
A RECONFIGURABLE AND SCALABLE EFFICIENT
ARCHITECTURE FOR AES

KE LI
Bachelor of Science, University of Electronic Science and Technology of China, 2003

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Ke Li, 2008

For my family, who offered me unconditional love and supportthroughout
the course of this thesis.

iii

Abstract

A new 32-bit reconfigurable FPGA implementation of AES algorithm is presented in this

thesis. It employs a single round architecture to minimize the hardware cost. The com-

binational logic implementation of S-Box ensures the suitability for non-Block RAMs

(BRAMs) FPGA devices. Fully composite fieldGF((24)2) based encryption and keysched-

ule lead to the lower hardware complexity and convenience for the efficient subpipelining.

For the first time, a subpipelined on-the-fly keyschedule over composite fieldGF((24)2)

is applied for the all standard key sizes (128-, 192-, 256-bit). The proposed architecture

achieves a throughput of 805.82Mbits/s using 523 slices with a ratio throughput/slice of

1.54Mbps/Slice on Xilinx Virtex2 XC2V2000 ff896 device.

iv

Acknowledgments

I would like to express many thanks to my supervisor Dr. Hua Li, for his invaluable advice

and ideas on the research and also for his devotion of time to me during this program. His

support and expertise resolved many hurdles that I encountered throughout the research.

I am also grateful to other committee members Dr. Howard Cheng and Dr. Gongbing

Shan for their advice.

Finally, I would like thank my parents for their support of me.

v

Contents

Approval/Signature Page ii

Dedication iv

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 2
1.2 32-bit Subpipelined Architecture 2
1.3 Thesis Outline . 4

2 Mathematical Background 5
2.1 Finite Fields . 5

2.1.1 AES Arithmetic over FieldGF(28) 6
2.2 Composite Fields . 9

2.2.1 AES Arithmetic over Composite FieldGF((24)2) 10

3 AES Algorithm 13
3.1 Subbytes and Invsubbytes .. 14
3.2 Shiftrows and Invshiftrows .. . 17
3.3 Mixcolumns and Invmixcolumns .. 18
3.4 Addroundkey . 19
3.5 Keyschedule . 20

4 Reconfigurable and Compact Architecture of the AES 23
4.1 32-bit Single Round Unit .23
4.2 Full Composite Field Encryptor and Keyschedule 24
4.3 Subpipelined Encryptor and Keyschedule 27
4.4 Double-Block Subpipelined Architecture 28

4.4.1 Column Fashion Shiftrows . 32
4.4.2 Subpipelined Subbytes . 36
4.4.3 Mixcolumns onGF((24)2) . 48
4.4.4 Subpipelined Keyschedule . 51

vi

5 Implementation Performance And Comparison 67

6 Conclusion 73

Bibliography 75

vii

List of Tables

3.1 Key-Block-Round Combinations [20] 13

4.1 AES Encryption Sequence . 29
4.2 Four Control Signals . 32
4.3 Path Delays and Number of Slices for Spartan2E and Virtex2 47
4.4 Key128 Roundkey Sequence . 57
4.5 Key192 Roundkey Sequence . 59
4.6 Key256 Roundkey Sequence . 66

5.1 Comparisons of BRAMs Based AES Architecture 69
5.2 Comparisons of Non-BRAMs Architectures 70
5.3 Comparisons of AES Architectures Functions 72

viii

List of Figures

3.1 State array input and output .. . 14
3.2 AES architecture . 15
3.3 AES S-box . 16
3.4 AES IS-box . 17
3.5 AES Shiftrows . 18
3.6 AES Invshiftrows . 18
3.7 Pseudo Code for Key Expansion [20] 21
3.8 AES Keyschedule . 22

4.1 Unfolded Architecture(a) - Single Round Unit(b) - 32-bit Single Round
Unit(c) . 23

4.2 Partial Composite Field (a)- Full Composite Field (b) 24
4.3 Pipelining (a) and Subpipelining (b) 27
4.4 AES Encryption Architecture .. . 30
4.5 Column Fashion Shiftrows .33
4.6 Two States’ Arrangement in Shiftrows Registers 34
4.7 Input of Shiftrows in Figure (4.6) 36
4.8 Subbytes in composite fieldGF(24)[34] 36
4.9 Pipelined Subbytes in composite fieldGF((24)2) 47
4.10 GF((24)2) Based Mixcolumns . 49
4.11 Architecture of Keyschedule 128 55
4.12 Architecture of Keyschedule 192 58
4.13 Architecture of Keyschedule 256 64

ix

Chapter 1

Introduction

Cryptography is of importance in digital communications systems. The security aspects of

many applications such as Automated Teller Machines (ATMs), e-commerce, internet bank

services depend on various cryptographic schemes.

A symmetric-key cryptography algorithm, Data Encryption Standard (DES), has been

the encryption standard since 1977. It has been widely used and no attack better than the

brute force search has been discovered. But its 56-bit key size has been criticized since its

inception. 3DES with triple key size of DES offers higher security but it is inefficient in

software, because DES was primarily designed for hardware implementations [30].

In 2001, the National Institute of Standards and Technology(NIST) announced the

approval of the Federal Information Processing Standard (FIPS) for the Advanced Encryp-

tion Standard (AES), FIPS-197 [20]. This standard specifiesthe Rijndael algorithm [7] as

an FIPS-approved symmetric encryption algorithm that may be used by U.S. government

organizations (and others) to protect sensitive information.

As a replacement of DES, AES is presently widely used in both software and hardware

implementations. Hardware approaches are attractive because it provides better throughput

as well as higher physical security. Besides, the byte-wisearithmetic in AES gives hard-

ware approaches more convenience. There are mainly two categories of hardware imple-

mentations: Application-Specific Integrated Circuit (ASIC) and Field Programmable Gate

Array (FPGA). Compared with ASIC, FPGA becomes more and morepopular because of

its scalability, re-programmability and obvious advantage on time-to-market [19].

1

1.1 Motivation

The standard announced by NIST [20] indicates that AES is a block cipher with 128-

bit block size and 128-, 192-, 256-bit key sizes. These threekey sizes are specified for

various security levels. The capability to deal with all keysizes makes reconfigurability an

important feature of AES implementations.

Numerous FPGA [5, 9, 22, 23, 34] and ASIC [2, 25, 28] implementations of the AES

have been presented and evaluated. To date, most implementations feature high speed and

high cost suitable for high-end applications only. Fully unrolled scheme makes a con-

venient platform for pipelining technology to get efficientarea cost and high throughput

by unfolding all the ten (128-bit key) rounds on the device, which is applied in literature

[8, 9, 11, 17, 34].

The issue of secure communication in computing restricted environments, such as Per-

sonal Digital Assistants (PDAs), wireless devices, and many other embedded devices, has

become more important recently. In order to apply AES in these devices, the AES im-

plementations must be cost efficient. An opposite approach to fully unrolled scheme is to

implement a single round unit on hardware [1, 2, 26, 27, 31]. When no further optimization

effort is made, a block of data needs ten (128-bit key) cyclesto go through encryption. The

economic area cost is obtained by sacrificing the speed.

In this thesis, a compact design of AES with low hardware costand adequate throughput

is proposed and implemented in a non-BRAM FPGA.

1.2 32-bit Subpipelined Architecture

The following list summarizes the major contributions in this thesis.

• 32-bit Single Round Unit: By extending one cycle’s job to ten cycles (128-bit

2

key), single round unit requires approximately 1/10 hardware area as fully unrolled

scheme; by chopping a block data (128-bit) to four words, theoretically, a 32-bit sin-

gle round unit costs 1/40 hardware area as the common 128-bitfully unrolled scheme

as in [8, 9, 11, 17, 34]. Nevertheless, when 32-bit datapath is used, the shiftrows

transformations can not be simply implemented by rewiring.We use the column

fashion shiftrows which naturally cuts one round unit into four substages.

• Complete Composite Field Based AES: In a non-BRAM design, combinational

logic is the approach used for subbytes, also known as S-Box.It is the most costly

transformation in AES, in both time and area aspects. Rijmen[24] suggested an alter-

native approach to calculate multiplicative inverses in S-Box. Since then, the relevant

research has proved that the composite fieldGF((24)2) based arithmetic provides the

least gate count and the shortest critical path for calculating multiplicative inverse of

a byte, which is the key step in S-Box. This conversion involves an isomorphic map

function before and after inversion in each round. As in [9, 11, 28, 31, 34], when key

size is 128-bit, it needs ten map functions for each block (128-bit) from finite field

to composite field and ten inverse map functions for encryption. If key generator,

which also has S-Boxes, is included, another ten mappings and ten inverse mappings

are needed. To save the overhead caused by mapping, our design converts the whole

AES algorithm fromGF(28) to GF((24)2), which needs only one forward mapping

before the initial round and one backward mapping after the final round. Only one

forward mapping is needed for the keyschedule.

• Subpipelined On-the-fly Keyschedule and Encryptor: On-the-fly keyschedule sup-

ports instant key changing. The previous works of [1, 2, 4, 9,12, 14, 17, 33, 26,

28, 34] applied the on-the-fly key generator, but only [1, 2, 17] integrate on-the-fly

keyschedule for all three key sizes (128, 192, 256-bit). These three designs employ

3

subpipelining to optimize throughput/area ratio. However, none of them uses it in

keyschedule. When pipelining and on-the-fly keyschedule are both employed in an

AES implementation, the keyschedule must be synchronized with the cipher because

they share the same clock. The designs in [34, 26] made a subpipelined keyschedule,

but they only support 128-bit key size.

1.3 Thesis Outline

Chapter 2 introduces the mathematical background of finite fields which are relevant to

AES. We also present the definition of composite fields in thischapter.

Chapter 3 gives an overview of AES standard. We focus on encryption and keyschedule

in this thesis. However, the complete AES standard, including decryption, is presented in

this chapter.

Chapter 4 describes the proposed architecture in detail. The formulas for the non-trivial

transformations in fieldGF((24)2) are presented. The keyschedules for three key sizes are

demonstrated in figures.

Chapter 5 presents the implementation and compares the proposed architecture with the

previous designs.

Chapter 6 provides conclusion of the design.

4

Chapter 2

Mathematical Background

This chapter introduces the mathematical background of AES. Finite Fields, also referred

to asGalois Fields, is the arithmetic basis of AES. The Rijndael algorithm [7] is derived

from the finite fieldGF(28). C. Paar [21] demonstrated that by decomposing fieldGF(28)

into composite fieldGF((24)2), we can make hardware implementations consuming less

area. The following sections introduce the relevant properties and definitions in finite field

GF(28) and composite fieldGF((24)2). All statements are given without proof, but they

are referred to the appropriate literature.

2.1 Finite Fields

This section introduces the definition of finite fields, followed by the basic AES mathemat-

ical representations and operations over finite fieldGF(28). We start with the definition of

group.

Definition 2.1 [21] A setG together with a binary operationG×G−→ G is called agroup

if the following condition are satisfied:

• The binary operation is associative:(a◦b)◦c= a◦ (b◦c), for all a,b,c∈ G;

• There is an identity elemente∈ G such thata◦e= e◦a, for all a∈ G;

• For any elementa ∈ G, there exists an inverse elementa′ ∈ G such thata◦ a′ =

a′ ◦a = e.

If a groupsatisfies the additional condition thata◦b = b◦a, for all a,b∈ G, thegroup

is commutativeor abelian.

5

Definition 2.2 [29] Let F be a set of elements on which two binary operations, called

addition “+” and multiplication “·”, are defined. The setF together with the two binary

operation+ and· is afield if the following conditions are satisfied:

• F is a commutative groupunder addition +. The identity element with respect to

addition is called thezero elementor theadditive identityof F and is dentoed by 0;

• The set of nonzero elements inF is a commutative groupunder multiplication·.

The identity elementwith respect to multiplication is called theunit elementor the

multiplicative identityof F and is denoted by 1;

• Multiplication is distributive over addition; that is, forany three elementsa,b andc

in F : a · (b+c) = a ·b+a ·c.

Fields with a finite number of elements are calledFinite or Galois Fields, denoted as

GF(q). Here,q is the number of field elements, which is also theorder of GF(q). The

extension fieldis of orderqm and is denoted byGF(qm) [21], which can be constructed

by an irreducible polynomialP(x) [29] of degreem over GF(q). The fieldGF(q) is a

subfieldof GF(qm) [16]. Every element of fieldGF(qm) can be represented as polynomial

with a maximum degree ofm−1 overGF(q), which is the residue moduloP(x). Hence

P(x) determines the arithmetic operations in fieldGF(qm).

2.1.1 AES Arithmetic over FieldGF(28)

AES is built on the specific finite fieldGF(qm), whenq= 2,m= 8. GF(28) is an extension

field of GF(2). We use the same notations and conventions as the AES specification in

[20], except the multiplication denotation of two elementsin GF(28). Instead of using•,

we use⊗, for a consistency with the figures in the subsequent chapters. The basic unit for

6

processing in the AES algorithm is abyte. Each 8-bit sequence of input, output, states,

cipherkey or roundkeys is treated as a single entity.

A. 3 Notations of An Element

1. Binary notation: A concatenation of 8 individual bits. The bit value is 0 or 1.

{a7a6a5a4a3a2a1a0}

2. Polynomial notation: BecauseGF(28) is the extension field ofGF(2), its element

can be represented as a polynomial overGF(2) (Equation (2.1)). Bitai is the coeffi-

cients of the polynomial with the value of 0 or 1.

a(x) =
7

∑
i=0

aix
i = a7x7+a6x6 +a5x5 +a4x4 +a3x3 +a2x2 +a1x+a0 (2.1)

3. Hexadecimal notation:{AB}, A denotesa7a6a5a4 in hexadecimal representation,B

denotesa3a2a1a0 in hexadecimal representation.

