y, t1, t2) = ∆ f (x′,y′, t1) ·∆ f (x,y, t2)−∆ f (x,y, t1) ·∆ f (x′,y′, t2)

= RD(log f ,x,y, t1, t2)+RD(log f ,x,y, t2, t3)

−RD(log f ,x,y, t1, t3).
(3.10)

Applying (2.1) to the output of the DVS, we have

RD(∆ f ,x,y, t, t ′) = ∆ f (x′,y′, t) ·∆ f (x,y, t ′)−∆ f (x,y, t) ·∆ f (x′,y′, t ′). (3.11)

Theorem 3.1 shows that, the application of Reichardt detector to the DVS output can be

thought of as a combination of the outputs of different Reichardt detectors on the original

scene at closely related times. Thus, we have shown that Algorithm 1 can be considered to

be a variation of the Reichardt detector on the original scene.

3.6 Experiments

In this section, some experiments performed with our method are discussed. The system

specification and the thresholds used for the experiments are also presented.

3.6.1 Thresholds and Parameters

For the experiments, the properties of all constants and thresholds we have used are

shown in Table 3.1. The thresholds were chosen experimentally to achieve good results.

Also, the system specifications used for the experiments are described in Table 3.2 and the

camera specifications are described in Table 3.3. For illustration, the arrows with green line

and red head show the direction of movement (Figure 3.4). We illustrate the optical flow

24

3.6. EXPERIMENTS

Figure 3.4: An arrow with green line and red head used to visualize the direction of detected
movement.

Table 3.1: Properties of all constants and thresholds for all experiments.

Name Value Unit
COLS 180 pixels
ROWS 190 pixels
Timestamp Threshold (T) 25,000 microseconds
Low Timestamp Threshold (Tlow) 100 microseconds

detected at particular times for this thesis, but the optical flow is computed continuously in

real-time.

3.6.2 Experiments on simple objects

Simple objects have been used with DVS camera for this part of experiments.

Round looming object In this experiment, a round object is moving towards the viewer.

We can see in Figure 3.5 that most of the arrows are pointing away from the center of the

object. The number of arrows pointing outside is larger than the number of arrows pointing

inside, which indicated that the object is coming towards the viewer.

25

3.6. EXPERIMENTS

Table 3.2: The system specifications used for experiments.

Name Value
CPU Intel(R) Core(TM) i7-3630QM CPU @2.40GHz
RAM 8 GB
Programming Language C++
Libraries libopencv, libstdc++, libGL, libcaer

Table 3.3: The Davis Dynamic Vision Sensor camera specifications [14] used for experi-
ments.

Name Value
Model DVS128
Optics CS-mount
I/O USB2.0
Software cAER
Power source USB Type B
Power consumption Low/high activity: 30/60 mA @ 5 VDC

Here the total length of the video is 3.92 seconds, and the total execution time of Al-

gorithm 1 is 1.35739 seconds over all DVS events. The total number of events is 668530.

That means it takes 2.03 microseconds to process each event on average. The results are

shown in Table 3.4.

Round object moving sideways In Figure 3.6 a round object is moved from right to

left. The number of arrows pointing to the left of the frame is significantly higher than the

number of arrows pointing to other directions. The results are shown in Table 3.5.

Table 3.4: Results of the experiment with round looming object.

Name Value Unit
Total number of events 668530 -
Runtime 1.35739 seconds
Length of video 3.92 seconds
Runtime per event 2.03 microseconds

26

3.6. EXPERIMENTS

Figure 3.5: A round looming object.

Figure 3.6: A round object moving sideways.

Table 3.5: Results of the experiment with round object moving sideways.

Name Value Unit
Total number of events 672201 -
Runtime 1.41999 seconds
Length of video 2.81 seconds
Runtime per event 2.11 microseconds

27

3.6. EXPERIMENTS

Figure 3.7: A square object with little movement.

Table 3.6: Results of the experiment with square object with little movement.

Name Value Unit
Total number of events 655203 -
Runtime 1.32696 seconds
Length of video 5.90 seconds
Runtime per event 2.02 microseconds

Square object with little movement In this experiment, the square object did not have a

lot of movement. This explains the significantly low number of arrows in Figure 3.7. The

results are shown in Table 3.6. We can see that the length of the video is 5.90 seconds but

the number of events generated by the DVS is only 655203.

Square object moving from top to bottom The result of the experiment in Figure 3.8

is visually understandable. This square object had a movement from top to bottom of the

frame. The results are shown in Table 3.7.

Square object moving sideways From the result of the experiment in Figure 3.9, we can

say that the square object is moving from left to right by the direction of most of the arrows.

The results are shown in Table 3.8.

28

3.6. EXPERIMENTS

Figure 3.8: A square object moving from top to bottom of the scene.

Table 3.7: Results of the experiment with square object moving from top to bottom.

Name Value Unit
Total number of events 765584 -
Runtime 1.67583 seconds
Length of video 4.45 seconds
Runtime per event 2.19 microseconds

Figure 3.9: A square object moving from left to right.

29

3.6. EXPERIMENTS

Table 3.8: Results of the experiment square object moving sideways.

Name Value Unit
Total number of events 792649 -
Runtime 1.59001 seconds
Length of video 10.07 seconds
Runtime per event 2.00 microseconds

Figure 3.10: A looming square object.

