A RECONFIGURABLE AND SCALABLE EFFICIENT
ARCHITECTURE FOR AES

KE LI
Bachelor of Science, University of Electronic Science andethnology of China, 2003

A Thesis
Submitted to the School of Graduate Studies
of the University of Lethbridge
in Partial Fulfillment of the
Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge
LETHBRIDGE, ALBERTA, CANADA

© Ke Li, 2008

For my family, who offered me unconditional love and supgbroughout
the course of this thesis.

Abstract

A new 32-bit reconfigurable FPGA implementation of AES aithon is presented in this
thesis. It employs a single round architecture to minimiee hardware cost. The com-
binational logic implementation of S-Box ensures the dility for non-Block RAMs
(BRAMSs) FPGA devices. Fully composite fie@F ((2%)2) based encryption and keysched-
ule lead to the lower hardware complexity and conveniencéhefficient subpipelining.
For the first time, a subpipelined on-the-fly keyscheduler @zenposite fieldGF ((2%)?)

is applied for the all standard key sizes (128-, 192-, 255-fihe proposed architecture
achieves a throughput of 805.82Mbits/s using 523 sliceb witatio throughput/slice of
1.54Mbps/Slice on Xilinx Virtex2 XC2V2000 {f896 device.

Acknowledgments

| would like to express many thanks to my supervisor Dr. Hyddui his invaluable advice
and ideas on the research and also for his devotion of timestduring this program. His
support and expertise resolved many hurdles that | encadchteroughout the research.

| am also grateful to other committee members Dr. Howard Gleerd Dr. Gongbing
Shan for their advice.

Finally, | would like thank my parents for their support of me

Contents

Approval/Signature Page I
Dedication v
Abstract v
Acknowledgments v
Table of Contents Vi
List of Tables viii
List of Figures IX
1 Introduction 1
1.1 Motivation. e 2
1.2 32-bit Subpipelined Architecture 2
1.3 ThesisOutline. 4
2 Mathematical Background 5
21 FiniteFields 5
2.1.1 AES Arithmetic over Fiel®&F(28) 6
2.2 CompositeFields 9
2.2.1 AES Arithmetic over Composite Fie®F ((24)2) 10
3 AES Algorithm 13
3.1 SubbytesandInvsubbytes. o 14
3.2 Shiftrows and Invshiftrows oL 17
3.3 Mixcolumns and Invmixcolumns, 18
3.4 Addroundkey e 19
3.5 Keyschedule. 20
4 Reconfigurable and Compact Architecture of the AES 23
4.1 32-bitSingleRound Unit 23
4.2 Full Composite Field Encryptor and Keyschedule 24
4.3 Subpipelined Encryptor and Keyschedule 27
4.4 Double-Block Subpipelined Architecture 28
4.4.1 Column Fashion Shiftrows 32
4.4.2 Subpipelined Subbytes oo oL 36
4.4.3 MixcolumnsorGF((2%2) 48
4.4.4 Subpipelined Keyschedule 15

Vi

5 Implementation Performance And Comparison
6 Conclusion

Bibliography

Vil

67

73

75

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3

Key-Block-Round Combinations[20] 13
AES Encryption Sequence e e 9 2
FourControl Signals 23
Path Delays and Number of Slices for Spartan2E and Virtex 47
Keyl28 Roundkey Sequence 7. 5
Key192 Roundkey Sequence 9 5
Key256 Roundkey Sequence 6. 6
Comparisons of BRAMs Based AES Architecture 69
Comparisons of Non-BRAMSs Architectures 70
Comparisons of AES Architectures Functions 72

viii

List of Figures

3.1 Statearrayinputandoutput. L 14
3.2 AESarchitecture 15
3.3 AESS-box 16
3.4 AESIS-box 17
3.5 AESShiftrows 18
3.6 AESInvshiftrows 18
3.7 Pseudo Code for Key Expansion[20] 21
3.8 AESKeyschedule 22
4.1 Unfolded Architecture(a) - Single Round Unit(b) - 32-Bingle Round

Unit(C) o o 23
4.2 Partial Composite Field (a)- Full Composite Field(b) 24
4.3 Pipelining (@) and Subpipelining() 27
4.4 AES Encryption Architecture o L 0oL L. 30
4.5 Column Fashion Shiftrows 33
4.6 Two States’ Arrangement in Shiftrows Registers 34
4.7 Inputof ShiftrowsinFigure (4.6) 36
4.8 Subbytes in composite fie@®F(2H)[34] 36
4.9 Pipelined Subbytes in composite fi@&((2*)%) 47
4.10 GF((2%?)Based Mixcolumns 49
4.11 Architecture of Keyschedule 128 55
4.12 Architecture of Keyschedule192, 58
4.13 Architecture of Keyschedule256 64

Chapter 1

Introduction

Cryptography is of importance in digital communicationstsyns. The security aspects of
many applications such as Automated Teller Machines (ATElspommerce, internet bank
services depend on various cryptographic schemes.

A symmetric-key cryptography algorithm, Data Encryptidar®@lard (DES), has been
the encryption standard since 1977. It has been widely usédha attack better than the
brute force search has been discovered. But its 56-bit keylss been criticized since its
inception. 3DES with triple key size of DES offers higher gty but it is inefficient in
software, because DES was primarily designed for hardwapéementations [30].

In 2001, the National Institute of Standards and Technol@¢T) announced the
approval of the Federal Information Processing StanddfSFfor the Advanced Encryp-
tion Standard (AES), FIPS-197 [20]. This standard spedifieRijndael algorithm [7] as
an FIPS-approved symmetric encryption algorithm that maysed by U.S. government
organizations (and others) to protect sensitive inforomati

As areplacement of DES, AES is presently widely used in bottnsre and hardware
implementations. Hardware approaches are attractivaisegaprovides better throughput
as well as higher physical security. Besides, the byte-aigbmetic in AES gives hard-
ware approaches more convenience. There are mainly twgarags of hardware imple-
mentations: Application-Specific Integrated Circuit (£%land Field Programmable Gate
Array (FPGA). Compared with ASIC, FPGA becomes more and mopailar because of

its scalability, re-programmability and obvious advamtag time-to-market [19].

1.1 Motivation

The standard announced by NIST [20] indicates that AES isoakbtipher with 128-
bit block size and 128-, 192-, 256-bit key sizes. These tkegesizes are specified for
various security levels. The capability to deal with all lstges makes reconfigurability an
important feature of AES implementations.

Numerous FPGA [5, 9, 22, 23, 34] and ASIC [2, 25, 28] implera&ohs of the AES
have been presented and evaluated. To date, most impleémoeatature high speed and
high cost suitable for high-end applications only. Fullyralled scheme makes a con-
venient platform for pipelining technology to get efficiearea cost and high throughput
by unfolding all the ten (128-bit key) rounds on the devicéjch is applied in literature
8,9, 11, 17, 34].

The issue of secure communication in computing restrictet@ments, such as Per-
sonal Digital Assistants (PDAs), wireless devices, andyrher embedded devices, has
become more important recently. In order to apply AES inehesvices, the AES im-
plementations must be cost efficient. An opposite approadtllyy unrolled scheme is to
implement a single round unit on hardware [1, 2, 26, 27, 31heWno further optimization
effort is made, a block of data needs ten (128-bit key) cyide® through encryption. The
economic area cost is obtained by sacrificing the speed.

In this thesis, a compact design of AES with low hardware andtadequate throughput

is proposed and implemented in a non-BRAM FPGA.

1.2 32-bit Subpipelined Architecture

The following list summarizes the major contributions irstthesis.

e 32-bit Single Round Unit By extending one cycle’s job to ten cycles (128-bit

key), single round unit requires approximately 1/10 hanmdéwaea as fully unrolled
scheme; by chopping a block data (128-bit) to four wordsptécally, a 32-bit sin-
gle round unit costs 1/40 hardware area as the common 128#pitinrolled scheme
asin [8, 9, 11, 17, 34]. Nevertheless, when 32-bit datapatised, the shiftrows
transformations can not be simply implemented by rewiritge use the column

fashion shiftrows which naturally cuts one round unit irdaif substages.

Complete Composite Field Based AESIn a non-BRAM design, combinational
logic is the approach used for subbytes, also known as S-Basthe most costly
transformation in AES, in both time and area aspects. Rijj2éjsuggested an alter-
native approach to calculate multiplicative inverses B& Since then, the relevant
research has proved that the composite & (2%)?) based arithmetic provides the
least gate count and the shortest critical path for calmganultiplicative inverse of
a byte, which is the key step in S-Box. This conversion ingslan isomorphic map
function before and after inversion in each round. As in [B,28, 31, 34], when key
size is 128-bit, it needs ten map functions for each blocl8{fi2) from finite field
to composite field and ten inverse map functions for encoyptilf key generator,
which also has S-Boxes, is included, another ten mappingjgessminverse mappings
are needed. To save the overhead caused by mapping, oun desigrts the whole
AES algorithm fromGF(28) to GF((2%)?), which needs only one forward mapping
before the initial round and one backward mapping after thed fiound. Only one

forward mapping is needed for the keyschedule.

Subpipelined On-the-fly Keyschedule and Encryptor On-the-fly keyschedule sup-
ports instant key changing. The previous works of [1, 2, 418,14, 17, 33, 26,
28, 34] applied the on-the-fly key generator, but only [1, 7 ihtegrate on-the-fly
keyschedule for all three key sizes (128, 192, 256-bit).séhtaree designs employ

subpipelining to optimize throughput/area ratio. Howeveme of them uses it in
keyschedule. When pipelining and on-the-fly keyschedwebath employed in an
AES implementation, the keyschedule must be synchronizédtiae cipher because
they share the same clock. The designs in [34, 26] made apliv@d keyschedule,
but they only support 128-bit key size.

1.3 Thesis Outline

Chapter 2 introduces the mathematical background of fireldgiwhich are relevant to
AES. We also present the definition of composite fields in¢hepter.

Chapter 3 gives an overview of AES standard. We focus on etioryand keyschedule
in this thesis. However, the complete AES standard, inolydiecryption, is presented in
this chapter.

Chapter 4 describes the proposed architecture in detaslfdrimulas for the non-trivial
transformations in fiel&F ((2*)?) are presented. The keyschedules for three key sizes are
demonstrated in figures.

Chapter 5 presents the implementation and compares theggdg@rchitecture with the
previous designs.

Chapter 6 provides conclusion of the design.

Chapter 2

Mathematical Background

This chapter introduces the mathematical background of. Aktfie Fields, also referred

to asGalois Fields is the arithmetic basis of AES. The Rijndael algorithm [§'derived
from the finite fieldGF(28). C. Paar [21] demonstrated that by decomposing fBf#q2°)

into composite field5F((2%)?), we can make hardware implementations consuming less
area. The following sections introduce the relevant priogeand definitions in finite field
GF(28) and composite fiel&F((2%)?). All statements are given without proof, but they

are referred to the appropriate literature.

2.1 Finite Fields

This section introduces the definition of finite fields, felled by the basic AES mathemat-

ical representations and operations over finite fi@k(2%). We start with the definition of

group.

Definition 2.1[21] A setG together with a binary operatidd x G — G is called agroup

if the following condition are satisfied:

e The binary operation is associati@o b) oc=ao (boc), for all a,b,c € G;
e There is an identity elemeetc G such thaboe=eoa, forallac G;

e For any elemena € G, there exists an inverse elemaite G such thataoca =

doa=e

If a groupsatisfies the additional condition thet b = bo a, for all a,b € G, thegroup

is commutativer abelian

Definition 2.2 [29] Let F be a set of elements on which two binary operations, called
addition “+” and multiplication *”, are defined. The sdt together with the two binary

operation+ and- is afield if the following conditions are satisfied:

e F is acommutative groupnder addition +. The identity element with respect to

addition is called theero elemenbr theadditive identityof F and is dentoed by O;

e The set of nonzero elements kis a commutative groupunder multiplication..
Theidentity elementith respect to multiplication is called thenit elemenbr the

multiplicative identityof F and is denoted by 1;

e Multiplication is distributive over addition; that is, f@any three elements b andc

inF:a-(b+c)=a-b+a-c

Fields with a finite number of elements are calf@dite or Galois Fields denoted as
GF(q). Here,q is the number of field elements, which is also trder of GF(q). The
extension fieldis of orderg™ and is denoted b%F(gq™) [21], which can be constructed
by anirreducible polynomialP(x) [29] of degreem over GF(q). The fieldGF(q) is a
subfieldof GF(g™) [16]. Every element of fiel&F(g™) can be represented as polynomial
with a maximum degree oh— 1 overGF(q), which is the residue modulB(x). Hence

P(x) determines the arithmetic operations in fi@&(g™).