For example,{01100011} (binary notation) can be represented asx6 +x5 +x+1 (polyno-

mial notation) and{63} (hexadecimal notation).

B. Addition

The addition of two elements inGF(28) is adding their corresponding polynomial co-

efficients modulo 2, which is the XOR-operation denoted by⊕. For a(x),b(x) ∈ GF(28)

(a(x) is in Equations (2.1);b(x) = b7x7 +b6x6 +b5x5 +b4x4 +b3x3 +b2x2 +b1x+b0), it

can be implemented by Equation (2.2)

a(x)⊕b(x) =
7

∑
i=0

aix
i ⊕

7

∑
i=0

bix
i =

7

∑
i=0

(ai ⊕bi)x
i (2.2)

7

C. Multiplication

For a(x),b(x) ∈ GF(28), ⊗ is the multiplication operation inGF(28), × is the normal

polynomial multiplication.

Polynomial (2.3) is the irreducible polynomial used in AES.The multiplication ofa(x)

andb(x) is done by multiplying these two polynomials followed by a modular reduction

overm(x) (Equation (2.4)). The modular reduction is made to ensure that the result is an

element inGF(28).

m(x) = x8 +x4 +x3 +x+1 (2.3)

Givenq(x) ∈ GF(28), q(x) = q7x7+q6x6+q5x5+q4x4+q3x3+q2x2+q1x+q0, we have:

q(x) = a(x)⊗b(x) = (a(x)×b(x)) mod m(x) (2.4)

FIPS gives an efficient method to do multiplication inGF(28) in [20]. It uses the

multiplication byx, which is denoted asxtimes(a(x)). Given:t(x) ∈ GF(28), t(x) = t7x7+

t6x6 + t5x5+ t4x4 + t3x3 + t2x2 + t1x+ t0, we have:

t(x) = xtimes(a(x)) = (a(x)×x) mod m(x)

−−−−−−−−−−−−−−−−−−

t0 = a7, t1 = a0⊕a7, t2 = a1, t3 = a2⊕a7

t4 = a3⊕a7, t5 = a4, t6 = a5, t7 = a6

(2.5)

In Equation (2.5),t(x) is the multiplication result ofa(x) andx in GF(28). It is cal-

culated by multiplyinga(x) with x, followed by the modular reduction overm(x). Based

on Equations (2.5), we can use Equation (2.6) to conduct the multiplication in GF(28)

8

(Equation (2.4)).

q(x) = ∑7
i=0Pi(x)×bi

−−−−−−−−−−−−−−−−−−

Pi(x) = xtimes(Pi−1(x)) (P0(x) = a(x))

(2.6)

In Equation (2.6), the partial multiplications (Pi(x)) is performed first, followed by adding

the corresponding coefficients. Bitbi is the coefficient inb(x), which are 0 or 1.

D. Multiplicative Inverses

∀a∈ GF(28)\{0} : a⊗a−1 = {1} (2.7)

a−1 is the multiplicative inverse ofa in GF(28). A popular algorithm for inversion is the

Extended Euclidean Algorithm [18], but it is not suitable for hardware implementation

because of its high hardware complexity.

2.2 Composite Fields

Two Galois Fields of the same order are isomorphic, but they may have different hardware

complexity which depends on the representations of their field elements. Green and Taylor

[10] introduced a certain type of extension fields calledcomposite field, which can simplify

field operations in AES arithmetic.

Definition 2.4

We call two pairs

{GF(2n),Q(y) = yn +
n−1

∑
i=0

qiy
i ,qi ∈ GF(2)}

{GF((2n)m),P(x) = xm+
m−1

∑
i=0

pix
i , pi ∈ GF(2)}

9

acomposite fieldif

• GF(2n) is constructed fromGF(2) by Q(y);

• GF((2n)m) is constructed fromGF(2n) by P(x).

Composite field is denoted byGF((2n)m). A composite fieldGF((2n)m) is isomorphic

to the fieldGF(2k), k = nm [15].

2.2.1 AES Arithmetic over Composite FieldGF((24)2)

The specific composite field used in this thesis isGF((24)2), which is isomorphic to field

GF(28) (k = 8,n = 4,m= 2). Taking fieldGF(28) as a quadratic extension of the field

GF(24), an elementa∈ GF(28) is represented as a linear polynomial with coefficients in

GF(24).

A. Notation

Wolkerstorfer et al. introduced atwo-term polynomialin [32], which is the representa-

tion of GF((24)2) used in the thesis.

a∼= ahx+al , a∈ GF(28), ah,al ∈ GF(24) (2.8)

The two-term polynomialahx+al is an isomorphic representation ofa. Hence, all mathe-

matical operations applied to elements ofGF(28) can also be computed in this representa-

tion.

B. Addition

Adding the corresponding coefficients.

(ahx+al)⊕ (bhx+bl) = (ah⊕bh)x+(al ⊕bl) (2.9)

10

C. Multiplication

There are two irreducible polynomials needed for the two-term polynomial multiplica-

tion: n(x) (Equations (2.10)) andm(x) (Equations (2.11)).

n(x) = x2 +{1}x+{E} ({E} denotes”1110”) (2.10)

m(x) = x4 +x+1 (2.11)

Equation (2.10) is used to reduce the result to a two-term polynomial. The coefficients of

n(x) are written in hexadecimal notation which are elements inGF(24) (Section (2.1.1)).

Multiplication of two-term polynomials is denoted by⊗. Normal polynomials multipli-

cation is denoted by×. Multiplying two two-term polynomials, followed by a modular

reduction overn(x), is described by Equations (2.12).

(ahx+al)⊗ (bhx+bl) = ((ahx+al)× (bhx+bl)) mod n(x) (2.12)

Equation (2.11) is used to ensure that, the result of multiplication in subfieldGF(24) (Equa-

tion (2.13)), where(a′(x),b′(x) ∈ GF(24)), is an element ofGF(24).

a′(x)⊗b′(x) = (a′(x)×b′(x)) mod m(x) (2.13)

These two irreducible polynomialsn(x) andm(x) are chosen by Wolkerstorfer et al. [32]

to optimize the arithmetic.

D. Multiplicative Inverses

A multiplication of a two-term polynomial with its inverse yields the 1-element of the

field GF((24)2)

(ahx+al)⊗ (a′hx+a′l) = {0}x+{1} (2.14)

11

whereah,al ,a′h,a
′
l ∈ GF(24).

(ahx+al)
−1 = (a′hx+a′l) = (ah⊗d)x+(ah⊕al)⊗d (2.15)

whered = ((a2
h⊗{E})⊕(ah⊗al)⊕a2

l)
−1 =((a2

h⊗{e})⊕((ah⊕al)⊗al))
−1 (⊕ is addition

in GF(24); ⊗ is multiplication inGF(24)).

This multiplicative inversion equation is proposed by Wolkerstorfer et al. [32]. Recon-

figuration of this equation can provide good quality for subpipeling. We will explain this

in Section (4.4.2).

12

Chapter 3

AES Algorithm

This chapter introduces the AES algorithm presented by NISTin 2001 [20].

The AES algorithm, also known as the Rijndael algorithm is the encryption standard

designed by two Belgian cryptographers John Daemen and Vincent Rijmen [7]. AES is

a symmetric-key cipher where both the encryptor and decryptor use the same key. It is

an iterative algorithm. Each iteration is called a round. According to NIST, AES is a

symmetric block cipher with block size of 128-bit and three key sizes of (128-, 192-, or

256-bit). The AES parameters depend on the key size (Table (3.1)):

• Nk is the number of 32-bit words comprising the cipher key;

• Nb is the number of 32-bit words comprising a data block, which is four in AES

standard;

• Nr is the number of rounds which is 10, 12 or 14 for AES-128, AES-192 and AES-

256, respectively.

The internal operations of AES are performed on a 4×4 matrix of bytes, termed the

state(Figure (3.1)). An individual byte of the state is referred as Sr,c (r represents the row

Table 3.1: Key-Block-Round Combinations [20]

Key Length Block Size Number of Rounds
(Nk words) (Nb words) (Nr)

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

13

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

W0 W1 W2 W3 W0 W1 W2 W3 W0 W1 W2 W3

plain/cipher text cipher/plain textstate AES

Figure 3.1: State array input and output

number andc represents the column number: 0≤ r < 4,0≤ c < 4). A wordWi (0≤ i < 4)

consists of the four bytes of columni.

AES runs iteratively on four transformations (inv-/subbytes, inv-/shiftrows, inv-/mixcolumns

and addroundkey) with different sequence in encryption anddecryption. Figure (3.2) il-

lustrates the basic architecture of AES. In the initial round (r = 0), only addroundkey is

performed; in the final round (r = Nr), it skips inv-/mixcolumns. The keyschedule mod-

ule expands cipherkey to(Nr + 1)×4 words of roundkeys. Each round applies a unique

128-bit roundkey in the addroundkey operation.

3.1 Subbytes and Invsubbytes

Inv-/subbytes is the only non-linear transformation in AESwhich is also called S-Box.

A. Subbytes– Uses an S-Box to perform a non-linear byte-by-byte substitution of the state.

S-Box is a 16×16 matrix containing all possible 256 8-bit values.

Consider a byte{x7x6x5x4x3x2x1x0}. Subbytes transformation has two steps:

1. {x′7x′6x′5x′4x′3x′2x′1x′0} is its multiplicative inverse inGF(28) field, modulo the irre-

14

Subbytes

Shiftrows

Mixcolumns

Addroundkey

Invmixcolumns

Addroundkey

Invsubbytes

Invshiftrows

plaintext plaintext

ciphertext ciphertextroundkey

Keyschedule cipherkey

If
 r
=
0

If
 0

 <
 r
 <

 (
N

r+
1
)

If r = Nr

If r = Nr

If
 0

 <
 r
 <

 (
N

r+
1
)

If
 r
=
0

If r=0 If r = Nr

r=0,1,2,…,Nr

Encryption

r=0,1,2,…,Nr

Decryption

Figure 3.2: AES architecture

ducible polynomialm(x) = x8+x4+x3+x+1; {00000000}’s multiplicative inverse

in GF(28) field is itself;

2. An affine transformation overGF(2) (Equation (3.1)) is conducted on the inverse,

which is the result of the first step.

15

y0

y1

y2

y3

y4

y5

y6

y7

=

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

x′0

x′1

x′2

x′3

x′4

x′5

x′6

x′7

+

1

1

0

0

0

1

1

0

(3.1)

Figure (3.3) shows the S-Box diagram:

S-Box}{ 01234567 xxxxxxxx }{ 01234567 yyyyyyyy

Figure 3.3: AES S-box

B. Invsubbytes – Uses an inverse S-Box (IS-Box) to perform a non-linear byte-by-byte

substitution of the state.

Considering a byte{y7y6y5y4y3y2y1y0}. Inverse subbytes transformation has two steps:

1. The inverse affine transformation overGF(2) (Equation (3.2)) is performed first

16

x′0

x′1

x′2

x′3

x′4

x′5

x′6

x′7

=

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

y0

y1

y2

y3

y4

y5

y6

y7

+

1

0

1

0

0

0

0

0

(3.2)

2. {x7x6x5x4x3x2x1x0} is the multiplicative inverse of{x′7x′6x′5x′4x′3x′2x′1x′0} in GF(28)

field, modulo the irreducible polynomialm(x) = x8+x4 +x3 +x+1; {00000000} is

mapped onto itself.

Figure (3.4) shows the IS-Box diagram:

IS-Box }{ 01234567 xxxxxxxx}{ 01234567 yyyyyyyy

Figure 3.4: AES IS-box

3.2 Shiftrows and Invshiftrows

This transformation circularly shifts each row of the stateto the left on encryption or to the

right on decryption. The top row of the state is denoted asrow(0) and the bottom row is

denoted asrow(3). The shift offset of each row corresponds to the row number.

A. Shiftrows – Each row of the state is left shifted cyclically a certain number of bytes.

Performsi-byte circular left shift torow(i)(i = 0,1,2,3). Figure (3.5) illustrates the

shiftrows operation.

17

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0s1,1 s1,2 s1,3

s2,0 s2,1s2,2 s2,3

s3,0 s3,1 s3,2s3,3

Shiftrows

row(0)

row(1)

row(2)

row(3)

i

Figure 3.5: AES Shiftrows

B. Invshiftrows – Each row of the state is right shifted cyclically a certain number of bytes.

Performsi-byte circular right shift torow(i)(i = 0,1,2,3). Figure (3.6) illustrates the

invshiftrows operation.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2s1,3

s2,0 s2,1s2,2 s2,3

s3,0s3,1 s3,2 s3,3

Inv

shiftrows

row(0)

row(1)

row(2)

row(3)

i

Figure 3.6: AES Invshiftrows

3.3 Mixcolumns and Invmixcolumns

This transformation treats each column of the state as a four-term polynomial overGF(28)

and transforms each column to a new one by multiplying it witha constant polynomial

a(x) = {03}x3+{01}x2+{01}x+{02} modulox4+1. The inverse mixcolumns operation

is a multiplication of each column withb(x) = a−1(x) = {0B}x3+{0D}x2+{09}x+{0E}

18

modulox4 +1.

A. MixColumns – Left multiplies the state with a mixcolumns matrix.

Mixcolumns transformation gives each byte of a column a new value based on all four

bytes in that column. In matrix form, the mixcolumns can be expressed as:

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

=

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

(3.3)

B. Invmixcolumns – Left multiplies the state with a invmixcolumns matrix.

In matrix form, the invmixcolumns can be expressed as:

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

=

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

(3.4)

3.4 Addroundkey

The addroundkey is a simple logical XOR of the current state with a roundkey which is

generated by the keyschedule.