Looming square object This experiment has a clear visualization of looming. The square

object is coming towards the viewer, so the number of arrows pointing towards outside of

the object is very large (Figure 3.10). The results are shown in Table 3.9.

Round object with looming In Figure 3.11, a round object is coming towards the viewer.

We can observe that a large number of arrows are pointing outside of the edge of the object.

Table 3.9: Results of the experiment with looming square object.

Name Value Unit
Total number of events 850175 -
Runtime 1.60829 seconds
Length of video 5.10 seconds
Runtime per event 1.89 microseconds

30

3.6. EXPERIMENTS

Figure 3.11: A looming round object.

Table 3.10: Results of the experiment with round object with looming.

Name Value Unit
Total number of events 657771 -
Runtime 1.25298 seconds
Length of video 4.88 seconds
Runtime per event 1.90 microseconds

The results are shown in Table 3.10.

Summary As shown by these experiments, Algorithm 1 produces results that agree with

the input scene accurately. The total execution time depends only on the number of DVS

events processed and not the length of the videos. On average, the time to process each event

ranges from 1.89 microseconds to 2.19 microseconds. Notice that for a conventional camera

with a resolution of 180× 190, at 24 frames per second (fps) there will be 820800 pixels

transmitted in one second of video. Our experimental results show the drastic reduction of

data transmitted when the DVS is used.

31

3.6. EXPERIMENTS

Table 3.11: Properties of the test videos for simulated DVS.

Size Number of Frames Number of DVS events
Video 1 1280×720 60 32,940
Video 2 1920×1080 45 8,953,097

3.6.3 Experiments on simulated DVS

For the next experiments, we have designed a simulated DVS which uses captured

videos from conventional frame-based cameras. Our simulated DVS compares intensity

values from consecutive frames, and generate events when a significant change is detected.

A simulated DVS was used because conventional frame-based videos were more available

when the algorithm was first designed and implemented.

We have implemented and tested our optical flow algorithm on various kinds of videos

with real objects such as human, vehicles etc. using our simulated DVS. For this experi-

ment, two test videos are used on Algorithm 1. The properties of the videos are shown in

Table 3.11. The first video consists of a single circular object that moves around in a dark

background while the object is brighter. The second video contains a person moving his

head and body. The camera is not steady so both the foreground and the background of the

scene are moving. In the first video, events are generated by the DVS only on the bound-

ary of the circular object, resulting in a significant reduction in the amount of data sent

compared to conventional frame-based cameras. This is true even in the second video—the

number of events generated is less than a tenth of the total number of pixels among all

frames. Two example frames from the second video are shown in Figure 3.12, and the DVS

events generated corresponding to these frames are shown in Figure 3.13.

Figures 3.14 and 3.15 show some of the optical flow computed by Algorithm 1 on

Video 1 and Video 2, respectively. To visualize the results, motion events generated are

collected and those occurring at the same time are displayed as individual images. Red

arrows have been used to show the pixel movement. To make it easier to visualize, not

all vectors reported by our algorithm are shown, only one vector from a group of closely

32

3.6. EXPERIMENTS

(a) Frame 26 (b) Frame 44

Figure 3.12: Two example frames from the second test video.

(a) Frame 26 (b) Frame 44

Figure 3.13: DVS events corresponding to the example frames in Figure 3.12. Pixels with
DVS events are shown in white.

33

3.7. VARIATIONS

(a) Frame 3 (b) Frame 30

Figure 3.14: A visualization of the output of Algorithm 1 on Video 1.

located vectors are shown. We can visually observe that the optical flow computed reflect

the actual motion present in the videos, though there are very rarely extraneous motion

detected due to noise (e.g. the motion vector detected in Frame 30 in Figure 3.14).

3.6.4 Summary

In these experiments, we have only performed qualitative evaluation by visually in-

specting the output. In order to evaluate accuracy quantitatively, one must have access to

the “ground truth” which is time consuming to produce. Also, one must determine a mea-

sure to quantify accuracy in this case. Instead, we will evaluate Algorithm 1 in conjunction

with the looming detection algorithm in Chapter 4, because the correct output in looming

detection is easier to determine.

3.7 Variations

There are different variations of our algorithm that can be considered. We list some

variations below and the motivations for these variations. A thorough examination of these

34

3.7. VARIATIONS

(a) Frame 11 (b) Frame 43

Figure 3.15: A visualization of the output of Algorithm 1 on Video 2.

variations beyond the scope of this thesis can be explored in the future.

3.7.1 Definition of the “most recent event” and the timestamp threshold

Our goal is to process the recent events only. Events that are too old are not our concern.

If we match some events that are too old, it means that the matched events can be noise,

or not useful. Also, since we are detecting motions that are fast enough, slow moving

objects are not our concern right now. We can vary the interpretation of the “most recent”

events by changing a timestamp threshold. The timestamp threshold T is a value which is

used to determine the maximum time difference allowed between the two pixel events to

be considered as a match. To be more specific, when we get an event at a particular pixel

and search for another “recent” event near this pixel, we take the time differences between

that event and all the other neighbouring events and compare it with the threshold. If the

difference is within the threshold, we consider it as a possible match for our event. A very

active scene may cause many events to be generated by the DVS, and will increase the

35

3.7. VARIATIONS

size of the deque. The deque may get exceptionally large in case of a scene that has many

active objects in it. This leads to very large space requirement. The appropriate timestamp

threshold depends on the speed of the objects in a scene.

