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ABSTRACT 

Physical and chemical influences downstream of surface coal mines, including 

selenium (Se) release, water quality shifts, and habitat alterations can affect aquatic 

organisms. To evaluate these influences at the community level of organization, fish and 

macroinvertebrates were studied in mine-affected and reference streams. Se can be toxic 

to aquatic organisms and was measured in lotic food chains (water, biofilm, 

macroinvertebrates and juvenile salmonids). Invertebrate Se was significantly related to 

Se in juvenile fish muscle (westslope cutthroat, bull, rainbow and brook trout) and Se 

concentrations exceeded proposed individual-level reproductive effects thresholds in 

some rainbow and cutthroat trout. Community-level effects were only detected in 

rainbow trout where species specific biomass was negatively related to muscle Se 

concentration in stream reaches. Macroinvertebrate assemblages varied along a mine-

influence gradient defined by Se, alkalinity, substrate embeddedness and interstitial 

material size. Ephemeroptera were the most sensitive to mining effects and potential 

mechanisms influencing community composition included Se and ion toxicity and habitat 

degradation. This project highlights the need to study multiple organisms at different 

levels of ecological organization in order to understand and manage diverse mining 

impacts. 
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CHAPTER 1. INTRODUCTION  

Surface coal mining influences in aquatic ecosystems 

Numerous natural resource development projects are focused on meeting global 

energy demands by extracting primary energy sources such as oil and coal. Coal is one of 

the world’s fastest growing energy industries (International Energy Agency 2013) and 

surface mining accounts for approximately 40% of the over 8 billion tonnes of annual 

global coal production (World Coal Institute 2005). Surface mining is a process by which 

shallow coal seams are accessed through the removal and relocation of overburden rock 

using explosives and large mechanical equipment. Canada’s largest coal producers are 

the provinces of Alberta and British Columbia where current production is principally 

from surface mines (World Energy Council 2013) and where watersheds in the Canadian 

Rocky mountains and foothills have experienced increasing surface mine development 

for the past 40 years (Lussier et al. 2003).  

There is growing scientific evidence of environmental impacts caused by surface 

coal mining (Palmer et al. 2010) and influences of concern in aquatic ecosystems include 

the release of potentially toxic compounds, most notably selenium (Se), changes to 

downstream water quality, and alteration of physical aquatic habitats (Lindberg et al. 

2011, Maher et al. 2011, Bernhardt et al. 2012, Griffith et al. 2012). At surface coal 

mines, large quantities of rock and soil are disturbed, exposing them to air, greater 

biological activity, and water dynamics (Ryser et al. 2005). These conditions increase 

rock weathering and mobilize solutes in backfill ponds, end-pit lakes, ground water, and 

precipitation run-off (Naftz and Rice 1989). Rock spoil piles can also bury headwater 
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streams and increase sediment export, ultimately altering physical stream channel 

characteristics (Lindberg et al. 2011). Research into the effects of these impacts on 

aquatic organisms is central to assessing and managing environmental risks associated 

with an expanding coal mining industry both globally, and in the Canadian Rockies 

region. This thesis project investigated surface coal mining influences on fish and 

macroinvertebrate communities in lotic (flowing water) systems in two watersheds in the 

Canadian Rockies. Se exposure and toxicity were a major research focus in fish and 

emergent chemical and physical impacts of concern were also measured and considered, 

particularly with respect to their influence on macroinvertebrate assemblages. 

 

Selenium exposure and toxicity downstream of mines 

Selenium is an essential micronutrient that can produce toxic effects in fish and 

other aquatic organisms at concentrations above the nutritional requirement. Naturally 

occurring in surface waters at low concentrations ranging from 0.1- 0.4 µg/L (United 

States Environmental Protection Agency 2004), Se inputs to aquatic systems can be 

elevated due to coal and other types of mining, coal burning and smelting, and irrigation 

agriculture (Lemly 1993a). Se contamination from mining is a widespread issue in North 

American watersheds with elevated Se concentrations recorded downstream of coal, 

phosphorus, and uranium mines (Kennedy et al. 2000, Hamilton and Buhl 2004, Holm et 

al. 2005, Muscatello et al. 2006, Rudolph et al. 2008). In Alberta and British Columbia, 

surface coal mining has drastically increased Se in streams draining mine sites where 

waterborne concentrations of over 100 µg/L and increased Se concentrations in the 

tissues of aquatic organisms have been documented (Casey 2005, Orr et al. 2012).  
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Se is present in the natural environment in various chemical forms. Elemental Se 

(Se (0)) and selenide (Se(-II)) are not readily bioavailable and therefore have low 

toxicities in aquatic systems (Kulp and Pratt 2004). Oxidized forms including selenite 

(Se(IV)) and selenate (Se(VI)) are common and highly soluble. They can be taken up 

from water by bacteria and primary producers (Kulp and Pratt 2004) and transformed into 

organoselenium forms including selenoamino acids such as selenocysteine and 

selenomethionine (Fan et al. 2002). Though invertebrates and fish can also take up 

dissolved Se directly from water, this process is generally sufficiently slow as to be 

negligible compared with uptake from particulate sources (Presser and Luoma 2010). 

Therefore, Se accumulation in higher trophic levels of aquatic systems results from 

transfer of dietary organic Se, particularly selenomethionine, through the aquatic food 

chain (Simmons and Wallschläger 2005).  Because of its essentiality, Se uptake is largely 

concentration dependent where accumulation rates by organisms are greater when source 

concentrations are low (DeForest et al. 2007). Additionally, Se enrichment is greatest at 

low trophic levels (Presser and Luoma 2010) and organisms at higher trophic levels such 

as birds and fish may not have higher Se concentrations than organisms slightly lower in 

the food web (e.g. invertebrates) (Presser and Luoma 2010, Stewart et al. 2011). 

Therefore, toxic effects in fish and birds are generally due to greater Se sensitivity rather 

than greater Se exposure.   

In fish, Se is essential as a component of versatile Se proteins including 

glutathione peroxidase which is involved in oxidation-reduction reactions that protect 

cells from oxidative damage and iodothyronine deiodinases which perform thyroid 

hormone activation/inactivation (Simmons and Wallschläger 2005, Janz et al. 2011). Se 
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became a contaminant of concern in aquatic ecosystems with the recognition of toxicity 

in wild populations of egg laying vertebrates including fish and birds at concentrations 

above the essential requirement (Ohlendorf et al. 1986, Lemly 1993b). Toxic effects in 

fish can include reduced growth (Hodson and Hilton 1983), reproductive impairment, and 

lethality (Lemly 1993b) but the most sensitive toxicity endpoints are reproductive effects 

that occur by maternal transfer of Se to eggs causing larval deformities and/or death upon 

hatching (Lemly 1993b, Janz et al. 2011). A proposed mechanism of this toxicity with 

increasing recent support is one of oxidative stress triggered when excess Se compounds 

complex with reduced glutathione and generate superoxide radicals which then cause 

cellular damage (Palace et al. 2004). 

Se has been studied in fish under field conditions to identify if toxic effects are 

occurring and to determine toxicity thresholds. Studies have been conducted downstream 

of coal mines in Alberta and British Columbia on exposed salmonid species including 

wild populations of westslope cutthroat trout (Oncorhynchus clarkii lewisi) (Kennedy et 

al. 2000, Rudolph et al. 2008), rainbow trout (Oncorhynchus mykiss) (Holm et al. 2005), 

and brook trout (Salvelinus fontinalis) (Holm et al. 2005). In these studies, gametes were 

collected from fish at high Se exposure sites and at references sites. Eggs were fertilized 

in the field, hatched and reared in the laboratory, then reproductive effects including 

larval mortalities and deformities were evaluated. In this way, effective concentrations 

(ECs) were determined for reproductive effects in rainbow trout (EC10 for larval skeletal 

deformities = 21.1 mg Se/kg dw in eggs) (Holm et al. 2005) and cutthroat trout (EC10 for 

alevin mortalities = 17 – 24.1 mg Se/kg dw in eggs) (Rudolph et al. 2008) and a no 

observable effects concentration (NOEC) was determined for brook trout (NOEC > 20.5 
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mg Se/kg in eggs) (Holm et al. 2005). These studies not only found that reproductive 

effects were occurring in some fish downstream of mines but that Se sensitivity varies 

significantly among even closely related cold water salmonid species, and that brook 

trout, a non-native species in this region, is particularly Se-tolerant.   

While field studies have defined toxic ECs, finding practical and effective 

methods for monitoring Se toxicity and impacts in natural systems with respect to these 

proposed thresholds is challenging. Waterborne concentrations do not always reflect the 

potential for Se exposure at higher trophic levels (Orr et al. 2012) and therefore Se 

monitoring programs in salmonid fishes in the Canadian Rockies have focused on 

obtaining fish tissues for comparisons with Se toxicity thresholds (Casey 2005, Minnow 

Environmental Inc et al. 2011). Often adult fish are sampled to obtain eggs or gonads for 

Se testing because of their direct connection to sensitive toxic endpoints (Presser and 

Luoma 2010). Two issues that may arise from tissue sampling, especially in lotic 

systems, include cumulative impacts of repeated fish harvest in exposed populations (Orr 

et al. 2012) and variable Se exposure due to fish movements. 

 One proposed method of toxicity monitoring is through food chain transfer 

modelling (Presser and Luoma 2010, Orr et al. 2012). Se transfer models determine the 

species and concentration specific transfer of Se at different steps of the food chain in 

order to use Se concentrations at lower food chain levels (water, biofilm, invertebrates) to 

predict fish tissue concentrations (Presser and Luoma 2010). These are useful tools as 

concentrations at lower levels of the food web are often easier to measure and their 

sampling prevents the need to lethally sample fish from potentially vulnerable 

populations (Orr et al. 2012).  
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Tissue Se concentrations in spawning fish caught at exposure locations have been 

highly variable and this variation has been at least partially attributed to differences in Se 

exposure resulting from fish movements (Holm et al. 2005, Rudolph et al. 2008). Stream 

fishes, particularly some life histories of trout, are highly mobile and can move among 

areas with different Se concentrations. Fish tissue concentrations will begin to reflect 

dietary concentrations within days of exposure but equilibrium to diet can take weeks or 

months (Stewart et al. 2011). Therefore, fish movements can confound the relationship of 

Se tissue to diet concentrations at the point of capture (Janz et al. 2011, Orr et al. 2012). 

Variable use of Se contaminated habitats by adult fish has been confirmed in studies of 

rainbow trout, cutthroat trout and mountain whitefish (Prosopium williamsoni) residency 

in Rocky mountain streams (Palace et al. 2007, Friedrich et al. 2011). Se exposure 

determined by measuring Se accumulated in the annuli of sagittal otoliths from adult 

rainbow trout, cutthroat trout and mountain whitefish captured in Se-contaminated 

streams indicated variable lifetime Se exposure and movements between high and low Se 

habitats (Palace et al. 2007, Friedrich et al. 2011).  

Variable Se exposures in fish can create difficulties in predicting Se toxicity 

effects at a specific site of interest (Holm et al. 2005, Rudolph et al. 2008) and in 

determining empirical relationships between fish tissue and diet Se concentrations for use 

in food chain models (Orr et al. 2012). An important research need is the determination of 

reliable exposure based fish tissue concentrations for comparison to toxicity thresholds 

and for use in the development of food web models. Long-term laboratory feeding studies 

such as one carried out with cutthroat trout by Hardy et al. (2010) are an option but are 

time-intensive and may not reflect Se uptake in natural environments. Exposure-response 
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relationships can also be determined from field data if the appropriate organisms or life-

stages of organisms are sampled. In salmonids, juvenile life stages may be candidates as 

they are relatively less mobile than adults during spawning. Juvenile salmonids generally 

spend the first years of their lives rearing in natal tributaries and show restricted 

movement patterns during the summer feeding months (Rodríguez 2002, Costello 2006, 

McPhail 2007).  

Long-term Se exposure in Canadian Rockies streams also raises concerns over the 

potential for negative impacts on fish populations (Alberta Selenium Working Group 

2010). Fish populations may decline due to reproductive toxicity effects (Janz et al. 2011) 

and fish community composition may shift as high Se systems favour the survival and 

range expansion of species that are more Se-tolerant and cause declines and/or 

extirpations of those that are more sensitive (Alberta Selenium Working Group 2010). In 

order to manage potential risks to fish populations it is important for proposed toxicity 

thresholds to be protective of fish at the community level (Van Kirk and Hill 2007). 

Therefore, Se concentrations that produce community-level impacts in the streams of 

mined watersheds must be determined.  

Macroinvertebrates have generally been considered tolerant to Se exposure and 

invertebrate Se concentrations have typically only been of interest because invertebrates 

are dietary sources of Se for fish, amphibians and aquatic birds. However, toxicity effects 

have been detected in laboratory macroinvertebrate organisms (Ingersoll et al. 1990, 

Maier and Knight 1993, Malchow et al. 1995, Conley et al. 2011) and invertebrate Se 

accumulation above reference concentrations has been documented at mine-affected sites 

in the field (Orr et al. 2006, Wayland and Crosley 2006, Orr et al. 2012). Lab studies 
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have found that Se toxicity, especially sub-lethal effects, can occur in invertebrates, 

sometimes at relatively low exposure concentrations and that thresholds protective of fish 

may not always be protective of their macroinvertebrate prey (deBruyn and Chapman 

2007).  

Field Se tissue concentrations in invertebrates are variable among sites and 

taxonomic groups (Wayland and Crosley 2006) but may indicate vulnerability to Se 

toxicity based on laboratory derived concentrations for acute and chronic effects 

(deBruyn and Chapman 2007). Few field studies have examined the impacts of Se 

contamination on macroinvertebrate communities and these investigations have only 

incorporated a narrow range of relatively low Se exposures (Frenette 2008, Pond et al. 

2008). 

 

Other physical and chemical mine related impacts 

Recently, influences besides Se have been the focus of scientific studies in surface 

mining regions. Emerging influences of concern include increases in other solutes 

weathered from waste rock including Ca
+
, Mg

+
, SO4

2-
, Cl

-
 and HCO3

-
 (United States 

Environmental Protection Agency 2011) in addition to changes to the physical habitats of 

receiving environments (Lindberg et al. 2011). These effects have thus far been studied 

with particular attention to their effects on macroinvertebrate communities. 

In the Appalachian Coalfields in the United States, changes in water chemistry 

variables have been highlighted in recent biomonitoring studies (Hartman et al. 2005, 

Freund and Petty 2007, Pond et al. 2008, Pond 2010, Cormier et al. 2013).  Declines and 

extirpations of certain macroinvertebrate taxa have been linked to high concentrations of 
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Ca
+
, Mg

+
, SO4

2-
, Cl

-
 and HCO3

-
 ions in streams draining coal mine sites (Pond et al. 

2008, Cormier et al. 2013). The proposed mechanisms of toxicity to macroinvertebrates 

are physiological and related to the disruption of cellular ion transport systems on the 

gills and integuments of organisms (Cormier et al. 2013). As the mechanisms of toxicity 

are assessed based on physiological characteristics shared by many invertebrate taxa 

(Cormier and Suter 2013), similar changes in water chemistry may result in 

macroinvertebrate community effects in Canadian Rockies streams. 

Changes to physical stream habitats also occur in mined watersheds. Direct 

impacts occur when headwater streams are buried by valley fills or rock slides (Palmer et 

al. 2010) but there are also persistent indirect effects including calcite accumulation and 

sediment export (Hartman et al. 2005). The limestone-dominated bedrock and hard water 

of Canadian Rockies watersheds produce water chemistry conditions that result in calcite 

accumulation in streambeds downstream of mine sites. Calcium carbonate precipitation 

as calcite in streams is a natural process caused by the loss of CO2 from hard water either 

to the atmosphere or by photosynthesis of algae, macrophytes or bacteria (House 1990, 

Chen et al. 2004). This natural process can be amplified downstream of surface coal 

mines as water passing through rock drains becomes supersaturated in CO2 from 

decomposing organic matter which then acts on the carboniferous limestone waste rock, 

removing calcium carbonate into solution (Ford and Pedley 1996). CO2 degassing and 

calcite precipitation occurs as the water surfaces (Ford and Pedley 1996) especially in 

areas of turbulent flow where the air-water interface is maximized (Chen et al. 2004). 

Calcite deposition downstream of mines can be severe, sometimes spanning the entire 

channel and developing terraces. Surface mines have also been associated with the export 
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of fine sediments although they are often at least partially mitigated by sedimentation 

ponds and control structures (Pond et al. 2008). Stream habitat alteration resulting from 

sediment and calcite deposition could affect biota by increasing the embeddedness of 

stream substrates and decreasing interstitial spaces which can be important habitat for 

benthic macroinvertebrates (Suttle et al. 2004, Larsen et al. 2011). Calcite accumulation 

and increases in fine sediments could also have implications for salmonid fish spawning 

habitat by decreasing accessibility to and quality of spawning gravel which can in turn 

influence spawning success (Turnpenny and Williams 1980). 