Addroundkey – The state is XORed with the 128-bit roundkey (Equation (3.5)).

19

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

⊕ roundkey=

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

(3.5)

3.5 Keyschedule

Keyschedule– Derives roundkeys from the cipherkey. It consists of two steps:

1. Key Expansion - Uses the AES Key Expansion Algorithm (Figure (3.7)) to generate

4× (Nr + 1) words of roundkeys (W0,W1, ...,W4(Nr+1)−1). The cipherkey is divided

into Nk words used as the firstNk roundkeys. Keyschedule repeats to generate the

rest roundkeys.

2. Roundkey Selection - The first 4 roundkeys are the first 4 words, the second 4 round-

keys are the second 4 words, etc. Each roundkey has 128 bits:roundkey(i) =

(W4i ,W4i+1,W4i+2,W4i+3).

Figure (3.8) shows keyschedule’s architecture which generates roundkeys for AES-128,

AES-192 and AES-256.

• Rotword: One-byte circular left shift on a word. For example, word(a,b,c,d) be-

comes(b,c,d,a).

• Subword: Using S-Box to perform a byte substitution on each byte.

• Xorrcon : XORing with a round constantrcon[j], j = 1,2, · · · ,Nr.

rcon[j] = (RC[j],0,0,0), with RC[1] = 1,RC[j] = 2 ·RC[j −1] and with multiplica-

tion defined over the fieldGF(28).

20

//
//Input: key[4*Nk] (Cipherkey)
//Output: w[4*(Nr+1)] (Nr+1 roundkeys)
//Nk and Nr is specified in Table (3.1)
//

KeyExpansion(byte key[4*Nk], word w[4*(Nr+1)], Nk)
begin

word temp

i=0

while(i<Nk)
w[i]=word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i=i+1

end while

i=Nk

while(i<Nb*(Nr+1))
temp=w[i-1]
if(i mod Nk=0)

temp=subword(rotword(temp)) xor rcon[i/Nk]
else if (Nk>6 and i mod Nk=4)

temp=subword(temp)
end if
w[i]=w[i-Nk] xor temp
i=i+1

end while
end

Figure 3.7: Pseudo Code for Key Expansion [20]

21

W0 W1 W2 W3 W4 W5 W6 W7

W4 W5 W6 W7

W8 W9 W10 W11 W12 W13 W14 W15 W6 W7 W8 W10 W11 W12

K0

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

K15

K16

K17

K18

K19

K20

K21

K22

K23

K24

K25

K26

K27

K28

K29

K30

K31

AES-256

AES-192

AES-128

xorrcon(subword(rotword(W)))

subword(W)

xorrcon(subword

(rotword(W)))

xorrcon(subword

(rotword(W)))

Figure 3.8: AES Keyschedule

22

Chapter 4

Reconfigurable and Compact Architecture of the AES

In this chapter, the reconfigurable and compact AES architecture is proposed. We introduce

the contributions in detail, followed by the four transformations (shiftrows, subbytes, mix-

columns and addroundkey). The three keyschedules with different key sizes (128-, 192-,

256-bit) are explained individually.

4.1 32-bit Single Round Unit

Round_1

Round_2

Round_Nr

Subbytes

Shiftrows

Mixcolumns

Addroundkey

(a) (b)

128

128

Subbytes

Shiftrows

Mixcolumns

Addroundkey

32

(c)

Figure 4.1: Unfolded Architecture(a) - Single Round Unit(b) - 32-bit Single Round Unit(c)

Roll unfoldedarchitecture (Figure (4.1(a))) is widely used to achieve high speed. It

processes several blocks of data during one clock cycle by implementing more than one

round units on the hardware. The more round units the architecture implements, the higher

the hardware cost. The opposite scheme, which is called thesingle round unitarchitecture

(Figure (4.1(b))), can be applied to simplify the hardware complexity. Instead of unfolding

23

all the round units in devices, it implements a single round unit which costs approximately

1/Nr area as the unfolded scheme by sacrificing the speed (Figure (4.1(a))).

Both Figure ((4.1(a)) and ((4.1(b)) use 128-bit data path. Sticking to the goal of making

a compact design, we propose a 32-bit single round unit (Figure (4.1 (c))). It needs four

iterations to perform a round on a block (128-bit). This 32-bit data path scheme saves about

75% hardware, compared with the 128-bit single round unit (Figure (4.1 (b))).

4.2 Full Composite Field Encryptor and Keyschedule

Multiplicative

inverse

Affine

transform

Shiftrows

Mixcolumns

Addroundkey

MAP

MAP-1

))2((24
GF

32

S-Box

(a)

Multiplicative

inverse

Affine

transform

ShiftRows

Mixcolumns

Addroundkey

MAP

MAP-1

))2((24
GF

plaintext

ciphertext

cipherkey

roundkey

Keyschedule

MAP

32 32

32

S
-B

o
x

(b)

Figure 4.2: Partial Composite Field (a)- Full Composite Field (b)

Many high-end FPGA devices possess Block-RAMs (BRAMs) which are efficient for

the implementation of S-Box. S-Box, also referred as subbytes, is the key part in both

24

encryptor and keyschedule modules. However, these BRAM-based designs cannot be im-

plemented in the low-cost devices which do not have BRAMs. Analternative approach

for S-Box implementation is using combinational logic. Butthis method may lead to

high hardware complexity because of the mathematic operations of AES over finite field

GF(28).

The key step of S-Box is calculating multiplicative inverseof each byte (Section (3.1)).

Since the introduction of composite fieldGF((24)2) based S-Box, numerous research [9,

11, 28, 31, 34] has investigated the calculation of the multiplicative inverses overGF((24)2),

instead ofGF(28), to decrease hardware complexity (Figure (4.2(a))). In Figure (4.2), the

arithmetic in the shadow area is performed over fieldGF((24)2). Figure (4.2(a)) shows that

the architecture implements only multiplicative inverse in GF((24)2). The architectures in

[33, 22] extend the fieldGF((24)2) to affine transformation which makes all S-Box block

operations performed inGF((24)2). By decomposing these operations fromGF(28) to its

subfieldGF(24), the hardware complexity is decreased.

As in Figure (4.2(a)), in each round before S-Box, it needs anisomorphic mapping

function (MAP) to convert a representation fromGF(28) to GF((24)2); to convert inversely

after, it needs the inverse mapping (MAP−1). If key size is 128 bits, it applies the S-Box

to the plaintext and the cipherkey ten times, which means that it needs 20MAPsand 20

MAP−1s for the encryption of 128-bit data. In [32], for every byte,MAP costs 11 XOR

gates with 2 gates in critical path;MAP−1 costs 15 XOR gates with 3 gates in critical

path.MAP andMAP−1 together cost 33.3% in critical path and 21% gates in total for the

subbytes transformation.

In order to reduce the cost ofMAP andMAP−1 as much as possible, we propose the

complete composite field approach (Figure (4.2(b))). TheGF((24)2) field covers both

encryptor and keyschedule. As illustrated in Figure (4.2(b)), oneMAPand oneMAP−1 are

applied in encryption, oneMAP−1 is applied in keyschedule. This is a constant overhead

25

which is not affected by the round count. No matter what the key size is, the cost of

mapping is the same.

The isomorphic mapping functions between fieldGF(28) and fieldGF((24)2) are deter-

mined by the irreducible polynomials of fieldGF(28) (Equation (2.3)) and fieldGF((24)2)

(Equations (2.10) and (2.11)). We use the mapping formulas in [32] to conduct the transi-

tion of representations betweenGF(28) andGF((24)2):

ahx+al = MAP(a), ah,al ∈ GF(24), a∈ GF(28)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

aA = a1⊕a7, aB = a5⊕a7, aC = a4⊕a6

al0 = aC⊕a0⊕a5, al1 = a1⊕a2, al2 = aA, al3 = a2⊕a4

ah0 = aC⊕a5, ah1 = aA⊕aC, ah2 = aB⊕a2⊕a3, ah3 = aB

(4.1)

In Equation (4.1),a is an element in fieldGF(28). MAP(a) converta to its isomorphic

element inGF((24)2), which is represented asahx+al .

a = MAP−1(ahx+al), a∈ GF(28), ah,al ∈ GF(24)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

aA = al1⊕ah3, aB = ah0⊕ah1

a0 = al0⊕ah0, a1 = aB⊕ah3, a2 = aA⊕aB

a3 = aB⊕al1⊕ah2, a4 = aA⊕aB⊕al3, a5 = aB⊕al2

a6 = aA⊕al2⊕al3⊕ah0, a7 = aB⊕al2⊕ah3

(4.2)

In Equation (4.2),ahx+ al in an element in fieldGF((24)2). MAP−1(ahx+ al) convert

ahx+al to its isomorphic element inGF(28), which is represented asa.

26

4.3 Subpipelined Encryptor and Keyschedule

Round_1

Round_2

Round_Nr

register

register

register

substage1

substage2

substagek

register

register

(a) (b)

Figure 4.3: Pipelining (a) and Subpipelining (b)

The technique of pipelining is applied in the AES designs to optimize speed/area ratio

in [1, 2, 8, 9, 11, 17, 33, 26, 27, 31, 34]. By inserting registers among combinational

logic, multiple blocks are processed simultaneously. The frequency is determined by the

maximum delay between two registers. When the maximum delaybetween two registers

is decreased, the frequency is increased.

Figure (4.3(a)) is the fully unrolled pipelining architecture, which includes two steps.

First, unfold theNr round units on the device; second, insert registers betweeneach round

unit. In this case, the maximum delay is the period of one round which contains four

transformations.

By cutting one round unit into more substages, we can furtherimprove the frequency.

This technology is called subpipelining [34]. Figure (4.3(b)) gives an example where reg-

isters are placed both between and inside each round unit. The frequency is determined by

27

the maximum delay of a substage. In this thesis, we propose a single round subpipelined

architecture, where one round unit is implemented and subpipelined into eight substages.

To generate the roundkeys, we design an on-the-fly keyschedule, which generates a 32-

bit roundkey at each clock cycle. The encryption unit and thekey expansion unit share

the same clock which leads to the fact that the general frequency is determined by the

maximum delay in both units. Hence, the substage balance of keyschedule is as important

as in encryptor. We propose a new subpipelined keyschedule on composite field for all

standard key sizes. The most costly part of keyschedule is still the S-Box. We divide it into

the same substages as in encryptor.

4.4 Double-Block Subpipelined Architecture

An equivalent decryptor along with the AES was introduced inFIPS [20], where the same

architecture can be used in both encryption and decryption.Figure 5.7 in [30] illustrates the

equivalent inverse cipher. It makes use of the fact that the order of subbytes and shiftrows

can be exchanged because subbytes changes the value of each byte individually while

shiftrows only rearranges their positions. So it changes the order of invshiftrows and in-

vsubbytes, and add an extra step to conduct invmixcolumns oneach roundkey. We can also

change the sequence of shiftrows and subbytes in encryptor to obtain the same result. In

this design, we put shiftrows before subbytes.

Figure (4.4) illustrates the proposed encryption architecture. The eight 32-bit registers

(four in shiftrows, three in subbytes and one between subbytes and mixcolumns) are used

to cut one round unit into eight substages, which leads to an eight clock cycles initial delay

to generate the first 32-bit ciphertext.clk counterin Figure (4.4) is a clock register counter

generated in keyschedule. It is repeating from 0 to 8Nr + 7 (Table (4.1)) and is used to

synchronize encryptor and keyschedule.

28

Table 4.1: AES Encryption Sequence

clk_counter 0 1 2 3 4 5 6 7

plaintext PA(0) PA(1) PA(2) PA(3) PB(0) PB(1) PB(2) PB(3)

cipherkey KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3)

outcome(0) OA(0) OA(1) OA(2) OA(3) OB(0) OB(1) OB(2) OB(3)

clk_counter 8 9 10 11 12 13 14 15

input(1) OA(0) OA(1) OA(2) OA(3) OB(0) OB(1) OB(2) OB(3)

roundkey(1) KA(4) KA(5) KA(6) KA(7) KB(4) KB(5) KB(6) KB(7)

outcome(1) OA(4) OA(5) OA(6) OA(7) OB(4) OB(5) OB(6) OB(7)

clk_counter 8Nr 8Nr+1 8Nr+2 8Nr+3 8Nr+4 8Nr+5 8Nr+6 8Nr+7

input(Nr) OA(4Nr-4)) OA(4Nr-3) OA(4Nr-2) OA(4Nr-1) OB(4Nr-4) OB(4Nr-3) OB(4Nr-2) OB(4Nr-1)

roundkey(Nr) KA(4Nr) KA(4Nr+1) KA(4Nr+2) KA(4Nr+3) KB(4Nr) KB(4Nr+1) KB(4Nr+2) KB(4Nr+3)

ciphertext CA(0) CA(1) CA(2) CA(3) CB(0) CB(1) CB(2) CB(3)

(a)

(b)

(c)

.

.

.

2
9

Shiftrows
register1,2,3,4

Subbytes
register5,6,7

Mixcolumns

MAP-1

cipherkey

mul

MAP MAP

ciphertext

Keyschedule

clk_counter
acb

))2((24
GF

roundkey

plaintext

32-bit data line

Control line

register8

register1

Column1

Column2

Column3

Column4

register2

register3

register4

register5

Subbytes(A)

Subbytes(B)

Subbytes(C)

Subbytes(D)

register6

register7

(a)

(b)

Figure 4.4: AES Encryption Architecture

We use a double-block (blockA andB) data flow to avoid the eight clock cycles initial

delay. Table (4.1(a)) illustrates the data sequence of the initial round (Nr = 0).