If the object is moving fast, a large timestamp threshold may cause the deque to grow

too large and may cause several matches leading to ambiguity in motion detection. On

the other hand, in a scene with a slow moving object, some of the movements may not be

detected when a small timestamp threshold is used. Different threshold values are required

for different velocities of object to be detected in our system. We can adjust the threshold

to detect motion of objects with different velocity.

3.7.2 Size of the data structure

Varying the deque size will allow us to examine different number of events as required.

Also, we can examine older events rather than just the recent ones, which may allow us

to calculate the velocities of the objects. If our timestamp threshold is too large then our

deque might get too large as well. A limit on deque size can be used to control space usage

in our system. Also, in case of a very active scene, the deque can grow very large as well.

On the other hand, if the timestamp threshold is smaller or the scene is quite idle, the deque

might be very small which reduces space usage for every pixel.

3.7.3 Reporting the direction of detected motion

There can be multiple matches in a pixel neighbourhood. For example, in Figure 3.16

we can see that when the square object moves, there are polarity changes at the edges of the

object. The same polarity change occurs in a specific direction alongside the edge of the

object. This creates multiple vectors originating from a single pixel. In matching events in

Figure 3.16 (b), there are some negative polarities alongside the edge and they are within

the same neighbourhood in some cases. In this situation, multiple vectors are detected from

a single center pixel. We can report all vectors separately, or simply compute and report

the average of the vectors detected. This choice will depend on the use of the output. If we

36

3.7. VARIATIONS

Figure 3.16: (a) Showing the polarity change of a moving square object at time t = 0. (b)
Showing the polarity change at time t = 1. Note that the edge of the object has significant
changes in polarity along the direction of the movement. The circled pixel will be matched
with any of the three pixels with − polarity. This will create multiple vectors originating
from a single pixel.

report the vectors separately, it will allow us to discretize the directions. On the other hand,

taking an average of the vectors is more convenient in case of visualization. There are also

various optical flow algorithms which report a single detection, and averaging the detected

vectors will produce comparable results. Also, taking an average may reduce the effect of

noise in the output.

37

Chapter 4

Looming Object Detection

After obtaining the optical flow from Algorithm 1, our next task is to determine if the

detected motion represents looming objects. There are various ways to identify looming

objects from movement. In this section, our algorithm and the implementation of looming

object detection are discussed. Experimental results are also shown.

4.1 Our Approach

The output of Algorithm 1 is the event stream with detected motion. For looming de-

tection, Algorithm 1 reports the average of directions of the movement (3.7.3) detected at

a pixel. The events can represent zero or more objects. We have to identify if there is

any object in the scene or not. After we find an object, we need to determine the type of

movement of the object.

4.1.1 Object Detection

In order to classify the movement of the object(s) in the scene, we need to identify the

boundary or the edge of the object(s) first. An efficient edge-linking method is required.

Our approach for this thesis is to examine the direction of the closely located pixels. From

Algorithm 1 we obtain the properties of the events describing the detected movement. The

information we get from the events are: the location and the direction of movement of the

particular pixel.

After we get an event as the output from Algorithm 1, we conduct a search in its neigh-

bourhood for another event with a similar direction. If the search is successful, we link the

38

4.1. OUR APPROACH

Figure 4.1: (a) and (b) The angle between the arrows is 45 degree which can be consid-
ered as similar direction (c) Angle between the arrows is more than 45 and they are not
considered as similar direction.

Figure 4.2: Linking the pixels.

origin pixel and the neighbour pixel together. These linked pixels are considered as a part

of an edge of an object. We define two directions as “similar” if the angle between them is

45 degree or less (Figure 4.1).

By this method, we are grouping all similar events located close to each other and

ignoring all other events which are located sporadically. These can be considered as isolated

events which possibly are noise. Only large enough groups are considered as edges. For

example, in Figure 4.2 the green arrows are placed closely with each other and the red

arrows are scattered throughout the frame. The green arrows can be linked together and

considered as an edge of a possible object. Red arrows can be ignored as noise.

The final output of this method may not form a complete edge; some parts of the original

39

4.1. OUR APPROACH

Figure 4.3: Group of pixels forming a square region (red area). The areas in green boundary
are too isolated to be considered.

object may be ignored by this method. There can be two reasons for that. Either the changes

were not significant enough (below the threshold) to be detected by the DVS, or the events

were too isolated to be considered by our method. But the edges we obtain from this

edge-linking method mostly consist of large segments of the edge of the object. These

segments contain useful information for motion analysis. This linked edge can be a group

of pixels having a particular shape such as a circle, polygon, ellipse or any random shape.

For example, in Figure 4.3 the arrows with similar direction form a square object, though

some part of the object is missing.

In our approach, we are not linking all the events with same direction. We are actually

trying to form an edge, not a region. We are only concerned about the edge of the object

because for looming detection, observing only the pixels on the boundary of the object is

required. An event is considered to be on the boundary if at least one of its eight neigh-

bourhood does not have a recent event. Otherwise it is considered to be in the interior. For

this we check if an event is on the boundary of the possible object or not. If so, we link

it with other selected events (Figure 4.4). By ignoring the events in the interior of the ob-

ject, we are reducing the amount of data that need to be processed. Also, we are reducing

possible ambiguity which was explained in Figure 3.16. Taking only the edge pixels into

consideration will reduce the problem of reporting multiple vectors unnecessarily.