 

Thesis objectives and organization 

A diversity of mine impacts in the Canadian Rocky mountains and foothills and 

the rapidly expanding mine footprint require a greater understanding of effects on 

ecosystem health in order to assess and manage risks to aquatic resources. This thesis 

comprises observational field studies of the fish and macroinvertebrate communities in 

Canadian Rockies streams that experience influences from surface coal mining and those 

in nearby reference streams. The objective of this thesis is to respond to research needs 

related to monitoring and managing surface mine effects in the lotic systems of mined 

watersheds. These include the need to determine appropriate organisms and levels of 

ecological organization for monitoring Se exposure and managing Se risks, and the need 

to evaluate relevant mine impacts, in addition to Se contamination, that have the potential 

to affect aquatic organisms and communities. 

The specific objectives of this thesis were: 
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1) To determine if juvenile salmonid tissues in mountain stream systems reflect 

food chain Se exposure at the point of capture. 

2) To investigate the fish community-level effects of Se exposure and toxicity on 

salmonid fishes at the stream reach scale. 

3) To evaluate the effects on stream macroinvertebrate community assemblages 

associated with Se exposure and other physical and chemical surface mine 

influences. 

The subsequent chapters of this thesis include rationale, methods, results and 

discussions of field studies performed in streams of mined watersheds in the Canadian 

Rocky mountains and foothills. Chapter two presents investigations of Se exposure in 

juvenile salmonids and of the fish community-level effects of Se contamination. In order 

to quantify Se exposure and toxicity, Se transfer in stream food chains was determined 

and compared with toxicity thresholds, and fish biomass was measured at the stream 

reach scale. Chapter three describes the examination of surface mine influences, 

including but not limited to Se contamination, on the composition of macroinvertebrate 

community assemblages. Physical and chemical predictor variables were measured and 

stream characteristics attributable to mine influences were determined. The response of 

invertebrate community composition to mine disturbance was then investigated and 

invertebrate taxa that are sensitive to mine effects were identified. The fourth and final 

chapter summarizes the key findings of this research and provides recommendations for 

monitoring and management of Se contamination and other surface mine influences in 

aquatic ecosystems. 
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CHAPTER 2. FOOD CHAIN TRANSFER AND EXPOSURE EFFECTS OF 

SELENIUM ON LOTIC FISH COMMUNITIES IN TWO CANADIAN 

ROCKIES WATERSHEDS 

Abstract 

Selenium (Se) toxicity impacts on salmonid fishes in surface coal mining regions 

are challenging to monitor and manage. Se tissue concentrations in stream fishes are 

difficult to attribute to specific exposure sites and the fish community-level impacts of 

tissue concentrations above proposed toxicity thresholds have not been defined. To 

determine if juvenile salmonids reflect local Se exposure concentrations, and to 

investigate the relationship between Se exposure and toxicity effects at the fish 

community-level, Se concentrations and fish biomass were examined in the streams of 

two mined watersheds. Se concentrations were measured in water, biofilm, 

macroinvertebrates, and juvenile fish muscle tissues from mine-affected and reference 

streams and significant positive Se transfer relationships were found at each measured 

level of the lotic food chain. Se accumulation from macroinvertebrates to juvenile fish 

muscle tissue was not significantly different among fish species including westslope 

cutthroat, bull, rainbow, and brook trout but indicated a significant relationship between 

tissue and dietary Se at capture sites. Muscle Se concentrations exceeded proposed 

individual-level toxic effective concentrations in rainbow and cutthroat trout but fish 

biomass at the reach scale was only significantly negatively related to average fish 

muscle tissue Se concentrations for rainbow trout.   
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Introduction 

Selenium (Se) is a contaminant of concern in watersheds of the Canadian Rockies 

that experience impacts from large-scale surface coal mining projects. Se is released in 

aquatic ecosystems downstream of mine sites due to high weathering rates of Se-

containing disturbed bedrock and soil (Naftz and Rice 1989). Although Se is an essential 

micronutrient, excess dietary uptake can produce toxic effects in fish as maternal transfer 

to eggs causes teratogenesis (deformities) and/or death in early life stages (Lemly 1999, 

Palace et al. 2004). Reproductive effects, mainly increased rates of larval 

deformities/mortalities, have been identified in rainbow trout (Oncorhynchus mykiss) and 

westslope cutthroat trout (Oncorhynchus clarkii lewisi) in Canadian Rockies streams and 

tissue effective concentrations (EC; the concentration at which a toxic effect is produced) 

have been proposed (Holm et al. 2005, Rudolph et al. 2008). Se sensitivity and allocation 

to body tissues varies among fish species (Chapman 2007, Pilgrim 2012) and regional 

populations of salmonids that may experience toxic Se effects include westslope cutthroat 

and rainbow trout as well as bull trout (Salvelinus confluentus), brook trout (Salvelinus 

fontinalis) and mountain whitefish (Prosopium williamsoni).  

Monitoring and managing the fish species and region specific risks of Se toxicity 

in streams of the Canadian Rockies is challenging. Waterborne Se concentrations do not 

necessarily reflect Se toxicity risks because fish predominantly accumulate Se from their 

diets (Brix et al. 2005). Se monitoring programs in the region have therefore relied on 

evaluation of tissue concentrations from lethally sampled fish against toxicity thresholds 

(Casey 2005, Minnow Environmental Inc et al. 2011). Adult spawning individuals have 

been targeted (Holm et al. 2005, Rudolph et al. 2008, Orr et al. 2012) in order to collect 
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eggs and ovaries for monitoring because of their direct connection to reproductive 

toxicity endpoints (Presser and Luoma 2010). However, Se exposure histories of fish in 

lotic systems with good hydrological connectivity are uncertain due to the ability of fish, 

particularly certain life histories of trout, to move in and out of areas of Se exposure 

(Palace et al. 2007, Friedrich et al. 2011). Therefore tissue concentrations may not reflect 

exposure potential at a site of interest. 

 Food chain trophic transfer models have been suggested and developed as 

methods for improving Se monitoring and reducing lethal fish sampling in vulnerable 

populations (Presser and Luoma 2010, Orr et al. 2012). By quantifying both enrichment 

factors (EF; proportional transfer of Se from water into particulate forms at the base of 

the food chain) and trophic transfer factors (TTF; proportional transfer of Se between 

organisms at other levels of the food chain) Se sampling in water, biofilm, or 

invertebrates could be used to model fish tissue concentrations (Presser and Luoma 

2010). However, lotic trophic transfer models developed from field data can also suffer 

from uncertainty introduced by variable Se exposure in mobile fish (Orr et al. 2012).  

Field sampling of less mobile life stages of fish during periods of restricted 

movement might be appropriate for quantifying food chain transfer of Se and monitoring 

Se concentrations in salmonid species in the Canadian Rockies region. Though some 

juvenile salmonids can move over long distances (Warnock et al. 2010, Daum and 

Flannery 2011), generally they spend their first 1 – 3 years of life rearing in natal 

tributaries and display restricted movements throughout the summer when stream 

conditions are stable (Mellina et al. 2005, Costello 2006, McPhail 2007, Muhlfeld et al. 

2012). Because fish tissues can take weeks or months to equilibrate to dietary 
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concentrations (Stewart et al. 2011), juvenile trout tissues sampled during summer may 

be more representative of local Se exposure than those of adult fish during spawning, a 

period of extensive movement. Se concentrations in juvenile salmonids could therefore 

be useful for comparison to toxicity thresholds or use in food chain models to assess the 

potential for Se toxicity at a specific site of interest. 

Another challenge for the management of Se impacts to fish in Canadian Rockies 

streams is determining community-level effects. The fish community of a stream reflects 

the fish species present, their overall population abundance or biomass, and their relative 

abundances or biomasses. Declines in fish populations may result due to chronic Se 

exposure that causes individual-level toxicity effects and the composition of fish 

communities may be altered as a result of differential Se sensitivity among fish species 

(Janz et al. 2011). The protection of fish populations requires regulatory mechanisms that 

consider how individual-level Se toxicity translates to impacts at the fish community- 

level (Van Kirk and Hill 2007).   

In this study Se concentrations were sampled in food chains in Canadian Rockies 

streams with upstream mine impact and in nearby reference streams. Se concentrations 

were determined in water, biofilm, invertebrates and juvenile salmonids including 

westslope cutthroat, bull, rainbow and brook trout to determine if juvenile fish muscle Se 

concentrations reflect reach specific food chain Se exposure, and to evaluate them against 

proposed Se toxicity effects thresholds. Further, fish biomass and species specific fish 

biomasses were measured at the reach scale in mine-affected and reference streams to 

evaluate the hypothesis that Se exposure above toxicity thresholds results in negative 

impacts at the fish community/population-level.  
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Materials and Methods 

Study areas 

Sampling sites were located in two geographically separate watersheds in the 

eastern Canadian Rocky Mountains and Foothills; the Elk River watershed in south-

eastern British Columbia and the McLeod River watershed in west-central Alberta 

(Figure 2.1). The Elk R. watershed, located in the upper reaches of the Columbia River, 

contains five operating surface coal mines that drain into tributaries of the Elk R. Surface 

mine impacts in the basin span over 40 years. Salmonid fish species are the dominant 

taxa and populations of westslope cutthroat trout, bull trout and mountain whitefish as 

well as some introduced brook trout are present (McPhail 2007). The McLeod R. 

watershed is located in the middle reaches of the Athabasca River basin. Surface coal 

mine impacts in the basin include two active and one reclaimed mine that drain into the 

McLeod R. and its tributaries. Salmonid fish species in the McLeod R. watershed include 

mountain whitefish, bull trout, native Athabasca rainbow trout and introduced brook trout 

(Nelson and Paetz 1992, Rasmussen and Taylor 2009). In total, 13 mine-affected and 11 

reference streams were sampled across the two study areas (Table 2.1 and Figure 2.1). 

Sampled stream reaches spanned stream orders from 2
nd

 to 5
th

 and ranged in elevation 

between 1250 and 1600 meters above sea level. Streams pass through sub-alpine and 

montane forests dominated by englemann spruce (Picea engelmannii) and subalpine fir 

(Abies lasiocarpa) in the Elk R. basin and lodgepole pine (Pinus contorta); white (Picea 

glauca), black (Picea mariana) and englemann spruce and aspen (Populus tremuloides) 

and balsam poplar (Populus balsamifera) in the McLeod R. region. Streams were 
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selected to incorporate a range of mine influences and were considered mine-affected if 

there was any mine impact in the upstream watershed based on mine disturbance 

boundaries. Three of the mine-affected sampled streams drained mine sites that have been 

reclaimed for 5 – 10 years (Table 2.1). Reference sites were considered “least disturbed” 

as some sites experienced impacts from forestry and forestry roads as well as cattle 

grazing and recreational usage but no influences from surface mines.  

Fish community biomass and habitat assessments 

Fish biomass was sampled by single pass electrofishing using a Smith-Root LR-

24 backpack electrofisher on open populations in 175 – 200 m stream reaches at each 

site. Fish sampling took place between late July and late August 2011. All fish were 

identified to species, weighed and measured (fork length). In three of the study streams 

fisheries inventory projects were performed by government agencies in early September 

2011 using sampling methods analogous to those in this study. For these streams, fish 

biomass data were requested through the government fisheries inventory database 

(Alberta Sustainable Resource Development 2011).  Fish biomass and species biomasses 

were calculated as the total biomass of fish or biomass of fish of each species captured 

per unit of stream surface area at each site. Stream surface area was determined as the 

average wetted stream width of the sampled reach multiplied by reach length. 

Fish habitat assessments were done over the same 175 – 200 m stream reaches 

used to determine fish community biomass. Habitat characteristics were summarized 

from measurements made according to Johnston and Slaney (1996). Water surface slope 

was determined as percent slope using a clinometer. Percent riffle, glide and pool were 

the percent length of the stream reach made up by these habitat unit types. Wetted 
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channel width was the average of across channel measurements made in each habitat unit 

that was assessed (up to n = 24). Channel depth was determined as the mean of all habitat 

units where the depth was determined as the average of three equidistant measurements 

taken along a stream transect. Riparian cover and undercut banks were the average 

percent of the surface area of each habitat unit shaded by first layer vegetation or 

cutbanks, respectively. Large woody debris with diameter > 10 cm was tallied for the 

entire reach. Stream substrate was described by performing a one hundred pebble count 

according to Environment Canada (2010a). Wolman Dg, the geometric mean of 

intermediate axis length of substrate units measured, was calculated from the pebble 

count. Substrate embeddedness was summarized as the median percentage depth that a 

subsample of ten substrate units was buried in the surrounding interstitial material.  

Water samples for nutrient analysis (total nitrogen and total phosphorus) were 

collected between late July and late August 2011. Samples were collected in straight, 

well-mixed reaches from approximately 10 cm below the surface in acid-washed high-

density polyethylene bottles. Samples were held on ice then returned to the laboratory 

where they were stored at 4⁰C until shipped for analysis. Analyses of total nitrogen and 

total phosphorus were done at the University of Alberta Biogeochemical Analytical 

Services Laboratory in Edmonton, Alberta, Canada. Some water samples had 

concentrations of total phosphorus below the method detection limit of 0.001 mg/L and 

were assigned a value of one half of the method detection limit in statistical analyses. 

Measurements of dissolved oxygen and pH were made in-situ using a handheld YSI 85 

multiparameter instrument (YSI Inc.) and a VWR SP21 Symphony electrode (VWR 

International, Inc.) respectively. 
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Food web Se sampling and analysis 

Fish were lethally sampled to obtain muscle tissue samples for selenium content 

analysis. Juvenile fish (< 200 mm fork length) were targeted for lethal sampling and were 

euthanized with clove oil (160 ppm, emulsified in ethanol). The species and number of 

lethally sampled fish of each species was determined in accordance with Fish Research 

Permits issued by provincial governing bodies for each study area. In the Elk River 

watershed, cutthroat trout (CTTR) and bull trout (BLTR) were sampled and in the 

McLeod River watershed rainbow trout (RNTR) and brook trout (BKTR) were sampled. 

While bull trout were captured at McLeod R. sites, Alberta populations are designated as 

threatened by the Committee on the Status of Endangered Wildlife in Canada (2012) and 

therefore were not lethally sampled. Euthanized fish were weighed and measured in the 

field, placed on ice, then frozen until dissections were done in the lab. Fish that were not 

sacrificed for Se analysis were released to the stream location where they were captured. 

All fish were handled following animal-welfare protocols approved by the University of 

Lethbridge Animal Welfare Committee, in accordance with national guidelines. Dorsal 

white muscle tissue was removed from the left side of fish, above the lateral line and 

directly anterior to the dorsal fin for Se content analysis. Muscle tissue samples from each 

fish were dried in a drying oven at 60⁰C until a constant weight was reached 

(approximately 72 hours) and individually homogenated using a nitric acid washed 

mortar and pestle.  Fish ages were determined from sagittal otoliths removed from all 

lethally sampled fish. 

Composite macroinvertebrate samples were collected for Se content analysis 

between late July and late August 2011, using a 0.09 m
2
 surber sampler with 250 µm 
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mesh size and sampling to approximately 0.1 m depth in the substrate. Three replicate 

samples were taken per stream each comprising three one minute sampling intervals at 

three locations along a stream transect. Transects were restricted to shallow riffles, 

defined as swift water habitats with turbulent flow and broken water surface. Samples 

were transferred to freezer bags and placed on ice until they could be frozen for further 

processing. In the laboratory, all macroinvertebrates from each sample were sorted from 

debris, identified to the family level of taxonomic resolution, and dried in a drying oven 

at 60⁰C until a constant weight was reached (approximately 48 hours). All 

macroinvertebrates from all three replicate samples from each site were then combined 

and homogenized in order to obtain a minimum composite tissue sample for Se content 

analysis (> 0.2 g dry weight). 

To represent Se concentrations at the base of the food web, composite biofilm 

samples (as bacteria, algae, periphyton and/or moss) were collected by scraping material 

from stream substrates using a stainless steel spatula or forceps. A minimum of 90 mL of 

sample was collected from at least five substrate units in each sample reach and placed in 

a polyethylene bag. Due to the patchy distribution of the biofilm community, substrate 

units that provided sufficient material for analysis were preferentially selected. Excess 

water was poured off and samples were placed on ice in the field and frozen upon return 

to the laboratory. Biofilm samples were thawed then dried in a drying oven at 60⁰C until 

constant weight was reached (approximately 48 hours) and homogenated. 