2.1.1 AES Arithmetic over Field5F (28)

AES is built on the specific finite fiel@F (q™), wheng = 2, m= 8. GF(28) is an extension
field of GF(2). We use the same notations and conventions as the AES sagaifiin
[20], except the multiplication denotation of two elemeint$GF (28). Instead of using,

we useR, for a consistency with the figures in the subsequent chaptdre basic unit for

processing in the AES algorithm iskeyte Each 8-bit sequence of input, output, states,

cipherkey or roundkeys is treated as a single entity.
A. 3 Notations of An Element

1. Binary notation: A concatenation of 8 individual bits.€Thit value is O or 1.

{arasasasazapaiag}

2. Polynomial notation: BecausgF(28) is the extension field o6F(2), its element
can be represented as a polynomial d8€1(2) (Equation (2.1)). Bit is the coeffi-

cients of the polynomial with the value of O or 1.

7
a(x) = Z)aiXI = arx’ + agx® + agx® + anx* + apx® + ax® + ayx+ ag (2.1)
i=

3. Hexadecimal notationfAB}, A denotesayasasas in hexadecimal representatidB,

denotesazazazap in hexadecimal representation.

For example{01100012 (binary notation) can be representedd@s- x° + x+ 1 (polyno-

mial notation) and 63} (hexadecimal notation).

B. Addition

The addition of two elements i6F (28) is adding their corresponding polynomial co-
efficients modulo 2, which is the XOR-operation denotedibyFora(x),b(x) € GF(28)
(a(x) is in Equations (2.1)b(x) = byx” + bgx® 4 bsx® + bgx* + bax3 + byx? 4 byx 4+ b), it

can be implemented by Equation (2.2)

a(x) D b(x) = _ia;xi e _ibixi = _i(a,- @ by)X (2.2)

C. Multiplication

Fora(x),b(x) € GF(28), ® is the multiplication operation i6F(28), x is the normal
polynomial multiplication.

Polynomial (2.3) is the irreducible polynomial used in AH&e multiplication ofa(x)
andb(x) is done by multiplying these two polynomials followed by adntar reduction
overm(x) (Equation (2.4)). The modular reduction is made to ensuaettie result is an
element inGF (28).

m(x) =x8 +x* + 3+ x+1 (2.3)

Givenq(x) € GF(28), q(x) = q7x” + geX® + g5x° + qax* + gax> 4 X% + 01X+ 0o, We have:

q(x) = a(x) @ b(x) = (a(x) x b(x)) mod n{x) (2.4)

FIPS gives an efficient method to do multiplication@F (28) in [20]. It uses the
multiplication byx, which is denoted agtimega(x)). Given:t(x) € GF(28), t(x) = t7x’ +

teX0 4 t5X° + tax? + t3x® + tox2 + t1X + to, we have:

t(X) = xtimega(x)) = (a(x) x x) mod n{x)

(2.5)
to=a7, hi=adar, o=a, t3=aday

h=azbar, s=a4, lg=as, tr=2ap

In Equation (2.5)1(x) is the multiplication result of(x) andx in GF(28). It is cal-
culated by multiplyinga(x) with x, followed by the modular reduction over(x). Based

on Equations (2.5), we can use Equation (2.6) to conduct thkipiication in GF(28)

(Equation (2.4)).

__________________ (2.6)
R(x) = xtimegR_1(x)) (Po(x) = a(x))
In Equation (2.6), the partial multiplicationB, (x)) is performed first, followed by adding

the corresponding coefficients. Bitis the coefficient irb(x), which are 0 or 1.

D. Multiplicative Inverses
vae GF(2%)\ {0}:a®at={1} (2.7)

a1 is the multiplicative inverse o in GF(28). A popular algorithm for inversion is the
Extended Euclidean Algorithm [18], but it is not suitable frardware implementation

because of its high hardware complexity.

2.2 Composite Fields

Two Galois Fields of the same order are isomorphic, but thay have different hardware
complexity which depends on the representations of thédr élements. Green and Taylor
[10] introduced a certain type of extension fields cattechposite fielgwhich can simplify

field operations in AES arithmetic.

Definition 2.4

We call two pairs

n-1
{GF(2"),Q(y) =y"+ Z) gy, g € GF(2)}
:m—l)
{GF((2M)™M),P(x) = x™+ ; pix,pi € GF(2)}

acomposite fieldf

e GF(2") is constructed fronGF(2) by Q(y);
e GF((2M)™) is constructed fronGF(2") by P(x).

Composite field is denoted [iyF((2")™). A composite field5F((2")™) is isomorphic
to the fieldGF (2¥), k = nm[15].

2.2.1 AES Arithmetic over Composite FieldF ((24)?)

The specific composite field used in this thesi&R((2*)?), which is isomorphic to field
GF(28) (k= 8,n=4,m= 2). Taking fieldGF(28) as a quadratic extension of the field
GF(2%), an elemena c GF(28) is represented as a linear polynomial with coefficients in

GF(2%).

A. Notation
Wolkerstorfer et al. introducedtavo-term polynomiain [32], which is the representa-

tion of GF((2%)?) used in the thesis.

axax+a, ac GF(28), ay,a € GF(2%) (2.8)

The two-term polynomiah,x+ g is an isomorphic representationafHence, all mathe-
matical operations applied to elementsG#(28) can also be computed in this representa-

tion.

B. Addition

Adding the corresponding coefficients.

(anx+ay) @ (bnx+by) = (ah © bn)x+(a ©by) (2.9)

10

C. Multiplication
There are two irreducible polynomials needed for the twoitpolynomial multiplica-

tion: n(x) (Equations (2.10)) anoh(x) (Equations (2.11)).

n(x) =x2+ {1}x+{E} ({E} denotes1110") (2.10)

m(x) = x*+x+1 (2.11)

Equation (2.10) is used to reduce the result to a two-termnuohial. The coefficients of
n(x) are written in hexadecimal notation which are elementSk{2%) (Section (2.1.1)).
Multiplication of two-term polynomials is denoted lsy. Normal polynomials multipli-
cation is denoted by. Multiplying two two-term polynomials, followed by a modaul

reduction oven(x), is described by Equations (2.12).

(anx+a) @ (bpx+Dby) = ((anx+a) x (bnx+by)) mod r(x) (2.12)

Equation (2.11) is used to ensure that, the result of midtifibn in subfield5F (2%) (Equa-
tion (2.13)), wherdd (x),b/'(x) € GF(2%)), is an element oGF(2%).

a(x) @b (x) = (a'(x) x b’(x)) mod n{x) (2.13)

These two irreducible polynomiatgx) andm(x) are chosen by Wolkerstorfer et al. [32]

to optimize the arithmetic.

D. Multiplicative Inverses
A multiplication of a two-term polynomial with its inverseeglds the 1-element of the
field GF((2%)?)
(anx+ay) ® (apx+a) = {0}x+ {1} (2.14)

11

wherean, &,), & € GF(2%).

1

(@anx+a) " = (ax+a) = (@@ d)x+(amoa)@d (2.15)

whered = (&5 ® {E}) @ (an@a) ®a) = ((aao{e}) @ ((an®a) @) (@ is addition
in GF(2%); @ is multiplication inGF(2%)).

This multiplicative inversion equation is proposed by Waltorfer et al. [32]. Recon-
figuration of this equation can provide good quality for siplefing. We will explain this

in Section (4.4.2).

12

Chapter 3
AES Algorithm

This chapter introduces the AES algorithm presented by NhSZD01 [20].

The AES algorithm, also known as the Rijndael algorithm & émcryption standard

designed by two Belgian cryptographers John Daemen ancekirRijmen [7]. AES is

a symmetric-key cipher where both the encryptor and deorypte the same key. It is

an iterative algorithm. Each iteration is called a round.cdtding to NIST, AES is a

symmetric block cipher with block size of 128-bit and thresy lsizes of (128-, 192-, or

256-bit). The AES parameters depend on the key size (Tald®)(3

e Nkis the number of 32-bit words comprising the cipher key;

e Nbis the number of 32-bit words comprising a data block, whiliour in AES

standard;

e Nr is the number of rounds which is 10, 12 or 14 for AES-128, ARS-éand AES-

256, respectively.

The internal operations of AES are performed on>a4tmatrix of bytes, termed the

state(Figure (3.1)). An individual byte of the state is referredSa; (r represents the row

Table 3.1: Key-Block-Round Combinations [20]

D

Key Length| Block Size | Number of Rounds

(Nk words) | (Nb words) (Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

13

AES

plain/cipher text state cipher/plain text
ing ing ing inp S0,0 So,1 So,2 So,3 outy outy outg | outy
in1 in5 ing in13 SI,O Sl,l SI,Z 51,3 out; outs outy out;s
> >
in, ing inpg ing4 $2.0 S2.1 S22 S2.3 out outs | outjp [outys
in; in; ing | ings S30 | S31 | S32 | S33 out; | out; | out;; | out;s
Wo Wi W, W; Wo Wi W, W; Wo Wi W, W;

Figure 3.1: State array input and output

number and represents the column number<d < 4,0<c<4). AwordW (0<i < 4)

consists of the four bytes of colunin

AES runs iteratively on four transformations (inv-/sulbdstinv-/shiftrows, inv-/mixcolumns
and addroundkey) with different sequence in encryption dextyption. Figure (3.2) il-
lustrates the basic architecture of AES. In the initial @@n= 0), only addroundkey is
performed; in the final round (= Nr), it skips inv-/mixcolumns. The keyschedule mod-
ule expands cipherkey tdNr + 1) x 4 words of roundkeys. Each round applies a unique

128-bit roundkey in the addroundkey operation.

3.1 Subbytes and Invsubbytes

Inv-/subbytes is the only non-linear transformation in Akl8ch is also called S-Box.

A. Subbytes— Uses an S-Box to perform a non-linear byte-by-byte suligiit of the state.
S-Box is a 16x 16 matrix containing all possible 256 8-bit values.
Consider a bytd x7xeXsXaXaXox1X0}. Subbytes transformation has two steps:
1. {XXeXeX, XXX X} is its multiplicative inverse inGF(28) field, modulo the irre-

14

r=0,1,2,...,Nr r=0,1,2,...,Nr

Encryption Decryption
Subbytes € — Invmixcolumns
~ If =0 Ifr=Nr
e
OLL Y Z|
. v
= Shiftrows 5 » Addroundkey <€
(=]
= A
Ifr=Nr .
v i
&
Mixcolumns Y Invsubbytes
v
= A -
& = lL
8
Y =
> Addroundkey — “—» Invshiftrows

Keyschedule

Figure 3.2: AES architecture

ducible polynomiam(x) = x® +x*+x3+x+1; {0000000Q’s multiplicative inverse
in GF(28) field is itself;

2. An affine transformation ovesF(2) (Equation (3.1)) is conducted on the inverse,

which is the result of the first step.

15

(vo| [1 000111 1|[x] [1]
yi 11000111|[|x 1
Yo 11100011 X’2 0
V3 1111000 1|]|x 0
= 4+ (3.1)
Ya 11111000 Xﬁl 0
Y5 01111100 X’5 1
Y 00111110|]|x 1
vy 00011111 |x%]| |0
Figure (3.3) shows the S-Box diagram:
{x, XXX, 030, X,%,) — ¥ S-Box {1V, V6V5Va Vs 001 Vo)

Figure 3.3: AES S-box

B. Invsubbytes— Uses an inverse S-Box (IS-Box) to perform a non-linear loytdoyte

substitution of the state.

Considering a bytéy-ysYysyaysy2y1Yo}. Inverse subbytes transformation has two steps:

1. The inverse affine transformation o\&F (2) (Equation (3.2)) is performed first

16

X, 0010010 1|y 1
X, 10010010||w 0
X’2 01 001001 Yo 1
X 1 01 00100 0
3| _ By (3.2)
Xﬁl 01 010010 Ya 0
X’5 00101001 Y5 0
X, 10010100|]|y 0
%, |[01001010]|y| |O

2. {X7XeXsXaXaXoX1Xo} is the multiplicative inverse ofX,xsxexXeXoXi%o} in GF(28)
field, modulo the irreducible polynomiad(x) = x® + x* 4 x3 + x4 1; {0000000Q is

mapped onto itself.