{PA(0), PA(1), PA(2), PA(3)}: 128-bit plaintext of blockA

{PB(0), PB(1), PB(2), PB(3)}: 128-bit plaintext of blockB

They are put into AES during the first eight clock cycles and then processed alternately.

{KA(0), KA(1), KA(2), KA(3)}: cipherkey for blockA

{KB(0), KB(1), KB(2), KB(3)}: cipherkey for blockB

30

Because in the initial round, the encryption involves only addroundkey, which is the simple

XOR operation, and the according roundkey is the MAPed cipherkey, the operation in this

round is not delayed by registers. Hence, the outcome of the initial round (outcome(0)) is

produced from the very beginning.

{OA(0), OA(1), OA(2), OA(3)}: outcome of round 0 for blockA

{OB(0), OB(1), OB(2), OB(3)}: outcome of round 0 for blockB

Table (4.1(b)) is for round 1, which goes through the eight substages. At the eighth

clock cycle,OA(0) finishes the eight substages and XORes the the according roundkey

(KA(4)) to generate the outcome (OA(4)) for block A, so as blockB.

Table (4.1(c)) is for the last roundNr.

{CA(0), CA(1), CA(2), CA(3)}: ciphertext for blockA

{CB(0), CB(1), CB(2), CB(3)}: ciphertext for blockB

Now we explain the 3-to-1 multiplexer (mul) controlled by theclk counter:

• Case a:In initial round, where 0≤ clk counter< 8, 128-bit plaintext is MAPed into

GF((24)2) and XORed with the according roundkey in four clock cycles, 32 bits at

each clock cycle. The result is the outcome of the initial round (Nr = 0) which is the

input of the second round;

• Case b: In normal rounds, where 8≤ clk counter< Nr×8, the outcome of mix-

columns XORs with the according roundkey to produce the outcome of this round.

• Case c:The last round, whereNr×8≤ clk counter< (Nr +1)×8, the transforma-

tion mixcolumns is skipped. The result of subbytes is added with its roundkey.

Finally, the outcome of the last round goes throughMAP−1 to generate the ciphertext.

31

Table 4.2: Four Control Signals

CounterW0 CounterW1 CounterW2 CounterW3

W0 1 0 0 0
W1 0 1 0 0
W2 0 0 1 0
W3 0 0 0 1

4.4.1 Column Fashion Shiftrows

This subsection proposes the column fashion shiftrows (Figure (4.5)). It includes 16 8-bit

registers (Row0 Col0, Row0 Col1, ... ,Row3 Col3) and three2 to 1multiplexers (M1, M2

andM3). Both input and output of shiftrows is a state. Each columnis a word (W0, W1,

W2 andW3), which includes four bytes. Every clock cycle it processesa 32-bit word (one

column of a state), so four clock cycles are needed to producea 128-bit state. The first 3

clock cycles are initial clock cycles, so the first word is shifted out at the 4th clock cycle.

Figure (4.6) shows how it works in the first eight clock cycles. R00, R01, ... andR33 stand

for registersRow0 Col0, Row0 Col1, ... andRow3 Col3. Each row shows their values

at each clock cycle(clk0, clk1, ... andclk7). We will explain the shadow area and black

border in the following text.

Four counters (CounterW0, CounterW1, CounterW2 andCounnterW3) control the

registers and the multiplexers. Table (4.2) shows how thesesignals are generated.

When the first word (W0) of a state is shifted in,CounterW0 = 1;

When the second word (W1) of a state is shifted in,CounterW1 = 1;

When the third word (W2) of a state is shifted in,CounterW2 = 1;

When the forth word (W3) of a state is shifted in,CounterW3 = 1.

Certain registers are controlled by special enable signals(Enablerow1 col3,

Enablerow2 col23 andEnablerow3 col123), others use the general enable signal, which

32

Enable_row1_col3

Row0_Col0 Row0_Col1 Row0_Col2 Row0_Col3

Row1_Col0 Row1_Col1 Row1_Col2 Row1_Col3

Row2_Col0 Row2_Col1 Row2_Col2 Row2_Col3

Row3_Col0 Row3_Col1 Row3_Col2 Row3_Col3

Enable_row2_col23

Enable_row3_col123

S0,3

S1,3

S2,3

S3,3

S0,2

S1,2

S2,2

S3,2

S0,1

S1,1

S2,1

S3,1

S0,0

S1,0

S2,0

S3,0

w0 w1 w2 w3

S0,3

S1,0

S2,1

S3,2

S0,2

S1,3

S2,0

S3,1

S0,1

S1,2

S2,3

S3,0

S0,0

S1,1

S2,2

S3,3

w0 w1 w2 w3

8-bit data line

1-bit control line

M3

C
o
u
n
ter_

W
0

M2

M1

Input(state) output(state)

C
o
u
n
ter_

W
1

C
o
u
n
ter_

W
2

C
o
u
n
ter_

W
3

Figure 4.5: Column Fashion Shiftrows

3
3

is not shown.

A0,3 A1,3 A2,3 A3,3

A0,2 A1,2 A2,2 A3,2

A0,1 A1,1 A2,1 A3,1

A0,0 A1,0 A2,0 A3,0

A0,0 A1,0 A2,0 A3,0

A0,1 A1,1 A2,1 A3,1A0,0 A1,0 A2,0 A3,0

A0,2 A1,2 A2,2A0,1 A1,1 A2,1 A3,1A0,0

B0,0 B1,0 B2,0 B3,0A0,3 A1,3 A2,3A0,2 A1,2A0,1

B0,1 B1,1 B2,1 B3,1B0,0 B1,0 B2,0 B3,0A0,3 A1,3 A3,2A0,2 A3,1

B0,2 B1,2 B2,2 B3,2B0,1 B1,1 B2,1 B3,1B0,0 B1,0 B2,0 B3,0A0,3 A2,1 A3,2

A1,0 A2,0 A3,0

A1,0 A2,1 A2,0

A3,2

A3,2 A3,1

A1,0 A2,1

B0,3 B1,3 B2,3 B3,3B0,2 B0,1 B0,0 B1,2 B1,1 B1,0 B2,2 B2,1 B2,0 B3,2 B3,1 B3,0

A0,3

A1,0

A2,1

A3,2

A0,2

A1,3

A2,0

A3,1

A0,1

A1,2

A2,3

A3,0

A0,0

A1,1

A2,2

A3,3

clk0

clk1

clk2

clk3

clk4

clk5

clk6

clk7

R00 R01 R02 R03 R10 R11 R12 R13 R20 R21 R22 R23 R30 R31 R32 R33

clk3 clk4 clk5 clk6

W0 W1 W3W2

Output for the 1st state

A1,0

A3,0

A2,0

Figure 4.6: Two States’ Arrangement in Shiftrows Registers

EnableEnablerow1 col3 (Enablerow1 col3 = CounterW3) controls register

Row1 Col3. This enable signal is negative when clock isclk0, clk1, clk2, clk4, clk5, clk6,

etc.Row1 Col3 does not work during these clock cycles, which correspondsto the shadow

areas of the columnR13 in Figure (4.6);

EnableEnablerow2 col23 (Enablerow2 col23 = CounterW2 ∨ CcounterW3) con-

trols registersRow2 Col2 andRow2 Col3. This enable signal is negative when clock is

clk0, clk1, clk4, clk5, etc. Row2 Col2 andRow2 Col3 do not work during these clock

cycles, which corresponds to the shadow area of the columnsR22 andR23 in Figure (4.6);

EnableEnablerow3 col123 (Enablerow3 col123 = CounterW1 ∨ CounterW2 ∨

CounterW3) controls registersRow3 Col1, Row3 Col2 andRow3 Col3. This enable sig-

nal is negative when clock isclk0, clk4, etc. Row3 Col1, Row3 Col2 andRow3 Col3 do

not work during these clock cycles, which corresponds to theshadow area of the columns

R31,R32 andR33 in Figure (4.6).

For each input word:

34

The input (a state) of shiftrows is the MAPed ciphertext if itis the initial round; other-

wise it is the outcome of the previous round. Each word of the state (W0, W1, W2 andW3)

is shifted into the first column of the registers (Row0 Col0, Row1 Col0, Row2 Col0 and

Row3 Col0) at each clock cycle.

For each output word:

• 1st byte is shifted out fromRow0 Col3, which corresponds to the black border area

of columnR03 in Figure (4.6);

• 2nd byte is shifted out fromRow1 Col3 if (CounterW2) is active, otherwise from

Row1 Col2, which corresponds to the black border area of columnsR12 andR13 in

Figure (4.6);

• 3rd byte is shifted out fromRow2 Col3 if (CounterW1 or CounterW2) is active,

otherwise fromRow2 Col1, which corresponds to the black border area of columns

R21 andR23 in Figure (4.6);

• 4th byte is shifted out fromRow3 Col3 if (CounterW0 orCounterW1 orCounterW2)

is active, otherwise fromRow3 Col0, which corresponds to the black border area of

columnsR30 andR33 in Figure (4.6).

Figure (4.6) takes two statesA andB (Figure (4.7)) as the input of shiftrows. During

the firsts eight clock cycles, each word of stateA andB is shifted into the first column of

registers (R00, R10, R20 andR30) one after another. The first three clock cycles are the initial

cycles with no output.

At clk3, the first column of stateA is generated from registers (R03, R12, R21 andR30);

At clk4, the second column of stateA is generated from registers (R03, R12, R21 and

R33);

At clk5, the third column of stateA is generated from registers (R03, R12, R23 andR33);

35

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

W0 W1 W2 W3

State A

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

W0 W1 W2 W3

State B

Figure 4.7: Input of Shiftrows in Figure (4.6)

At clk6, the forth column of stateA is generated from registers (R03, R13, R23 andR33).

The first output state is shown in the right down corner of the Figure (4.6).

4.4.2 Subpipelined Subbytes

2
x e×

1−
x

×

××

4H

4L

4H

4L

88
AFF_TRAN

8

1 2

3

Figure 4.8: Subbytes in composite fieldGF(24)[34]

The key step of subbytes is the calculation of the multiplicative inverse. Figure (4.8)

36

illustrates the architecture of subbytes used in [34], which applies Equation (2.15). As

shown in this figure, it uses multiplication inGF(24) three times. In order to distinguish

the multipliers, we indicate them as×1, ×2, ×3. It also needs one inversion (x−1), one

constant multiplier with{E} (×e), {E} is in hexadecimal notation, which is ’1110’ in

binary notation), one squarer (x2) and two 4-bit XORs (⊕). These arithmetic operations are

over fieldGF(24).

Consideringx,y,z∈ GF(24), x, y andz are represented in binary notation wherex =

{x3x2x1x0}, y = {y3y2y1y0}, z= {z3z2z1z0}. Let a, b, c, d, e and f are 1-bit value, which

equals to 0 or 1.⊕ stands for XOR-operation.x0y1 meansx0∧y1.

The following Equations (4.3), (4.4), (4.5) and (4.6) are used to calculate squaring,

constant multiplication with{E}, multiplication and multiplicative inverse [32].

y = x2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

y0 = x0⊕x2, y1 = x2

y2 = x1⊕x3, y3 = x3

(4.3)

y = x×{E}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a = x0⊕x1, b = x2⊕x3

y0 = x1⊕b, y1 = a

y2 = a⊕x2, y3 = a⊕b

(4.4)

37

z= x×y

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a = x0⊕x3, b = x2⊕x3, c = x1⊕x2

z0 = x0y0⊕x3y1⊕x2y2⊕x1y3

z1 = x1y0⊕ay1⊕by2⊕cy3

z2 = x2y0⊕x1y1⊕ay2⊕by3

z3 = x3y0⊕x2y1⊕x1y2⊕ay3

(4.5)

y = x−1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a = x1⊕x2⊕x3⊕x1x2x3

y0 = a⊕x0⊕x0x2⊕x1x2⊕x0x1x2

y1 = x0x1⊕x0x2⊕x1x2⊕x3⊕x1x3⊕x0x1x3

y2 = x0x1⊕x2⊕x0x2⊕x3⊕x0x3⊕x0x2x3

y3 = a⊕x0x3⊕x1x3⊕x2x3

(4.6)

As illustrated in Figure (4.4), subbytes should be cut into four substages. The key to

an efficient subpipelining technology is to balance the delays of these substages. Previous

research [34] calculate the delay of an individual substageby counting the gates in critical

path.

Xilinx ISE provides synthesis tool to yield the maximum combinational delay of an

entity. A more straightforward method to achieve the optimal balance is to cut subbytes

in different manners and use this synthesis tool to measure the delay of each substage (an

entity). The most even delays of these substages stand for the optimal balanced substages

arrangement.

Based on our experiments, Equation (4.6) is not suitable forthis 4-substage subbytes.