Water samples for Se analysis were collected in the same manner as those for 

nutrient analysis but were acidified to approximately 1% v/v using 16N Omnitrace HNO3 

prior to storage and shipping. Total Se in water was measured by inductively coupled 
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plasma mass spectrometry (ICP-MS) at ALS Laboratories in Calgary, AB, Canada. Some 

water samples had concentrations of total Se below the method detection limit of 0.001 

mg/L and were assigned a value of one half of the method detection limit in statistical 

analyses. Total Se was measured in dried fish muscle tissue, composite invertebrate 

tissues, and composite biofilm by hydride generation atomic absorption spectrometry 

(HG-AAS) (detection limit 0.05 mg/kg dry weight) as previously described (Miller et al. 

2009). Measured Se tissue concentrations are reported as mg/kg dry weight (dw). 

Statistical analysis 

Statistical analyses were performed in JMP 10.0 (SAS Institute Inc 2012). Se 

concentrations were right skewed and were therefore log10-transformed prior to analysis. 

Mean waterborne, biofilm, macroinvertebrate and fish Se concentrations were compared 

between mine-affected and reference streams using two-sample t-tests.  

Se enrichment and trophic transfer were modelled using Se concentration data for 

three steps in the lotic food chain: 1. water to biofilm, 2. biofilm to macroinvertebrates, 

and 3. macroinvertebrates to juvenile fish muscle. This model was used as food chain 

lengths in Canadian Rockies streams have generally indicated three trophic levels (Orr et 

al. 2006).  While it is possible for predatory invertebrates to act as secondary consumers 

potentially lengthening the food chain, Orr et al. (2006) determined the number of trophic 

levels to be ~ 3 in Elk R. streams based on the trophic position of salmonid fishes 

estimated by ∆δ
15

N from composite invertebrate samples to fish. At each food chain step 

Se concentration in the lower trophic level was a continuous predictor and Se 

concentration in the higher trophic level was a response variable. Analysis of covariance 

(ANCOVA) was conducted to determine the effect of the continuous predictor Se 
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concentration (covariate) and watershed (Elk R. or McLeod R.) on the response Se 

concentration in the first two food chain steps. A two factor nested ANCOVA was used 

in the third food chain step to investigate the effects of invertebrate Se concentration 

(covariate), study watershed location, and fish species nested within watershed location 

(bull/cutthroat trout in the Elk R. and rainbow/brook trout in the McLeod R.) on juvenile 

fish muscle tissue Se concentration. Initial models contained interaction terms between 

factors and covariates to test for homogeneity of within group slopes. As factor by 

covariate interactions were not significant, final ANCOVA models were refitted without 

interaction terms. In food chain steps where watershed or species factors did not have 

significant effects in the refitted model, the enrichment/trophic transfer relationship for 

that step is presented as a linear regression of predictor and response Se concentrations 

from pooled watershed data.  

Fish muscle tissue Se concentrations were the mean concentration of n = 1 – 10 

fish of the same species captured concurrently at the same site and were weighted by n in 

ANCOVA and regression analyses. In an attempt to only represent juvenile fish in food 

chain analyses, Se concentrations in any fish with fork length > 200 mm or aged > 3+ 

were not included. Distributions of studentized residuals from linear regressions of Se 

relationships at each food chain step were tested as part of initial tests to determine if data 

met the assumptions of ANCOVA. One invertebrate (Berry Creek) and two fish (mean 

rainbow trout and mean brook trout from Luscar Creek) Se concentrations were found to 

be outliers in these distributions and they were therefore removed from the food chain 

analyses. Juvenile fish from Luscar Creek were captured in proximity (< 500 m) 

downstream of lentic-type habitat formed by a beaver pond on the stream channel. These 
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fish had high average muscle Se concentrations of 19.72 mg/kg dw in brook trout and 

15.07 mg/kg dw in rainbow trout (compared to 8.76-9.12 mg/kg dw in rainbow trout in 

Luscar Creek at similar waterborne Se concentrations from 1999 to 2001 (Casey 2005)). 

These fish may have spent time in the lentic-type environment of the pond and their 

tissue concentrations may therefore reflect exposure to higher trophic transfer and 

accumulation of Se typical in lentic food chains compared to the lotic environment where 

they were captured (Simmons and Wallschläger 2005, Orr et al. 2012). 

Mean watershed specific enrichment factors (EF) were determined from EF 

values calculated as biofilm:waterborne Se concentration at each site. Mean watershed 

specific trophic transfer factors (TTF) from biofilm to invertebrates were determined 

from invertebrate:biofilm Se concentration at each site. Finally, mean overall and species 

specific TTF from invertebrates to juvenile fish muscle were determined as means of 

invertebrate:fish muscle Se concentration in each individual fish. 

Reproductive effective concentrations (ECs) in muscle were calculated from 

proposed egg Se ECs in order to determine if measured fish muscle Se concentrations 

indicated the potential for reproductive effects. Muscle Se ECs were calculated from egg 

Se ECs and species specific egg:muscle relationships determined in field studies on three 

of the four fish species sampled in the present study (Holm et al. 2005, Rudolph et al. 

2008). The calculated muscle Se ECs were 3.01 mg/kg dw EC10 (the concentration at 

which 10% effects were observed) for skeletal deformities in rainbow trout larvae (Holm 

et al. 2005),  >10.25 mg/kg dw NOEC (the highest concentration at which no effects were 

observed) for craniofacial deformities in brook trout larvae (Holm et al. 2005) and 8.5-

12.05 mg/kg dw EC10 for alevin mortalities in cutthroat trout (Rudolph et al. 2008). Both 
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sub-lethal and lethal thresholds were used as field derived thresholds are rare and 

equivalent endpoints have not been studied in all species. No studies have determined 

ECs for reproductive effects in bull trout and therefore bull trout muscle Se 

concentrations were not compared to an EC threshold.  

Linear regression was performed on log10-transformed fish biomass and fish 

muscle Se concentration to determine the relationship between Se accumulation and the 

biomass of the fish community in the sampled streams. Fish muscle tissue Se 

concentrations were the mean concentration of n = 2 – 14 fish of all lethally sampled 

species captured at each site. Separate linear regressions were performed on log10-

transformed species biomass and species specific muscle Se concentrations in Elk R. 

(cutthroat and/or bull trout) and McLeod R. (rainbow and/or brook trout) streams. 

Species specific fish muscle tissue Se concentrations were the mean concentration of n = 

2 – 10 fish of the same species captured concurrently at the same site. Principal 

components analysis (PCA) was used to investigate measured fish habitat characteristics 

other than Se exposure in relation to fish biomass and stepwise multiple linear regressions 

were used to determine if other measured environmental variables significantly predicted 

fish biomass. All analyses used p < 0.05. 

 

Results 

Food chain transfer of Se 

Mean waterborne Se, biofilm Se, invertebrate Se and juvenile fish muscle Se 

concentrations were significantly greater in mine-affected than reference streams (Table 

2.2) and significant positive enrichment/trophic transfer relationships were observed at 
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each food chain step (Figure 2.2). At the base of the food chain, the overall ANCOVA 

model predicting biofilm Se concentration from water Se concentration and watershed 

was significant (R
2
 = 0.5290, F2,21 = 11.7927, p = 0.0004) with a significant effect of 

watershed and significant positive effect of water Se (Table 2.3 and Figure 2.2a). An 

interaction term between water Se and watershed was not significant (F1,20  = 0.0999, p = 

0.7553) and was therefore removed from the model. The relationship between biofilm Se 

and water Se in the Elk R. watershed had a higher regression intercept (0.7240) than the 

relationship in the McLeod R. watershed (0.4088) (Table 2.4).  

In the food chain step from biofilm to macroinvertebrates the model (R
2
 = 0.4724, 

F2,20 = 8.9538, p = 0.0017) indicated a significant positive effect of biofilm Se but not 

study watershed (Table 2.3 and Figure 2.2b) after a non-significant interaction between 

biofilm Se and study watershed (F1,19 = 1.0900, p = 0.3096) was removed.  

Finally, in the third food chain step from invertebrates to fish muscle tissue, 

interaction terms between species (nested by watershed) and invertebrate Se and between 

study watershed and invertebrate Se were not significant (F2,15 = 1.0224, p = 0.3835 and 

F1,15 = 4.2700, p = 0.0565, respectively). The overall model, refitted without interaction 

terms, was significant (R
2
 = 0.4865, F4,18 = 4.2648, p = 0.0133) but only the individual 

effect of invertebrate Se significantly contributed to the fit (Table 2.3 and Figure 2.2c).  

Se transfer at each food chain step was described by positive log-linear 

relationships between predictor and dependent Se concentrations (Figure 2.2). The 

calculated relationship from water to the base of the food web as biofilm was watershed 

specific, while the relationships between biofilm and invertebrates and invertebrates and 

juvenile fish muscle tissue were calculated from pooled watershed and species data 
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(Figure 2.2; regression parameters in Table 2.4). Species specific regressions of juvenile 

fish muscle tissue Se vs. invertebrate Se were also determined (Figure 2.3). 

The mean Se EF from water to biofilm was higher in the Elk R. watershed (Table 

2.5) but mean trophic transfer of Se from biofilm to invertebrates was greater in the 

McLeod R. watershed (Table 2.5). Mean fish species specific Se TTF from invertebrates 

to juvenile salmonids ranged between 1.06 ± 0.14 in bull trout and 1.39 ± 0.08 in rainbow 

trout with an overall average of 1.24 ± 0.07 and a general transfer factor relationship 

where TTF rainbow trout > TTF cutthroat trout > TTF brook trout > TTF bull trout 

(Table 2.5). 

Se exposure and fish biomass 

Based on calculated muscle Se EC values, average fish muscle Se concentrations 

in rainbow trout exceeded the EC10 for skeletal deformities (3.01 mg/kg dw) in eight of 

the nine McLeod R. streams in which they were captured. However, where 100% of all 

individual rainbow trout captured in mine-affected streams had muscle tissue 

concentrations above the effects threshold (range of site averages 4.71 – 15.07 mg/kg 

dw), this proportion was only 56% in reference streams (range of site averages 3.14 – 

3.74 mg/kg dw). Average brook trout muscle Se exceeded the calculated NOEC for 

craniofacial deformities (10.25 mg/kg dw) at only one mine-affected site, but a single fish 

at two other sites (one mine-affected, one reference) also exceeded the NOEC. Average 

cutthroat trout muscle Se was in the EC10 range for alevin mortalities (8.5 – 12.05 mg/kg 

dw) at two sites, both of which were mine-affected, but at least one individual fish at each 

of four mine-affected sites in the Elk R. watershed and one fish at a reference site had 

muscle Se concentrations within the EC range. 
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Total fish biomass was not significantly related to average fish muscle Se 

concentration in the study streams (Figure 2.4). Species biomasses of cutthroat trout and 

bull trout were also not significantly related to species specific average fish muscle Se 

concentrations in Elk R. watershed streams (Figure 2.5a). In the McLeod R. basin, 

rainbow trout biomass was significantly negatively related to rainbow trout fish muscle 

Se concentrations (Figure 2.5b). Rainbow trout biomass was 2.25 g/m
2
 in the reach with 

the lowest average Se muscle concnetration (3.14 mg/kg dw) and only 0.07 g/m
2
 in the 

reach with the highest average Se muscle tissue concentration (15.07 mg/kg dw). No 

significant relationship was identified in brook trout (Figure 2.5b) where biomass was 

between 0.15 and 0.41 g/m
2
 over a similar tissue concentration range (3.10 – 18.84 mg/kg 

dw) in the same streams. 

Investigation of measured habitat and water quality characteristics besides Se 

exposure did not identify any strong predictors of fish biomass. Though PCA indicated 

that cover variables such as the amount of undercut banks and large woody debris were 

high and the percent of slow water (pool) habitat was also high in streams with the 

highest biomass, stepwise multiple linear regression did not identify any significant 

habitat models that predicted total fish biomass. Therefore, habitat characteristics besides 

Se exposure are not further discussed in relation to fish biomass but measured values for 

each stream can be found in Table 2.6 SI. 
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Discussion 

Se transfer in lotic food chains 

Se concentrations in the water and biota of mine-affected streams were greater 

than in reference streams, confirming that surface mines were significant sources of Se in 

the studied watersheds. Se accumulation at the base of the food chain, from water to 

biofilm, differed between the two study watersheds but there was an overall significant 

positive relationship between waterborne and biofilm Se concentrations. The watershed 

specific relationships between waterborne and biofilm Se were log-linear with a slope 

less than one demonstrating higher accumulation of Se by biofilm at low waterborne Se 

concentrations and a decreasing accumulation rate as waterborne concentrations 

increased. Concentration dependent accumulation of essential compounds like Se and 

other metals, where the highest affinity uptake occurs at the lowest source concentration, 

allows organisms to accumulate enough of the essential compound to meet physiological 

requirements even when source concentrations are low (DeForest et al. 2007).  

Higher Se accumulation in the biofilm of Elk R. streams at similar waterborne Se 

concentrations to McLeod R. streams resulted in a significantly greater regression 

intercept and greater EF in the Elk R. watershed at the first food chain step. Particulate Se 

enrichment is often site-specific (Presser and Luoma 2010). Interspecific differences in 

Se enrichment relative to waterborne concentrations exist among algal and bacterial taxa 

due to differential cellular requirements and abilities for regulating Se uptake (Baines and 

Fisher 2001, Presser and Luoma 2010). Further, dissolved Se can be present in lotic 

systems in different forms including selenate (Se VI), selenite (Se IV) or organo-Se (Se 

II) which are differentially bioavailable to organisms (Maher et al. 2011). Finally, 
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selenate is accumulated through carrier-mediated processes in algal and bacterial cells 

and therefore its uptake can be influenced by the presence of other ions, particularly 

sulfate, as they compete for transport sites on cell membranes (Fournier et al. 2010, 

Maher et al. 2011).  Therefore, the observed difference in biofilm Se enrichment between 

the two watersheds could be accounted for by biofilm community variation, Se speciation 

or the relative concentrations of sulfate and selenate. 

In the second food chain step there was a significant positive relationship between 

biofilm and invertebrate Se concentrations that was not different between watersheds. 

Invertebrates primarily accumulate Se from their diets and Se accumulation rates can be 

taxon-specific due to differences in dietary preferences, physiological Se requirements, 

and capacities for assimilating, retaining and eliminating Se (Andrahennadi et al. 2007, 

Presser and Luoma 2010, Stewart et al. 2011). Co-incident Se relationships between 

biofilm and invertebrate Se in the two watersheds are likely a result of overall similarity 

in the invertebrate communities across watersheds. Se concentrations were measured in 

composite invertebrate samples containing organisms belonging to a total of 43 families, 

many of which were rare. Only 13 families (12 of which were aquatic insects) composed 

an average of >1% of individuals at each site (Chapter 3, this thesis). Of the 13 dominant 

families, 12 were present in both Elk R. and McLeod R. samples indicating similar Se 

accumulation capabilities in the organisms that dominate invertebrate assemblages across 

the two watersheds.  

The extent to which the base of the food chain is enriched with Se is important in 

determining Se contamination throughout the entire food web. Biofilm and therefore 

invertebrate Se concentrations were lower in McLeod R. streams compared to Elk R. 
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streams. Average Se TTF from biofilm to invertebrates were within the range for field 

sampled aquatic insects of 2.1 - 3.2, summarized by Presser and Luoma (2010) however, 

TTF were higher at McLeod R. sites than Elk R. sites. Higher trophic transfer from 

biofilm to invertebrates in McLeod R. streams suggests concentration dependent uptake 

at this food chain step where greater Se accumulation occurs in invertebrates exposed to 

lower dietary Se concentrations (DeForest et al. 2007). A similar relationship was 

observed in another lotic trophic transfer study in the Elk R. watershed (Orr et al. 2012) 

and supports a trophic transfer model where Se uptake rates in stream dwelling 

invertebrates change in relation to available dietary Se concentrations.  

There was a significant relationship in the third step of the food chain between 

invertebrate and juvenile fish muscle tissue Se. The relationship was also concentration 

dependent, with higher Se TTFs in fish muscle tissues at lower invertebrate Se 

concentrations. This supports observations that fish retain more Se from their diets when 

source concentrations are low (Hardy et al. 2010, Jardine and Kidd 2011) suggesting 

greater accumulation may be necessary to meet nutritional requirements (Hardy et al. 

2010).  

While invertebrate Se concentration had a significant effect on fish muscle Se 

concentration, there was no significant effect of fish species. Generally, Se accumulation 

in fish is considered species-specific based on variation in dietary preferences, habitat use 

and physiology (absorption and metabolism) (Stewart et al. 2011) but these sources of 

variation may not have influenced Se accumulation in fish muscle tissues in this study. 