Figure (3.4) shows the IS-Box diagram:

{V:V6VsV1Y3V. 00 — P IS-Box —{x;x,x5x,%,%,x, X, }

Figure 3.4: AES IS-box

3.2 Shiftrows and Invshiftrows

This transformation circularly shifts each row of the statéhe left on encryption or to the
right on decryption. The top row of the state is denotedoag0) and the bottom row is

denoted asow(3). The shift offset of each row corresponds to the row number.

A. Shiftrows — Each row of the state is left shifted cyclically a certaiminer of bytes.
Performsi-byte circular left shift torow(i)(i = 0,1,2,3). Figure (3.5) illustrates the

shiftrows operation.

17

B. Invshiftrows — Each row of the state is right shifted cyclically a certaimier of bytes.
Performsi-byte circular right shift taow(i)(i = 0,1,2,3). Figure (3.6) illustrates the

invshiftrows operation.

Figure 3.5: AES Shiftrows

row(0)
S0,0 | So,1 | So2 | So3
row(1)
S1,0 | S1,1 | S12 | S1.3
A
L
S S S S
2,0 2,1 2,2 2,3 row(2)
S S S S
3,0 3,1 3,2 3,3 row(3)

Shiftrows

row(0)
S0,0 | So,1 | So,2 | So3
row(1)
S1,0 | S1,1 | S1,2 | S1,.3
S S S S
2,0 2,1 2,2 2.3 row(2)
S S S S
3,0 3,1 3,2 3,3 row(3)

Inv
shiftrows

S0,0 | So,1 | So2 | So3
S1,1 | S12 | S1,3 | S1,0
A
Ll
S22 | S23 | S2,0 | S2,1
S33 | S3,0 | S3,1 | S32

3.3 Mixcolumns and Invmixcolumns

This transformation treats each column of the state as atéoor polynomial oveGF (28)
and transforms each column to a new one by multiplying it vaitbonstant polynomial
a(x) = {03}x3+ {01}x? + {01} x+ {02} modulox*+ 1. The inverse mixcolumns operation
is a multiplication of each column with(x) = a=1(x) = {0B}x3+ {0D}x? + {09} x+ {OE}

18

S0,0 | So,1 | So2 | So3

S1,3 | S1,0 | S1,1 | S1,2
Lad

S22 | S2,3 | S2,0 | S2.1

S31 | S32 | 833 | S30

Figure 3.6: AES Invshiftrows

modulox* + 1.

A. MixColumns — Left multiplies the state with a mixcolumns matrix.

Mixcolumns transformation gives each byte of a column a nalwerbased on all four

bytes in that column. In matrix form, the mixcolumns can bpressed as:

02
01
01

03

03
02
01
01

01 01
03 01
02 03

01 02

S0,0
$1,0
$,0
$3,0

So,1
S1.1
$.1
$3.1

0,2
S1,2
2.2
$3.2

0,3
$1,3

$3

33 |

[o
S
%o

| S30

1
Sia
1
S31

02
Si2
S22
S32

s |
S
s

S33

B. Invmixcolumns — Left multiplies the state with a invmixcolumns matrix.

In matrix form, the invmixcolumns can be expressed as:

3.4 Addroundkey

OE
09
0D
0B

0B
CE
09
oD

0D
0B
(0
09

09
0D
0B

[sho
S
S0

| S30

02
S12
S22
S32

%03
Si3
923
S3

$0,0
$1,0

$,0

3.0

So,1
S1,1
$.1
S31

0,2
S1,2
.2
3,2

S0,3
$1,3
93
S3.3

(3.3)

(3.4)

The addroundkey is a simple logical XOR of the current statd & roundkey which is

generated by the keyschedule.

Addroundkey — The state is XORed with the 128-bit roundkey (Equation)}3.5

19

$0,0
$1,0

$,0

$3,0

3.5 Keyschedule

Keyschedule— Derives roundkeys from the cipherkey. It consists of tvepst

0,1
S11
$2.1
$31

$0,2
S1,2
.2
3,2

0,3
$1,3
$3
3.3

@ roundkey=

1

1
S31

02

92
S32

Si3
93

(3.5)

1. Key Expansion - Uses the AES Key Expansion Algorithm (Fég(8.7)) to generate

4 x (Nr + 1) words of roundkeysWo, W, ..., Wy, +1)-1)- The cipherkey is divided

into Nk words used as the firdtk roundkeys. Keyschedule repeats to generate the

rest roundkeys.

2. Roundkey Selection - The first 4 roundkeys are the first 4lgjahe second 4 round-

keys are the second 4 words, etc. Each roundkey has 128 roisidkeyi) =

(Wai, Whi -1, Wai 4 2, Wai 1. 3).

Figure (3.8) shows keyschedule’s architecture which ggasroundkeys for AES-128,

AES-192 and AES-256.

e Rotword: One-byte circular left shift on a word. For example, woadb, c,d) be-

comes(b,c,d, a).

e Subword: Using S-Box to perform a byte substitution on each byte.

e Xorrcon: XORing with a round constamcon(j], j =1,2,--- Nr.

rcon[j] = (RC[j],0,0,0), with RC[1] = 1,RC[j] = 2- RC]j — 1] and with multiplica-

tion defined over the fielGF (28).

20

s
//Tnput: key[4*Nk] (Cipherkey)

//Output: w[4*(Nr+1)] (Nr+1 roundkeys)
//Nk and Nr is specified in Table (3.1)
s

KeyExpansion(byte key[4*Nk], word w[4*(Nr+1)], Nk)

begin
word temp
1=0
while(i<Nk)
wli]=word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i=it+1
end while
i=Nk
while(i<Nb*(Nr+1))
temp=w[i-1]
if(i mod Nk=0)
temp=subword(rotword(temp)) xor rcon[i/Nk]
else if (Nk>6 and i mod Nk=4)
temp=subword(temp)
end if
w[i]=w[i-Nk] xor temp
i=it+1
end while
end

Figure 3.7: Pseudo Code for Key Expansion [20]

21

AES-256

f AES-192 R
B AES-128 R ”
Ko | Ky | Kg | Kz [Kie | Kao
Ki | Ks | Ko | Kz | Ky7 | Ky
Ky | Ko | Kio | Kig [Kig | Kgo
Ks | K7 | K1 | Kys [Ko | Ky3
Y VvV vV v v v
Wo | Wi | W | W3 | Wy | Ws

D AD AD

Wy | Ws | W

A4

xorrcon(subword

(rotword(W)))

xorrcon(subword
(rotword(W)))

subword(W)

&
2
&
i
<

We | W7 | Wg [Wio | Wi | Wiz

o

xorrcon(subword(rotword(W)))

e

Figure 3.8: AES Keyschedule

22

Chapter 4

Reconfigurable and Compact Architecture of the AES

In this chapter, the reconfigurable and compact AES ardhitecs proposed. We introduce
the contributions in detail, followed by the four transf@tions (shiftrows, subbytes, mix-
columns and addroundkey). The three keyschedules witbrdiit key sizes (128-, 192-,
256-bit) are explained individually.

4.1 32-bit Single Round Unit

12%

/
Round 1 / Py v
) Subbytes Subbytes
! / v v
Shiftrows Shiftrows
Round 2 v s v
\ Mixcolumns Mixcolumns
| \ v v
v N Addroundkey Addroundkey
Round Nr \\\ v S
7]
(a) (b) (c)

Figure 4.1: Unfolded Architecture(a) - Single Round UnigB2-bit Single Round Unit(c)

Roll unfoldedarchitecture (Figure (4.1(a))) is widely used to achiewghhspeed. It
processes several blocks of data during one clock cycle pjeimenting more than one
round units on the hardware. The more round units the aathieimplements, the higher
the hardware cost. The opposite scheme, which is callesitigde round unitrchitecture

(Figure (4.1(b))), can be applied to simplify the hardwasenplexity. Instead of unfolding

23

all the round units in devices, it implements a single rounil which costs approximately

1/Nr area as the unfolded scheme by sacrificing the speed (Figur@))).

Both Figure ((4.1(a)) and ((4.1(b)) use 128-bit data patttkihg to the goal of making

a compact design, we propose a 32-bit single round unit (Eigd11 (c))). It needs four

iterations to perform a round on a block (128-bit). This 3&data path scheme saves about

75% hardware, compared with the 128-bit single round unguife (4.1 (b))).

4.2 Full Composite Field Encryptor and Keyschedule

32

Multiplicative

inverse

Affine

transform

Addroundkey

(@)

GF((2*)?),

Multiplicative
inverse

v

Affine
transform

Mixcolumns

Addroundkey

A 4
MAP-!

) 4

GF((2*)*)

(b)
Figure 4.2: Partial Composite Field (a)- Full Compositddr{b)

Many high-end FPGA devices possess Block-RAMs (BRAMSs) Wlare efficient for

the implementation of S-Box. S-Box, also referred as susyyis the key part in both

24

encryptor and keyschedule modules. However, these BRA3¢ddesigns cannot be im-
plemented in the low-cost devices which do not have BRAMSs. alkarnative approach
for S-Box implementation is using combinational logic. Bbis method may lead to
high hardware complexity because of the mathematic opasmbf AES over finite field
GF(28).

The key step of S-Box is calculating multiplicative invetdeeach byte (Section (3.1)).
Since the introduction of composite fie@F ((2*)?) based S-Box, numerous research [9,
11, 28, 31, 34] has investigated the calculation of the mlidtitive inverses oveBF ((24)?),
instead ofGF(28), to decrease hardware complexity (Figure (4.2(a))). lnuféig4.2), the
arithmetic in the shadow area is performed over f@F{ (2*)?). Figure (4.2(a)) shows that
the architecture implements only multiplicative invems&iF ((2*)2). The architectures in
[33, 22] extend the fiel&F((2*)?) to affine transformation which makes all S-Box block
operations performed iGF((2%)?). By decomposing these operations fr@f(28) to its
subfieldGF (2%), the hardware complexity is decreased.

As in Figure (4.2(a)), in each round before S-Box, it needssamorphic mapping
function (MAP) to convert a representation froBF (28) to GF((2%)?); to convert inversely
after, it needs the inverse mappingAP1). If key size is 128 bits, it applies the S-Box
to the plaintext and the cipherkey ten times, which meansitimeeds 20MAPsand 20
MAP~1s for the encryption of 128-bit data. In [32], for every bydAP costs 11 XOR
gates with 2 gates in critical pattMAP~1 costs 15 XOR gates with 3 gates in critical
path. MAP andMAP~! together cost 33.3% in critical path and 21% gates in totaiHe
subbytes transformation.

In order to reduce the cost MAP andMAP~1 as much as possible, we propose the
complete composite field approach (Figure (4.2(b))). T#((2%)?) field covers both
encryptor and keyschedule. As illustrated in Figure (42@meMAP and oneMAP ! are

applied in encryption, onMMAP~1 is applied in keyschedule. This is a constant overhead

25

which is not affected by the round count. No matter what the $ee is, the cost of
mapping is the same.

The isomorphic mapping functions between figld(28) and fieldGF ((24)?) are deter-
mined by the irreducible polynomials of fie®F (28) (Equation (2.3)) and fielGF((24)?)
(Equations (2.10) and (2.11)). We use the mapping formul§34] to conduct the transi-
tion of representations betwe&¥ (28) andGF((2%)?):

anx+a =MAP(a), ana € GF(2%), ac GF(28)

an=a1®ay, ag=asday, ac =asDas (4.1)
qo=acDdapdas, ar=ar1day, ar=aa, az=adas

app=acPas, anr=andac, ap=agdadaz, an3=ap

In Equation (4.1)a is an element in field5F(28). MAP(a) converta to its isomorphic

element inGF((2%)?), which is represented agx -+ a,.

a=MAP Y(ax+a), acGF(28), a,a cGF(2%)

ap=3a1Pan3, ag=anpBDan

1 3 0 1 4.2)
d=aoban, aa=agday3, ax=aandag
a=agda1Dan, aq=apndagdasz a=agdap>

G =anbazxbazbany, ar=agbaz2ban3

In Equation (4.2)amx+ & in an element in field5F((24)2). MAP~(apx+a) convert

anx+ @, to its isomorphic element iGF(28), which is represented as

26

4.3 Subpipelined Encryptor and Keyschedule

I
Round 1 | substagel |
—
| substage2 |
Round 2

register

N/

v
Round Nr | substagek |
- v
v
(a) (b)

Figure 4.3: Pipelining (a) and Subpipelining (b)

The technique of pipelining is applied in the AES designsgbimize speed/area ratio
in[1, 2, 8,9, 11, 17, 33, 26, 27, 31, 34]. By inserting registamong combinational
logic, multiple blocks are processed simultaneously. Thquency is determined by the
maximum delay between two registers. When the maximum dedyeen two registers
is decreased, the frequency is increased.