40

4.1. OUR APPROACH

Figure 4.4: Linking pixels to form an edge.

Figure 4.5: (a) A round object at time t = 0. (b) Object is moving away, at time t = 1. (c)
Object is moving away, at time t = 2.

4.1.2 Classifying the type of Movement

Objects can move in various ways. We can classify object movement into three types:

moving away from the viewer, moving towards the viewer (looming) and moving sideways.

When an object moves away from the viewer, the object appears to be getting smaller.

The edge of the object moves towards the center as we can see in Figure 4.5. In case of

the object moving towards the viewer, or looming, we can see the objects getting bigger.

The edge of the object moves away from the center (Figure 4.6). When an object moves

sideways in the frame (Figure 4.7), the object size remains the same. The leading edge of

the object moves away from the center and the trailing edge moves towards the center.

41

4.1. OUR APPROACH

Figure 4.6: (a) A round object at time t = 0. (b) Object is moving towards, at time t = 1. (c)
Object is moving towards, at time t = 2.

Figure 4.7: (a) A round object at time t = 0. (b) Object is moving horizontally, at time t =
1. (c) Object is moving sideways, at time t = 2.

42

4.1. OUR APPROACH

Figure 4.8: ~u is the vector from interior point C to pixel P. ~a is the direction vector at pixel
P.

In order to classify the movement of the object, we need to find an interior point of

the object and analyze all boundary events to determine if they are moving away from the

interior. We have chosen to use the arithmetic mean of all boundary pixels in the group to

obtain an interior point. This point is in the interior of the region provided that the region

has a convex shape.

After we obtained an interior point of the object, we define~v to be the vector associated

with the direction in the reported motion event, and~u to be the vector from the interior point

to the event on the boundary. We need to determine if~v is pointing away from the interior

point. In other words, we need to determine if the angle between ~u and ~v is less than 90

degrees.

We use a dot product calculation to find out whether the event is pointing towards or

pointing away from the interior. The dot product can be described as the projection of one

vector onto another. For example, suppose we have two vectors ~a and ~u (Figure 4.8), and

we want to calculate if vector ~a is pointing in the same direction as the vector ~u. The dot

product of these vectors will be positive if the two vectors are pointing in generally the

same directions and negative if the two vectors are pointing in opposite directions. The

value will be zero if they are perpendicular. Therefore, we compute~u ·~v, and conclude that

~v is pointing away from the interior if~u ·~v > 0.

After we reach a certain amount of linked events in a group, we examine the number of

43

4.2. DATA STRUCTURE

vectors pointing towards the interior and pointing away from the interior. If the number of

vectors pointing away from the interior is greater than twice the number of vectors pointing

towards the interior, our algorithm reports that a looming object is detected in the scene

and resets the group. The ratio of two between the two types of vectors has been chosen

experimentally. In addition, looming should only be reported if there is a significant number

of vectors pointing away from the interior. Otherwise, the vectors may be noise and do not

represent edges of an object. Experimentally, we have chosen to report looming only if the

number of vectors pointing away from the interior is at least 0.5% of the total number of

pixels in the scene.

Suppose we have N ~pos as the number of vectors pointing away from the interior and N ~neg

as the number of vectors pointing towards the interior. Then, a looming event is reported

if N ~pos > 2×N ~neg and N ~pos ≥ 0.005×ROWS×COLS. Otherwise, no looming event is

reported.

4.2 Data Structure

To store the events we have used a deque for each pixel location in a similar way as in

Algorithm 1. The number of possible events required to store for each pixel is restricted to

a constant in our algorithm. Thus the operations such as finding the most recent event is

constant.

In Algorithm 2, we have to store and link the events in order to form an edge. The

efficiency of our algorithm immensely depends on the data structure we use to maintain

connectivity information. We have to choose a data structure which will reduce the time of

execution and the memory requirement. A disjoint-set data structure maintains a collection

or a set of data [9]. This data structure is also called union-find data structure. In our

algorithm, we are using the union-find data structure to link (union) the pixels in order to

identify a possible edge of an object.

An union-find data structure performs two useful operations: Union and Find. Union

44

4.3. ALGORITHM

joins two subsets into a single subset. Find typically returns an item from this set that serves

as its “representative”; by comparing the results of two Find operations, one can determine

whether two elements are in the same subset. This data structure can perform both of these

operations efficiently, and the complexity of each operation is practically constant time

independent of the number of elements maintained2.

4.3 Algorithm

The input of our Looming Detection algorithm (Algorithm 2) is the output events from

our Optical Flow algorithm (Algorithm 1). The features in the output events are: the x and y

coordinate of the event, the timestamp t of the event and the direction vector~v of the event.

We are using a set of thresholds in this algorithm. The timestamp threshold T and the low

timestamp threshold Tlow are the same as the previous algorithm. We are introducing two

new thresholds in this algorithm which are a threshold S to define the size of each group of

pixels and a threshold I to define the length of intervals we are using to stop collecting data

and start the analysis of the object movement.

In Algorithm 2, our first task is to remove the old events that are already expired (line

1 to line 6). To do so, we are using a while loop to calculate the time difference of current

time and recent time. If the difference is less than the timestamp threshold T , we remove

the event from the deque. After we are done, we have recent events only to consider in

the deque. Now in line 7 we add the event to the back of the deque. Following that, from

line 9 to 13 we are using another algorithm (Algorithm 3) to decide if the current event is a

boundary or not. In Algorithm 3, a loop is used to search for matching events in the deques

in the neighbourhood.