The relative magnitudes of the species specific regression slopes of invertebrate vs. fish 

muscle Se were brook trout > rainbow trout > bull trout > cutthroat trout. However, 
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rainbow trout and brook trout in this study were exposed to a lower, narrower range of 

invertebrate Se concentrations than cutthroat and bull trout. The slightly greater 

accumulation rates of Se by rainbow trout and brook trout could therefore result from 

concentration dependent uptake of Se by juvenile fish rather than species specific 

differences in Se accumulation.  

Stomach content analyses on juvenile trout from eastern Canadian Rockies 

watersheds indicate that they consume similar diets, regardless of species, feeding 

predominantly on aquatic insects including Ephemeroptera, Plecoptera, Trichoptera and 

Diptera (Simulidae, Tipulidae, and Chironomidae) (Stantec Consulting Ltd 2004, Casey 

2005, Costello 2006, Warnock 2012). In small streams these diets may be supplemented 

by terrestrial insects and it is therefore important to consider that allochthonous inputs 

may confound the diet to fish Se accumulation relationship (Jardine and Kidd 2011). 

However, in the streams of the present study there is evidence that species differences in 

diet among early life stages of trout in the sampled watersheds are not sufficient to 

produce differences in Se accumulation.  

Species differences in Se tissue concentrations among adult fish collected in 

previous field studies have also suggested species-specific Se accumulation (Holm et al. 

2005, Minnow Environmental Inc et al. 2011). Tissue concentration differences among 

species may, however, be attributable to the physiological allocation of Se to different 

tissues rather than differences in absorption and metabolism. In a laboratory study, 

Pilgrim (2012) measured whole body Se burdens and relative Se allocation to muscle, 

liver and ovary tissues in adult rainbow, brook and cutthroat trout that were fed Se 

enriched diets. Though no differences in Se body burdens were reported among species, 
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brook trout allocated more Se to muscle than egg tissues compared to rainbow and 

cutthroat trout (Pilgrim 2012). In field studies, muscle:egg Se ratios also differ among 

species (1:7 in rainbow trout (Holm et al. 2005), 1:2 in brook trout (Holm et al. 2005, 

Miller et al. 2013) and 1:2 in cutthroat trout (Rudolph et al. 2008, Orr et al. 2012)) but 

similarity in overall accumulation is not generally considered due to potential uncertainty 

of individual Se exposure in field sampled adult fish.  

Examinations of Se accumulation and tissue specific allocation in multiple species 

of juvenile salmonids are rare, but Miller et al. (2013) found that some species of juvenile 

salmonids may not significantly differ in Se accumulation in confined natural 

environments. Miller et al. (2013) stocked hatchery reared juvenile rainbow and brook 

trout into end-pit lakes with elevated Se concentrations in Alberta, Canada and found that 

after 24 months of exposure muscle Se tissue concentrations and muscle:whole body Se 

relationships were not significantly different between the species. Therefore, a significant 

difference in Se accumulation may not have been detected among the muscle tissues of 

species in the current study because juvenile fish did not differ significantly in their 

dietary preferences and, as they had not yet developed gonads or had immature gonads, 

they did not demonstrate differences in Se tissue allocation comparable to those observed 

in pre-spawning adult fish.   

Though there was no effect of species, the relationship between invertebrate Se 

and juvenile fish muscle Se was significant. Highly variable tissue concentrations in wild 

trout in lotic systems have been documented (Holm et al. 2005, Rudolph et al. 2008) and 

in some cases no relationship between fish tissues and diet Se concentrations was found 

(Orr et al. 2012). Fish movements in lotic systems with good hydrological connectivity 
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are an important potential factor in producing these Se concentration patterns (Holm et al. 

2005, Orr et al. 2012). Variable use of Se-contaminated habitats by adult fish has been 

confirmed in studies of adult trout residency in Elk and McLeod R. streams (Palace et al. 

2007, Friedrich et al. 2011). In these studies, adult fish were captured during the 

spawning season in order to obtain eggs or gonads for toxicity testing. Spawning in most 

salmonids, especially those with migratory life histories, is a period of particularly high 

movement. While Se tissue concentrations can reflect dietary concentrations almost 

immediately, they can take weeks or months to reach equilibrium (Stewart et al. 2011). 

Therefore, fish that have recently moved, like those that have recently undertaken 

spawning migrations may not have tissue concentrations that reflect dietary sources at the 

location where they are captured. The significant relationship between juvenile fish Se 

and invertebrate Se supported the prediction that targeting a relatively less mobile life 

stage in this study would result in a strong relationship between Se concentrations in fish 

diet and fish tissues.  

The significant relationship between juvenile fish muscle Se and invertebrate 

concentrations at the point of capture also has implications for monitoring and 

management of Se toxicity risks to fish. It provides field based support for an empirical 

relationship between dietary Se and accumulation in salmonid tissues in lotic systems. If 

this relationship can be reliably defined, Se toxicity risks in mine-affected systems could 

be predicted from sampling at lower levels of the food chain (water, biofilm or 

invertebrates), reducing impacts on vulnerable fish populations due to lethal sampling 

(Orr et al. 2012). Further, because juvenile fish of different species do not appear to differ 
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in Se accumulation it may be possible to generalize food chain models and focus on 

tissue allocation and species sensitivity differences to determine species specific Se risks. 

Finally, if fish tissues are required to determine Se toxicity risks in trout, this study 

indicates that juvenile tissues are representative of Se exposure at the site of interest. 

Determining differences between juvenile and adult Se tissue allocations will be essential 

for defining appropriate thresholds for reproductive effects, but juvenile fish may be 

better candidates for sampling than individuals that have reached maturity and are 

therefore valuable in maintaining spawning populations.  

Individual- and community-level Se exposure effects in fish 

Total fish biomass and species specific biomass at the reach scale were not 

significantly related to average fish muscle Se concentrations except in rainbow trout. In 

McLeod R. streams, rainbow trout biomass declined as muscle Se concentrations 

increased, though brook trout biomass in the same streams remained relatively constant at 

all Se concentrations. Rainbow trout biomass was 2.18 g/m
2
 (over 97%) lower at the 

highest measured Se tissue concentration of 15.07 mg/kg dw than at the lowest Se tissue 

concentration of 3.14 mg/kg dw. Average rainbow trout muscle Se concentrations were 

elevated in many of the sampled streams and exceeded the EC10 for larval skeletal 

deformities of 3.01mg/kg dw, which is the lowest field derived EC of any of the sampled 

species.  Therefore, individual-level reproductive effects in rainbow trout likely 

contributed to declines in biomass.  

Though muscle Se concentrations were not related to total fish biomass or species 

specific biomass in the other sampled species, elevated fish tissue concentrations in the 

mine-affected study streams suggested individual-level effects may have been occurring. 
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Two sites had average cutthroat trout muscle Se concentrations above the EC10 for alevin 

mortalities and EC exceedences occurred in individual cutthroat trout at all mine-affected 

sites in the Elk R. watershed. Potential reproductive effects in bull and brook trout are 

less certain due to the lack of any EC for bull trout and muscle Se concentrations in brook 

trout that exceeded a NOEC above which effects are undetermined.  In general, Se 

exposure concentrations in some species may have been great enough to cause 

individual-level Se toxicity effects but not to produce detectable fish community- or 

population-level impacts at the reach scale. Small changes in the fish population density 

and community composition at the reach scale are difficult to detect as they could have 

been masked by natural population variability, access to uncontaminated refugia or 

density compensation (Janz et al. 2011).  

Stream salmonid populations vary naturally from year to year due to changes in 

the environmental characteristics of streams. Therefore, in some cases negative impacts 

due to toxicity must be substantial before they can be detected at the community level 

(Janz et al. 2011, Environment Canada 2012). Adult fish movements into nearby 

uncontaminated refugia (Palace et al. 2007, Friedrich et al. 2011) can reduce the 

community-level impacts of toxicity through access to habitats with low or no Se 

exposure. The reproductive effects caused by high egg Se concentrations may be 

mediated if spawning females utilize and feed in uncontaminated habitats during periods 

of egg formation (Environment Canada 2010b, Janz et al. 2011) and immigration of fish 

from uncontaminated refugia would suggest that the appropriate spatial unit for 

measuring/detecting community-level effects is greater than the reach scale (Freund and 

Petty 2007). Finally, since growth and survival of juvenile trout rearing in streams 
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depends partially on competition for limited habitat and food resources, when densities 

are low fish have higher rates of growth and survival (Jenkins et al. 1999, Keeley 2001). 

This type of density compensation in the sampled streams could prevent the detection of 

community-level effects if populations compensate for negative individual-level Se 

impacts by increased growth and survival of remaining individuals (Van Kirk and Hill 

2007).  

While density compensation may have prevented detection of any reach scale 

community-level effects that occurred in most of the sampled species, the opposite may 

have been true for rainbow trout in McLeod R. streams.  A demographic model of Se 

impacts on juvenile cutthroat trout by Van Kirk and Hill (2007) suggests that trout 

populations can be particularly vulnerable to Se impacts if additional stressors such as 

non-native species reduce their capacity for density compensation. Brook trout are an 

introduced species in McLeod R. streams and have been cited as a competitive threat to 

native rainbow trout populations in the watershed as faster growth, earlier reproduction 

and relative insensitivity to Se toxicity may provide a competitive advantage (Rasmussen 

and Taylor 2009). Se exposure that causes individual-level toxicity in rainbow trout but 

does not affect brook trout reduces overall fish density and could provide an opportunity 

for density compensation by brook trout, possibly resulting in further rainbow trout 

declines. The combined effects of Se sensitivity and competition with brook trout may be 

the reason for apparent impacts on rainbow trout populations at the stream reach scale.  

This study contributes valuable information to the continuing development of 

strategies for monitoring and managing Se impacts in lotic systems. Juvenile fish muscle 

Se concentrations reflected food chain Se concentrations at capture sites and may 
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therefore be appropriate candidates for tissue monitoring and use in the creation of food 

chain models, especially as Se tissue allocation relationships among trout species are 

further studied and become better understood. Food chain models could eventually allow 

food web Se concentrations (water, biofilm, invertebrates) to be used to predict and 

evaluate Se toxicity risks to fish at exposure sites thereby minimizing lethal sampling in 

at risk populations. Se toxicity effects on fish communities were not detectable in stream 

reaches at measured muscle concentrations for most fish species. However apparent 

declines of rainbow trout in McLeod R. streams demonstrated the potential for multiple 

stressors, including Se toxicity, to influence the ability of fish communities to remain in 

reference condition.  
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Tables and Figures 

Table 2.1 Sampling sites listed with study watershed, geographical coordinates and 

description as reference (Ref), mine-affected (MA), or reclaimed (MA-R). 

 

Stream name Site type Watershed Latitude Longitude 

W. Alexander Ck. Ref Elk 49.773 -114.721 

Chauncey Ck. Ref Elk 50.108 -114.814 

Dry Ck. Ref Elk 50.035 -114.817 

Ewin Ck. Ref Elk 50.060 -114.797 

Grace Ck. Ref Elk 49.984 -114.859 

South Line Ck. Ref Elk 49.915 -114.767 

Deerlick Ck. Ref McLeod 53.153 -117.244 

Eunice Ck. Ref McLeod 53.154 -117.231 

Wampus Ck. Ref McLeod 53.157 -117.262 

Watson Ck. Ref McLeod 53.072 -117.259 

W. Drinnan Ck. Ref McLeod 53.161 -117.544 

Cataract Ck. MA Elk 50.151 -114.865 

E. Crowsnest Ck. MA Elk 49.585 -114.693 

Erickson Ck. MA Elk 49.678 -114.783 

Fording R. MA Elk 49.894 -114.868 

Harmer Ck. MA Elk 49.831 -114.822 

Line Ck. MA Elk 49.892 -114.835 

Swift Ck. MA Elk 50.158 -114.869 

Berry Ck. MA-R McLeod 53.095 -117.447 

Drinnan Ck. MA-R McLeod 53.182 -117.513 

Gregg R. MA McLeod 53.129 -117.486 

Jarvis Ck. MA McLeod 53.058 -117.363 

Luscar Ck. MA McLeod 53.059 -117.311 

Sphinx Ck. MA-R McLeod 53.125 -117.311 
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Table 2.2 Measured food chain Se concentrations, descriptive statistics and two-sample t-test (p < 0.05) results for differences 

in mean Se concentration between mine-affected streams and reference streams. 

  Mine-affected Reference   

Variable Units Mean ± SE Range n Mean ± SE Range n t p 

Waterborne Se
 

mg/L 0.100 ±  0.053 0.0005 – 0.543 13 0.0008 ± 0.0001 0.0005 – 0.0017 11 -5.46
* 

<0.001 

Biofilm Se
 

mg/kg 3.57 ± 0.59 0.75 – 8.10 13 1.81 ± 0.24 0.75 – 3.32 11 -2.35 0.028 

Invertebrate Se
 

mg/kg 5.97 ± 0.89 2.65 – 13.41 12 4.01 ± 0.34 2.8 – 6.46 11 -2.49 0.011 

Fish muscle Se
 

mg/kg 7.60  ± 1.01 4.71 – 14.31 9 4.36 ± 0.55 2.6 – 7.36 8 -3.37 0.0023 

*
Indicates use of Welch’s t due to unequal between group variances (Levene test; p  < 0.05) 
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Table 2.3 Statistical results of ANCOVA effect tests in food chain Se relationships. 

In each food chain step, the effects of Se concentration of the lower trophic level and 

study watershed (Elk R. or McLeod R.) on Se concentration of the higher trophic 

level were tested. In the food chain step from invertebrates to fish, the effect of fish 

species (fixed effect nested in watershed location) on fish Se concentration was also 

tested.  

Parameter Model Effect df effect df error F ratio p-value 

 

Biofilm Se 
Water Se 1 21 4.5603 0.0447 

Watershed 1 21 12.7838 0.0018 

 

Invertebrate 

Se 

Biofilm Se 1 20 7.9742 0.0105 

Watershed 1 20 0.0217 0.8845 

 

Fish Muscle 

Se 

Invertebrate Se 1 18 9.0034 0.0077 

Watershed 1 18 0.1547 0.6987 

Species(Watershed) 2 18 0.7497 0.4867 
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Table 2.4 Regression parameters for food chain relationships between log10- 

transformed water, biofilm, invertebrate and fish muscle Se concentrations.  

 Watershed
*
 R

2
 R

2  

Adjusted 

p-

value 

Y- 

intercept 

Slope 

Water vs. biofilm Elk R. 
0.5290 0.4841 0.0004 

0.7240 
0.0951 

McLeod R. 0.4088 

Biofilm vs. 

invertebrate
 - 0.4718 0.4467 0.0003 0.5315 0.4290 

Invertebrate vs. fish 

muscle
 - 0.4392 0.4126 0.0006 0.2197 0.7645 

*  
If watershed is not identified, regression parameters are calculated from linear 

regressions on pooled data from both study watersheds  
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Table 2.5 Se enrichment factors (EF) and trophic transfer factors (TTF) in biofilm, 

invertebrates and fish muscle (overall and species specific). CTTR = westslope 

cutthroat trout; BLTR = bull trout; RNTR = rainbow trout; BKTR = brook trout. 

Transfer step Watershed Species N Range Mean ± SE 

Water-biofilm (EF) Elk R. - 13 7.62 – 9740 2230 ± 798 

McLeod R. - 11 67.57 – 3140 1400 ± 345 

Biofilm-invertebrate 

(TTF) 

Elk R. - 13 0.69 – 2.84 1.82 ± 0.18 

McLeod R. - 10 1.50 – 6.01 3.20 ± 0.37 

 

 

Invertebrate-fish muscle 

(TTF) 

 All 80 0.43 – 3.80 1.24 ± 0.07 

Elk R. CTTR 17 0.52 – 2.80 1.24 ± 0.15 

Elk R. BLTR 11 0.43 – 2.06 1.06 ± 0.14 

McLeod R. RNTR 24 0.77 – 2.17 1.39 ± 0.08 

McLeod R. BKTR 28 0.57 – 3.80 1.19 ± 0.15 
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Figure 2.1 Map of study areas in the Elk River watershed, British Columbia, Canada (A) and the McLeod River watershed, 

Alberta, Canada (B) including sampling sites and disturbance area
1
 for active and reclaimed mines.