Figure (4.3(a)) is the fully unrolled pipelining architaot, which includes two steps.
First, unfold theNr round units on the device; second, insert registers beteaem round
unit. In this case, the maximum delay is the period of one dowhich contains four
transformations.

By cutting one round unit into more substages, we can fuiithprove the frequency.
This technology is called subpipelining [34]. Figure (4)3(gives an example where reg-

isters are placed both between and inside each round urtiréuency is determined by

27

the maximum delay of a substage. In this thesis, we proposgkesound subpipelined
architecture, where one round unit is implemented and petiped into eight substages.
To generate the roundkeys, we design an on-the-fly keystdagich generates a 32-
bit roundkey at each clock cycle. The encryption unit andkée expansion unit share
the same clock which leads to the fact that the general freques determined by the
maximum delay in both units. Hence, the substage balanceysickedule is as important
as in encryptor. We propose a new subpipelined keyschedutomposite field for all
standard key sizes. The most costly part of keyschedulél hstS-Box. We divide it into

the same substages as in encryptor.

4.4 Double-Block Subpipelined Architecture

An equivalent decryptor along with the AES was introduceBliRS [20], where the same
architecture can be used in both encryption and decrypfigure 5.7 in [30] illustrates the
equivalent inverse cipher. It makes use of the fact that tercof subbytes and shiftrows
can be exchanged because subbytes changes the value ofygadhdividually while
shiftrows only rearranges their positions. So it changesotidler of invshiftrows and in-
vsubbytes, and add an extra step to conduct invmixcolumesoin roundkey. We can also
change the sequence of shiftrows and subbytes in encryptdstain the same result. In

this design, we put shiftrows before subbytes.

Figure (4.4) illustrates the proposed encryption architec The eight 32-bit registers
(four in shiftrows, three in subbytes and one between s@sogihd mixcolumns) are used
to cut one round unit into eight substages, which leads togin elock cycles initial delay
to generate the first 32-bit ciphertegtk_counterin Figure (4.4) is a clock register counter
generated in keyschedule. It is repeating from O & 7 (Table (4.1)) and is used to

synchronize encryptor and keyschedule.

28

6¢

Table 4.1: AES Encryption Sequence

clk_counter 0 1 2 3 4 5 6 7
plaintext PA(0) PA(1) PA(2) PA(3) PB(0) PB(1) PB(2) PB(3)
cipherkey KA(0) KA(1) KA(2) KAQ(3) KB(0) KB(1) KB(2) KB(3)
outcome(0) OA(0) OA(1) 0A(2) OA(3) OB(0) OB(1) OB(2) OB(3)
()
clk_counter 8 9 10 11 12 13 14 15
input(1) 0A(0) OA(1) 0A(2) 0A(3) 0B(0) OB(1) OB(2) OB(3)
roundkey(1) KA(4) KA(S) KA(6) KA(7) KB(4) KB(5) KB(6) KB(7)
outcome(1) OA(4) OA(5) OA(6) OA(7) OB(4) OB(5) OB(6) OB(7)
(b)
clk counter SNr 8Nr+1 8Nr+2 8Nr+3 8Nr+4 8Nr+5 8Nr+6 8Nr+7
input(Nr) OA(4Nr-4)) | OA(4Nr-3) | OA(4Nr-2) | OA(4Nr-1) | OB(4Nr-4) | OB(4Nr-3) | OB(4Nr-2) | OB(4Nr-1)
roundkey(Nr) KA(4Nr) | KA(4Nr+1) | KA(4Nr+2) | KA(4Nr+3) | KB(4Nr) | KB(4Nr+1) | KB(4Nr+2) | KB(4Nr+3)
ciphertext CA(0) CA(1) CA(2) CA(3) CB(0) CB(1) CB(2) CB(@3)

(©)

Columnl

Sregister] |

i

Column?2

[Sregister2 |

‘r

Column3

i

(Sregister3 |

Column4

Sregisterd |

¥

(@)

Subbytes(A)

[Sregister5 |

i

Subbytes(B)

(Sregister6 |

&

Subbytes(C)

Sregister7 |

Subbytes(D)

i

(b)

\ [MAP | [MAP |
| Shiftrows Keyschedule —
register1,2,3,4 |
v |
Subbytes roundkey |
register5,6,7 |
t— '
| |
Mixcolumns v |
P
4% |
Y |
W
> |
b |
vGviiyd clk counter |
mul = = = =
GF((2*)*)
MAP-!

32-bit data line
— — Control line

Figure 4.4: AES Encryption Architecture

We use a double-block (blockandB) data flow to avoid the eight clock cycles initial

delay. Table (4.1(a)) illustrates the data sequence ofttialiround (Nr = 0).

{PA(0), PA(1), PA(2), PA(3)}: 128-bit plaintext of blockA

{PB(0), PB(1), PB(2), PB(3)}: 128-bit plaintext of blockd

They are put into AES during the first eight clock cycles arehtprocessed alternately.

{KA(0), KA(1), KA(2), KA(3)}: cipherkey for blockA

{KB(0), KB(1), KB(2), KB(3)}: cipherkey for blockB

30

Because in the initial round, the encryption involves ordg@undkey, which is the simple
XOR operation, and the according roundkey is the MAPed clghe the operation in this
round is not delayed by registers. Hence, the outcome ohthialiround (outcome(0)) is

produced from the very beginning.

{OA(0), OA(1), OA(2), OA(3)}: outcome of round O for block
{OB(0), OB(1), OB(2), OB(3)}: outcome of round 0 for blocB

Table (4.1(b)) is for round 1, which goes through the eiglissages. At the eighth
clock cycle,OA(0O) finishes the eight substages and XORes the the accordinglkeyn
(KA(4)) to generate the outcom®4\(4)) for block A, so as bloclB.

Table (4.1(c)) is for the last rouridr.

{CA(0), CA(1), CA(2), CA(3)}: ciphertext for blockA
{CB(0), CB(1), CB(2), CB(3)}: ciphertext for blockB

Now we explain the 3-to-1 multiplexem(ul) controlled by theclk_counter

e Case a:Ininitial round, where &< clk_counter< 8, 128-bit plaintext is MAPed into
GF((2%)?) and XORed with the according roundkey in four clock cyclespb@s at
each clock cycle. The result is the outcome of the initiaheb(Nr = 0) which is the

input of the second round,;

e Case b: In normal rounds, where 8 clk_counter< Nr x 8, the outcome of mix-

columns XORs with the according roundkey to produce theautof this round.

e Case c:The last round, wherlr x 8 < clk_counter< (Nr+ 1) x 8, the transforma-

tion mixcolumns is skipped. The result of subbytes is addiia #s roundkey.

Finally, the outcome of the last round goes throlyhP 1 to generate the ciphertext.

31

Table 4.2: Four Control Signals

CountetWp | CounterW; | CounterWs | CounterWs
Wo 1 0 0 0
Wy 0 1 0 0
W5 0 0 1 0
Ws 0 0 0 1

4.4.1 Column Fashion Shiftrows

This subsection proposes the column fashion shiftrowsuf€ig4.5)). It includes 16 8-bit
registers Rowd_Col0, Rowd_Col1, ... ,Row3_Col3) and thre€ to 1 multiplexers U1, M2
andM3). Both input and output of shiftrows is a state. Each colusna word W, W,
W, andWs), which includes four bytes. Every clock cycle it procesa&2-bit word (one
column of a state), so four clock cycles are needed to produk28-bit state. The first 3
clock cycles are initial clock cycles, so the first word isfd out at the 4th clock cycle.
Figure (4.6) shows how it works in the first eight clock cyclBsg, Ro1, ... andRz3 stand
for registersRowd_Col0, Rowd_Coll, ... andRowB_Col3. Each row shows their values
at each clock cycle{ko, clkl, ... andclk7). We will explain the shadow area and black
border in the following text.

Four counters@ounterWp, CounterW;, CounterW, and Counnter\\s) control the
registers and the multiplexers. Table (4.2) shows how teeg®ls are generated.

When the first word\{p) of a state is shifted irCountert\Wp = 1,

When the second word\j) of a state is shifted irCounterWy = 1;

When the third word\%) of a state is shifted irCounterWs = 1;

When the forth word\Wk) of a state is shifted irCounterWs = 1.

Certain registers are controlled by special enable sigiaiablerowl col3,

Enablerow2_col23 andEnablerow3_col123), others use the general enable signal, which

32

€e

Enable_rowl_col3

) Rowl_Coll |-3]> Rowl_cCol2 |T>|> R0w1'7C013 s

Enable_row2_col23 |

\ 4 v
> Row2_Coll |T>|> Row2 Col2 |-»]) Row2 Col3 I—:—ba_:_l—’

————= b mm—mmm—————
o o ol al
2 g -gL-g |
CUNE- U= Y- T D—&——
‘QI IQ | ‘Q - f-‘i _______
2z = B

| | | | Row0 Col0

Wo Wi W2 W3 =
So0,0 | So,1 | Soz | Soz3

j»D Rowl_Col0

Sio|Si,i]Siz2|Si3
S20 | Sai1 | S22 | Sa3 —_>|> Row2_Col0
S30 | S3.1 | Sz

. _ _ _ _ Enable row3 col123 _ _ _ _ _ _ _ _
v A 4 \ 4

1| Saz | Saa —|_>{
Input(state) > pecold

|T)|>R0W37C011) Rows_Col2 |} Rows_Col3 ——{5

8-bit data line

1-bit control line

Figure 4.5: Column Fashion Shiftrows

»
L

output(state)

is not shown.

Roo Ror Roz2 Ro3 Rio Rit Ri2 Ri3 R2 Rzt R22 Rz R3 R3t R32 Rs3

clkO Arp Az

clkl A Asp Az Asp

clk2 Ary Asy Ag Asp Az Asp

clk3 Asz | Asn | Az Az Asp Az Asp
clk4 Boo | Aoz (A2 Asd Bso [Asn Asy | Asp
clk5 Byi Bao [VA2i | Azo | Bsi Bsog Asx | Az
clk6 22 Bai Bao IA{Z,I Bs, Bsi Bso| A
clk7 B\ B2 B 20 | Bsz | Bs2 Bsi Bsp

clk3 clk4 clks clk6

Ao | Aot | Aoz | Aos
A | Az | Az | Aio
Agy | Ass | Azo | Az

Output for the 1% state

Ass | Aso | Az | Asp

W() Wl W2 W3

Figure 4.6: Two States’ Arrangement in Shiftrows Registers

EnableEnablerowl_col3 (Enablerowl_col3 = CounterWs) controls register
Rowl_Col3. This enable signal is negative when clocklig, clkl, clk2, clk4, clk5, clk6,
etc. Rowl_Col3 does not work during these clock cycles, which corresptmtise shadow
areas of the columR13 in Figure (4.6);

EnableEnablerow2_col23 (Enablerow2_col23 = CounterW, v Ccounter\\s) con-
trols registerfRow2_Col2 andRow2_Col3. This enable signal is negative when clock is
clkO, clkl, clk4, clk5, etc. Row2 Col2 andRow2_Col3 do not work during these clock
cycles, which corresponds to the shadow area of the coll®22sndR23 in Figure (4.6);

EnableEnablerow3_col123 Enablerow3_col123 = CounterW; Vv CountertW, Vv
CounterWs) controls registerRow3_Coll, Row3_Col2 andRowB_Col3. This enable sig-
nal is negative when clock kO, clk4, etc. Row3_Coll, Row3_Col2 andRowB_Col3 do
not work during these clock cycles, which corresponds tcstie@ow area of the columns
R31,R32 andR33 in Figure (4.6).