Starting from line 16 to line 20, we link the events which are on the boundary of the ob-

ject. Here we use the union-find data structure to link the events. We have a time threshold

I to control when linked events are analyzed for looming objects (Algorithm 4).

2While this is not entirely accurate, it is sufficient for our application. Please see reference for a more
precise complexity analysis.

45

4.3. ALGORITHM

Algorithm 2: Looming detection algorithm from the events collected from Algo-
rithm 1.

Input: An event reported by Algorithm 1: e = (x,y, t,~v).
Thresholds: a timestamp threshold T , a low timestamp threshold Tlow, a threshold for
the size of the group of pixels S and a threshold for the length of regular interval to
analyze object detected I.
Output: If looming is detected, an event t is reported.

1 while Q(x,y) is not empty do
2 (x′,y′, t ′,~v′)← event at the front of Q(x,y);
3 if t− t ′ > T then
4 remove (x′,y′, t ′,~v′) from the front of Q(x,y);
5 else
6 exit the loop ;

end
7 Add (t,~v) to the back of the deque Q(x,y);
8 boundary← false ;
9 for i← 0 to 7 do

10 (x′,y′)← (x,y)−~vi ;
11 found← result of Algorithm 3 with parameters Q(x′,y′), T , Tlow, t,~v ;
12 if NOT found then
13 boundary← true ;

end
14 if NOT boundary then
15 return ;
16 for i← 0 to 7 do
17 (x′,y′)← (x,y)−~vi ;
18 found← result of Algorithm 3 with parameters Q(x′,y′), T , Tlow, t,~v ;
19 if found then
20 dir(x,y)←~v ;
21 dir(x′,y′)←~v′ ;
22 union((x,y),(x′,y′)) ;

end
23 last← 0 ;
24 elapsed ← t− last ;
25 if elapsed > I then
26 Call Algorithm 4 with current union-find structure ;
27 last← t ;

46

4.3. ALGORITHM

Algorithm 3: Find recent event with similar directions.
Input: Event queue Q, thresholds T and Tlow as in Algorithm 2, a time t, and a

direction~v.
Output: Returns true if there is a recent event in the queue with a similar direction

as~v, false otherwise.
1 j← 1 ;
2 while j ≤ size(Q) do
3 (t ′,~v′)← jth most recent event in Q ;
4 if Tlow < t− t ′ ≤ T AND~v and ~v′ are similar then
5 return true ;
6 j← j+1 ;

end
return false ;

Algorithm 4: Analyzing the group of pixels collected from Algorithm 2.
Input: Union-find data structure from Algorithm 2, and a threshold for the size of

the group of pixels S.
Output: If looming is detected, an event t is reported.

1 pos← 0 ;
2 neg← 0 ;
3 for each groups of pixels in union-find do
4 C← arithmetic mean of the group ;
5 d ← ((x,y)−C) ·dir(x,y) ;
6 if d > 0 then
7 pos← pos+1 ;
8 if d < 0 then
9 neg← neg+1 ;

end
10 if pos > 2×neg AND pos≥ S×ROWS×COLS then
11 report looming event at time t ;
12 reset union-find data structure for pixels in the group

47

4.4. EXPERIMENT AND ANALYSIS

For the analysis in Algorithm 4, we have the union-find data structure from Algorithm 2.

First we find an interior point of the object. Then we calculate the dot product between the

direction of the event and the interior point. If the result is positive, we say this event is

pointing away of the object. If the result is negative, we say the event is not pointing away

of the object. Finally when the analysis is done, we reset the union-find data structure in

order to perform object analyze in the next time interval.

In terms of computational complexity, we can calculate the overall computational re-

quirement by examining each individual loop in our algorithm. In the first loop in Algo-

rithm 2, expired events are removed. For this part the complexity is proportional on the

deque size, which is constant for Algorithm 2. The next part of our algorithm is avoiding

the boundary events, which requires a search in the eight-neighbourhood of each event in

the deque. The complexity for this process is also proportional to the number of events in

the deque, which is constant.

After checking the boundary we are searching for similar events and linking them using

the union-find data structure. The complexity of each union and find operation is practi-

cally constant. Lastly, we are analyzing the existing events in the union-find data structure

by examining each group in the data structure and some calculations. For this part the com-

plexity depends on the size of the group. Although the sizes of these groups are different

each time, the sizes are proportional to the number of events processed by the algorithm

since the last reset. Therefore, processing these groups can be done in constant time per

event processed amortized.

4.4 Experiment and Analysis

We have performed experiments on our looming object detection algorithm (Algo-

rithm 2) on various videos. Here we discuss the results from the experiments. We have

used the same DVS event streams on Algorithm 2 as the ones we used to test Algorithm 1

in Section 3.6.

48

4.4. EXPERIMENT AND ANALYSIS

Table 4.1: Values of all thresholds and constants for all experiments on Algorithm 2.

Name Value Unit
COLS 180 pixels
ROWS 190 pixels
Timestamp Threshold (T) 25,000 microseconds
Low Timestamp Threshold (Tlow) 100 microseconds
Size of Groups (S) 0.005 -
Length of Regular Interval (I) 25,000 microseconds

4.4.1 Thresholds and Parameters

The system specification and camera properties are the same as those in Section 3.6.1 for

the experiments on Algorithm 2. We have introduced two new thresholds for Algorithm 2,

while others remain the same as before. The constant values and the threshold values we

have chosen experimentally are shown in Table 4.1.