38

With this equation, the substage includingx−1 yields the longest delay, hence decreasing

this substage’s delay can increase the general frequency. We derive a new Equation (4.7)

from Equation (4.6) to reduce the delay caused byx−1. Equation (4.7)is derived in three

steps:

1. In Equation (4.6), replacea by its expression, we have:

y0 = x0⊕x1⊕x2⊕x3⊕x0x2⊕x1x2⊕x0x1x2⊕x1x2x3

y1 = x0x1⊕x0x2⊕x1x2⊕x3⊕x1x3⊕x0x1x3

y2 = x0x1⊕x2⊕x0x2⊕x3⊕x0x3⊕x0x2x3

y3 = x1⊕x2⊕x3⊕x1x2x3⊕x0x3⊕x1x3⊕x2x3

2. The expressions in step 1 can be equally changed to:

y0 = x1⊕x2⊕x1x2⊕x0x2⊕ (x0⊕x3)(1⊕x1x2)

y1 = x1x2⊕x0x2⊕x0x1⊕x3(1⊕x1⊕x0x1)

y2 = x2⊕x0x2⊕x0x1⊕x3(1⊕x0⊕x0x2)

y3 = x1⊕x2⊕x3(1⊕x0⊕x1⊕x2⊕x1x2)

3. Leta = x1x2, b = x0x2, c = x0x1, d = x1⊕x2, e= 1⊕a and f = b⊕c, we have:

y = x−1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a = x1x2, b = x0x2, c = x0x1, d = x1⊕x2

e= 1⊕a, f = b⊕c

y0 = a⊕b⊕d⊕ (x0⊕x3)e

y1 = a⊕ f ⊕x3(x1⊕1⊕c)

y2 = f ⊕x2⊕x3(b⊕1⊕x0)

y3 = d⊕x3(e⊕x0⊕d)

(4.7)

39

According to Equation (4.7), we design the circuit Figure (4.9) to performx−1 over

GF(24).

Besides multiplicative inversion, other expensive operations in Figure (4.8) are the three

multiplications (×1, ×2 and×3). In order to decrease the maximum delay caused by mul-

tiplication, we separate each multiplication into two steps and put each step in different

substages. The registers between each substage store the result of the first step of multi-

plication and pass it to the second step. We decompose these three multipliers into two

different manners (AB-typeandMN-type) to achieve the best balance.

AB-type: Equation (4.8) is derived from Equation (4.5).p0, p1, ..., p15 are 1-bit values,

which represents one AND term in Equation (4.5).Step Acalculates the value of all

the terms;Step Bconducts XOR of every four values to generatez0, z1, z2 andz3. A

register is inserted betweenStep AandStep Bto storep0, p1, ..., p15. ×1 in Figure

(4.8) is separated in this way, as×1A and×1B in Figure (4.9);

z= x×y (AB− type)

−−−−−−−−−Step A−−−−−−−−−−−−−−−−

a = x0⊕x3, b = x2⊕x3, c = x1⊕x2

p0 = x0y0, p1 = x3y1, p2 = x2y2, p3 = x1y3

p4 = x1y0, p5 = ay1, p6 = by2, p7 = cy3

p8 = x2y0, p9 = x1y1, p10 = ay2, p11 = by3

p12 = x3y0, p12 = x2y1, p14 = x1y2, p15 = ay3

−−−−−−−−−Step B−−−−−−−−−−−−−−−−

z0 = p0⊕ p1⊕ p2⊕ p3

z1 = p4⊕ p5⊕ p6⊕ p7

z2 = p8⊕ p9⊕ p10⊕ p11

z3 = p12⊕ p13⊕ p14⊕ p15

(4.8)

40

MN-type: Equation (4.9) is also derived form Equation (4.5).Step Mcreates the value of

a, b andc; Step Nfinishes the rest of Equation (4.5). A register is inserted between

Step MandStep Nto storea,b,c. ×2 and×3 in Figure (4.8) are separated in this

way, as×2M and×2N, ×3M and×3N in Figure (4.9).

z= x×y (MN− type)

−−−−−−−−−Step M−−−−−−−−−−−−−−−−

a = x0⊕x3, b = x2⊕x3, c = x1⊕x2

−−−−−−−−−Step N−−−−−−−−−−−−−−−−

z0 = x0y0⊕x3y1⊕x2y2⊕x1y3

z1 = x1y0⊕ay1⊕by2⊕cy3

z2 = x2y0⊕x1y1⊕ay2⊕by3

z3 = x3y0⊕x2y1⊕x1y2⊕ay3

(4.9)

The last operation in subbytes is the affine transformation.We derive Equation (4.16)

to do the affine transformation, based on Equation (3.1), Equation (4.1) and Equation (4.2).

First, we change the format of Equation (4.1) and Equation (4.2).

Considerp∈ GF((24)2), q∈ GF(28):

p = {p7p6p5p4p3p2p1p0}

q = {q7q6q5q4q3q2q1q0}

For Equation (4.1):

1. In expression ofal0,...,ah3, replaceaA, aB andaC by their expression

al0 = a4⊕a6⊕a0⊕a5

al1 = a1⊕a2

al2 = a1⊕a7

41

al3 = a2⊕a4

ah0 = a4⊕a6⊕a5

ah1 = a1⊕a7⊕a4⊕a6

ah2 = a5⊕a7⊕a2⊕a3

ah3 = a5⊕a7

2. Let p replaceahx+al , q replacea, we have Equation (4.10)

p = MAP(q), p∈ GF((24)2), q∈ GF(28)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p0 = q0⊕q4⊕q5⊕q6

p1 = q1⊕q2

p2 = q1⊕q7

p3 = q2⊕q4

p4 = q4⊕q5⊕q6

p5 = q1⊕q4⊕q6⊕q7

p6 = q2⊕q3⊕q5⊕q7

p7 = q5⊕q7

(4.10)

The same steps for Equation (4.2):

1. In expression ofa0,...,a7, replaceaA andaB by their expression

a0 = al0⊕ah0

a1 = ah0⊕ah1⊕ah3

a2 = al1⊕ah3⊕ah0⊕ah1

a3 = ah0⊕ah1⊕al1⊕ah2

a4 = al1⊕ah3⊕ah0⊕ah1⊕al3

a5 = ah0⊕ah1⊕al2

42

a6 = al1⊕ah3⊕al2⊕al3⊕ah0

a7 = ah0⊕ah1⊕al2⊕ah3

2. Letq replacea, p replaceahx+al , we have Equation (4.11)

q = MAP−1(p), q∈ GF(28), p∈ GF((24)2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

q0 = p0⊕ p4

q1 = p4⊕ p5⊕ p7

q2 = p1⊕ p4⊕ p5⊕ p7

q3 = p1⊕ p4⊕ p5⊕ p6

q4 = p1⊕ p3⊕ p4⊕ p5⊕ p7

q5 = p2⊕ p4⊕ p5

q6 = p1⊕ p2⊕ p3⊕ p4⊕ p7

q7 = p2⊕ p4⊕ p5⊕ p7

(4.11)

Now we use Equation (3.1), Equation (4.10) and Equation (4.11) to derive Equation

(4.16).

Let x′, y be the elements inGF(28):

x′ = {x′7x′6x′5x′4x′3x′2x′1x′0}

y = {y7y6y5y4y3y2y1y0}

According to Equation (3.1), we have:

43

y0 = x′0⊕x′4⊕x′5⊕x′6⊕x′7⊕1

y1 = x′0⊕x′1⊕x′5⊕x′6⊕x′7⊕1

y2 = x′0⊕x′1⊕x′2⊕x′6⊕x′7

y3 = x′0⊕x′1⊕x′2⊕x′3⊕x′7

y4 = x′0⊕x′1⊕x′2⊕x′3⊕x′4

y5 = x′1⊕x′2⊕x′3⊕x′4⊕x′5⊕1

y6 = x′2⊕x′3⊕x′4⊕x′5⊕x′6⊕1

y7 = x′3⊕x′4⊕x′5⊕x′6⊕x′7

(4.12)

In the following, we convert the result ofy to the fieldGF((24)2), and use theGF((24)2)

format to representx′. Thus, we can derive the affine transformation inGF((24)2).

1. We letw to representy in GF((24)2) (w is one element inGF((24)2)). According to

Equation (4.10) (Map fromGF(28) to GF((24)2)):

w0 = y0⊕y4⊕y5⊕y6

w1 = y1⊕y2

w2 = y1⊕y7

w3 = y2⊕y4

w4 = y4⊕y5⊕y6

w5 = y1⊕y4⊕y6⊕y7

w6 = y2⊕y3⊕y5⊕y7

w7 = y5⊕y7

(4.13)

2. Next, we useGF((24)2) format to representx′ in Equation 4.12. Letz be the

GF((24)2) format ofx′. From Equation 4.11, we have:

44

x′0 = z0⊕z4

x′1 = z4⊕z5⊕z7

x′2 = z1⊕z4⊕z5⊕z7

x′3 = z1⊕z4⊕z5⊕z6

x′4 = z1⊕z3⊕z4⊕z5⊕z7

x′5 = z2⊕z4⊕z5

x′6 = z1⊕z2⊕z3⊕z4⊕z7

x′7 = z2⊕z4⊕z5⊕z7

(4.14)

3. Now, we replacey with its GF((24)2) format (w), and replacex′ with its GF((24)2)

format (z):

w0 = y0⊕y4⊕y5⊕y6

= (x′0⊕ x′4⊕ x′5⊕ x′6⊕ x′7⊕1)⊕ (x′0⊕ x′1⊕ x′2⊕ x′3⊕ x′4)⊕ (x′1⊕ x′2⊕ x′3⊕ x′4⊕ x′5⊕

1)⊕ (x′2⊕x′3⊕x′4⊕x′5⊕x′6⊕1) (By Equation (4.12)

= x′2⊕x′3⊕x′5⊕x′7⊕1

= (z1⊕z4⊕z5⊕z7)⊕(z1⊕z4⊕z5⊕z6)⊕(z2⊕z4⊕z5)⊕(z2⊕z4⊕z5⊕z7)⊕1 (By

Equation (4.14))

= z6⊕1 = z6

In the same way, we can get:

45

w0 = z6

w1 = z1⊕z2⊕z7

w2 = z0⊕z5⊕z6⊕z3

w3 = z1⊕z5⊕z6⊕z7

w4 = z0⊕z2⊕z4⊕z5⊕z6⊕z7

w5 = z1⊕z5⊕z6

w6 = z2⊕z6⊕z7

w7 = z3⊕z5

(4.15)

4. Finally, for the consistency of the other equations in this thesis, we replacew by y, z

by x (x,y∈ GF((24)2)). Let a = x5⊕x6⊕x7, we have:

y = AFF TRAN(x)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a = x5⊕x6⊕x7

y0 = x6, y1 = x1⊕x2⊕x7

y2 = x0⊕x3⊕x5⊕x6, y3 = x1⊕a

y4 = x0⊕x2⊕x4⊕a, y5 = x1⊕x5⊕x6

y6 = x2⊕x6⊕x7, y7 = x3⊕x5

(4.16)

Figure (4.9) describes the proposed subpipelined architecture of subbytes inGF((24)2).

The following symbols represent the equation for each arithmetic block in Figure (4.9),

except the⊕, which is a simple 4-bit XOR operation. The dashed lines in Figure (4.9)

stand for the registers.

46

x2 —- Equation (4.3)[32] ×e —- Equation (4.4)[32]

×1A —- Equation (4.8) Step A ×1B —- Equation (4.8) Step B

×2M and×3M —- Equation (4.9) Step M ×2N and×3N —- Equation (4.9) Step N

x−1 —- Equation (4.7) AFF TRAN—- Equation (4.16)

2
x e×

1−
x

4H

4L

4H

4L

8
8

I II III

AFF_TRAN
8

IV

×
1A

×
1B

×
2M

×
2N

×
3M

×
3N

Figure 4.9: Pipelined Subbytes in composite fieldGF((24)2)

Table (4.3) shows the time (ns) and area (slices) cost of eachsubstage (I, II, III, IV in

Figure (4.9)) when it runs on different FPGA devices. We cut an AES round unit into 8

substages with the maximum delay determined by part II in subbytes.

Table 4.3: Path Delays and Number of Slices for Spartan2E andVirtex2

Delay(ns):Slices I II III IV
Spartan2E 10.955:69 11.083:27 10.225:55 10.025:18

Virtex2 7.052:69 7.752:27 6.925:55 6.677:18

47

4.4.3 Mixcolumns onGF((24)2)

Mixcolumns is another transformation which involves mathematic operations onGF((24)2).

We derive the equations to perform mixcolumns in composite field in this subsection.

Subsection (3.3) describes mixcolumn in finite fieldGF(28). SinceGF((24)2) is an

isomorphic field toGF(28), and inGF((24)2), {02} is mapped to{26}, {03} is mapped to

{27}, {01} is still {01}, Equation (3.3) can be mapped directly to Equation (4.17).

26 27 01 01

01 26 27 01

01 01 26 27

27 01 01 26

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

=

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

(4.17)

Observing that inGF((24)2), {27}= {26}⊕{01}, Equation (4.17) is equal to Equation

(4.18), wherej = 0,1,2,3:

S′0, j = {26}× (S0, j ⊕S1, j)⊕S1, j ⊕S2, j ⊕S3, j

S′1, j = {26}× (S1, j ⊕S2, j)⊕S0, j ⊕S2, j ⊕S3, j

S′2, j = {26}× (S2, j ⊕S3, j)⊕S0, j ⊕S1, j ⊕S3, j

S′3, j = {26}× (S0, j ⊕S3, j)⊕S0, j ⊕S1, j ⊕S2, j

(4.18)

Equation (4.18) presents the mixcolumn transformation of one column of a state. We

implement the mixcolumn transformation as the structure inFigure (4.10).

In the following, we derive Equation (4.22) to calculatex×26 in GF((24)2). That is,

we represent the results ofx×{02} in GF((24)2):

1. Let,x, y∈ GF(28), using Equation (2.5) to calculatey = x×{02}.

48

x26

x26

x26

x26

S0,j

S1,j

S2,j

S3,j

S’0,j

S’1,j

S’2,j

S’3,j

Figure 4.10:GF((24)2) Based Mixcolumns

y0 = x7, y1 = x0⊕x7, y2 = x1

y3 = x2⊕x7, y4 = x3⊕x7, y5 = x4

y6 = x5, y7 = x6

(4.19)

2. Converty to the field element inGF((24)2). Let w to representy in GF((24)2) (w is

one element inGF((24)2)). We have the same equation as Equation (4.13).