For each input word:

34

The input (a state) of shiftrows is the MAPed ciphertext igithe initial round; other-
wise it is the outcome of the previous round. Each word of taeed\p, Wi, Wo andW\s)
is shifted into the first column of the registeRawd_Col0, Rowl_Col0, Row2_Col0 and
RowB_Col0) at each clock cycle.

For each output word:

e 1st byte is shifted out frorRow)d_Col3, which corresponds to the black border area

of columnRy3 in Figure (4.6);

¢ 2nd byte is shifted out frorRowl _Col3 if (CounterW,) is active, otherwise from
Rowl_Col2, which corresponds to the black border area of coluRp@asandR;3 in

Figure (4.6);

e 3rd byte is shifted out fronRow2_Col3 if (CounterW; or Counter\,) is active,
otherwise fromRow2_Col1, which corresponds to the black border area of columns

R>1 andRy3 in Figure (4.6);

e 4th byte is shifted out froRow8_Col3 if (CounterWp or CounterW or Counter\Ws)
is active, otherwise fromRows_Col0, which corresponds to the black border area of

columnsR3p andRs3 in Figure (4.6).

Figure (4.6) takes two statésandB (Figure (4.7)) as the input of shiftrows. During
the firsts eight clock cycles, each word of stAtandB is shifted into the first column of
registersRoo, R10, R2o andRsg) one after another. The first three clock cycles are theainiti
cycles with no output.

At clk3, the first column of statA is generated from registerRds, Ri2, Ro1 andRsp);

At clk4, the second column of stafeis generated from registerBdz, Ri2, R21 and
Rs3);

At clk5, the third column of statA is generated from registerRds, R12, Ro3 andR33);

35

State A State B

Aoo | Aot | Aoz | Aos Boo | Boi | Boz | Bos
Ao |Anr | Az | As Bio | Bi1|Bia|Bis
Az | Az | A2z | Azs Bao | B21 | B2z | Bas
Aso | Az | Asa | Ass Bso | Bsi | Bsa | Bas
Wo W; W, W; Wo Wi W, W;

Figure 4.7: Input of Shiftrows in Figure (4.6)

At clk6, the forth column of statA is generated from registerRds, R13, Roz andRs3).

The first output state is shown in the right down corner of tigeife (4.6).

4.4.2 Subpipelined Subbytes

4H i 4H

x’ xe ¢ X3 —
e] D > ox S—>| AFF_TRAN Ac
IR R X,
1 2

4L Y T

Figure 4.8: Subbytes in composite fighd (24)[34]

The key step of subbytes is the calculation of the multipheainverse. Figure (4.8)

36

illustrates the architecture of subbytes used in [34], Whapplies Equation (2.15). As
shown in this figure, it uses multiplication @&F (2%) three times. In order to distinguish
the multipliers, we indicate them as;, x», x3. It also needs one inversion (), one
constant multiplier with{E} (xe), {E} is in hexadecimal notation, which is 1110’ in
binary notation), one squarej and two 4-bit XORs®). These arithmetic operations are
over fieldGF(2%).

Consideringx,y,z € GF(2%), x, y andz are represented in binary notation where
{XaXox1%0}, Y = {yay2y1Yo}, z= {z322120}. Leta, b, ¢, d, eand f are 1-bit value, which
equals to 0 or 1¢ stands for XOR-operationgy: meansg A yi.

The following Equations (4.3), (4.4), (4.5) and (4.6) arediso calculate squaring,

constant multiplication witH E}, multiplication and multiplicative inverse [32].

y=x
____________________________ (4.3)
Yo=XoD X2, Y1=X

Yo=X1DX3, Y3=X3

y=xx{E}

a=x®x1, b=x2®x3 (4.4)

Yo=X1®b, y1=a

Y2=adX, y3=adb

37

a=XDX3, b=X®X3 C=X1DX

20 = XoYo D X3Yy1 D X2y2 D X1Y3 (4.5)
21 =XYoo ay1® by, d cys

2 = X2Yo © X1y1 D ay2 D bys

Z3 = X3Yo D X2y1 D X1y2 D ays

a = X1 D X2 D X3 D X1X2X3

Yo = a® Xo B XoX2 © X1 X2 © XoX1%2 (4.6)
Y1 = XoX1 D XoX2 D X1X2 D X3 D X1X3 D XoX1X3

Y2 = XoX1 © X2 @ XoX2 D X3 D XoX3 B XoX2X3

Y3 = ad XoX3 D X1 X3 D X2X3

As illustrated in Figure (4.4), subbytes should be cut imtorfsubstages. The key to
an efficient subpipelining technology is to balance the et these substages. Previous
research [34] calculate the delay of an individual subsbygeounting the gates in critical
path.

Xilinx ISE provides synthesis tool to yield the maximum candiional delay of an
entity. A more straightforward method to achieve the optibaance is to cut subbytes
in different manners and use this synthesis tool to meaberdelay of each substage (an
entity). The most even delays of these substages standdaptimal balanced substages
arrangement.

Based on our experiments, Equation (4.6) is not suitabl¢hisr4-substage subbytes.

38

With this equation, the substage includixg! yields the longest delay, hence decreasing
this substage’s delay can increase the general frequeneydevive a new Equation (4.7)
from Equation (4.6) to reduce the delay causedby. Equation (4.7)is derived in three

steps:

1. In Equation (4.6), replaceby its expression, we have:
Yo = Xo © X1 D X2 D X3 D XoX2 D X1 X2 D XoX1 X2 D X1 X2X3
Y1 = XoX1 D XoX2 O X1X2 D X3 D X1X3 D XoX1X3
Y2 = XoX1 © X2 XoX2 D X3 D XoX3 D XoX2X3

Y3 = X1 D X2 B X3 D X1X2X3 B XoX3 D X1X3 B X2X3

2. The expressions in step 1 can be equally changed to:
Yo = X1 X2 D X1X2 © XoX2 B (X0 © X3) (1D X1X2)
Y1 = X1X2 © XoXz & XoX1 B X3(1 B X1 © XoX1)
Y2 = X2 XoX2 ® XoX1 D X3(1 & Xo & XoX2)

Y3 = X1 D X2 D X3(1PH X0 D X1 B X2 B X1%2)

3. Leta=x1X2, b=XgXo, c=XpX1, d=X1 DX, e=1daandf =bdc, we have:

a=>X1X2, b=Xoxo, C=XoX1, d=X1PX
e=1da f=badc

(4.7)
Yo=adbad®d (Xodx3)e
yi=ad® fexz(x1®d1dc)
Yo=TfDxo®x3(b®1®Xx0)

y3=d@x3(edxdd)

39

According to Equation (4.7), we design the circuit Figure9j4o performx~1 over
GF(2%.

Besides multiplicative inversion, other expensive operetin Figure (4.8) are the three
multiplications (<1, x2 and x3). In order to decrease the maximum delay caused by mul-
tiplication, we separate each multiplication into two stegmd put each step in different
substages. The registers between each substage storsuheofdhe first step of multi-
plication and pass it to the second step. We decompose thiese rhultipliers into two

different mannersAB-typeandMN-typ@ to achieve the best balance.

AB-type: Equation (4.8) is derived from Equation (4.9)e, p1, .., P15 are 1-bit values,
which represents one AND term in Equation (4.S)ep Acalculates the value of all
the termsStep Bconducts XOR of every four values to generajez;, z andzs. A
register is inserted betwe&tep Aand Step Bto storepg, ps, --., P15. X1 in Figure

(4.8) is separated in this way, aga and x 1g in Figure (4.9);

z=xxYy (AB—type

a=XDX3, b=XDX3, C=X1DX

Po = XoYo, P1=X3y1, P2=X2y2, P3=X1y3
P4a=XiYo, Ps=ay1, Pe=DbYz, pr=Cy3
Pg =X2Y0, Po=Xiy1, Pio=ay, P11=Dbys

(4.8)
P12 = X3Yo, P12 =X2Yy1, P14 =X1y2, Pis=2ay3

20 = PoS PLD P2D P3
21 = P4 Ps D Pe D Pr
Z2 = Pg b P9 b P10D P11
Z3 = P12 P13D P14 D P15

40

MN-type: Equation (4.9) is also derived form Equation (4.S)ep Mcreates the value of
a, b andc; Step Nfinishes the rest of Equation (4.5). A register is insertettvben
Step Mand Step Nto storea,b,c. x» and x3 in Figure (4.8) are separated in this

way, asx v and x N, x3v andxay in Figure (4.9).

z=xxYy (MN—type

a=XoDbXs, b=X®x3, C=x1DX
(4.9)
Zp = XoYo D X3y1 D XoY2 D X1Y3
71 = X1Yo @ ayrL by, © cys
2> = XoYo D X1y1 @ ay> @ bys

Z3 = X3Yo D X2y1 D X1y2 D ays3

The last operation in subbytes is the affine transformatiya.derive Equation (4.16)
to do the affine transformation, based on Equation (3.1)akqgu (4.1) and Equation (4.2).
First, we change the format of Equation (4.1) and Equatia®) (4

Considerp € GF((2%)?), q € GF(28):

P = {P7PePsP4P3P2P1P0}
q = {070605040302020l0 }

For Equation (4.1):

1. In expression odyg,... an3, replaceaa, ag andac by their expression
do=uDagdDapdas
ar=apdDay

ar=arday

41

az=aday

Ao =aubagdas
dnr=aadbarPasDas
dp=asPbarPardag

a3 =asday

2. Letpreplaceanx+ &, g replacea, we have Equation (4.10)

p=MAP(q), peGF((2*)?), qe GF(28)
Po=0doDgaD s D s
PL=01D 0
=01D
P2 =01D0q7 (4.10)
P3=02D G4
Pa=04S 05D 06
Ps=01Dgs D s D Q7
Pe=02D g3 s D qy

p7 =05 0q7

The same steps for Equation (4.2):

1. In expression ofy,... a7, replaceaa andag by their expression
ao = oD ano
a1 = ano D an1 D an3
P =a1Dan3DanoDan
ag=anoDan Da1dan
U =aq1Da3DanDan D3
A =anoDanDap

42

s =a1DanzPardaszd®an
a7 =apoPan1 a2 D an3

2. Letqgreplacea, p replaceanx+ &, we have Equation (4.11)

q=MAP1(p), qe GF(2%), pe GF((2%)?)
Co = PoD P4
d1 = Pad ps D p7
=P1DPPsDPsD
GR=pP1DPsDPsD P7 (4.11)
03 =P1DP4D PsD Pe
Os=P1DP3D P4D Ps D P7
05 = P2 P4D Ps
Je = P1DP2D P3D PaD Pz

47 = P2D P4D Ps D P7

Now we use Equation (3.1), Equation (4.10) and Equationl{4td derive Equation
(4.16).
LetX, y be the elements iGF(28):

!~ N A N N N N NS
X' = {X7XeX5XyXaXoX X0

Y = {Y7YeYysyayay2y1Yo}

According to Equation (3.1), we have:

43

Yo =Xy ®X, BXgBXg X B 1
Y1 =X B X DX BXg DX D 1
Y2 =Xy DX DX B X DX
Y3 =Xy B X BXo X B X, w1
Ya = Xg DXy & X5 ©Xg DXy
Y5 = X; B X B X5 X, DX B 1
Yo =Xo BX5BX, BXsBXg D1
Y7 = X3 Xy O X5 DX DX
In the following, we convert the result gfto the fieldGF((2*)?), and use th&F ((2%)?)

format to represent. Thus, we can derive the affine transformatioiGiR((24)?).