4.4.2 Experiments on Simple Objects

We have used simple objects with DVS camera for these experiments. Note that for all

experiments we have used the output reported by Algorithm 1 in Section 3.6. Green dots

are used to represent events that are moving away from the interior, while magenta dots are

used to represent events moving towards the interior.

Round looming object A round object is moving towards the viewer in this experiment.

We can see in Figure 4.9 that most of the dots are green which indicates that those events

are pointing away from the interior of the object. Though there are few magenta dots

which represents events moving towards the viewer, overall the number of green dots is

significantly larger than the number of magenta dots. The final output of Algorithm 2 is

looming.

Here the total length of the video is 3.92 seconds, and the total execution time of Algo-

rithm 2 is 1.13 seconds over all DVS events. The total number of events is 668530. That

means it takes 1.69 microseconds to process each event on average. The results are shown

49

4.4. EXPERIMENT AND ANALYSIS

Figure 4.9: A round looming object.

Table 4.2: Results of the experiment with round looming object.

Name Value Unit
Total number of events 668530 -
Runtime 1.13 seconds
Length of video 3.92 seconds
Runtime per event 1.69 microseconds
Number of positive events 431 -
Number of negative events 151 -
Final output Looming -

in Table 4.2.

Round object moving sideways In Figure 4.10 a round object is moved from right to

left. We can see the majority of green dots are on the left side of the object, while majority

of magenta dots are on the right side of the edge of the object. The results are shown in

Table 4.3.

Square object with little movement In this experiment, we have a square object which

has very few movement (Figure 4.11). The results are shown in Table 4.4.

50

4.4. EXPERIMENT AND ANALYSIS

Figure 4.10: A round object moving sideways.

Table 4.3: Results of the experiment with round object moving sideways.

Name Value Unit
Total number of events 672201 -
Runtime 1.9 seconds
Length of video 2.81 seconds
Runtime per event 2.82 microseconds
Number of positive events 228 -
Number of negative events 120 -
Final output Not looming -

Table 4.4: Results of the experiment with square object with little movement.

Name Value Unit
Total number of events 655203 -
Runtime 1.00 seconds
Length of video 5.90 seconds
Runtime per event 1.52 microseconds
Number of positive events 26 -
Number of negative events 27 -
Final output Not looming -

51

4.4. EXPERIMENT AND ANALYSIS

Figure 4.11: A square object with little movement.

Table 4.5: Results of the experiment with square object moving from top to bottom.

Name Value Unit
Total number of events 765584 -
Runtime 1.03 seconds
Length of video 4.45 seconds
Runtime per event 1.34 microseconds
Number of positive events 1084 -
Number of negative events 965 -
Final output Not looming -

Square object moving from top to bottom We can easily understand the output of this

experiment just by seeing Figure 4.12. Here a square object is moving from top to bottom

of the frame. The results are shown in Table 4.5.

Square object moving sideways Here in Figure 4.13 we can see that the left edge of the

object is mostly magenta, which states that the events on that edge are moving towards the

center. On the other hand, the right edge is mostly green which means the events on that

edge are moving away from the center. Thus, the object is moving from left to right. The

results are shown in Table 4.6.

52

4.4. EXPERIMENT AND ANALYSIS

Figure 4.12: A square object moving from top to bottom of the scene.

Figure 4.13: A square object moving from left to right.

53

4.4. EXPERIMENT AND ANALYSIS

Table 4.6: Results of the experiment square object moving sideways.

Name Value Unit
Total number of events 792649 -
Runtime 2.03 seconds
Length of video 10.07 seconds
Time per event 2.59 microseconds
Number of positive events 371 -
Number of negative events 388 -
Final output Not looming -

Figure 4.14: A looming square object.

Looming square object This experiment has a clear visualization of looming. The square

object is coming towards the viewer (Figure 4.14). We have a large number of green dots

on the overall edge comparing to the number of magenta dots. Note that the left edge of

the object is not entirely detected by our algorithm, but it does not affect the output. The

results are shown in Table 4.7.

Round object with looming Our last experiment is with a round object coming towards

the viewer (Figure 4.15). Most of the dots on the edge of the object is green, which states

that the events are pointing outside. Though the entire edge is not detected, the algorithm

54

4.5. LIMITATIONS

Table 4.7: Results of the experiment with looming square object.

Name Value Unit
Total number of events 850175 -
Runtime 1.93 seconds
Length of video 5.10 seconds
Runtime per event 2.27 microseconds
Number of positive events 445 -
Number of negative events 95 -
Final output Looming -

Figure 4.15: A looming round object.

provides acceptable output. The results are shown in Table 4.8.

4.4.3 Summary

These experiments produce results which accurately detects whether there is a looming

object in the scene. We can see that the time to process each event in Algorithm 2 ranges

from 1.34 microseconds to 2.82 microseconds on average depending on the size of the

input.

55

4.5. LIMITATIONS

Table 4.8: Results of the experiment with round object with looming.

Name Value Unit
Total number of events 657771 -
Runtime 1.09 seconds
Length of video 4.88 seconds
Runtime per event 1.65 microseconds
Number of positive events 228 -
Number of negative events 32 -
Final output Looming -

4.5 Limitations

Though our approach for computing the optical flow worked well on our experiments in

Chapter 3, there are some limitations in our approach of detecting looming object. In this

section we will discuss these limitations.