                                                 

1
 Reproduced with the permission of Teck Coal Limited and Sherritt Coal International 
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Figure 2.2 Se relationships in three lotic food chain steps in two study watersheds (a) 

water to biofilm (● and solid line = Elk R.; ○ and dashed line = McLeod R.); (b) 

biofilm to invertebrates (● = Elk R.; ○ = McLeod R.; line = relationship of pooled 

watershed data); (c) invertebrates to fish muscle tissue ( ■ = westslope cutthroat 

trout; ▲ = bull trout; х = rainbow trout; ○ = brook trout; line = relationship of 

pooled watershed/species data). Regression parameters are in Table 2.4. 
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Figure 2.3 Relationship between invertebrate Se concentration and juvenile fish 

muscle Se concentration in different salmonid fish species. Westslope cutthroat 

trout = ■ and bold line (R
2
 = 0.2141, p = 0.2483); bull trout = ▲ and solid line (R

2
 = 

0.1709, p = 0.5866); rainbow trout = х and bold-dashed line (R
2
 = 0.4641, p = 

0.0920); brook trout = ○ and dashed line (R
2
 = 0.9963, p = 0.0018).  
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Figure 2.4 Relationship between total fish biomass and average fish muscle tissue Se 

concentration in sampled stream reaches in the Elk R. watershed (●) and the 

McLeod R. watershed (○) (pooled watershed data; R
2
 = 0.0165; p = 0.6236). Fish 

muscle Se concentrations are the average Se concentration of all fish of all lethally 

sampled species (n = 2 – 14).  
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Figure 2.5 Relationship between species biomass and average species specific fish 

muscle tissue Se concentration in (a) Elk R. streams containing westslope cutthroat 

trout (■; R
2
 = 0.0007; p = 0.9516) and/or bull trout (▲; R

2
 = 0.7238; p = 0.1492) and 

(b) McLeod R. streams containing rainbow trout (х and solid line; R
2
 = 0.7076; p = 

0.0089) and/or brook trout (○; R
2
 = 0.0034; p = 0.9255). Fish muscle Se 

concentrations are the average Se concentrations of fish of the same species from 

each sampling reach (n = 2 – 10).
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Supporting Information 

Table 2.6 SI Water quality and habitat characteristics measured in study stream reaches. WS = study watershed (ER = Elk R. 

and MR = McLeod R.); DO = dissolved oxygen; TN = total nitrogen; TP = total phosphorus; WOLDG = Wolman Dg; EMB = 

substrate embeddedness; WW = wetted width; LWD = large woody debris; RC = riparian cover; and UCB = undercut banks. 

Site WS pH DO 

(mg/L) 

TN 

(mg/L) 

TP 

(µg/L) 

WOLDG 

(cm) 

Slope 

(%) 

Velocity 

(m/s) 

EMB 

(%) 

WW 

(m) 

Depth 

(m) 

Pool 

(%) 

Glide 

(%) 

Riffle 

(%) 

LWD 

(#) 

RC 

(%) 

UCB 

(%) 

Alexander ER 8.4 10.5 43 19 7.63 2.6 0.44 50 4.8 0.30 41 6 53 21 23 4 

Berry ER 8.3 9.8 667 2 7.35 3.46 0.65 25 4.2 0.20 12 24 64 20 30 4 

Cataract ER 8.1 9.9 30250 0.5 - 11.0 0.59 100 4.0 0.09 24 26 50 10 40 - 

Chauncey ER 8.3 11.8 44 1 8.92 3.1 0.62 25 4.5 0.26 23 26 51 32 40 8 

Deerlick ER 8.2 9.9 103 0.5 7.46 1.6 0.45 25 3.7 0.22 34 35 31 30 11 10 

Drinnan ER 8.2 9.5 57 2 4.77 1.3 0.99 38 9.1 0.47 28 41 31 28 4 5 

Dry ER 8.4 9.6 56 13 4.28 1.2 0.23 25 4.7 0.25 20 20 60 9 17 5 

E. Crowsnest ER 8.3 10.7 33 7 5.32 3.1 0.63 38 3.3 0.18 25 11 64 64 30 5 

Erickson ER 8.3 11.2 6580 11 2.77 7.2 0.80 63 4.5 0.28 13 21 66 22 40 3 

Eunice ER 8.3 10.9 102 4 7.20 3.4 0.61 38 3.2 0.25 21 33 46 33 40 7 

Ewin ER 8.2 11.6 76 1 7.00 3.8 0.80 50 6.6 0.33 42 24 34 10 11 6 

Fording ER 8.4 10.2 7260 2 14.36 0.5 0.80 50 25.0 0.40 24 26 50 10 11 - 

Grace ER 8.4 11.2 62 7 3.47 2.8 0.50 0 3.1 0.23 35 14 51 90 10 10 

Gregg MR 8.4 8.2 1070 2 6.47 4.0 0.84 38 8.3 0.25 10 24 66 15 9 2 

Harmer MR 8.4 10.8 931 10 5.32 2.4 0.71 25 8.0 0.25 22 24 54 165 30 3 

Jarvis MR 8.4 9.1 3670 2 7.13 2.8 0.59 25 3.9 0.18 17 35 48 0 32 2 

Line MR 8.3 11.1 7830 5 15.52 2.0 0.74 50 10.5 0.44 22 8 70 8 13 8 

Luscar MR 8.4 8.6 1960 3 11.8 1.5 0.58 50 5.3 0.23 11 48 41 8 14 5 

South Line MR 8.3 12.5 67 2 11.08 3.8 0.54 50 5.7 0.29 17 17 66 16 5 0 

Sphinx MR 8.4 10.2 337 8 7.14 3.1 0.49 38 5.7 0.24 18 19 63 12 19 5 

Swift MR 8.1 10.3 33650 0.5 1.27 2.1 0.45 100 2.9 0.18 48 24 28 63 7 3 

Wampus MR 8.3 9.7 86 7 7.01 2.6 0.39 50 5.7 0.18 22 32 46 11 26 3 

Watson MR 8.2 8.7 99 5 7.26 2.1 0.38 50 4.0 0.17 26 30 44 1 11 6 

W. Drinnan MR 7.9 9.3 58 2 2.92 1.5 0.52 25 8.6 0.40 21 50 29 23 22 5 
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CHAPTER 3. SURFACE COAL MINING INFLUENCES ON 

MACROINVERTEBRATE ASSEMBLAGES IN STREAMS OF THE 

CANADIAN ROCKIES 

Abstract 

Surface coal mine operations can affect downstream aquatic ecosystems through 

the release of toxicants such as selenium (Se), changes to water chemistry, and physical 

habitat alterations that affect stream substrate and morphology. Chemical and physical 

stream characteristics and macroinvertebrate family and community metrics were 

measured in mine-affected and reference streams in the Canadian Rockies to determine 

the region specific impacts of surface coal mines on macroinvertebrate community 

health. Water chemistry was significantly altered in mine-affected streams with elevated 

conductivity, alkalinity, Se and ion concentrations compared to reference conditions. 

Trends in physical habitat characteristics, though not significant, were also found along 

gradients of mine influence where mine-affected streams had higher substrate 

embeddedness, smaller interstitial materials and steeper slopes. Multivariate redundancy 

analysis (RDA) showed that macroinvertebrate communities downstream of mine sites 

demonstrated severe declines in Ephemeroptera family densities and increased densities 

of Capniidae stoneflies. In RDA ordination of community metrics, family and EPT 

richness and % Ephemeroptera declined along a gradient of increasing mine influence. 

Shifts in macroinvertebrate assemblages may have been the result of multiple region 

specific stressors including Se toxicity, ionic toxicity, or stream substrate modifications.   
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Introduction 

Surface coal mining is an intensive process that involves large-scale removal of 

overburden rock to access shallow coal seams in coalfield rock formations (Palmer et al. 

2010). In addition to major changes in topography and watershed morphology at mine 

sites (Lindberg et al. 2011), large quantities of disturbed rock and soil are exposed to 

increased weathering conditions, mobilizing solutes in downstream aquatic systems 

(Naftz and Rice 1989). Surface coal mining influences lotic systems through the 

individual and combined effects of stream habitat alteration (Scullion and Edwards 

1980), water quality shifts (Pond et al. 2008, Lindberg et al. 2011), and the elevated 

release of potentially toxic compounds (Wayland and Crosley 2006), most notably 

selenium (Se) (Palmer et al. 2010). Over the past 40 years, the intensity of surface coal 

mining has increased dramatically in regions of the Canadian Rocky Mountains in the 

provinces of Alberta and British Columbia, Canada (Lussier et al. 2003) and the 

continued development of surface mines emphasizes the need to understand and manage 

the region specific impacts of mining on stream habitat, water quality and aquatic biota. 

Selenium exposure and toxicity have been the focus of many aquatic studies in 

coal mining regions of the Canadian Rockies (Wayland and Crosley 2006, Wayland et al. 

2007, Orr et al. 2012, Miller et al. 2013). Se released from waste rock at mine sites 

drastically increases background stream concentrations from 0.1 – 0.4 µg/L (United 

States Environmental Protection Agency 2004) to concentrations that can reach over 100 

µg/L (Orr et al. 2012). The toxic effects of Se bioaccumulation have been extensively 

studied in egg laying vertebrates including fish (Chapman 2007) and aquatic birds 

(Wayland et al. 2007). Elevated concentrations of Se have been measured in 
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macroinvertebrates downstream of surface mines (Wayland and Crosley 2006, Orr et al. 

2012) and sub-lethal toxic effects including reduced growth and reproduction have been 

observed in certain taxa at relatively low Se tissue concentrations in laboratory studies 

(deBruyn and Chapman 2007). Se toxicity threats to valuable aquatic resources, in this 

region have led to numerous monitoring plans as well as small and large scale Se 

reduction efforts (Abbott et al. 2012).  

Alterations in water chemistry besides Se contamination have been the emphasis 

of recent biomonitoring studies in the Appalachian Coalfields in the United States 

(Cormier et al. 2013a).  High stream conductivity and elevated ionic mixtures containing 

SO4
2-

, Cl
-
, HCO3

-
, Ca

+ 
and Mg

+
 released from rock spoil downstream of mountaintop coal 

mines have been cited as causes of macroinvertebrate community impairment (Pond et al. 

2008, Cormier et al. 2013c). Differences in bedrock geology result in naturally harder 

water in Canadian Rockies streams which have background conductivities varying 

around 300 µS/cm (Noton 1998, Dessouki and Ryan 2010) compared to the Appalachian 

region range of 72 - 153 µS/cm (Cormier et al. 2013a). However, water quality data from 

studies in British Columbia and Alberta suggest elevated conductivity and sulfate 

concentrations which could affect aquatic biota (Dessouki and Ryan 2010, Miller et al. 

2013).   

Habitat modifications also occur in the aquatic environments of mined watersheds 

and include large-scale land clearance and the complete burial of portions of headwater 

streams by rock spoil which increase sediment export and change stream hydrology 

(Pond et al. 2008, Fritz et al. 2010). Additionally, limestone and shale dominated bedrock 

in the Canadian Rockies creates water chemistry conditions that promote streambed 
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calcite accumulation. Calcium carbonate precipitation as calcite in streams is a natural 

process which is intensified downstream of surface coal mines in the region due to the 

extreme supersaturation of CO2 and calcite in water passing through rock spoil (Ford and 

Pedley 1996). Deposition takes place as the water surfaces and successive CO2 degassing 

and calcite precipitation occur (Chen et al. 2004). Calcite accumulation in the region can 

be significant, sometimes spanning the entire width of streams and resulting in concretion 

or terracing of stream channels. 

Macroinvertebrate communities, though not extensively studied in response to 

mine influences in the Canadian Rockies, are often used to assess the impacts of stressors 

on the integrity of the biotic community (Clements 2004). Surface mine related studies in 

other regions have used invertebrate community composition to address questions of 

mine impact and system recovery (Fritz et al. 2010, Petty et al. 2010). Multiple potential 

mine impacts in Canadian Rockies streams and a growing coal mine industry highlight 

the need to understand mining effects on ecosystem health, including macroinvertebrate 

community integrity in mined watersheds.  

The present study examined benthic macroinvertebrate community composition in 

streams with surface coal mining disturbance in their upstream watersheds and in nearby 

reference streams. Macroinvertebrate communities as well as water chemistry and 

physical habitat were investigated. The objectives of this study were to characterize 

physical and chemical variables in surface mine affected and reference streams, to 

investigate and quantify the influence of these variables on macroinvertebrate taxa 

composition and community metrics, and to identify any sensitive taxa that could be used 

as indicators of mine impact.  
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Materials and Methods 

Study areas 

Twenty-four streams were sampled in two separate study areas with long-term 

influences from surface coal mining (Figure 3.1). The Elk River watershed in south-

eastern British Columbia, Canada is an approximately 4450 km
2
 portion in the 

headwaters of the Columbia River basin. Five operating surface coal mines produce 

metallurgical and thermal coal from the Elk Valley and Crowsnest Coalfields contained 

in the Mist Mountain Formation of the Jurassic-Cretaceous Kootenay Group (B.C. 

Ministry of Forests Lands and Natural Resource Operations 2012). These mines drain 

directly and indirectly into tributaries of the Elk River. The McLeod River watershed is 

located in the middle reaches of the Athabasca River in west-central Alberta, Canada. 

Two operating and one reclaimed surface coal mine in the Coalspur and Gates 

Formations of the Lower Cretaceous Luscar Group (Richardson et al. 1990) drain directly 

and indirectly into the McLeod River and its tributaries. Across the two study areas, 13 

mining affected and 11 reference streams were sampled (Table 3.1 and Figure 3.1). Study 

sites were located between 1250 and 1600 meters above sea level in elevation in 2
nd

 to 5
th

 

order streams. Streams were designated as mine-affected if they received drainage from 

upstream surface coal mines. Mine-affected streams were selected to represent a range of 

mine influence based on the area of mine disturbance in the upstream watershed and 

reference streams were selected in nearby watersheds with no mine influence. Three of 

the mine-affected streams were influenced by mine areas that have been reclaimed for 5 – 

10 years. These sites were grouped with other mine-affected sites in all analyses but are 
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identified as reclaimed in Table 3.1. Despite no mine disturbance in their upstream 

watersheds, many reference sites experienced other anthropogenic influences from 

logging, road construction, and recreational usage. Therefore, reference sites do not 

necessarily represent pristine watersheds but rather the range of anthropogenic effects 

typical of the region but without the additional influence of mining.   

Macroinvertebrate sample collection, processing and identification 

Macroinvertebrate samples were collected between late July and late August 

2011, using a 0.09 m
2
 surber sampler with 250 µm mesh size and sampling to 

approximately 0.1 m depth into the stream substrate. Three replicate samples were taken 

per stream each comprising one minute sampling intervals at three locations along a 

stream transect. Transects were restricted to shallow riffles operationally defined as swift 

water habitats with turbulent flow less than 0.3 m deep and with broken water surface. 

All sampled material was transferred to freezer bags, placed on ice in the field, and frozen 

upon return to the laboratory.  

In the laboratory, samples were thawed and washed using Type 1 Milli-Q 

ultrapure water (EMD Millipore) through a series of 4 sieves (mesh sizes: 2 mm, 1 mm, 

500 µm and 250 µm) to remove fine debris. They were then transferred to white plastic 

trays from which all organisms were sorted from remaining debris and identified to the 

family level (Clifford 1991), except for organisms of the orders Nematoda and 

Hydrachnidia which were identified as such. Each family of organisms was enumerated 

and dried in a drying oven at 60⁰C until a constant weight was reached (approximately 48 

hours). Family density as count per sample and sample dry weight (dw) biomass to the 
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nearest 0.0001 g were determined. Family densities and biomasses from the three sample 

replicates collected at each site were averaged for statistical analyses. 

Invertebrate community metrics were calculated at the family level and included 

Shannon-Weiner diversity (Shannon’s H), family richness, Ephemeroptera, Plecoptera, 

Trichoptera (EPT) richness, total sample density, total sample dw biomass, % 

Ephemeroptera, % Plecoptera, % Trichoptera, and % Diptera. These metrics were chosen 

to summarize general responses of the invertebrate community to mine disturbance. 

Diversity and richness metrics are expected to decrease with decreasing water quality 

(Norris and Georges 1993), while responses of abundance (numbers or biomass) and 

compositional metrics vary under different types of stresses (Resh and Jackson 1993).  

Environmental variables  

Environmental variables were measured to describe stream characteristics that 

influence benthic invertebrate community composition. Measured environmental 

variables can be classified into two groups; water chemistry (n = 12) and physical habitat 

(n = 15). All environmental variables measured in this study are listed in Table 3.2. 

Water Chemistry 

Dissolved oxygen was measured in the field using a handheld YSI 85 

multiparameter instrument (YSI Inc.) calibrated for elevation. Water samples for 

determining total selenium concentration, total nitrogen and total phosphorus were 

collected at the time of benthic invertebrate sampling. Water samples for other chemistry 

variables including NO2
-
+NO3

-
, Cl

-
, SO4

2-
, Ca

+
, alkalinity (as CaCO3), specific 

conductance (hereafter referred to as conductivity) and pH were collected in mid-

September 2011. Samples were collected at or near the benthic invertebrate sampling 
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transects from approximately 10 cm below the water surface in well-mixed, swift water 

stream units with non-turbulent flow. Samples were collected in acid-washed high-

density polyethylene bottles, placed on ice in the field and stored at 4⁰C until they were 

shipped to the analytical laboratories. Water samples for selenium concentration analysis 

were preserved with 16 N Omnitrace HNO3 to approximately 1% v/v prior to storage. 