3. Next, we useGF((24)2) format to representx. Let z be theGF((24)2) format ofx. z

is one element inGF((24)2). By Equation (4.11), we have:

49

x0 = z0⊕z4

x1 = z4⊕z5⊕z7

x2 = z1⊕z4⊕z5⊕z7

x3 = z1⊕z4⊕z5⊕z6

x4 = z1⊕z3⊕z4⊕z5⊕z7

x5 = z2⊕z4⊕z5

x6 = z1⊕z2⊕z3⊕z4⊕z7

x7 = z2⊕z4⊕z5⊕z7

(4.20)

4. We replacex andy with their correspondingGF((24)2) format,z andw, we have:

w0 = y0⊕y4⊕y5⊕y6 (By Equation (4.13))

= (x7)⊕ (x3⊕x7)⊕ (x4)⊕ (x5) (By Equation (4.19))

= x3⊕x4⊕x5

= (z1⊕z4⊕z5⊕z6)⊕ (z1⊕z3⊕z4⊕z5⊕z7)⊕ (z2⊕z4⊕z5) (By Equation (4.20))

= z2⊕z3⊕z4⊕z5⊕z6⊕z7

By the same method, we derive:

w0 = z2⊕z3⊕z4⊕z5⊕z6⊕z7

w1 = z0⊕z2⊕z4

w2 = z0⊕z1⊕z3⊕z4⊕z5

w3 = z1⊕z2⊕z4⊕z5⊕z6

w4 = z3⊕z6

w5 = z0⊕z3⊕z6⊕z7

w6 = z1⊕z4⊕z7

w7 = z2⊕z5

(4.21)

50

5. To be consistent, we replacez with x, and replacew with y (x,y ∈ GF((24)2)). In

addition, in order to calculate the mixcolumns operations efficiently, we store the in-

termediate results. Leta = x2⊕x4), b = x3⊕x6⊕x7, c = x1⊕x5, we have:

y = x⊗26, x,y∈ GF((24)2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a = x2⊕x4, b = x3⊕x6⊕x7, c = x1⊕x5

y0 = a⊕b⊕x5, y1 = a⊕x0

y2 = c⊕x0⊕x3⊕x4, y3 = c⊕a⊕x6

y4 = x3⊕x6, y5 = b⊕x0

y6 = x1⊕x4⊕x7, y7 = x2⊕x5

(4.22)

This mixcolumns architecture (Figure (4.10)) is a 32-bit parallel combinational logic.

When synthesized on Virtex2 XC2V2000, it costs 28 1-bit 2-input XOR gates, 44 1-bit

3-input XOR gates, four 1-bit 4-input XOR gates and four 8-bit 2-input XOR gates. The

maximum combinational path delay is 7.922ns.

In the above section, we have designed all the modules in AES over fieldGF((24)2). In

this way, each byte of the data needs only one MAP before the initial round and one inverse

MAP after the last round.

4.4.4 Subpipelined Keyschedule

There are two approaches to implement keyschedule: (1) pre-calculated keyschedule and

(2) on-the-fly keyschedule. In the pre-calculated keyschedule, the(Nr +1) 128-bit round-

keys are generated before the encryption or decryption begins and stored in the memory.

The addroundkey operation accesses the roundkeys by referring the corresponding address

in the memory. The advantage of this approach is that the keyschedule only needs to be

51

performed once; however, the drawbacks include:

1. The(Nr +1) roundkeys cost(Nr +1)×128 bits memory space;

2. The cipherkey cannot change frequently. Every time it changes, the roundkeys must

be recalculated.

In this thesis, we propose a new 32-bit on-the-fly keyschedule in composite field

(GF((24)2)) with 128-, 192-, 256-bit key sizes, where each 128-bit roundkey is generated

at every four clock cyles (32-bit at each clock). This is suitable for our 32-bit encryption

architecture.

Table (4.1) shows the 32-bit roundkeys at each clock cycle. The following list explains

this table for the three key sizes.

• When key size=128 bits, Nr=10, it generates 11 128-bit roundkeys for both block A

and B from cycles 0 to 87.

The roundkeys for block A:

roundkey[0]={KA(0), KA(1), KA(2), KA(3)}

roundkey[1]={KA(4), KA(5), KA(6), KA(7)}

......

roundkey[10]={KA(40), KA(41), KA(42), KA(43)}

The roundkeys for block B:

roundkey[0]={KB(0), KB(1), KB(2) KB(3)}

roundkey[1]={KB(4), KB(5), KB(6), KB(7)}

......

roundkey[10]={KB(40), KB(41), KB(42), KB(43)}

• When key size=192, Nr=12, it generates 13 roundkeys for bothblock A and B from

52

cycles 0 to 103.

The roundkeys for block A:

roundkey[0]={KA(0), KA(1), KA(2), KA(3)}

roundkey[1]={KA(4), KA(5), KA(6), KA(7)}

......

roundkey[12]={KA(48), KA(49), KA(50), KA(51)}

The roundkeys for block B:

roundkey[0]={KB(0), KB(1), KB(2), KB(3)}

roundkey[1]={KB(4), KB(5), KB(6), KB(7)}

......

roundkey[12]={KB(48), KB(49), KB(50), KB(51)}

• When key size=256, Nr=14, it generates 15 roundkeys for bothblock A and B from

cycles 0 to 119.

The roundkeys for block A:

roundkey[0]={KA(0), KA(1), KA(2), KA(3)}

roundkey[1]={KA(4), KA(5), KA(6), KA(7)}

......

roundkey[14]={KA(56), KA(57), KA(58), KA(59)}

The roundkeys for block B:

roundkey[0]={KB(0), KB(1), KB(2), KB(3)}

roundkey[1]={KB(4), KB(5), KB(6), KB(7)}

......

roundkey[14]={KB(56), KB(57), KB(58), KB(59)}

53

Because we are using the on-the-fly keyschedule, keyschedule and encryptor are shar-

ing the same clock, which means the general frequency is determined by the maximum de-

lay in both keyschedule and encryptor modules. To achieve anefficient pipelining, proper

division in keyschedule is as important as in encryptor. We know that subword is the most

costly part in keyschedule. In order to make the same maximumdelay in both modules, we

implement subword in the same way as subbytes in encryptor.

In keyschedule module, rotword rearranges the position of each byte without changing

its value, hence the sequence of rotword and subword can be changed. We do the subword

operation before rotword to save one multiplexer in keyschedule 256.

All mathematic operations in keyschedule are transformed into fieldGF((24)2). Sub-

word shares the same structure as in subbytes. Xorrcon is a simples XOR operation with

a round constant, which is initially{01} and multiplied by{02} eachkeyschedule round.

Keyschedule round is defined in this way. It begins whenclk counter= 0. If key size is

128, keyschedule round cycle is four; if key size is 192, keyschedule round cycle is six;

if key size is 256, keyschedule round cycle is eight. As explained in Subsection (4.4.3),

in GF((24)2), {01} is still {01}, {02} is mapped to{26}. We can use Equation (4.22) to

generate round constant for each keyschedule round inGF((24)2).

This keyschedule has three key size options:Key128, Key192 andKey256. In the

following section, we discuss the generation of roundkeys in details for these three key size

options. In the rest of the chapter,roundkey32 stands for 32-bit roundkey for each clock

cycle,roundkeystands for 128-bit roundkey for a round of AES.

Key128

When key size is 128 bits, the encryptor round count is ten. Two blocksA andB need 22

roundkeys. Figure (4.11) illustrates the architecture of keyschedule when key size is 128

54

bits.

a
register

W1W2W3W4W5W6W7 W0

cipherkey MAP

SA RWSDSCSB

Subword

RC

b
c

))2((24
GF

mul

encryptor

32

32

32

clk_counter

round

key

Figure 4.11: Architecture of Keyschedule 128

In our design, the first step is to map (MAP) cipherkey fromGF(28) to GF((24)2).

After that, it performs its isomorphic functions inGF((24)2). The output of keyschedule

areroundkey32s represented inGF((24)2). They are the exact format required in encryp-

tion where the message blocks are also represented inGF((24)2), hence no inverse MAP

follows roundkey.

In Figure (4.11), W7, ..., W0 are 32-bit words separated by eight registers, which are

used to store the previous eightroundkey32s. SA, SB, SC and SD are the results of the 4

parts of subword. We place three registers among the four substages in subword, same as in

Figure (4.9). RW is the outcome of rotword. RC generates the round constant for xorrcon in

GF((24)2). mul is a 3-to-1 multiplexer controlled byclk counter, which is the same signal

as in Figure (4.4) and Table (4.1). There are three differentcases (a, b, c) to generate the

currentroundkey32. Table (4.4) explains the value of each register in Figure (4.11) during

the first 15 clock cycles. In this table, the row titledmul stands for the multiplexer in Figure

(4.11).a, b andc are the three cases. In the following expressions,roundkey32[i] stands for

the cell of this table with row ID ofroundkey32 and column ID ofclk counter= i.

55

Case a: clk counter< 8 (initial round):

roundkey32[clk counter] = MAP(cipherkey[clk counter]);

Case b: clk counter>= 8 andclk counter mod4 6= 0 :

roundkey32[clk counter] = roundkey32[clk counter−1]⊕ roundkey32[clk counter−

8]

roundkey32[clk counter−1] is stored inW7

roundkey32[clk counter−8] is stored inW0;

Case c: clk counter>= 8 andclk counter mod4 = 0 :

roundkey32[clk counter] = rotword(subword(roundkey32[clk counter−5]))

⊕ roundkey32[clk counter−8]⊕Rcon

rotword(subword(roundkey32[clk counter−5])) is stored inRW

roundkey32[clk counter−8] is stored inW0.

We give examples for each case.

• When clk counter= 0, the firstroundkey32 is MAPed from the first word of ci-

pherkey.roundkey32[0] = KA(0). (Case a)

• whenclk counter= 1, the secondroundkey32 is MAPed from the second word of

cipherkey.roundkey32[1] = KA(1). KA(0) is moved to W7. In the mean time, KA(0)

finished the first part of subword and is stored in SA. (Case a)

......

• whenclk counter= 8, KA(3) is moved in to RW, which means

KA(3) = rotword(subword(KA(3))). Nowroundkey32[8] = KA(4) = KA(3)⊕KA(0)⊕

Rcon. (Case c)

56

Table 4.4: Key128 Roundkey Sequence

cipherkey KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3)

clk_counter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mul c c

roundkey32 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4) KB(5) KB(6) KB(7)

w7 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4) KB(5) KB(6)

w6 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4) KB(5)

w5 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4)

w4 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7)

w3 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6)

w2 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5)

w1 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4)

w0 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3)

SA KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4) KB(5) KB(6)

SB KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4) KB(5)

SC KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4)

SD KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7)

RW KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6)

a b b

5
7

• whenclk counter= 9, KA(4) is put into W7 and SA (after finishes the first part of

subword).roundkey32[9] = KA(5) = KA(4)⊕KA(1). (Case b)

......

Key192

When key size is 192 bits, the encryptor round count is 12. Block A and blockB need 104

roundkey32s. Cipherkey size does not affect the function entities. So it shares the same

subword, rotword and xorrcon as in Figure (4.11). However, due to key size, the structure

becomess more complex. When key size is 192, the keyscheduleround cycle is six while

the encryptor cycle is still four. This cycle difference requires extra treatment for the input

of subword. We can see in Figure (4.11) that, when key size is 128 bits, the input of

subword is the roundkey. But when key size is 192 bits, the input of subword is classified

into three cases. We use multiplexermul1 in Figure (4.12) to choose the input from case x,

y and z.

mul1

))2((24
GF

mul2

x

y

z

encryptor

W13 W9 W4 W0

SA SC RW

MAP cipherkey6

W3 W2W11

RC

cipherkey MAP

Round

key

a

b
c
d

e
f

register

Subword

clk_counter

Figure 4.12: Architecture of Keyschedule 192

58

Table 4.5: Key192 Roundkey Sequence

cipherkey KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KB(4) KB(5)

cipherkey6 KA(5) KB(5)

mul2 f b d c e

mul1 x x z y

clk_counter

� � � � � � � � � 	 � � � � � � � � � � � � � � � � � �

roundkey32 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4) KB(5) KA(8) KA(9) KA(12) KB(14) KB(15)

w13 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(4) KB(7) KA(8) KB(11) KB(13) KB(14)

w12 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KA(7) KB(6) KB(7) KB(10) KB(12) KB(13)

w11 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KA(6) KB(5) KB(6) KB(9) KA(15) KB(12)

w10 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(5) KB(4) KB(5) KB(8) KA(14) KA(15)

w9 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(4) KA(7) KB(4) KA(11) KA(13) KA(14)

w8 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KB(3) KA(6) KA(7) KA(10) KA(12) KA(13)

w7 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KB(2) KA(5) KA(6) KA(9) KB(11) KA(12)

w6 KA(0) KA(1) KA(2) KA(3) KB(0) KB(1) KA(4) KA(5) KA(8) KB(10) KB(11)

w5 KA(0) KA(1) KA(2) KA(3) KB(0) KB(3) KA(4) KB(7) KB(9) KB(10)

w4 KA(0) KA(1) KA(2) KA(3) KB(2) KB(3) KB(6) KB(8) KB(9)

w3 KA(0) KA(1) KA(2) KB(1) KB(2) KB(5) KA(11) KB(8)

w2 KA(0) KA(1) KB(0) KB(1) KB(4) KA(10) KA(11)

w1 KA(0) KA(3) KB(0) KA(7) KA(9) KA(10)

w0 KA(2) KA(3) KA(6) KA(8) KA(9)

SA KA(5) KB(5) KB(11) KA(17)

SB KA(5) KB(5) KA(17)

SC KA(5) KB(5)

SD KA(5) KB(5)

RW KA(5) KA(11)

baa

5
9

Table (4.5) shows the value of each register in Figure (4.12)during the first 32 clock

cycles. Rowmul1 andmul2 correspond to these two multiplexers. In the following section,

we explain the two multiplexers (mul1 andmul2) in Figure (4.12).