Multiple Moving Objects Our method gives accurate output when there is a single mov-

ing object in the scene. When there are multiple moving objects sharing the same scene,

Algorithm 1 successfully detects the movement but Algorithm 2 for looming detection does

not work well. The reason behind this is the calculation of the interior point (Algorithm 4)

simply computes the average of all linked boundary events. If these events come from dif-

ferent objects, the interior point computed will be wrong. In that case, we get an average of

all objects, which is not our goal. An example of this limitation is shown in Figure 4.16.

Shape of the Objects Another limitation of our algorithm is that the accuracy of the

result depends on the shape of the object. If we have a convex-shaped object, our algorithm

successfully detects the interior point and therefore detects the type of movement. But if the

object shape is not convex, the interior point does not always lie inside the object. It may

lie outside of the object. In that case our algorithm is unable to detect the true movement

of the object. Also, the number of arrows pointing towards the interior and the number of

arrows pointing away from the interior can be misleading when the object is not convex.

56

4.5. LIMITATIONS

Figure 4.16: (a) A single object in a scene, the interior point computed lies inside the object.
Therefore the direction of movement can be calculated accurately. (b) Multiple objects in
a scene, the interior point is in the middle of the scene. The direction of different objects
cannot be reported accurately.

An example of such limitation is shown in Figure 4.17.

Objects with Internal Patterns Our algorithm is not accurate with objects whose interior

does not have constant luminance. Our algorithm can report events as edges for the internal

patterns for objects such as those in Figure 4.18. When the object is in motion, the internal

patterns can create significant changes in log-luminance and therefore our algorithm can

detect the patterns as separate objects.

Isoluminant Colours If the object and the background have different colours that lead to

the same luminance, the Davis DVS cannot distinguish between the foreground object and

the background. Therefore no movement will be detected at all, and our algorithm will not

even receive input. This is a limitation of the DVS. It should be noted that detecting this

type of motion is also difficult for human [18], and the DVS is designed based on a model

of the human retina.

57

4.5. LIMITATIONS

Figure 4.17: (a) A convex object in a scene, the interior point lies inside the object. There-
fore the direction of movement can be calculated accurately. (b) A non-convex object in a
scene, the interior point does not lie inside the object. Also, the number of arrows point-
ing towards the interior point is smaller than the number of arrows pointing away from the
interior point, even though the object actually is looming.

Figure 4.18: Objects with bold patterns.

58

Chapter 5

Conclusion

In this thesis we have proposed a non-conventional system which can detect looming ob-

jects. Our method introduces a variation of Reichardt Detector, which we employ on the

event stream from the Davis Dynamic Vision Sensor (DVS) to compute optical flow. The

optical flow algorithm reports the events with motion detected in the scene, delivering the

events to our looming detection algorithm. Finally, our looming object detection algorithm

reports if there is a looming object or not.

We have developed a series of algorithms to detect motion, analyze the motion and

report whether the motion can be classified as looming or not. We have experimented our

algorithms with various objects and backgrounds, with a variation on the length, brightness,

etc. of the video. Our looming detection algorithm is accurate in all cases tested in which

there is a single object in the scene. Each DVS event can be processed in under 5 microsec-

onds, so that the advantages of using event-based cameras are preserved. Our algorithm can

be used in real-time in applications such as robotics and autonomous vehicles.

5.1 Future Work

Our developed algorithms have delivered promising results, although it currently is re-

stricted to situations with a single object in a scene. There are many directions for future

works. Some of them are listed below.

Adaptive thresholds. The current algorithms proposed require a number of thresholds

and parameters to be set experimentally by the user. It is desirable to have a system that can

59

5.1. FUTURE WORK

set these thresholds automatically and adapt to changing conditions when needed.

Multiple objects in a scene. A natural extension of our algorithm is analyze multiple

objects in a scene. Instead of simply linking edge pixels and assuming that they are all part

of the same object, more sophisticated clustering techniques can be used to group edges

into multiple objects.

Handling self-motion. If the camera is put on a moving platform such as a robot, it may

be necessary to distinguish between moving objects and stationary objects that the camera

is moving towards. Information obtained from other sensors such as accelerometers may

be used to make this distinction, if we can also obtain the velocity of the moving objects in

the scene, then the sensor readings can be used to compensate for self-motion. The velocity

of the moving objects may be determined by modifying our optical flow algorithm, so that

a focus of expansion can be computed for each detected object.

Computing velocity and time-of-contact. Having velocity and time-of-contact of loom-

ing objects can be helpful in many real-world applications such as vehicle navigation and

assistive devices for blind people.

Shape of objects. Currently our algorithm works well with objects having convex shapes,

but may not be accurate if the object does not have a convex shape. A different approach to

classify object movement may not have such a restriction.

60

Bibliography

[1] P. Bardow, A. J. Davison, and S. Leutenegger. Simultaneous optical flow and inten-
sity estimation from an event camera. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 884–892, 2016.

[2] S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM computing
surveys (CSUR), 27(3):433–466, 1995.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neigh-
bor meaningful? In International conference on database theory, pages 217–235.
Springer, 1999.

[4] A. Burnetas, D. Solow, and R. Agarwal. An analysis and implementation of an effi-
cient in-place bucket sort. Acta Informatica, 34(9):687–700, 1997.