1. We letw to represeny in GF((2%)?) (wis one element iGF((24)?)). According to
Equation (4.10) (Map fronGF (28) to GF((2%)?)):

Wo =YoDYs4DYsDYe

W1 =Y1DY2
W2 =Y1BY7
W3 =Y2DYa

(4.13)
W4 =Ya4DBYs5DYe

W5 =Y1DY4DYe DY7
We =Y2DY3DYsDY7

W7 =Y5DYy7

2. Next, we useGF((2%)?) format to represent’ in Equation 4.12. Let be the

GF((2%)?) format ofx. From Equation 4.11, we have:

44

Xo=2D2%

X, =2®7H77

Xo =0 DUDLOL

X3=200UDLD% (4.14)
Xy =2 DBOLUDLDZ

X5 =22D2BZs

X =U0DPRIUBL

X, =®uBLOL

3. Now, we replace with its GF((2%)?) format (), and replace’ with its GF((24)?)
format (@2):
Wo =YoDYaDYs5DYe
= (XOXYBXEBX DX, D L) B (XD X B X DX DXy) B (X) DX DXy B Xy B X D
1) @ (X & X5 D%, X5 B X5 @ 1) (By Equation (4.12)
=X, BXgBX DX, D1
= (10u0B07)S(10Uu0LO%) D (20uD25) 0 (204002) 1 (By
Equation (4.14))
=%91=7%

In the same way, we can get:

45

Wo =75

W1 =21DpDZy

Wo =20D 75D Zs D Z3
W3=21PZDZDZ
(4.15)
W4 =20DP DU DPZDZsDZ7
W5 =21 DZ5DZs
We=220DZsD 77

W7 =23 75

4. Finally, for the consistency of the other equations is thesis, we replace by y, z

by x (x,y € GF((2%)?)). Leta = x5 ® Xg ® X7, we have:

y = AFF_TRANX)

a=Xs5@D Xe D X7

Yo=X6, Y1=X1DXoDX7 (4.16)

Yo=X0DX3DBXsDXe, Yz=X1ba
Ya=XoDXoDX4Da, Y5=X1DX5D Xg

Yo =XoDXe D X7, Y7=X3D X5

Figure (4.9) describes the proposed subpipelined ar¢hiteof subbytes iGF ((24)?).
The following symbols represent the equation for each iaudc block in Figure (4.9),
except thed, which is a simple 4-bit XOR operation. The dashed lines guFe (4.9)

stand for the registers.

46

x> —- Equation (4.3)[32] x e —- Equation (4.4)[32]

x 14 —- Equation (4.8) Step A x 18 —- Equation (4.8) Step B
xom andx gy —- Equation (4.9) Step M x 2y and x 3y —- Equation (4.9) Step N

x~1 —- Equation (4.7) AFF_T RAN—- Equation (4.16)

> X | i i
M | | |
n | e
N » xe [[4H
| v BiRe-Yn
LY — | D > x : AFF TRAN P>
1D XX :
aL T1A } 1B } k2N 4J}L
> X i i i
I i II i I i v
Figure 4.9: Pipelined Subbytes in composite fiélH((24)?)
Table (4.3) shows the time (ns) and area (slices) cost of salostage (I, 11, Ill, IV in

Figure (4.9)) when it runs on different FPGA devices. We qutA&£S round unit into 8

substages with the maximum delay determined by part Il ilbgigs.

Table 4.3: Path Delays and Number of Slices for Spartan2E/atek?2

Delay(ns):Slices I I 1l \Y
Spartan2E | 10.955:69| 11.083:27| 10.225:55| 10.025:18
Virtex2 7.052:69 | 7.752:27 | 6.925:55| 6.677:18

a7

4.4.3 Mixcolumns onGF((24)2)

Mixcolumns is another transformation which involves matlagic operations oG F((24)?).

We derive the equations to perform mixcolumns in compositd fn this subsection.

Subsection (3.3) describes mixcolumn in finite fi@& (28). SinceGF((2%)?) is an

isomorphic field taGF(28), and inGF ((2%)?), {02} is mapped tq 26}, {03} is mapped to

{27}, {01} is still {01}, Equation (3.3) can be mapped directly to Equation (4.17).

26 27 01 01
01 26 27 01
01 01 26 27

27 01 01 26

S0,0 So1
S10 S11

20 S21

30 SB1

$0,2
S1,2
2
3,2

$0,3 - - S’o,o
s13 | | S0
923 5'2,0
S33 | i %70

%01
Si1
$1
S31

%2
Si2
$2
S32

3
Si3
93
S33

(4.17)

Observing that ilGF ((24)?), {27} = {26} @ {01}, Equation (4.17) is equal to Equation

(4.18), whergg = 0,1, 2, 3:

S, = {26} x (S0 ®SLj) S| D% P Sj
()0, P PS8
={26} X (9,0 S}) ©S,j ©S1,j DS
S =1{26} x (9,0S)) 2S,j®S,| DS,

S
S

= {26} x

j
SNEES Y
j

(4.18)

Equation (4.18) presents the mixcolumn transformationn&f column of a state. We

implement the mixcolumn transformation as the structuféigure (4.10).

In the following, we derive Equation (4.22) to calculate 26 in GF((2%)?). That is,

we represent the results wi {02} in GF((2%)?):

1. Let,x, y € GF(28), using Equation (2.5) to calculage= x x {02}.

48

—eo—» X26

x26

\ A

AA A 4

YVYvY

!
o| (o] [®
i

—e—» X26

\ 4

2
S0,

S3, > P e x26

Yw

D |D| |D

Y

S’y

AA A4

—T—O—V

Figure 4.10:GF((2*)?) Based Mixcolumns

D

2
S’

2
S 3’j

Yo=X7, Y1=X0D X7, Y2 =X1

Y3=X2D X7, Y4 =X3D X7, Y5 =X4

Y6 = X5, Y7 = X6

(4.19)

2. Converty to the field element iIGF ((2%)?). Letw to represeny in GF((2%)?) (wis

one element iGF ((2%)2)). We have the same equation as Equation (4.13).

3. Next, we usé&SF((2*)?) format to represent. Letz be theGF((24)?) format ofx. z

is one element iGF ((2*)?). By Equation (4.11), we have:

49

X0o=20DZ

X1 =Z4PZ5DZy

XR=20D2 DDz

X3=21D2 D7D 7 (4.20)
Xe=21 D3P DD 27

X =2D24DZ5

Xe =21 DDBDOLUDZ7

X1 =DOUuDLDZ7

4. We replacex andy with their correspondin@F ((2%)?) format,z andw, we have:
Wo = Yo D Y4 D Ys @ Ye (By Equation (4.13))
= (x7) @ (xa D X7) @ (xa) & (xs) (By Equation (4.19))
=X3DX4D X5
—(RPUPLP%L) D (AP BOUDLDL) S (2D 25) (By Equation (4.20))
=DOBOUDZLDLDZL

By the same method, we derive:

Wo=22D0B3PZu DD D7z

W1 =Z20D2DZ

Wo=Z0B21 PO DL

W3=21D2D2DPZ5DZ (4.21)
Wy =230 7

W5 =20PZ3PZs P Z7

We=721DZ4DZ7

Wy =2oDZy

50

5. To be consistent, we replazavith x, and replacav with y (x,y € GF((2%)?)). In
addition, in order to calculate the mixcolumns operatidfisiently, we store the in-

termediate results. Let= X ®Xa), b = X3P Xg P X7, C = X1 ® X5, we have:

y=X®26, X,y € GF((2%)?)

a=XDX4, b=X3DXeDX7, C=X1DX5

Yo=adbdxs, y1=adxo (4.22)
Y2 =CHBXoDX3PXg, Y3=ChHabdXg

Y4 =X3DXs, Y5 =DbDXo

Ye =X1DX4a B X7, Y7=XBXs

This mixcolumns architecture (Figure (4.10)) is a 32-bitgli@l combinational logic.
When synthesized on Virtex2 XC2V2000, it costs 28 1-bit ganXOR gates, 44 1-bit
3-input XOR gates, four 1-bit 4-input XOR gates and four Bzbinput XOR gates. The
maximum combinational path delay is 7.922ns.

In the above section, we have designed all the modules in AESi@ldGF((24)?). In
this way, each byte of the data needs only one MAP before ttial iround and one inverse

MAP after the last round.

4.4.4 Subpipelined Keyschedule

There are two approaches to implement keyschedule: (1¢adcedated keyschedule and
(2) on-the-fly keyschedule. In the pre-calculated keysaledhe(Nr + 1) 128-bit round-

keys are generated before the encryption or decryptiombeand stored in the memory.
The addroundkey operation accesses the roundkeys byingféne corresponding address

in the memory. The advantage of this approach is that theckegkile only needs to be

51

performed once; however, the drawbacks include:
1. The(Nr+ 1) roundkeys costNr + 1) x 128 bits memory space;

2. The cipherkey cannot change frequently. Every time ihges, the roundkeys must

be recalculated.

In this thesis, we propose a new 32-bit on-the-fly keyscheniutomposite field
(GF((2%)?)) with 128-, 192-, 256-bit key sizes, where each 128-bit tkaty is generated
at every four clock cyles (32-bit at each clock). This is abié for our 32-bit encryption
architecture.

Table (4.1) shows the 32-bit roundkeys at each clock cydbe. following list explains

this table for the three key sizes.

e When key size=128 bits, Nr=10, it generates 11 128-bit rgays for both block A
and B from cycles 0 to 87.
The roundkeys for block A:
roundkey[0]{KA(0), KA(1), KA(2), KA(3) }
roundkey[1]{KA(4), KA(5), KA(6), KA(7) }
roundkey[10]{KA(40), KA(41), KA(42), KA(43)}
The roundkeys for block B:
roundkey[0]{KB(0), KB(1), KB(2) KB(3)}
roundkey[1]{KB(4), KB(5), KB(6), KB(7)}

roundkey[10]5 KB(40), KB(41), KB(42), KB(43)}

e When key size=192, Nr=12, it generates 13 roundkeys for blottk A and B from

52

cycles 0 to 103.

The roundkeys for block A:

roundkey[0]{KA(0), KA(1), KA(2), KA(3) }
roundkey[1]{KA(4), KA(5), KA(6), KA(7) }
roundkey[12]4 KA(48), KA(49), KA(50), KA(51)}
The roundkeys for block B:

roundkey[0]{KB(0), KB(1), KB(2), KB(3)}
roundkey[1]{KB(4), KB(5), KB(6), KB(7)}

roundkey[12]5 KB(48), KB(49), KB(50), KB(51)}

e When key size=256, Nr=14, it generates 15 roundkeys for bloitk A and B from
cycles 0to 119.
The roundkeys for block A:
roundkey[0]KA(0), KA(1), KA(2), KA(3) }
roundkey[1]{KA(4), KA(5), KA(6), KA(7) }
roundkey[14]5KA(56), KA(57), KA(58), KA(59)}
The roundkeys for block B:
roundkey[0]4KB(0), KB(1), KB(2), KB(3)}
roundkey[1]{KB(4), KB(5), KB(6), KB(7)}

roundkey[14]{KB(56), KB(57), KB(58), KB(59}

53

Because we are using the on-the-fly keyschedule, keysahaddl encryptor are shar-
ing the same clock, which means the general frequency isrdeted by the maximum de-
lay in both keyschedule and encryptor modules. To achieedfarment pipelining, proper
division in keyschedule is as important as in encryptor. Waevkthat subword is the most
costly part in keyschedule. In order to make the same maxigelay in both modules, we
implement subword in the same way as subbytes in encryptor.

In keyschedule module, rotword rearranges the positiomc éyte without changing
its value, hence the sequence of rotword and subword candrget. We do the subword
operation before rotword to save one multiplexer in keydale256.

All mathematic operations in keyschedule are transforméaifield GF((24)2). Sub-
word shares the same structure as in subbytes. Xorrcon ms@es XOR operation with
a round constant, which is initiallj01} and multiplied by{02} eachkeyschedule round
Keyschedule round is defined in this way. It begins whacounter= 0. If key size is
128, keyschedule round cycle is four; if key size is 192, kbgslule round cycle is six;
if key size is 256, keyschedule round cycle is eight. As d@rgld in Subsection (4.4.3),
in GF((2%)?), {01} is still {01}, {02} is mapped tq{26}. We can use Equation (4.22) to
generate round constant for each keyschedule rou@diii2+)?).

This keyschedule has three key size optioK&y128, Keyl92 andKey256. In the
following section, we discuss the generation of roundkeygsitails for these three key size
options. In the rest of the chaptegundkey, stands for 32-bit roundkey for each clock

cycle,roundkeystands for 128-bit roundkey for a round of AES.

Key128

When key size is 128 bits, the encryptor round count is tero BlecksA andB need 22

roundkeys Figure (4.11) illustrates the architecture of keyscheduhen key size is 128

54

bits.

q @ encryptor
reglster
ﬁw O W6 -OM W5 O WO W3 FOm W2 -Os W M’%_L

@K)‘SAMSBMSCMSD OMRW|

Subword

@
RC
GRQ')) N |[RC]

clk_counter

Figure 4.11: Architecture of Keyschedule 128

In our design, the first step is to map (MAP) cipherkey fr@® (28) to GF((2%)?).
After that, it performs its isomorphic functions ®F((2%)2). The output of keyschedule
areroundkey,s represented iGF((2%)2). They are the exact format required in encryp-
tion where the message blocks are also represent&d {124)2), hence no inverse MAP
follows roundkey.