Analysis for total Se was performed by ALS Environmental, Calgary AB, Canada by 

inductively coupled plasma mass spectrometry (ICP-MS). All other water chemistry 

analyses were performed at the University of Alberta Biogeochemistry Analytical 

Services Laboratory in Edmonton, AB, Canada by standard methods. In some samples, 

concentrations of waterborne selenium and total phosphorus were below analytical 

method detection limits (0.001 mg/L for both analyses). A value of one half the method 

detection limit was assigned to these measurements. 

Chronic Se toxicity is often the result of bioaccumulation rather than ambient 

exposure (Orr et al. 2006). Therefore Se at the base of the food web was quantified to 

reflect dietary exposure of macroinvertebrates in sampled streams (Chapter 2, this thesis). 

To determine selenium concentration in the base of the food web, composite biofilm 

samples (bacteria, algae, macrophytes and moss) were collected from at least five stream 

substrate units near the benthic invertebrate sampling site by scraping material from rocks 

using a stainless steel spatula or forceps into polyethylene bags. Samples were placed on 

ice in the field and frozen prior to selenium content analysis. In the lab, biofilm samples 

were dried in a drying oven at 60⁰C until constant weight was reached (approximately 48 

hours) then homogenized. Biofilm tissues were analyzed for total dw selenium by hydride 
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generation atomic absorption spectrometry (HG-AAS) as described by Miller et al. 

(2009). 

Physical Habitat 

Physical habitat characteristics were measured over 175 – 200 m stream reaches 

which contained the invertebrate sampling transects. Physical stream habitat 

characteristics were selected and measured based on protocols adapted from the Canadian 

Aquatic Biomonitoring Network (Environment Canada 2010) and Johnston and Slaney 

(1996). Stream substrate size was described using Wolman Dg, the geometric mean of 

intermediate axis length of substrate units measured in a one hundred pebble count. 

Substrate units measured in the pebble count were also used to determine the percent 

composition of the substrate as fines (<0.2 cm), gravel (0.2-6.3 cm), cobble (6.3 - 25.6 

cm) and boulder (>25.6 cm).  

Substrate embeddedness was measured as the percentage depth that a substrate 

unit was buried in the surrounding interstitial material and summarized as the median 

embeddedness of a sub-sample of ten substrate units measured in the one hundred pebble 

count. Interstitial material was nominally categorized (0 – 9) with higher category 

numbers corresponding to increasing standard Wentworth substrate size classes 

(Environment Canada 2010). In some of the study streams substrates were entirely 

concreted over with calcite. In these locations, interstitial material size was assigned a 

small value because although concretion conglomerates streambed substrate, if calcite is 

broken apart macroinvertebrates are often found burrowing in it. Consequently, in terms 

of invertebrate habitat, calcite is a fine material at least marginally suitable for burrowing 

organisms. Substrates in these streams were therefore also assigned high embeddedness 
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scores as larger substrates were buried in finer calcite material and interstitial spaces were 

drastically reduced or even eliminated.  

The water surface slope was determined using a clinometer. Stream velocity was 

approximated using a velocity head-rod across one of the three invertebrate sampling 

transects. Percent pool and percent riffle were measured as the percent length of the 

stream reach comprised of distinct slow and swift water habitat units respectively. Large 

woody debris was measured as a tally of wood with diameter > 10cm over the entire 

reach and the percent of each habitat unit shaded by first layer riparian cover was 

averaged to determine percent riparian cover. Wetted channel width was the average of 

across channel measurements made in each habitat unit. Channel depth was the average 

of depths from each habitat unit determined as the mean of three equidistant 

measurements made along a stream transect. 

Statistical analysis 

All statistical analyses were performed in JMP 10.0 (SAS Institute Inc 2012) or 

CANOCO for Windows 4.5 (ter Braak and Šmilauer 2002a) and presented using 

CanoDraw (ter Braak and Šmilauer 2002a). To reduce the effect of rare taxa in analyses, 

families that comprised an average of <1% of the organisms at all sampling sites were 

excluded from analyses. Family abundance was log10 (y + 1) transformed prior to 

analysis. Invertebrate abundance and biomass metrics were log10 (y+1) transformed, 

richness metrics were not transformed and percentage metrics were arcsin(√(y/100)) 

transformed. Transformations were used to reduce skewness in the data and reduce the 

influence of extreme values in analysis. Where necessary to better approximate 

normality, water chemistry and direct physical habitat measurements were log10 (x + 1) 
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transformed. Differences in mean value of the environmental variables between mine-

affected and reference streams were tested using Welch’s t-tests (p < 0.05).  

Environmental variables were expected to be correlated as some of the measured 

variables inherently produce redundancy in the dataset and others are influenced by the 

presence and intensity of mine disturbance in upstream watersheds (Palmer et al. 2010). 

To both decrease the number of variables and reduce problems caused by 

multicollinearity in multivariate analyses, a reduced set of environmental variables was 

selected. Preliminary variable reduction was based on pairwise Pearson-product moment 

correlations within groups of transformed water chemistry and physical habitat variables. 

When pairs of water chemistry variables were correlated at r > 0.80 and when pairs of 

physical habitat variables were correlated at r > 0.70, one of the pair was dropped from 

the analysis. Many variables were correlated with more than one other variable. In order 

to achieve the greatest reduction, variables having the most correlations with coefficients 

above selected thresholds were chosen to remain in the analysis. Variable reduction 

resulted in variance inflation factors < 15 in preliminary multivariate analyses (ter Braak 

and Šmilauer 2002b). The set of environmental variables was further reduced by 

eliminating environmental variables without significant marginal effects in constrained 

ordinations. The marginal effect is the variance explained by a single variable and was 

determined by performing redundancy analysis (RDA) on invertebrate family density or 

community metrics with each variable individually and determining significance at p < 

0.05 (Monte-Carlo permutation test) (Lepš and Šmilauer 2003). 

In community composition analysis, gradient length is a measure of beta diversity 

or taxa turnover along a measured or hypothetical environmental gradient where short 



 

72 

gradient lengths indicate low taxa turnover and a linear and/or monotonic response of 

families or metrics among the samples collected. Preliminary detrended correspondence 

analyses (DCA) revealed that gradient lengths of both invertebrate family density and 

invertebrate metrics were short (< 2 and < 1 respectively) indicating that linear response 

models were appropriate in further ordination analyses (ter Braak and Verdonschot 1995, 

Lepš and Šmilauer 2003). 

Principal components analysis (PCA) and redundancy analysis were used to 

examine variation in invertebrate family and metric data and to determine variation 

associated with measured environmental variables. The methods are complimentary as 

variation missed in one method may be captured by the other (Lepš and Šmilauer 2003). 

Unconstrained PCA captures the main variation in taxonomic composition while 

constrained RDA captures the variation in taxonomic composition related to linear 

combinations of measured environmental predictors (Lepš and Šmilauer 2003). 

PCA and RDA were performed on invertebrate family and metric data.  Metric 

data were standardized due to the different unit scales of the metric variables (Lepš and 

Šmilauer 2003). The statistical significance of the first four RDA axes in each analysis 

was tested using Monte-Carlo permutation tests with 499 unrestricted permutations (p < 

0.05). Intraset correlations were calculated as Pearson’s product-moment correlations 

between the measured values of environmental variables and the site scores on the first 

two RDA axes (ter Braak 1986). Intraset correlations are used to evaluate the relative 

importance of each environmental variable in predicting the response of 

macroinvertebrate assemblages (ter Braak 1986). Correlations were also performed 

between the measured values of excluded collinear variables and the site scores on the 
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first RDA axes of family and metric data to determine the relationship of excluded 

variables with invertebrate assemblage responses (Griffith et al. 2001). A sequential 

Bonferroni correction was applied to account for multiple comparisons with p < 0.05 for 

the entire test (Rice 1989). 

A multiple linear regression was used to model the relationship between the 

invertebrate orders with the highest family scores on the first axis of the invertebrate 

family RDA and the environmental variables with significant marginal effects that were 

most correlated with the axis. This was done to test the significance of relationships 

between important environmental predictors and sensitive taxa occurrence. 

 

Results 

Environmental characteristics 

Mean values and ranges of measured environmental variables grouped by site 

type (mine-affected and reference) are listed in Table 3.2.  Of the measured 

environmental characteristics, some water chemistry variables were significantly different 

between mine-affected and reference sites (Welch’s t-test, p < 0.05, Table 3.2). Streams 

with mine influence had significantly higher mean concentrations of waterborne Se, total 

nitrogen, NO2
-
+NO3

-
, SO4

2-
, Cl

-
, and Ca

+
 than reference streams. Mean biofilm Se 

concentration was also significantly higher in mine-affected streams as were mean stream 

alkalinity and conductivity. Mean physical habitat characteristics did not differ 

significantly between the reference and mine-affected streams except for stream velocity 

which was greater at affected sites.  
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Invertebrate community composition 

A total of 47,932 individual invertebrates were identified from 72 samples 

collected at the 24 sampling locations. Invertebrates comprised 12 orders and 43 families. 

Many of the identified families were rare and composed, on average, <1% of the 

individuals at each site. These taxa were excluded from analyses resulting in an 

invertebrate data set composed of 13 families. Families and abbreviations are listed in 

Figure 3.2. Variable reduction prior to ordination analysis based on environmental 

variable correlations initially reduced the set of predictor variables from 27 to 16. Of the 

remaining 16 predictor variables 7 had significant marginal effects on invertebrate family 

composition gradients and 6 had significant marginal effects on invertebrate community 

metric gradients (Monte-Carlo permutation test; p < 0.05). Water chemistry variables 

including waterborne Se, alkalinity and pH and physical habitat variables including slope, 

Wolman Dg, and substrate embeddedness had significant marginal effects on both family 

and metric data. Interstitial material size only had a significant marginal effect on 

invertebrate family composition. 

There was a high degree of similarity in the relative locations of the family and 

metric scores between the PCA and RDA ordinations and similar amounts of variation in 

the family and metric data were explained by the first two ordination axes in each 

analysis type. This similarity indicates that the main part of the variability in the family 

and metric data described by the PCA is explained by the measured environmental 

variables included in the RDA (ter Braak and Šmilauer 2002b, Lepš and Šmilauer 2003). 

Because PCA and RDA analyses displayed similar trends in both the family and metric 

data, only RDA analyses are discussed in further detail. 
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The RDA analysis of family composition data and the 7 environmental variables 

with marginal effects as predictor variables produced an ordination in which the first two 

axes were significant (Monte-Carlo permutation; p = 0.002 and p = 0.018 respectively). 

Canonical axes explained a total of 55.2% of the variation in family composition and the 

first two axes explained 32.4% and 13.9% of the variance in the family data respectively 

(Figure 3.2). The first two RDA axes had high family-environment correlations of 0.944 

and 0.811 and explained a similar percentage of the variation in family composition as 

the PCA (PC1 = 37.0% and PC2 = 21.5%) signifying a good fit of the family data to the 

environmental predictor variables (ter Braak 1986). 

A gradient of mine influence based on water chemistry and physical habitat 

attributes was observed in the family RDA plot of Axes 1 and 2 where mine-affected sites 

were separated from reference sites in ordination space (Figure 3.2). Sites influenced by 

mining were spread along the positive end of Axis 1 and the negative end of Axis 2 while 

reference sites had less extreme scores on both axes and were generally grouped in the 

fourth quadrat of the ordination plot. Alkalinity and waterborne Se concentration, which 

were both significantly higher at mine-affected sites, as well as substrate embeddedness 

and slope, were significantly positively correlated to Axis 1 (Intraset correlations; p < 

0.05, Table 3.3). Interstitial material size was negatively related to Axis 1 (Figure 3.2). 

The second RDA axis was significantly negatively correlated with pH and waterborne Se 

concentration (Intraset correlations; p < 0.05, Table 3.3). Overall, reference and mine 

affected sites were arranged along a gradient of increasing mine influence characterized 

by increasing waterborne Se, alkalinity, substrate embeddedness, and slope and 

decreasing interstitial material size. 
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Invertebrate family assemblages in the study streams reflected the gradient of 

mine influence based on family RDA axis scores (Table 3.4). RDA Axis 1 had large 

negative scores from three families of the order Ephemeroptera including Baetidae, 

Ephemerellidae and Heptageniidae, as well as Rhyacophilidae and water mites of the 

Hydrachnidiae order. Capniidae stoneflies were the only family with large a positive 

score on Axis 1. Scores on axis 2 were generally of lower magnitude with only 

Chironomidae having a large negative score.  

The RDA on invertebrate community metrics using 6 environmental predictor 

variables with significant marginal effects explained 47.3% of the overall variation in the 

metric data (Figure 3.3). The Monte-Carlo permutation test of all canonical axes was 

significant (p = 0.004). Of the individual axes only the first, which explained 25.1 % of 

metric variation, was significant (Monte-Carlo permutation; p = 0.010) while the second, 

which explained 15.2 % of metric variation, was marginally significant (Monte-Carlo 

permutation; p = 0.082).  The metric-environment correlations were high with values of 

0.840 and 0.716 on Axis 1 and 2 respectively. As in the analysis of invertebrate family 

composition, the ordination plot characterized a gradient of mine influence where mine-

affected and reference sites were arranged along Axis 1 which was significantly 

positively correlated to waterborne Se, alkalinity, substrate embeddedness and slope and 

slightly along Axis 2 which was negatively correlated with Wolman Dg and pH (Intraset 

correlations; p < 0.05; Table 3.5).  

Family richness, EPT richness, % Trichoptera and % Ephemeroptera had large 

negative scores along the first RDA axis (Table 3.4) indicating a negative relationship to 

the gradient of mine influence while % Plecoptera had a large positive score and 
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therefore positive relationship to the gradient of mine influence (Table 3.4). The second 

RDA axis had a positive score for % Ephemeroptera and a negative score for % Diptera  

and the metric scores for total dw biomass and total abundance had negative scores on 

Axes 1 and 2 respectively (Table 3.4).  

Many of the variables that were excluded from the analysis due to 

multicollinearity were significantly higher at mine-affected vs. reference sites. Significant 

correlations were observed between these excluded environmental variables and site 

scores on the first family and metric RDA axes which characterized the gradient of mine 

influence. The first axis of the family RDA was significantly correlated with Ca
+
 (r = 

0.72), conductivity (r = 0.77), Cl
-
 (r = 0.65), SO4

2-
 (r = 0.60), % cobble (r = -0.64) and % 

fine substrates (r = 0.83) (Pearson product-moment correlations; p < 0.05 with sequential 

Bonferroni correction). The first axis of the metric RDA was significantly correlated with 

Cl
-
 (r = 0.79), SO4

2-
 (r = 0.75), Ca

+
 (r = 0.83), conductivity (r = 0.88), total nitrogen (r = 

0.78), NO2
-
+NO3

-
 (r = 0.70), % cobble (r = -0.50) and % fine substrates (r = 0.87) 

(Pearson product-moment correlations; p < 0.05 with sequential Bonferroni correction). 

These correlations indicate the relationship of collinear variables to the gradient of mine 

influence and their potential contributions to observed responses in invertebrate 

community composition. 

Regression model 

Families of the order Ephemeroptera including Baetidae, Ephemerellidae, and 

Heptageniidae had the highest combined order score on either of the first two axes in the 

family composition RDA with family scores of -0.880, -0.715 and -0.782 respectively on 

Axis 1 (Table 3.4). Ephemeroptera family densities were combined and log10 (y + 1) 
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transformed resulting in an Ephemeroptera density variable. This variable was used in a 

multiple linear regression model with the environmental predictor variables that were 

most correlated with the first RDA axis in the family density ordination based on intraset 

correlations (Table 3.3) including waterborne Se, alkalinity, and substrate embeddedness. 

Waterborne Se was not significant in the initial regression model and was therefore 

removed from the final model. The final model predicted Ephemeroptera density from 

alkalinity and substrate embeddedness (R
2

adj = 0.76, F2,21 = 39.74, p < 0.0001). In the 

model alkalinity (t = -4.91, n = 24, p < 0.0001) and embeddedness (t = -4.79, n = 24, p < 

0.0001) were both significant predictors of Ephemeroptera density. 

 

Discussion 

The results of this study indicate that impaired macroinvertebrate communities in 

low- to mid-order streams were related to a gradient of surface mine influence in the 

Canadian Rockies. Multiple water chemistry variables differed significantly between 

mine-affected and reference sites and multivariate ordinations separated the site types in 

ordination space. 