[5] F. Dramas, S. J. Thorpe, and C. Jouffrais. Artificial vision for the blind: a bio-inspired
algorithm for objects and obstacles detection. International Journal of Image and
Graphics, 10(04):531–544, 2010.

[6] M. Egelhaaf and W. Reichardt. Dynamic response properties of movement detectors:
theoretical analysis and electrophysiological investigation in the visual system of the
fly. Biological Cybernetics, 56(2-3):69–87, 1987.

[7] J. A. G. Franco, J. L. del Valle Padilla, and S. O. Cisneros. Event-based image process-
ing using a neuromorphic vision sensor. Power, Electronics and Computing (ROPEC),
2013 IEEE International Autumn Meeting on, pages 1–6, 2013.

[8] T. Fülöp and A. Zarandy. Bio-inspired looming object detector algorithm on the
eye-ris focal plane-processor system. 2010 12th International Workshop on Cellu-
lar Nanoscale Networks and their Applications (CNNA 2010), pages 1–5, 2010.

[9] B. A. Galler and M. J. Fisher. An improved equivalence algorithm. Communications
of the ACM, 7(5):301–303, 1964.

[10] P. Gil-Jiménez, H. Gómez-Moreno, R. J. López-Sastre, and A. Bermejillo-Martı́n-
Romo. Estimating the focus of expansion in a video sequence using the trajectories
of interest points. Image and Vision Computing, 50:14–26, 2016.

[11] T. Gollisch and M. Meister. Eye smarter than scientists believed: neural computations
in circuits of the retina. Neuron, 65(2):150–164, 2010.

[12] L. He, T. Chia, and C. Yang. A geometric invariant approach to human face verifica-
tion. Journal of information science and engineering, 22(3):511, 2006.

61

BIBLIOGRAPHY

[13] B. K. Horn and B. G. Schunck. Determining optical flow. Artificial intelligence,
17(1-3):185–203, 1981.

[14] iniLabs. Dynamic vision sensor. http://inilabs.com/products/
dynamic-vision-sensors/. Accessed: 2016-11-1.

[15] H. Kim, S. Leutenegger, and A. J. Davison. Real-time 3d reconstruction and 6-dof
tracking with an event camera. In European Conference on Computer Vision, pages
349–364. Springer, 2016.

[16] K. Li and J. Malik. Fast k-nearest neighbour search via dynamic continuous indexing.
In International Conference on Machine Learning, pages 671–679, 2016.

[17] S. C. Liu and T. Delbruck. Neuromorphic sensory systems. Current opinion in neu-
robiology, 20(3):288–295, 2010.

[18] Zhong-Lin Lu, Luis A Lesmes, and George Sperling. The mechanism of isolumi-
nant chromatic motion perception. Proceedings of the National Academy of Sciences,
96(14):8289–8294, 1999.

[19] A. K. Maan, D. A. Jayadevi, and A. P. James. A survey of memristive threshold logic
circuits. IEEE transactions on neural networks and learning systems, 28(8):1734–
1746, 2017.

[20] C.D. Pantilie and S. Nedevschi. Real-time obstacle detection in complex scenarios
using dense stereo vision and optical flow. 13th International IEEE Conference on
Intelligent Transportation Systems, 2010.

[21] S. S. Park and A. Sowmya. Autonomous robot navigation by active visual motion
analysis and understanding. Proceedings of IAPR Workshop on Machine Vision Ap-
plications, 1998.

[22] D. Regan and K.I. Beverley. Looming detectors in the human visual pathway. Vision
research, 18(4):415–421, 1978.

[23] W. Reichardt and M. Egelhaaf. Properties of individual movement detectors as derived
from behavioural experiments on the visual system of the fly. Biological Cybernetics,
58(5):287–294, 1988.

[24] I. Ridwan and H. Cheng. An Event-Based Optical Flow Algorithm for Dynamic Vision
Sensors, pages 182–189. Springer International Publishing, Cham, 2017.

[25] F. C. Rind and P. J. Simmons. Seeing what is coming: building collision-sensitive
neurones. Trends Neurosci., 22:215220, 1999.

[26] Spikenet technology. http://www.spikenet-technology.com/. Accessed: 2016-
11-01.

[27] S. Stone. Using Auditory Augmented Reality to Understand Visual Scenes. Master’s
thesis, University of Lethbridge, LEthbridge, Alberta, Canada, 2017.

62

BIBLIOGRAPHY

[28] M. Subbarao. Bounds on time-to-collision and rotational component from first-
order derivatives of image flow. Computer Vision, Graphics, and Image Processing,
50(3):329–341, 1990.

[29] M. S. Tata, N. Alam, A. L.O. Mason, G. Christie, and A. Butcher. Selective attention
modulates electrical responses to reversals of optic-flow direction. Vision research,
50(8):750–760, 2010.

[30] User guide: Aer. https://inilabs.com/support/software/jaer/#h.
63b8cxspmdby/. Accessed: 2017-09-09.

[31] User guide: caer. https://inilabs.com/support/software/caer/. Accessed:
2017-09-09.

[32] User guide: jaer. https://inilabs.com/support/software/jaer/. Accessed:
2017-09-09.

[33] User guide: libcaer. https://inilabs.com/support/software/libcaer/. Ac-
cessed: 2017-09-09.

[34] B. Webb. Robots in invertebrate neuroscience. Nature, 417(6886):359–363, 2002.

63