1. Multiplexer 1 (mul1)

Case x: (clk counter= 6 or 10) : SA= MAP(cipherkey6); (Cipherkey6 is the sixth

32-bit of the 192-bit cipherkey. We can see from Table (4.5) that, whenclk counter=

10, KA(5) must finish subword and rotword, so that we can produceKA(6),

whereKA(6) = KA(5)⊕ rotword(subword(KA(5)))⊕Rcon. Because it needs

five clock cycles to completerotword(subword(KA(5))),KA(5) must be shifted

into SA whenclk counter= 6. That’s why we need cipherkey6 to provide

KA(5).)

Case y: (clk counter mod24 = 6 or 10) and (clk counter> 23) : SA= W11⊕

W2⊕W3; (One example is whenclk counter= 30,KA(17) needs to be shifted

into SA. BecauseKA(17) is not stored in any register, we need to calculate

it from the existing data.KA(17) = KA(16)⊕KA(11) = KA(15)⊕KA(10)⊕

KA(11). KA(15), KA(10) and KA(11) are stored in register W11, W2 andW3,

respectively.)

Case z: (clk counter mod24= 0 or 20) and (clk counter6= 0) : SA= W13;

This is why we need multiplexermul1 to differentiate three cases for the input of

subword when key size is 192 bits.

2. Multiplexer 2 (mul2)

• Generateroundkey32s from cipherkey directly, KA(i), KB(i), i = 0,...,5

60

Case a: (clk counter< 10or = 12,13) : roundkey32[clk counter] = MAP(cipherkey

[clk counter]) (Becauseroundkey32 is generated when it is needed in en-

cryption, the arrangement of rowcipherkeyin Table (4.5) is determined by

encryptor)

• Generateroundkey32s KA(i), KB(i), i ≥ 8 and i mod 6 6= 0 (Because of the

round cycle difference between keyschedule and encryptor,we need to classify

it into three sub-cases, based on the value (clk counter mod4). Table (4.5)

shows these three sub-cases (b, c and d), whereroundkey32s are generated by

the formulaKA/B(i) = KA/B(i −1)⊕KA/B(i −6).)

Case b: (clk counter mod4 = 3 or 0) and (clk counter> 7) :

roundkey32[clk counter] = roundkey32[clk counter−1]⊕roundkey32[clk counter−

10];

roundkey32[clk counter−1] is stored in register W13;

roundkey32[clk counter−10] is stored in register W4;

Case c: (clk counter mod4 = 2) and (clk counter> 7) :

roundkey32[clk counter] = roundkey32[clk counter−1]⊕roundkey32[clk counter−

14];

roundkey32[clk counter−1] is stored in register W13;

roundkey32[clk counter−14] is stored in register W0;

Case d: (clk counter mod4 = 1) and (clk counter mod24> 7) :

roundkey32[clk counter] = roundkey32[clk counter−5]⊕roundkey32[clk counter−

14];

roundkey32[clk counter−5] is stored in register W9;

roundkey32[clk counter−14] is stored in register W0;

• Generateroundkey32s KA(i), KB(i), i ≥ 8 andi mod 6 = 0 (The sub-cases are

61

caused by the same reason as the above case. The following twosub-cases are

based on the formulaKA/B(i) = rotword(subword(KA/B(i−1)))⊕KA/B(i−

6)⊕Rcon)

Case e: (clk counter mod24= 0 or 4) and (clk counter> 7) :

roundkey32[clk counter] = rotword(subword(roundkey32[clk counter−1]))

⊕ roundkey32[clk counter−14]⊕RC;

rotword(subword(roundkey32[clk counter−1])) is stored in register RW;

roundkey32[clk counter−14] is stored in register W0;

Case f: (clk counter mod24= 10 or 14) :

roundkey32[clk counter] = rotword(subword(roundkey32[clk counter−1]))

⊕ roundkey32[clk counter−10]⊕RC;

rotword(subword(roundkey32[clk counter−1])) is stored in register RW;

roundkey32[clk counter−10] is stored in register W4;

Table (4.5) lists instances for each case for bothmul1 andmul2 during the first 32 clock

cycles.

• Whenclk counter= 0, roundkey32[0] = KA(0), which is MAPed from cipherkey(Case a);

......

• Whenclk counter= 6, roundkey32[6] = KB(2), which is MAPed from cipherkey(Case a).

SA= KA(5), where KA(5) is MAPed from cipherkey6 and shifted into SA after fin-

ished subword’s first part(Case x);

......

• Whenclk counter= 10, roundkey32[10] = KA(6) = rotword(subword(KA(5)))⊕

KA(0)⊕Rcon(Case f);

62

• Whenclk counter= 11, roundkey32[11] = KA(7) = KA(6)⊕KA(1) (Case b);

......

• Whenclk counter= 16, roundkey32[16] = KA(8) = KA(7)⊕KA(2) (Case d);

• Whenclk counter= 17, roundkey32[17] = KA(9) = KA(8)⊕KA(3) (Case c);

......

• Whenclk counter= 24,roundkey32[24] = KA(12) = rotword(subword(KA(11)))⊕

KA(6)⊕Rcon(Case e). SA= KB(11), where KB(11) is shifted into SA after finished

subword’s first part (Case z);

......

• Whenclk counter= 30,SA= KA(17) = KA(16)⊕KA(11) = (KA(15)⊕KA(10))⊕

KA(11) (Case y);

......

Key256

Keyschedule 256 is slightly different from keyschedule 128. The keyschedule round cycle

is eight clock cycles. As shown in Figure (4.13):

There are four different cases to generateroundkey32s:

Case a: (clk counter< 16) :

roundkey32[clk counter] = MAP(cipherkey[clk counter]);

Case b: (clk counter≥ 16) and (clk counter mod4 6= 0) :

roundkey32[clk counter] = roundkey32[clk counter−1]⊕ roundkey32[clk counter−

16];

63

roundkey

mul
register

))2((24
GF

W15 W0

SA SD RW

RC

MAPcipherkey

a

b

c

d

clk_counter

Figure 4.13: Architecture of Keyschedule 256

roundkey32[clk counter−1] is stored in register W15;

roundkey32[clk counter−16] is stored in register W0;

Case c: (clk counter≥ 16) and (clk counter mod8 = 0) :

roundkey32[clk counter] = rotword(subword(roundkey32[clk counter−5]))RW

⊕ roundkey32[clk counter−16]⊕RC;

rotword(subword(roundkey32[clk counter−5])) is stored in register RW;

roundkey32[clk counter−16] is stored in register W0;

Case d: (clk counter≥ 16) and (clk counter mod4 = 0) and (clk counter mod8 6= 0) :

roundkey32[clk counter] = subword(roundkey32[clk counter−5])⊕roundkey32[clk counter−

16];

subword(roundkey32[clk counter−5]) is stored in register RW;

roundkey32[clk counter−16] is stored in register W0.

This is why we change the sequence of subword and rotword. Puting rotword before

subword saves one multiplexer when key size is 256 bits.

Table (4.4.4) gives instances for each case.

64

• Whenclk counter= 0, roundkey32[0] = KA(0), where KA(0) is MAPed from ci-

pherkey (Case a);

......

• Whenclk counter= 16, roundkey32[16] = KA(8) = rotword(subword(KA(7)))⊕

KA(0)⊕Rcon(Case c);

• Whenclk counter= 17, roundkey32[17] = KA(9) = KA(8)⊕KA(1) (Case b);

......

• When clk counter= 24, roundkey32[12] = KA(12) = subword(KA(11))⊕ KA(4)

(Case d);

......

65

Table 4.6: Key256 Roundkey Sequence

cipherkey KA(0) KB(7)

mul c c d d

clk_reg 0 15 16 17 18 19 20 24 28

roundkey32 KA(0) KB(7) KA(8) KA(9) KA(10) KA(11) KB(8) KA(12) KB(12)

w15 KB(6) KB(7) KA(8) KA(9) KA(10) KA(11) KB(11) KA(15)

w14 KB(5) KB(6) KB(7) KA(8) KA(9) KA(10) KB(10) KA(14)

w13 KB(4) KB(5) KB(6) KB(7) KA(8) KA(9) KB(9) KA(13)

w12 KA(7) KB(4) KB(5) KB(6) KB(7) KA(8) KB(8) KA(12)

w11 KA(6) KA(7) Kb(4) KB(5) KB(6) KB(7) KA(11) KB(11)

w0 KA(0) KA(1) KA(2) KA(3) KB(0) KA(4) KB(4)

SA KB(6) KB(7) KA(8) KA(9) KA(10) KA(11) KB(11) KA(15)

SB KB(5) KB(6) KB(7) KA(8) KA9 KA(10) KB(10) KA(14)

SC KB(4) KB(5) KB(6) KB(7) KA(8) KA(9) KB(9) KA(13)

SD KA(7) KB(4) KB(5) KB(6) KB(7) KA(8) KB(8) KA(12)

RW KA(6) KA(7) KB(4) KB(5) KB(6) KB(7) KA(11) KB(11)

a b

6
6

Chapter 5

Implementation Performance And Comparison

Literature regarding hardware implementation of AES have been published. The compari-

son tables listed in the literatures are synthesized by various design tools on different FPGA

chips. Although the difficulty of comparison about FPGA implementations was reported,

there is still no proved measure to get a real fair comparisonamong different architectures.

Even for the devices from the same company (Xilinx), different families use different tech-

nology which leads to different frequency. For example, a slice in Virtex 5 has four LUTs

(Look Up Tables) instead of two in previous families [6], which leads to different area cost

(number of slice).

Since AES standard includes encryption, decryption and keyschedule with three key

sizes, it is up to the designers to choose which function theywould like to realize. Obvi-

ously, more functions need more resource. Hence it is reasonable to compare architectures

providing similar functions.

In this chapter, we first classify previous AES architectures into different categories and

then use tables to compare their performance.

1. Encryption and Decryption: AES architectures include encryption and decryption

units. In [1, 3, 5, 8, 9, 17, 33, 22, 27, 28], they provide functions for both encryption

and decryption. As a symmetric algorithm, encryption and decryption share same

units. With the parameter indicated by the user, it executesencryption or decryption

exclusively. Some other AES architectures only focus on encryption [2, 4, 11, 12,

25, 26, 31].

2. Key Sizes: AES uses data size of 128 bits but offers three key sizes (128,192 and

256 bits). 128-bit is the most common choice in the reported designs [3, 4, 5, 9, 12,

67

33, 26, 27, 28, 34]. However, as reconfigurability is one of most important factors

for FPGA implementations, options for all three key sizes are included in a number

of designs [1, 2, 17, 22].

3. Key Expansion: The keyschedule in AES generates roundkeys for each round. The

roundkeys can be previously calculated and stored in memory[1, 2, 3, 5, 22, 27].

This method results in an acceptable initial delay when the data size is relatively large

compared with the key size. A more flexible approach is the on-the-fly keyschedule

[4, 9, 12, 17, 33, 26, 28, 34] which conducts an on-line calculation of roundkeys for

each 128-bit data block. On-the-fly keyschedule affects thegeneral frequency as both

the data unit and key unit share the same clock, especially when it is employed for all

the three key sizes. There are also some architectures that do not include keyschedule

[8, 11, 13, 31].

4. BRAM based S-Box and combinational logic based S-Box:Different approaches

for S-Box implementation have obvious impact on AES performance. BRAM based

approaches [5, 8, 13, 17, 26, 27] are preferred when low area cost is required. It

saves the slices required in combinational logic based approach. Hence it is not

reasonable to compare the ratio of throughput/slice between BRAM-based S-Box and

combinational logic based S-Box [1, 2, 9, 11, 12, 13, 33, 22, 25, 28, 31, 34]. Good

et al. [9] used a term (32bits/slice) to convert number of BRAMs to number of slices

required to implement the equivalent distributed memory. But, the estimates vary

between 8 and 32 bits/slice depending on the functionality required. In this thesis,

we only compare our design throughput/slice with non-BRAM implementations.

The above four categories summarize the majors factors affecting the performance in

hardware implementation of AES. Table 5.1 compares the performance of the architectures

68

Table 5.1: Comparisons of BRAMs Based AES Architecture

Design Device
Frequency

Slices BRAMs
Throughput

(MHz) (Mbps)
Samanta VIRTEX2

76.699 1051 11 111.56
et al. [27] 2V6000

Chodowiec VIRTEX
95 12600 80 12100

[8] XCV1000
Chodowiec SPARTAN2

60 222 3 166
et al. [5] XC2S30
Chang SPARTAN2

38.50 200 2 38
et al. [4] XC2S30
Saggese VIRTEXE

142 648 10 1820
et al. [26] XCV2000E
McLoone VIRTEXE

54.35 2222 100 6956
et al. [17] XCV3200E

using BRAMs. Table 5.2 compares the architectures without BRAMs. Table 5.3 summa-

rizes the functions provided by these architectures.

Among the architectures using BRAMs, Chodowiec [8] employed fully unrolled sub-

pipelining achieving the highest throughput with the largest resource cost. Recently,

Chodowiec et al. made a compact design costing 222 slices in aSpartan2 device offering a

throughput of 166Mbps [5].