Environmental characteristics in mine-affected streams 

 Waterborne and biofilm Se, alkalinity, conductivity and concentrations of 

measured ions (Cl
-
, Ca

+
, SO4

2-
, NO2

-
+NO3

-
) were highly correlated and significantly 

greater in mine-affected than reference study streams. Significant increases in waterborne 

Se concentrations and bioaccumulation in food webs have long been recognized as 

aquatic impacts of surface mining in the Canadian Rockies and a trend of elevated ionic 

strength is demonstrated in mine-affected streams of other coal mine regions 
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(Szczepanska and Twardowska 1999, Fritz et al. 2010, Bernhardt et al. 2012). The high 

ionic strength and Se concentrations result from exposure of coal minerals and disturbed 

overburden rock to weathering processes in rock spoil and valley fills (Naftz and Rice 

1989). Explosives used to break up the overburden release NO2
-
+NO3

-
 and increase total 

nitrogen downstream. Pyrite coal minerals dissolve and generate sulfuric acid which 

dissociates, increasing SO4
2-

 concentrations (Palmer et al. 2010). Highly seleniferous 

carbonate rock spoil containing Cl
-
, Ca

+
, Mg

+
 and HCO3

-
 is weathered by increased water 

exposure and sulfuric acid (Lindberg et al. 2011). The drainage flowing from surface coal 

mine and spoil sites thus had high Se, conductivity, alkalinity and dissolved ion 

concentrations. 

Physical habitat variables including substrate embeddedness, interstitial material 

size, and slope were not significantly different between mine-affected and reference 

streams but were still identified as significant predictors of macroinvertebrate 

assemblages along a gradient of mine influence in ordination analyses. Mine-affected 

streams tended to have higher embeddedness scores and smaller interstitial material sizes. 

These variables represent both calcite accumulation and fine sedimentation in study 

streams.  

Water surface slopes were not significantly different between reference and mine 

disturbed sites however there was a significant loading of slope in RDA analyses. In 

general, lower order streams tend to have steeper slopes but maintain the ability to 

support taxonomically rich invertebrate communities (Clarke et al. 2008), therefore it is 

not likely that the individual effect of slope influenced invertebrate community 

composition. However, most of the measured water chemistry variables were marginally 
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correlated with slope. This may be because lower order streams have smaller contributing 

areas and lower flows and therefore chemical inputs from disturbances are less diluted 

than in higher order streams (Petty et al. 2010). A more concentrated chemical effect in 

streams with steeper slopes may explain the apparent influence of slope in the RDA 

analyses.  

There were also predictor variables in the RDA that were not related to the 

gradient of mine influences including pH and substrate size (Wolman Dg). Though all 

streams had mildly alkaline pH, pH and alkalinity were not significantly correlated. This 

was probably because most study sites are relatively near to stream headwaters where 

water enters the stream from subsurface or overland flows and has not yet reached ionic 

equilibrium. The supersaturation and degassing of CO2 and the precipitation of calcite 

may have also influenced this equilibrium (Chen et al. 2004). The RDAs indicated that 

pH and Wolman Dg influence invertebrate assemblages but their influence is not 

associated with mining as reference and mine-affected sites did not separate along 

gradients of these variables in ordination plots. 

Macroinvertebrate community impairment downstream of mines 

Ephemeroptera families (Baetidae, Heptageniidae and Ephemerellidae) were 

negatively related to the gradient of mine disturbance in ordination analyses with 

Baetidae and Ephemerellidae being completely absent from samples taken at 3 of the 13 

mine-affected sites. The relationship between the combined densities of these three 

families was tested using a multiple regression model and found to be significantly 

related to mine disturbance variables including alkalinity and substrate embeddedness.  
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Community metrics including family richness, EPT richness and Shannon-Weiner 

diversity were also negatively related to the mine disturbance gradient. 

Ephemeroptera are generally considered sensitive indicators of anthropogenic 

impact (Resh and Jackson 1993) and declines in Ephemeroptera taxa are often observed 

in biomonitoring studies evaluating water quality (Pond 2010), sedimentation, and metal 

toxicity (Scullion and Edwards 1980, Clements 1994). In addition to Ephemeroptera, 

Plecoptera and Trichoptera are considered relatively more sensitive to stream impairment 

than other macroinvertebrate taxa (Resh and Jackson 1993, Clements 1994) which is 

consistent with the decline in EPT richness observed at mine-affected sites. The overall 

richness and diversity of macroinvertebrate communities are also expected to decline as 

disturbance increases (Norris and Georges 1993) and families besides Baetidae, 

Heptageniidae, and Ephemerellidae decreased in abundance relative to the gradient of 

mine influence, including a strong negative response of the caddisfly Rhyacophilidae and 

marginal responses of Elmidae and Simulidae dipterans. The decline in overall richness 

and diversity was therefore not entirely due to losses of Ephemeroptera or EPT taxa as 

families from other orders were negatively influenced as well.  

While the relative abundance of Ephemeroptera and Trichoptera individuals were 

negatively related to mine disturbance, the relative abundance of Plecoptera had the 

opposite response. The proportional increase in Plecoptera organisms at mine-affected 

sites was largely due to higher densities of the family Capniidae. The densities of other 

Plecoptera including Leuctridae, Peltoperlidae, Perlodidae and Chloroperlidae were not 

strongly related to the mine disturbance gradient. Varying responses of families of the 

same order and even genera of the same family are important to consider when 
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determining the influence of disturbance on macroinvertebrates. The relative increase of 

Capniidae in study streams could indicate tolerance to one or more of the mine-

influenced water chemistry or habitat variables.  

Sample dw biomass and organism density had considerable scores in the metric 

RDA but their increase was almost perpendicular to the gradient of mine influence. 

Therefore, while environmental predictors related to mine disturbance influenced 

community assemblage, they did not appear to be drivers of the overall density or 

biomass of invertebrates in the study streams. These findings are consistent with those of 

Hartman et al. (2005) who found differences in taxa composition but no differences in the 

total density or biomass of organisms present downstream of  coal mine valley fills. Other 

factors including food availability and quality (Clements 1994), land-cover gradients, and 

stream productivity (Black et al. 2004) which were not quantified in this study can affect 

invertebrate biomass and density. 

Influences of environmental predictors on macroinvertebrate assemblages 

Community ordinations and regression analysis emphasized changes in 

environmental variables that were attributable to surface coal mining and that were 

significant predictors of macroinvertebrate assemblages in Canadian Rockies streams. 

Because multiple potential stressors, both chemical and physical, were identified 

consideration of their mechanisms of influence and their potential as stressors to 

invertebrate communities in mined systems is required. 

Alkalinity, in addition to correlated predictors of ionic strength, was related to the 

gradient of mine influence along which sites with different macroinvertebrate 

assemblages were separated and was a significant predictor of Ephemeroptera density. 
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This is in agreement with other studies where alkalinity, conductivity, and ion 

concentrations above reference conditions were characteristic of mining influence and 

where Ephemeroptera density and diversity declined. Pond et al. (2008) found 

Ephemeroptera family and genus richness was significantly related to the level of 

upstream mine influence and that Ephemeroptera were nearly absent from mountain-top 

coal mining affected Appalachian streams. Hartman et al. (2005) found lower densities of 

Ephemeroptera, scrapers and shredders downstream of mines and Pond  (2010) saw a 

significant decline in the relative abundance and genera richness of mayflies in surface 

mined streams compared to reference streams or streams with residential influences.  

The influences of ionic strength on macroinvertebrates at surface mine sites have 

recently been the focus of concentrated study in the Central Appalachian coalfields in the 

eastern United States (Cormier et al. 2013c). Extirpations of certain genera of 

macroinvertebrates have been attributed to elevated ionic mixtures containing Ca
+
, Mg

+
, 

HCO3
-
, SO4

2- 
and Cl

-
 in streams that drain valley fills and rock dumps (Cormier et al. 

2013a, Cormier et al. 2013b). Ephemeroptera taxa have been identified as some of the 

most sensitive to increasing ionic strength (Pond 2010, Cormier et al. 2013b).  

The proposed effects of elevated ionic strength in freshwater organisms are based 

on exposure, biochemical and physiological mechanisms described in detail by Cormier 

et al. (2013b). Generally, exposure to elevated concentrations of dissolved ions passing 

over the integument and gills of aquatic organisms can influence ion exchange pathways 

in various external and internal cells (Wichard et al. 1973). Altered or impaired ion 

exchange can result in deterioration of cell function and physiological stress (Pond et al. 

2008). In Ephemeroptera, an example of this  proposed effect mechanism is high ambient 
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HCO3
-
 interfering with ion transport in chloride cells on the gills (Cormier et al. 2013b). 

Using conductivity to represent ionic strength and genus extirpation data, Cormier et al. 

(2013a) have proposed a field-derived regional benchmark for the protection of 

freshwater macroinvertebrates in the Appalachians of 300 µS/cm for ionic mixtures 

composed of HCO3
-
 + SO4

2-
 ≥  Cl

-
. 

The presence of elevated concentrations of Ca
+
, SO4

2-
, Cl

-
 and HCO3

-
 at sites with 

impaired macroinvertebrate communities in the present study also supports a predicted 

toxic effect of ionic strength. If ionic toxicity effects are occurring in the Canadian 

Rockies, 300 µS/cm would not be an effective benchmark for the protection of aquatic 

life as the average conductivity of reference streams in this study was 315 ± 14 µS/cm 

while background conductivities in Appalachian regions were between 72 and 153 µS/cm 

(Cormier et al. 2013a). Bedrock geology partially controls regional water chemistry due 

to differences in weathering based on rock type and weathering pathways (Spence and 

Telmer 2005). Organisms found in streams with shale and limestone geology in the 

Canadian Rockies are thus probably adapted to higher background conductivity levels, 

potentially indicating higher tolerance to elevated ionic mixtures. Cormier and Suter 

(2013) assert however, that despite regional differences in background ionic strength and 

invertebrate community assemblages, the causal assessment of toxicity in the 

Appalachian region adequately characterizes the main response of representative 

organisms to defined ionic mixtures above regional background levels. In support of this 

assertion, Black et al. (2004) found that Ephemerellidae, Heptageniidae and Rhyacophila 

spp. had low conductivity optima (70.4, 89.3, and 89.3 µS/cm respectively) in streams in 

the Pacific North West where average specific conductance was 139 µS/cm and 
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explained a significant amount of the variance (> 10%) in the occurrence of these taxa 

(Black et al. 2004). More extensive investigation is required to characterize ion mixtures 

and concentrations and the macroinvertebrate taxa response in Canadian Rockies streams 

before an exposure-response relationship can be inferred.  

Physical habitat variables including substrate embeddedness and interstitial 

material size also contributed to the separation of study sites along the mine effects 

gradient. Data collection methods did not quantitatively distinguish between fine 

sediment and calcite accumulation with respect to embeddedness and interstitial material 

size, however, both result in the filling of interstitial spaces and the coating of substrates 

with fine sediment particles. The loss of interstitial microhabitats can reduce invertebrate 

density and community diversity (Rabení et al. 2005) and increase invertebrate drift rates 

(Culp et al. 1986). Large-scale deposition of calcite can also result in terracing which 

alters channel hydrology and morphology. Finer interstitial material size and slower 

stream velocities may shift macroinvertebrate assemblages towards organisms capable of 

burrowing in the substrates and away from organisms that rely on well oxygenated, 

interstitial spaces and clean substrates to meet their habitat and feeding requirements 

(Rabení et al. 2005). 

 Impaired Ephemeroptera communities in mine-affected study streams may have 

been a result of the general preference of the observed mayfly families for fast flowing, 

interstitial microhabitats (Clifford 1991). Similarly, a decrease in EPT due to coal particle 

siltation and ferric hydroxide deposition downstream of coal mining was observed in 

Wales, UK (Scullion and Edwards 1980). Wood et al. (2005) also experimentally 

determined that Baetis rhodani Ephemeropterans were unable to excavate themselves 
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from 0.5 cm burial in various sizes of fine particles indicating their unsuitability to 

habitats dominated by fine sediments.  

The larger relative proportion of Capniidae stoneflies observed at mine affected 

sites compared to reference sites may indicate tolerance of this stonefly family to 

particular habitat characteristics present (in addition to tolerance to water chemistry 

stressors). Specifically, the small size of some genera of Capniidae found in the Canadian 

Rockies (e.g. Isocapnia) (Clifford 1991) allows them to penetrate small interstitial spaces 

and migrate vertically through substrates (Jacobi and Cary 1996). They often inhabit the 

hyporheic zone  (Clifford 1991, Harper et al. 1991) and therefore they may be well 

adapted to the microhabitat produced by calcite accumulation.  

Finally, waterborne Se concentrations in the study streams ranged over several 

orders of magnitude and were highly correlated with the first two axes of RDA 

ordinations of macroinvertebrate family assemblages and metrics. The concentration of 

biofilm Se (representative of dietary exposure for invertebrates) in study streams was 

significantly correlated with waterborne Se (r = 0.5, n = 24, p < 0.05) but did not have a 

significant marginal effect on invertebrate families or metrics and was therefore not 

included as a predictor variable in RDA analyses. While invertebrate Se accumulation 

above reference concentrations has been documented at sites influenced by mine 

disturbance (Orr et al. 2006, Wayland and Crosley 2006, Orr et al. 2012), field studies 

have not directly determined the community level impacts of a wide range of Se 

contamination. Downstream of surface coal mines, Pond et al. (2008) found that 

waterborne Se concentrations below 37 µg/L were negatively correlated with multimetric 

invertebrate indices including taxon richness, EPT richness, Ephemeroptera richness, and 
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Plecoptera richness; and Frenette (2008) saw proportional decreases in EPT and 

Ephemeroptera at waterborne Se concentrations at or below 15 µg/L. However, Pond et 

al. (2008) considered these concentrations to be relatively non-toxic to invertebrates and 

concluded that while sub-lethal Se effects on macroinvertebrates might be occurring, 

other stressors present downstream of mines were responsible for a greater portion of the 

variation in community metrics.  

There is evidence that Se toxicity shaped macroinvertebrate assemblages in the 

present study. The range of waterborne Se concentrations of 0.5 – 543 µg/L  at sites in 

this study was greater than in previous macroinvertebrate assemblage studies (Frenette 

2008, Pond et al. 2008) and maximum concentrations of waterborne and dietary exposure 

were above some laboratory derived chronic effective concentrations (Ingersoll et al. 

1990, Maier and Knight 1993, Malchow et al. 1995, Conley et al. 2009). Sub-lethal 

laboratory effects on the mayfly Centroptilum triangulifer to dietary Se exposure of ≥ 4.9 

µg/g dw (Conley et al. 2011) could indicate mayfly Se sensitivity, supporting the 

observed impacts on Ephemeroptera taxa along the gradient of mine disturbance in the 

study streams. However, Se toxicity has been extensively studied in few invertebrate 

organisms (deBruyn and Chapman 2007) and the Se sensitivities of taxa and life stages 

found in the study streams have not been adequately described. Field Se tissue 

concentrations in invertebrates are also variable among taxonomic groups (Wayland and 

Crosley 2006, Orr et al. 2012) indicating variable exposure and risk of exceeding 

laboratory derived concentrations for acute and chronic effects (deBruyn and Chapman 

2007, Conley et al. 2009). Therefore, although we found changes in macroinvertebrate 

community composition along a gradient of mine influence that was strongly 
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characterized by waterborne Se concentrations, more evidence is required to conclusively 

link community impairment to Se toxicity at sampling sites.  

Macroinvertebrate assemblages and multiple stressors 

When multiple potential stressors are present in field macroinvertebrate studies, it 

can be difficult to attribute changes in the community to any specific impact and different 

approaches have been used to address this difficulty. For example, Clements (2004) used 

small-scale experiments to test community response to individual metal contaminants of 

interest that co-occurred in the field as a method of identifying confounding variables. 

Cormier et al. (2013b) proposed a method of using field data to assess causation in 

exposure-response relationships that includes identifying and evaluating the influence of 

potential confounders (Suter and Cormier 2013). 