In Figure (4.11), W7, ..., WO are 32-bit words separated lgfteiegisters, which are
used to store the previous eigioundkey,s. SA, SB, SC and SD are the results of the 4
parts of subword. We place three registers among the fostagés in subword, same asin
Figure (4.9). RW is the outcome of rotword. RC generatesdhad constant for xorrcon in
GF((2%?). mulis a 3-to-1 multiplexer controlled tk_counter which is the same signall
as in Figure (4.4) and Table (4.1). There are three diffetasés (a, b, ¢) to generate the
currentroundkey,. Table (4.4) explains the value of each register in Figurgl(4during
the first 15 clock cycles. In this table, the row titheall stands for the multiplexer in Figure
(4.11).a, bandc are the three cases. In the following expressiomsndkey,[i] stands for

the cell of this table with row ID ofoundkeyg, and column ID ofclk_counter=i.

55

Case a: clk_counter< 8 (initial round):

roundkeyp[clk_countef = MAP(cipherkeyclk_countet);

Case b: clk_counter>= 8 andclk_counter mod # 0 :
roundkey,|[clk_countef = roundkey,[clk_counter— 1] & roundkey,[clk_counter—
8]
roundkey[clk_counter— 1] is stored inWV7

roundkeyy[clk_counter— 8] is stored inWo0;

Case c: clk_counter>= 8 andclk_counter mod4 =0 :
roundkey,|[clk_countef = rotword(subwordroundkeyy|clk_counter— 5]))
@ roundkeyy|clk_counter— 8] & Rcon
rotword(subword roundkey[clk counter—5])) is stored inRW

roundkeyp[clk_counter— 8] is stored inWO0.
We give examples for each case.

e When clk_counter= 0, the firstroundkey, is MAPed from the first word of ci-

pherkey.roundkey,[0] = KA(0). (Case 3

e whenclk counter= 1, the secondoundkey, is MAPed from the second word of
cipherkey.roundkey,[1] = KA(1). KA(0) is moved to W7. In the mean time, KA(0)

finished the first part of subword and is stored in SBage g

e whenclk_counter= 8, KA(3) is moved in to RW, which means
KA(3) =rotword(subwordKA(3))). Nowroundkey,[8] = KA(4) = KA(3) KA(0)®

Rcon (Case ¢

56

Table 4.4: Key128 Roundkey Sequence

o = IS D K3 IS IS D K D 1S 1D K 1S 1)
i EISISlISlISININININISHSIS IS IS
RS EEEEEEEEEEEER
“IFFIFEFEEEHEEEEE
AREEEEEEEEEEEEEE
N EFEFEEEEEEEEEEE
NREEEEEEEEEEEEERE
N ISlNNTNINISTISTISISNIN] N SIS]S
EREEEEEEEEEEEEEE
R FINISTNISHSTISTISIN N IV ISLSTS
RREEEEEEEEEEEEEE
N FEFEEEEEEEEEEEE
P EEEEEEEEEEEEE
- NiNlIFlISIISISININININIS SIS
S EEEEEEEEEEEEE
N NIEIEIEIEININININ IS IS EELE
= SEEEEEEEREEEBEE
Sl ISlISHSISINININ NTIRISTISHIS IS
= SEEEEEE SEEEE
Sl IFlISHISINININI N “lI=lISIElE
= SEEEEE SEEEE
Sl IFlISINININ N SlS|S|S| S
= SEEEE =lal=l=
217 (8l2|2|S|S SlS|S| S
= | [=lalg= ===
NI NI SlS|S
= ace ==
SITOIS|E| S SlS
= == s
ST |S|S >
==l |2
=| S =
Lm..C_m..MWWWWWWWWSSSSR
S| |2

57

e whenclk_counter= 9, KA(4) is put into W7 and SA (after finishes the first part of
subword).roundkey,[9] = KA(5) = KA(4) ® KA(1). (Case B

Key192

When key size is 192 bits, the encryptor round count is 12ciBRand blockB need 104
roundkey,s. Cipherkey size does not affect the function entities. tSares the same
subword, rotword and xorrcon as in Figure (4.11). Howevee t key size, the structure
becomess more complex. When key size is 192, the keyschexiuid cycle is six while
the encryptor cycle is still four. This cycle difference vags extra treatment for the input
of subword. We can see in Figure (4.11) that, when key size€& Hits, the input of
subword is the roundkey. But when key size is 192 bits, thatiop subword is classified
into three cases. We use multiplexeull in Figure (4.12) to choose the input from case x,

y and z.

> encryptor
@7 mul2
- ‘ register 14.;@ a
»
C'
kw13---- WOt | W4 W3 W2} | WO £» | (Round
mull o key
f

- —_—_

74
T s 0o Al
‘ !
| ¢

AL sed | .
. R
| ——
clk_counter)

@ GF((2*))

Figure 4.12: Architecture of Keyschedule 192

58

Table 4.5: Key192 Roundkey Sequence

65

cipherkey | KA(0) | KA(1) | KA(2) | KA(3) | KB(0) | KB(1) | KB(2) | KB(3) | KA(4) | KA(S) KB(4) | KB(5)
cipherkey6 KA(5) KB(5)
mul2 a f b a d c e
mull X X z y
clk_counter | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 24 30
roundkey32 | KA(0) | KA(1) | KA(2) | KAQ3) | KB(0) | KB(1) | KB(2) | KB(3) | KA(4) | KA(5) | KA(6) | KA(7) | KB(4) | KB(5) KA(®) | KA(9) KA(12) KB(14)
wli3 KA(0) | KA(1) | KA(2) | KA(3) | KB(0) | KB(1) | KB(2) | KB(3) | KA(4) | KA(5) | KA(6) | KA(7) | KB(4) KB(7) | KA(8) KB(11) KB(13)
wi2 KA(0) | KA(1) | KA(2) | KA(3) | KB(0) | KB(1) | KB(2) | KB(3) | KA(4) | KA(S) | KA(6) | KA(7) KB(6) | KB(7) KB(10) KB(12)
wil KA(0) | KA(1) | KA(2) | KA(3) | KB(0) | KB(1) | KB(2) | KB(3) | KA(4) | KA(5) | KA(6) KB(5) | KB(6) KB(9) KA(15)
wl0 KA(0) | KA(1) | KA(2) | KA(3) | KB(0) | KB(1) | KB(2) | KB(3) | KA(4) | KA(5) KB(4) | KB(5) KB(8) KA(14)
W9 KA() | KA(1) | KAQ) [KAG) | KB() | KB(1) [KB2) [KBG) | KA@) KA [KB@) KA() KA(I3)
w8 KA(0) | KA(1) | KA(2) | KA(3) | KB(0) | KB(1) | KB(2) | KB(3) KA(6) | KA(7) KA(10) KA(12)
w7 KA(0) | KA(1) | KA(2) | KA(3) | KB(0) | KB(1) | KB(2) KA(5) | KA(6) KA(9) KB(11)
W6 KAO) | KA() [KAQ) [KAG) [KBO) [KB(I) KA@)|KAG) KAG®) KB(10)
w5 KA(0) | KA(1) | KA(2) | KA(3) | KB(0) KB(3) | KA(4) KB(7) KB(9)
w4 KA(0) | KA(1) | KAQ2) | KA(3) KB(2) | KB(3) KB(6) KB(8)
w3 KAO) [KA [KAQ) KB() | KBQ) KB(5) KA(l)
w2 KA(0) | KA(1) KB(0) | KB(1) KB(4) KA(10)
wl KAO) KAQ)|KB(0) KA(7) KA(9)
w0 KA(2) | KA(3) KA(6) KA(8)
SA KA(5) KB(5) KB(11) KA(17)
SB KA(5) KB(5)
SC KA(5) KB(5)
SD KA(S) KB(5)
RW KA(5) KA(11)

Table (4.5) shows the value of each register in Figure (4di2)ng the first 32 clock
cycles. Rowmull andmul2 correspond to these two multiplexers. In the following®seg

we explain the two multiplexers(ull andmul2) in Figure (4.12).

1. Multiplexer 1 fnull)

Case x: (clk_counter= 6 or 10) : SA= MAP(cipherkeg); (Cipherkey6 is the sixth
32-bit of the 192-bit cipherkey. We can see from Table (4&},twherclk_counter=
10, KA(5) must finish subword and rotword, so that we can proddA¢6),
whereKA(6) = KA(5) @ rotword(subword KA(5))) & Rcon Because it needs
five clock cycles to complet®tword(subword KA(5))), KA(5) must be shifted
into SA whenclk_counter= 6. That's why we need cipherkey6 to provide
KA(5).)

Case y: (clk_counter mod24 = 6 or 10) and ¢lk_counter> 23) : SA=W11®
W23 W3; (One example is wherlk_counter= 30,KA(17) needs to be shifted
into SA. Becaus&KA(17) is not stored in any register, we need to calculate
it from the existing dataKA(17) = KA(16) ® KA(11) = KA(15) ® KA(10) ®
KA(11). KA(15), KA(10) and KA(11) are stored in register W11, W2 an@,

respectively.)

Case z: (clk_counter mo24 = 0 or 20) and ¢lk_counter£ 0) : SA=W13;

This is why we need multiplexanull to differentiate three cases for the input of

subword when key size is 192 bits.
2. Multiplexer 2 mul2)

e Generateoundkey,s from cipherkey directly, KA(i), KB(i), i =0,...,5

60

Case a: (clk_counter< 100r = 12,13) : roundkeyy[clk_countelf = MAP(cipherkey
[clk_countef) (Becauseoundkey, is generated when it is needed in en-
cryption, the arrangement of rasvpherkeyin Table (4.5) is determined by

encryptor)

Generateroundkeyos KA(i), KB(i), i > 8 andi mod 6 # 0 (Because of the
round cycle difference between keyschedule and encryp®need to classify
it into three sub-cases, based on the vaklk ¢ounter mod4). Table (4.5)

shows these three sub-cases (b, ¢ and d), winenedkey,s are generated by

the formulak A/B(i) = KA/B(i — 1) © KA/B(i — 6).)

Case b: (clk_counter mod4 = 3 or 0) and €lk_counter> 7) :
roundkeyy|[clk_countef = roundkeyy|clk_counter— 1] roundkey,|clk_counter—
10[;
roundkey|clk_counter— 1] is stored in register W13;

roundkeyy[clk_counter— 10| is stored in register W4;

Case c: (clk_counter mod4 = 2) and €¢lk_counter> 7) :
roundkey,|[clk_countef = roundkeyy|clk counter— 1] @ roundkey,[clk counter—
14;
roundkey,[clk_counter— 1] is stored in register W13;

roundkey,|[clk_counter— 14 is stored in register WO;

Case d: (clk_counter mod4 = 1) and ¢€lk_counter mod24 > 7) :
roundkeyy|[clk_countef = roundkeyy|clk_counter— 5] @ roundkey;|clk_counter—
14;
roundkey|clk_counter— 5] is stored in register W9;

roundkey,|[clk_counter— 14 is stored in register WO;

Generateoundkey,s KA(i), KB(i), i > 8 andi mod 6 = 0 (The sub-cases are

61

caused by the same reason as the above case. The followirsyibazases are
based on the formuldA/B(i) = rotword(subword KA/B(i —1))) ® KA/B(i —
6) @ Rcon)

Case e: (clk_counter mo24 = 0 or 4) and ¢lk_counter> 7) :
roundkey,|[clk_countef = rotword(subword roundkeyy[clk_counter—1]))
@ roundkeyy[clk_counter— 14] & RC;
rotword(subword roundkey,[clk_counter—1])) is stored in register RW;
roundkey,[clk_counter— 14 is stored in register WO;

Case f: (clk_.counter mod24= 10o0r 14):
roundkeyy|clk_countef = rotword(subword roundkeyy[clk_counter—1]))
@ roundkeyy|clk_counter— 10| & RC,
rotword(subword roundkey,[clk_counter—1])) is stored in register RW;

roundkeyy[clk_counter— 10| is stored in register W4;

Table (4.5) lists instances for each case for bothl andmul2 during the first 32 clock

cycles.