In our proposed architecture, we do not use BRAM. In Table 5.2, it can be seen that

Good et al. achieves the highest throughput of 25.107 Gbps onSpartan3 XC3S2000. It

employs fully parallel loop unrolled architecture which calculates multiplicative inverse of

each byte over composite fieldGF((24)2). It also gets the frequency of 196.1MHz. But it

only deals with 128-bit key size and costs 17425 slices. Another fully unrolled architecture

is proposed by Zhang et al. [34]. This design used number-of-gates-in-critical-path to place

the pipeline cuts. It subpipelines a round into seven substages and achieves 21.556 Gbps

with the throughput/slice ratio of 1.956.

Compared with the previous architectures, our design focuses on the low cost, non-

69

Table 5.2: Comparisons of Non-BRAMs Architectures

Design Device
Frequency Area Throughput Mbps/

(MHz) (Slices) (Mbps) Slice
Good SPARTAN3

196.1 17425 25107 1.441
et al. [9] XC3S2000
Zhang VIRTEXE

168.4 11022 21560 1.956
et al. [34] XCV1000E
Jarvinen VIRTEX

139.1 10750 17800 1.656
et al. [12] XC2V2000

Mucci VIRTEX2P
169.1 9446 21640 2.291

et al. [11] XV2VP20
Lemsitzer VIRTEX4

110 7300 3500 0.479
et al. [13] FX100

Bulens SPARTAN3
150 1800 1700 0.944

et al. [3]
Standaert VIRTEXE

167 1767 2085 1.180
et al. [31] XCV1000E

Pramstaller VIRTEXE
161 1125 215 0.191

et al. [22] XCV1000E

Our Desisgn
VIRTEX2

277.4 523 807 1.543
XC2V2000E

Alam VIRTEXE
135 510 432 0.847

et al. [1] XCV1000E

70

BRAM implementations. There were not many literatures in the low-cost AES designs.

Pramstaller et al. proposed a compact design costing 1125 slices in [22]. Its pre-calculate

key generator can deal with three key sizes. Standaert et al.[31] made a single encryp-

tion architecture with 1767 slices which provides Gbps-level throughput. Alam et al. [1]

reported a design including encryption, decryption and on-the-fly keyschedule for 3 key

sizes, which achieves 432 Mbps with the frequency of 135MHz.

Compared with similar previous works, our proposed low-cost and efficient AES archi-

tecture only uses 523 slices, and achieves the throughput of806Mbps when implemented in

Virtex 2 XCV2V2000. The throughput/area ratio is 1.543, which is relatively high in low-

cost designs (< 2000 slices). The proposed design can be efficiently appliedin computing-

resources restricted environments, such as wireless devices and embedded devices.

71

Table 5.3: Comparisons of AES Architectures Functions
Design Encryption Decryption KeySchedule KeySize BRAMs

Samanta
• • Pre-Calculate 128 •

[27]
Chodowiec

• • •
[8]

Chodowiec
• • Pre-Calculate 128 •

et al. [5]
Satoh

• • On-The-Fly 128
et al. [28]

Hodjat
•

et al. [11]
Jarvinen

• On-The-Fly 128
et al. [12]

Good
• • On-The-Fly 128

et al. [9]
Zhang

• On-The-Fly 128
et al. [34]

Chang
• On-The-Fly 128 •

et al. [4]
Pramstaller

• • Pre-Calculate 128/192/256
et al. [22]
Saggese

• On-The-Fly 128 •
et al. [26]
Standaert

•
et al. [31]
McLoone

• • On-The-Fly 128/192/256 •
et al. [17]
Lemsitzer

•
et al. [13]

Bulens
• • Pre-Calculate 128 •

et al. [3]
Alam

• On-The-Fly 128/192/256
et al. [1]

Our Design • On-The-Fly 128/192/256

72

Chapter 6

Conclusion

AES is an important and popular cryptographic algorithm to secure the information and

data transmission. In this thesis, we propose a compact reconfigurable FPGA architecture

for the AES implementation.

The 32-bit single round unit design results in low area cost,which makes it suitable

for low-end devices. The combinational logic approach of AES implementation elimi-

nates the need for BRAMs. Full composite field (GF((24)2)) based design decreases hard-

ware complexity of arithmetic operations in AES. We apply subpipelining technology in

both encryptor and keyschedule modules to optimize the speed/area ratio, which achieves

1.543Mbps/Slice in Virtex 2 XCV2V2000. Besides, the capability to deal with three key

sizes makes our design an efficient reconfigurable architecture of AES.

The throughput of our proposed design achieves 805.8Mbps. It requires less than a

quarter of the resources of a Xilinx Spartan2 FPGA, which is one of the smallest FPGA de-

vices. The performance comparison indicates that the proposed AES architecture achieves

higher throughput than previous compact designs.

FIPS standard [20] provides an equivalent inverse cipher which switches the sequence

of the four transformations in decryption round so that the encryption and decryption can

share the same functions, such as the multiplicative inversion in subbytes. In our design, the

encryption conducts shiftrows before subbytes. When implementing the equivalent inverse

cipher, it only needs to switch the relative sequence of inv-mixcolumns and addroundkey.

The positions of inv-shiftrows and inv-subbytes are not changed. The proposed design can

be easily modified into an equivalent cipher.

In conclusion, the proposed compact and reconfigurable AES architecture has high

throughput and low area cost, which is very useful in the computing restricted environment

73

and wireless devices.

74

Bibliography

[1] Monjur Alam, Santosh Ghosh, Dipanwita RoyChowdhury, and Indranil Sengupta.
Single Chip Encryptor/Decryptor Core Implementation of AES Algorithm. InVLSID
’08: Proceedings of the 21st International Conference on VLSI Design, pages 693–
698, Washington, DC, USA, 2008. IEEE Computer Society.

[2] Monjur Alam, Sonai Ray, Debdeep Mukhopadhayay, SantoshGhosh, Dipanwita Roy-
Chowdhury, and Indranil Sengupta. An Area Optimized Reconfigurable Encryptor for
AES-Rijndael. InDATE ’07: Proceedings of the conference on Design, automation
and test in Europe, pages 1116–1121, San Jose, CA, USA, 2007. EDA Consortium.

[3] Philippe Bulens, Francois-Xavier Standaert, Jean-Jacques Quisquater, Pascal Pelle-
grin, and Gael Rouvroy. Implementation of the AES-128 on Virtex-5 FPGAs. In
Progress in Cryptology - AfricaCrypt 2008, pages 16 – 26. Springer, 2008.

[4] Chi-Jeng Chang, Chi-Wu Huang, Hung-Yun Tai, and Mao-Yuan Lin. 8-bit AES
Implementation in FPGA by Multiplexing 32-bit AES Operation. In ISDPE ’07:
Proceedings of the The First International Symposium on Data, Privacy, and E-
Commerce, pages 505–507, Washington, DC, USA, 2007. IEEE Computer Society.

[5] Pawel Chodowiec and Kris Gaj. Very Compact FPGA Implementation of the AES
Algorithm. In CHES, pages 319–333, 2003.

[6] Adrian Cosoroaba. Achieve Higher Performance with Virtex-5 FPGAs. Xilinx, Inc.
Available at http://china.xilinx.com/publications/xcellonline/xcell_59/xc_
pdf/p016-018_59-consoroba.pdf.

[7] J. Daemen and V. Rijmen. AES Proposal: Rijndael. Technical report, National Institute of
Standards and Technology (NIST). Available athttp://www.nic.funet.fi/pub/crypt/
cryptography/symmetric/aes/nist/Rijndael.pdf.

[8] Kris Gaj and Pawel Chodowiec. Comparison of the HardwarePerformance of the AES Can-
didates Using Reconfigurable Hardware. InAES Candidate Conference, pages 40–54, 2000.

[9] Tim Good and Mohammed Benaissa. AES on FPGA from the Fastest to the Smallest. In
Josyula R. Rao and Berk Sunar, editors,CHES, volume 3659 ofLecture Notes in Computer
Science, pages 427–440. Springer, 2005.

[10] D.H. Green and I.S. Taylor. Irreducible Polynomials over Composite Galois Fields and Their
Applications in Coding Techniques. pages 935–939, September 1974.

[11] Alireza Hodjat and Ingrid Verbauwhede. A 21.54 Gbits/sFully Pipelined AES Processor
on FPGA. InFCCM ’04: Proceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 308–309, Washington, DC, USA, 2004.
IEEE Computer Society.

75

[12] Kimmo U. Järvinen, Matti T. Tommiska, and Jorma O. Skyttä. A Fully Pipelined Memoryless
17.8 Gbps AES-128 Encryptor. InFPGA ’03: Proceedings of the 2003 ACM/SIGDA eleventh
international symposium on Field programmable gate arrays, pages 207–215, New York, NY,
USA, 2003. ACM.

[13] Stefan Lemsitzer, Johannes Wolkerstorfer, Norbert Felber, and Matthias Braendli. Multi-
gigabit GCM-AES Architecture Optimized for FPGAs. In Pascal Paillier and Ingrid Ver-
bauwhede, editors,CHES, volume 4727 ofLecture Notes in Computer Science, pages 227–
238. Springer, 2007.

[14] Liberatori, M. Otero, F. Bonadero, J.C. Castineira, J.UNMDP, and Mar del Plata. AES-128
Cipher. High Speed, Low Cost FPGA Implementation. pages 195–198, Mar del Plata, 2007.
IEEE Computer Society.

[15] Rudolf Lidl and Harald Niederreiter.Finite Fields (Encyclopedia of Mathematics and its
Applications). Addison-Wesley, 1983.

[16] Robert J. McEliece.Finite Fields for Computer Scientists and Engineers. Kluwer Academic
Pub, 1987.

[17] Máire McLoone and John V. McCanny. High Performance Single-Chip FPGA Rijndael Al-
gorithm Implementations. InCHES ’01: Proceedings of the Third International Workshop on
Cryptographic Hardware and Embedded Systems, pages 65–76, London, UK, 2001. Springer-
Verlag.

[18] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[19] Mike Nelson. Why You Should Use FPGAs in Data Security. Xilinx is an Ideal Plat-
form for Data Security Applications. Storage and Servers. Vertical Markets. Xilinx, Inc.
Available athttp://www.xilinx.com/publications/xcellonline/xcell_57/xc_pdf/
p054-057_57-secure.pdf.

[20] NIST. Announcing the ADVANCED ENCRYPTION STANDARD (AES). Available athttp:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[21] Christof Paar.Efficient VLSI Architectures for Bit-Parallel Computationin Galois Fields. PhD
thesis, Institute for Experimental Mathematics – University of Essen, 1994.

[22] Norbert Pramstaller, Stefan Mangard, Sandra Dominikus, and Johannes Wolkerstorfer. Ef-
ficient AES Implementations on ASICs and FPGAs. In Hans Dobbertin, Vincent Rijmen,
and Aleksandra Sowa, editors,AES Conference, volume 3373 ofLecture Notes in Computer
Science, pages 98–112. Springer, 2004.

[23] Norbert Pramstaller and Johannes Wolkerstorfer. A Universal and Efficient AES Co-processor
for Field Programmable Logic Arrays. 3203/2004:565–574, 2004.

[24] Vincent Rijmen. Efficient Implementation of the Rijndael S-box. Available athttp://www.
comms.scitech.susx.ac.uk/fft/crypto/rijndael-sbox.pdf.

76

[25] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, VijayKumar, Josyula R. Rao, and Pankaj
Rohatgi. Efficient Rijndael Encryption Implementation with Composite Field Arithmetic. In
CHES ’01: Proceedings of the Third International Workshop on Cryptographic Hardware
and Embedded Systems, pages 171–184, London, UK, 2001. Springer-Verlag.

[26] Giacinto Paolo Saggese, Antonino Mazzeo, Nicola Mazzocca, and Antonio G. M. Strollo.
An FPGA-Based Performance Analysis of the Unrolling, Tiling, and Pipelining of the AES
Algorithm. In FPL, pages 292–302, 2003.

[27] Sounak Samanta. FPGA Implementation of AES Encryptionand Decryption. Sardar Val-
labhbhai National Institute of Technology, Surat. Available athttp://www.design-reuse.
com/articles/13981/fpga-implementation-of-aes-encryption-and-decryption.
html.

[28] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A Compact Rijndael Hard-
ware Architecture with S-Box Optimization. InASIACRYPT ’01: Proceedings of the 7th
International Conference on the Theory and Application of Cryptology and Information Se-
curity, pages 239–254, London, UK, 2001. Springer-Verlag.

[29] Lin Shu and Costello Daniel J.Error Control Coding: Fundamentals and Applications. Pren-
tice Hall, 1983.

[30] William Stallings.Cryptography and Network Security-Principles and Practices (Fourth Edi-
tion). Pearson Prentice hall, 2006.

[31] François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques Quisquater, and Jean-Didier Legat.
Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements
and Design Tradeoffs. InCHES, pages 334–350, 2003.

[32] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An ASIC Implementation
of the AES SBoxes. InCT-RSA ’02: Proceedings of the The Cryptographer’s Track atthe
RSA Conference on Topics in Cryptology, pages 67–78, London, UK, 2002. Springer-Verlag.

[33] Namin Yu and H.M. Heys. Investigation of Compact Hardware Implementation of the Ad-
vanced Encryption Standard. pages 1069– 1072, 2005.

[34] Xinmiao Zhang and Keshab K. Parhi. High-speed VLSI architectures for the AES algorithm.
IEEE Trans. Very Large Scale Integr. Syst., 12(9):957–967, 2004.

77