While ordination analyses in the current study highlighted the potential 

importance of numerous predictor variables in influencing the responses of invertebrate 

community assemblages, only substrate embeddedness and alkalinity were significant 

predictors of Ephemeroptera density in a multiple regression model. Significant 

correlations between alkalinity and other measured water chemistry variables suggest that 

a strong relationship between other measures of ionic strength and Ephemeroptera 

occurrence may also exist. Waterborne Se concentration was included in initial 

regressions but, despite a strong correlation with mine impact gradients in ordination 

analyses, did not have a significant relationship with Ephemeroptera density. Therefore, 

impacts due to Se exposure may be restricted to other taxa or Se co-occurrence may be a 

confounder of other mine disturbance influences on invertebrates in affected streams.   
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This study identifies physical and chemical stressors that are altered downstream 

of surface mines in the Canadian Rockies that have plausible mechanisms for causing 

negative invertebrate community-level impacts. Previous investigations of coal mining 

influences on aquatic life in the Canadian Rockies have largely focused on Se 

contamination and threats to vertebrate organisms. The results of the present study are 

consistent with studies from other coal-mining regions that demonstrate how multiple 

stressors shape macroinvertebrate assemblages in mine influenced areas and highlight the 

need for further investigation into causal links between surface mine influences and 

benthic community impairment. Future research should focus on the collection and 

compilation of biomonitoring datasets that reflect local invertebrate assemblages at a 

range of exposures of the multiple potential stressors. Additionally, lab studies could be 

used to investigate the effects of individual stressors or combinations of stressors on 

aquatic organisms. Information resulting from these studies is necessary to develop 

causal assessments and evaluate confounding variables. 
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Tables and Figures 

Table 3.1 Sampling sites listed with study watershed, geographical coordinates and 

description as reference (Ref), mine-affected (MA), or reclaimed (MA-R). 

 

 

 

 

Stream name Site type Watershed Latitude Longitude 

W. Alexander Ck. Ref Elk 49.773 -114.721 

Chauncey Ck. Ref Elk 50.108 -114.814 

Dry Ck. Ref Elk 50.035 -114.817 

Ewin Ck. Ref Elk 50.060 -114.797 

Grace Ck. Ref Elk 49.984 -114.859 

South Line Ck. Ref Elk 49.915 -114.767 

Deerlick Ck. Ref McLeod 53.153 -117.244 

Eunice Ck. Ref McLeod 53.154 -117.231 

Wampus Ck. Ref McLeod 53.157 -117.262 

Watson Ck. Ref McLeod 53.072 -117.259 

W. Drinnan Ck. Ref McLeod 53.161 -117.544 

Cataract Ck. MA Elk 50.151 -114.865 

E. Crowsnest Ck. MA Elk 49.585 -114.693 

Erickson Ck. MA Elk 49.678 -114.783 

Fording R. MA Elk 49.894 -114.868 

Harmer Ck. MA Elk 49.831 -114.822 

Line Ck. MA Elk 49.892 -114.835 

Swift Ck. MA Elk 50.158 -114.869 

Berry Ck. MA-R McLeod 53.095 -117.447 

Drinnan Ck. MA-R McLeod 53.182 -117.513 

Gregg R. MA McLeod 53.129 -117.486 

Jarvis Ck. MA McLeod 53.058 -117.363 

Luscar Ck. MA McLeod 53.059 -117.311 

Sphinx Ck. MA-R McLeod 53.125 -117.311 
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Table 3.2 Measured environmental variables, descriptive statistics and Welch’s t-test (p < 0.05) results for differences in mean 

environmental variables between mine-affected streams (n = 13) and reference streams (n = 11). 

  Mine-affected Reference   

Variable Units Mean ± SE Range Mean ± SE Range t p 

Water Chemistry 
       

Waterborne Se µg/L 100.3 ±  52.8 0.5 – 543.0 0.8 ± 0.1 0.5 – 1.7 -4.67 <0.001 

NO2
-
+NO3

- 
mg/L 7107 ± 3001 9 – 36750 40 ± 12 2 – 123 -5.64 <0.001 

Cl
- 

mg/L 2.20 ± 0.63 0.13 – 7.15 0.21 ± 0.05 0.08 – 0.59 -4.37 <0.001 

SO4
2- 

mg/L 386 ± 144 6 – 1527 21 ± 5 3 – 51 -4.83 <0.001 

Ca
+ 

mg/L 130 ± 35 46 – 407 44 ± 2 38 - 55 -3.81 0.002 

Alkalinity (as CaCO3) mg/L 262 ± 28 171 – 463 154 ± 5 128 – 183 -4.59 <0.001 

Conductivity µs/cm 1099 ± 237 310 – 2890 315 ± 14 272 – 421 -5.28 <0.001 

pH - 8.3 ± 0.02 8.1 – 8.4 8.3 ± 0.04 8.0 – 8.4 -0.95 0.352 

DO mg/L 10.0 ± 0.3 8.2 – 11.2 10.5 ± 0.4 8.7 – 12.5 1.31 0.205 

Total nitrogen mg/L 7253 ± 3142 33 - 33650 72 ± 7 43 – 103 -5.33 <0.001 

Total phosphorus µg/L 4.2 ± 1.0 0.5 – 11.0 5.6 ± 1.8 0.5 – 19.0 0.40 0.692 

Biofilm Se µg/g dw 3.57 ± 0.59 0.75 – 8.10 1.81 ± 0.24 0.75 – 3.32 -2.59 0.018 

Physical Habitat 
       

Wolman Dg cm 6.8 ± 1.3 0.1 – 15.5 6.7 ± 0.7 2.9 – 11.1 -0.08 0.353 

Slope % 3 ± 1 0.5 – 11 3 ± 1 1 – 4 -0.95 0.750 

Velocity m/s 0.68 ± 0.04 0.45 – 0.99 0.50 ± 0.05 0.23 – 0.80 -2.97 0.007 

Wetted width m 7.28 ± 1.62 2.87 – 25.0 4.88 ± 0.47 3.12 – 8.36 -1.36 0.191 

Depth m 0.26 ± 0.03 0.09 – 0.47 0.26 ± 0.02 0.17 – 0.40 0.08 0.937 

Pool % 21 ± 3 9 – 48 27 ± 3 17 – 42 1.61 0.121 

Riffle % 53 ± 4 28 – 70 47 ± 4 29 – 66 -1.33 0.197 

Large woody debris # 33 ± 12 0 – 165 25 ± 7 1 – 90 0.04 0.968 

Riparian cover % 21 ± 4 4 – 40 22 ± 4 5 – 40 0.18 0.856 

Interstitial material - 2.5 ± 0.4 0 – 5 2.7 ± 0.2 2 – 4 0.40 0.694 

Embeddedness % 50 ± 7 25 – 100 35 ± 5 0 – 50 -1.55 0.135 

Fines % 20 ± 10 0 – 95 4 ± 1 0 – 14 -1.44 0.163 

Gravel % 40 ± 8 0 – 93 44 ± 6 22 – 78 0.64 0.526 

Cobble % 36 ± 6 0 – 69 47 ± 5 2 – 68 1.42 0.168 

Boulder % 5 ± 2 0 – 24 5 ± 1 0 – 11 -0.20 0.842 
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Table 3.3 Intraset correlation coefficients (Pearson’s product-moment correlation) 

between measured environmental variables and the first two RDA axes for 

macroinvertebrate family data.  

 Axis 1 Axis 2 

Variable r p r p 

Waterborne Se 0.658 0.0005 -0.653 0.0005 

Alkalinity  0.773 <0.0001 -0.390 NS 

pH -0.434 0.034 -0.574 0.0034 

Wolman Dg
 

-0.594 0.002 -0.438 NS 

Slope
 

0.602 0.002 -0.126 NS 

Interstitial Material -0.509 0.011 0.197 NS 

Embeddedness 0.718 <0.0001 -0.323 NS 
   NS = not significant 

   Statistical significance was determined based on p corrected using the sequential 

Bonferroni method (p < 0.05; df = 22) 
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Table 3.4 Family and metric scores on the first and second axes of family and metric 

RDA. 

 Family RDA  Metric RDA 

 Axis 1 Axis 2  Axis 1 Axis 2 

Elmidae -0.262 0.225 Shannon’s H -0.341 0.321 

Chironomidae -0.239 -0.712 Richness -0.564 -0.086 

Simulidae -0.297 0.139 EPT Richness -0.834 -0.059 

Baetidae -0.880 0.019 % Ephemeroptera -0.534 0.618 

Ephemerellidae -0.715 0.118 % Plecoptera 0.616 0.1622 

Heptageniidae -0.782 0.412 % Trichoptera -0.467 -0.155 

Hydrachnidiae -0.518 -0.495 % Diptera -0.131 -0.641 

Capniidae 0.777 -0.253 Abundance -0.235 -0.574 

Chloroperlidae -0.329 -0.103 Biomass -0.422 -0.280 

Leuctridae -0.147 0.260    
Peltoperlidae 0.017 0.065    
Perlodidae -0.067 -0.311    

Rhyacophilidae -0.6932 -0.264    
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Table 3.5 Intraset correlation coefficients (Pearson’s product-moment correlation) 

between measured environmental variables and the first two RDA axes for 

macroinvertebrate metric data. 

 Axis 1 Axis 2 

Variable r p r p 

Waterborne Se 0.820 <0.0001 -0.449 NS 

Alkalinity  0.795 <0.0001 -0.168 NS 

pH -0.345 NS -0.799 <0.0001 

Wolman Dg -0.395 NS -0.531 0.008 

Slope 0.623 0.001 -0.029 NS 

Embeddedness 0.819 <0.0001 -0.140 NS 
   NS = not significant 

   Statistical significance was determined based on p corrected using the sequential 

Bonferroni method (p < 0.05; df = 22) 
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Figure 3.1 Map of study areas in the Elk River, British Columbia, Canada (A) and the McLeod River, Alberta, Canada (B) 

including sampling sites and disturbance area
1
 for active and reclaimed mines.

                                                 

1
 Reproduced with the permission of Teck Coal Limited and Sherritt Coal International 
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Figure 3.2 First and second axes of RDA triplot of invertebrate family abundance 

(dashed arrows) and environmental variables (solid arrows). Solid circles represent 

mine-affected streams and open circles represent reference streams. Environmental 

variable abbreviations: ALK = alkalinity, EMB = embeddedness, INTST = 

interstitial material size, PH = pH, SE = waterborne Se, SLOPE = water surface 

slope, WOLDG = Wolman Dg. Invertebrate family abbreviations: BAET = 

Baetidae, CAPN = Capniidae, CHIR = Chironomidae, CHLO = Chloroperlidae, 

ELMI = Elmidae, EPHE = Ephemerellidae, HEPT = Heptageniidae, HYDR = 

Hydrachnidiae (order), LEUC = Leuctridae, PELT = Peltoperlidae, PERLO = 

Perlodidae, RHYA = Rhyacophilidae and SIMU = Simulidae.  

Axis 1 

A
x

is 2
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Figure 3.3 First and second axes of RDA triplot of invertebrate metrics (dashed 

arrows) and environmental variables (solid arrows). Solid circles represent mine-

affected streams and open circles represent reference streams. Environmental 

variable abbreviations: ALK = alkalinity, EMB = embeddedness, PH = pH, SE = 

waterborne Se, SLOPE = water surface slope, and WOLDG = Wolman Dg. 

Invertebrate metric abbreviations: EPT = Ephemeroptera, Plecoptera, Trichoptera, 

Shannon’s H = Shannon-Weiner diversity, Density = total density, and Biomass = 

dw biomass. 
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A
x
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

Surface coal mining in the Canadian Rockies is an expanding industry with 

environmental impacts of concern in aquatic ecosystems. The objectives of this thesis 

were to investigate surface coal mining influences, particularly selenium (Se) toxicity 

effects, on fish and macroinvertebrate communities in streams. Conclusions from this 

research provide important new information for managing and monitoring surface mine 

influences. Specifically, field studies were carried out in mine-affected and reference 

streams in two watersheds of the Canadian Rockies in order to: 

1) Quantify Se exposure in lotic food chains and juvenile salmonid fishes. 

2) Investigate the presence and extent of fish community-level effects resulting 

from individual-level Se toxicity in salmonid fish species.  

3) Evaluate macroinvertebrate community responses downstream of mines and 

identify invertebrate taxa that are sensitive to mine disturbance. 

 

To determine if juvenile salmonid tissue concentrations better reflected dietary Se 

concentrations at capture sites than tissues of highly mobile adult life-stages, food web Se 

concentrations were measured in mine-affected and reference streams (Chapter 2). Se 

enrichment and trophic transfer were > 1 at each food chain step and there was a 

significant log-linear relationship between Se in invertebrates and juvenile fish muscle 

tissues. Additionally, juveniles of salmonid species including westslope cutthroat, bull, 

rainbow and brook trout did not differ significantly in their muscle Se accumulation. 
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These results suggest that juvenile salmonid Se tissue concentrations sampled in mid-

summer can be used to: 

1) Determine Se exposure at specific sites of interest. 

2)  Improve the predictive capacity of field based food chain trophic transfer models 

by reducing Se exposure uncertainty. 

3) Simplify food chain trophic transfer models due to similarity among species in 

juvenile muscle Se accumulation rates. 

Juvenile salmonids reflected both site specific Se exposure and the potential for 

toxic Se effects, identifying them as practical organisms/life-stages for Se toxicity 

monitoring. The significant relationship between Se diet and juvenile tissue 

concentrations also contributes to refinement of food chain models that can eventually be 

used as monitoring tools while reducing or eliminating sampling pressure on vulnerable 

fish populations. Future research comparing juvenile and adult fish tissue Se 

concentrations and allocations will further improve these food chain models by providing 

a basis for tissue concentration conversions. Defined tissue concentration and allocation 

relationships could also improve assessments of toxicity risks to different life stages of 

fish.  

 

To investigate fish community-level effects resulting from individual-level Se 

toxicity in salmonids, fish muscle Se concentration and fish biomass were measured at 

the stream reach scale (Chapter 2). The relationship between total fish biomass and 

average fish muscle Se concentration was not significant. Species-specific biomass and 
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muscle Se concentration relationships were not significant except in rainbow trout whose 

biomass declined with increasing Se tissue concentrations. These results indicate that: 

1) The frequency and/or magnitude of Se concentrations that exceeded 

individual-level toxicity thresholds may not have been great enough to 

produce community-level toxicity effects in most of the sampled species. 

2) Due to compensatory mechanisms such as inter-annual fish community 

variability, nearby uncontaminated refugia and density compensation 

community-level effects are difficult to detect at the stream reach scale. 

3) The combination of Se sensitivity and the presence of a non-native competitor 

species (brook trout) may have made rainbow trout particularly vulnerable to 

community-level effects.  

Although fisheries management decisions are often made at the fish community or 

population level, this research indicates that monitoring programs should not necessarily 

rely on the detection of community-level effects to indicate risk. Measured Se 

concentrations above individual-level toxicity thresholds did not always translate to 

detectable effects at higher levels of ecological organization and Se exposure-response 

relationships are likely confounded by fish movements, variable Se exposure and density 

compensation in stream reaches. Therefore monitoring at the stream reach scale cannot be 

expected to reflect the fish community-level response to Se toxicity and Se impacts may 

not be apparent until substantial community declines have occurred. Monitoring at larger 

spatial scales (i.e. watershed/regional scale) may be more appropriate as it would 

integrate fish movements and variable Se exposure within the monitoring unit. However, 

collecting detailed community information in addition to defining Se exposure at these 
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large scales is not practical. Further research into fish movement patterns and exposure 

histories using otolith microchemistry is recommended as it could strengthen links 

between Se exposure and toxicity effects.  Knowledge of fish movements in mine-

affected systems will also help to identify the spatial scale (i.e. reach, stream, watershed, 

etc.) at which monitoring and management programs should be implemented. However, 

because of limitations on detection of community-level effects, current Se monitoring 

focus should remain on individual-level toxicity thresholds.  

 

To investigate how alteration of chemical and physical stream characteristics, 

including Se exposure, affected macroinvertebrate community assemblages multivariate 

analyses were used to compare invertebrate family and metric data with environmental 

predictor variables (Chapter 3). Changes in macroinvertebrate community composition 

including overall diversity declines and declines of sensitive taxa were found along a 

gradient of mine disturbance reflected by high waterborne Se, alkalinity, substrate 

embeddedness and low interstitial material size. These results indicate that: 

1)  Multiple stressors associated with surface coal mining may influence stream 

invertebrate community composition. 

2) Potential mechanisms of mine impact on macroinvertebrate communities include 

Se and ion toxicity and physical habitat degradation. 

3) Ephemeroptera taxa are particularly sensitive to mine impacts including substrate 

embeddedness and high alkalinity. 

Therefore, environmental management downstream of surface mines must consider 

impacts besides Se contamination. Identifying priority stressors among the different 
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potential influences in disturbed systems can be challenging. Methods for the derivation 

of toxicity thresholds for ionic strength from field data have been proposed and 

effectively used in other coal mining regions. However, these methods require aquatic 

community data from sites experiencing a range of each potential stressor to establish 

causal relationships and identify confounders. Because variables of interest co-occur and 

are highly correlated downstream of mine sites in the Canadian Rockies region, 

disentangling influences in the field may not be possible. Cause and effect relationships 

of different mine effects such as elevated conductivity, alkalinity and ion concentrations, 

individually and in combination on aquatic organisms could be further examined under 

controlled laboratory conditions. Additional research in this area will help to shift 

management of surface coal mine influences in the Canadian Rockies away from an 

exclusive focus on Se influences which do not fully represent potential risks to aquatic 

organisms.  
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