e Whenclk counter= 0, roundkey,[0] = KA(0), which is MAPed from cipherketase g;

e Whenclk counter= 6, roundkey,[6] = KB(2), which is MAPed from cipherketase 3.
SA= KA(5), where KA(5) is MAPed from cipherkey6 and shifted into SAeaftin-

ished subword’s first pa®@ase 3;

e Whenclk counter= 10, roundkey,[10] = KA(6) = rotword(subword KA(5))) ®
KA(0) & Rcon(Case ¥;

62

e Whenclk counter= 11, roundkeyy[11] = KA(7) = KA(6) @ KA(1) (Case b;

e Whenclk_counter= 16, roundkey[16] = KA(8) = KA(7) & KA(2) (Case 0;

e Whenclk_counter= 17,roundkeyy[17] = KA(9) = KA(8) & KA(3) (Case ¢;

e Whenclk counter= 24, roundkey,[24] = KA(12) = rotword(subword KA(11))) &
KA(6) ®Rcon(Case ¢. SA=KB(11), where KB(11) is shifted into SA after finished

subword’s first partCase 3;

e Whenclk_counter=30,SA= KA(17) = KA(16) KA(11) = (KA(15) ®KA(10)) ®
KA(11) (Casey);

Key256

Keyschedule 256 is slightly different from keyschedule .1PBe keyschedule round cycle
is eight clock cycles. As shown in Figure (4.13):

There are four different cases to generatendkey,s:

Case a: (clk_counter< 16) :

roundkey,|[clk_countef = MAP(cipherkeyclk countet);

Case b: (clk_counter> 16) and ¢lk_counter mo4 # 0) :
roundkeyy[clk_countef = roundkey,|clk_counter— 1] & roundkeyy|clk_counter—

16;

63

mul

GF((2)")

Figure 4.13: Architecture of Keyschedule 256

roundkeyo|clk_counter— 1] is stored in register W15;

roundkey,|[clk_counter— 16 is stored in register WO;

Case c: (clk_counter> 16) and ¢lk_counter modB = 0) :
roundkey,|[clk_countef = rotword(subword roundkeyy|clk_counter— 5]))RW
@ roundkeyy|clk_counter— 16| & RC,;
rotword(subwordroundkey,[clk counter—5])) is stored in register RW;

roundkey,|[clk_counter— 16 is stored in register WO;

Case d: (clk_counter> 16) and ¢lk_counter mod4 = 0) and ¢lk_counter mod # 0) :
roundkey,|clk_countelf = subword roundkeyyclk_counter—5|) & roundkeyo|clk_counter—
16];
subwordroundkey|clk_counter— 5]) is stored in register RW;
roundkeyp[clk_counter— 16| is stored in register WO.
This is why we change the sequence of subword and rotworchduttword before

subword saves one multiplexer when key size is 256 bits.

Table (4.4.4) gives instances for each case.

64

When clk_counter= 0, roundkey,[0] = KA(0), where KA(0) is MAPed from ci-

pherkey Case 3;

When clk_counter= 16, roundkey,[16] = KA(8) = rotword(subword KA(7))) ®
KA(0) @ Rcon(Case ¢;

Whenclk_counter= 17, roundkey[17] = KA(9) = KA(8) & KA(1) (Case B;

When clk_counter= 24, roundkey,[12] = KA(12) = subwordKA(11)) ¢ KA(4)
(Case 0;

65

99

Table 4.6: Key256 Roundkey Sequence

cipherkey | KA(0) KB(7)
mul C b C
clk reg 0 15 16 17 18 19 20
roundkey32 | KA(0) KB(7) | KA(8) | KA(9) | KA(10) | KA(11) | KB(8)
wl5 KB(6) | KB(7) | KA(8) [KA(9) | KA(10) | KA(11)
wl4 KB(5) | KB(6) | KB(7) | KA(8) | KA(9) | KA(10)
wl3 KB(4) | KB(5) | KB(6) [KB(7) | KA(8) | KA(9)
wl2 KA(7) | KB(4) | KB(5) | KB(6) | KB(7) | KA(S)
wll KA(6) | KA(7) | Kb(4) | KB(5) | KB(6) | KB(7)
w0 KA(0) | KA(1) | KA(2) | KA(3) | KB(0)
SA KB(6) | KB(7) | KA(8) [KA(9) | KA(10) | KA(11)
SB KB(5) | KB(6) | KB(7) | KA(8) | KA9 | KA(10)
SC KB(4) | KB(5) | KB(6) [KB(7) | KA(8) | KA(9)
SD KA(7) | KB(4) | KB(5) | KB(6) | KB(7) | KA(8)
RW KA(6) | KA(7) | KB(4) | KB(5) [KB(6) | KB(7)

Chapter 5

Implementation Performance And Comparison

Literature regarding hardware implementation of AES haxenpublished. The compari-
son tables listed in the literatures are synthesized bpwuadesign tools on different FPGA
chips. Although the difficulty of comparison about FPGA implentations was reported,
there is still no proved measure to get a real fair comparmsoang different architectures.
Even for the devices from the same company (Xilinx), diffeéfamilies use different tech-
nology which leads to different frequency. For examplej@sh Virtex 5 has four LUTSs
(Look Up Tables) instead of two in previous families [6], whileads to different area cost
(number of slice).

Since AES standard includes encryption, decryption andgdesdule with three key
sizes, it is up to the designers to choose which function thayld like to realize. Obvi-
ously, more functions need more resource. Hence it is redd@no compare architectures
providing similar functions.

In this chapter, we first classify previous AES architecsunto different categories and

then use tables to compare their performance.

1. Encryption and Decryption: AES architectures include encryption and decryption
units. In[1, 3,5, 8, 9, 17, 33, 22, 27, 28], they provide fumas for both encryption
and decryption. As a symmetric algorithm, encryption andrgj@ion share same
units. With the parameter indicated by the user, it execemesyption or decryption
exclusively. Some other AES architectures only focus omygtion [2, 4, 11, 12,

25, 26, 31].

2. Key Sizes: AES uses data size of 128 bits but offers three key sizes (1@8and
256 bits). 128-bit is the most common choice in the reporesighs [3, 4, 5, 9, 12,

67

33, 26, 27, 28, 34]. However, as reconfigurability is one oktnmportant factors
for FPGA implementations, options for all three key sizesiacluded in a number

of designs [1, 2, 17, 22].

3. Key Expansion: The keyschedule in AES generates roundkeys for each roured. T
roundkeys can be previously calculated and stored in mefdor®, 3, 5, 22, 27].
This method results in an acceptable initial delay when Hia glize is relatively large
compared with the key size. A more flexible approach is théherfly keyschedule
[4,9, 12,17, 33, 26, 28, 34] which conducts an on-line calitoih of roundkeys for
each 128-bit data block. On-the-fly keyschedule affectgémeral frequency as both
the data unit and key unit share the same clock, especiabytlis employed for all
the three key sizes. There are also some architecturesainat chclude keyschedule

8, 11, 13, 31].

4. BRAM based S-Box and combinational logic based S-BoxDifferent approaches
for S-Box implementation have obvious impact on AES perfamoe. BRAM based
approaches [5, 8, 13, 17, 26, 27] are preferred when low ayshis required. It
saves the slices required in combinational logic basedoagpr Hence it is not
reasonable to compare the ratio of throughput/slice betB&AM-based S-Box and
combinational logic based S-Box [1, 2, 9, 11, 12, 13, 33, 2,28, 31, 34]. Good
et al. [9] used a term (32bits/slice) to convert number of BfAo number of slices
required to implement the equivalent distributed memorut, Bhe estimates vary
between 8 and 32 bits/slice depending on the functionadityuired. In this thesis,

we only compare our design throughput/slice with non-BRAlWiementations.

The above four categories summarize the majors factorstaffethe performance in

hardware implementation of AES. Table 5.1 compares th@pednce of the architectures

68

Table 5.1: Comparisons of BRAMs Based AES Architecture

Design Device Fr(?\mg)n Y Slices| BRAMs Tr}ﬁggg ut
SUEn | | e | s n | s
Cho[%(i)wiec)Y(I:T/T(E)E)(O 95 12600 80 12100
T | w | m| o |

etCZﬁrEg] Si’é@;’;‘;z 3850 | 200 2 38

i A I N
T Ao | w0 | owe

using BRAMs. Table 5.2 compares the architectures withdRABls. Table 5.3 summa-
rizes the functions provided by these architectures.

Among the architectures using BRAMs, Chodowiec [8] emptbitdly unrolled sub-
pipelining achieving the highest throughput with the |atgesource cost. Recently,
Chodowiec et al. made a compact design costing 222 sliceSjpagan2 device offering a
throughput of 166Mbps [5].

In our proposed architecture, we do not use BRAM. In Table B.2an be seen that
Good et al. achieves the highest throughput of 25.107 GbfSpantan3 XC3S2000. It
employs fully parallel loop unrolled architecture whichatdates multiplicative inverse of
each byte over composite fie@F ((2*)?). It also gets the frequency of 196.1MHz. But it
only deals with 128-bit key size and costs 17425 slices. Aadully unrolled architecture
is proposed by Zhang et al. [34]. This design used numbeatés-in-critical-path to place
the pipeline cuts. It subpipelines a round into seven sglstand achieves 21.556 Gbps
with the throughput/slice ratio of 1.956.

Compared with the previous architectures, our design Exus the low cost, non-

69

Table 5.2: Comparisons of Non-BRAMs Architectures

cosn || oee | "GO G5 Mo | e
ef;a?_o;] i%@g;%lgg 196.1 17425 25107 1.441
etzarl}_a?gdf] >\(/C|3|?/E.ICE)§(|)EE 168.4 11022 21560 1.956
éJta;l\{i?lezr} X\C/;ZR\IZI‘EO)E)O 139.1 10750 17800 1.656
et'\gﬁj_c[iil] \;!5;5;(225 169.1 9446 21640 2.291
;fg}s'[‘fg{ V'FF;TlEO)((f 110 7300 3500 0.479
e?glﬁr[];] SPARTANS 150 1800 1700 0.944
i?ﬁ? ;/éT/E%égE 167 1767 2085 1.180
B I e T
Our Desisgn X\C/:IE\-/I-ZI‘EO)E)ZOE 277.4 523 807 1.543
e’f\ ;Tl_r?l])YCIJT/-I;E);)(CI)EE 135 510 432 0.847

70

BRAM implementations. There were not many literatures i lthw-cost AES designs.
Pramstaller et al. proposed a compact design costing 1k&s sh [22]. Its pre-calculate
key generator can deal with three key sizes. Standaert ¢8H).made a single encryp-
tion architecture with 1767 slices which provides Gbp=létiroughput. Alam et al. [1]
reported a design including encryption, decryption andhanfly keyschedule for 3 key
sizes, which achieves 432 Mbps with the frequency of 135MHz.

Compared with similar previous works, our proposed lowtensl efficient AES archi-
tecture only uses 523 slices, and achieves the throughg06dfibps when implemented in
Virtex 2 XCV2V2000. The throughput/area ratio is 1.543, @bhis relatively high in low-
cost designs< 2000 slices). The proposed design can be efficiently appliedmputing-

resources restricted environments, such as wirelessateaitd embedded devices.

71

Table 5.3: Comparisons of AES Architectures Functions

Design

Encryption

Decryption

KeySchedule

KeySize

BRAMs

Samanta
[27]

Pre-Calculats

128

Chodowiec

[8]

Chodowiec
et al. [5]

Pre-Calculats

128

Satoh
et al. [28]

On-The-Fly

128

Hodjat
etal. [11]

Jarvinen
etal. [12]

On-The-Fly

128

Good
et al. [9]

On-The-Fly

128

Zhang
et al. [34]

On-The-Fly

128

Chang
etal. [4]

On-The-Fly

128

Pramstaller
etal. [22]

Pre-Calculats

128/192/256

Saggese
et al. [26]

On-The-Fly

128

Standaert
etal. [31]

McLoone
etal. [17]

On-The-Fly

128/192/256

Lemsitzer
etal. [13]

Bulens
etal. [3]

Pre-Calculate

128

Alam
etal. [1]

On-The-Fly

128/192/256

Our Design

On-The-Fly

128/192/256

72

Chapter 6

Conclusion

AES is an important and popular cryptographic algorithmeouse the information and
data transmission. In this thesis, we propose a compaatfigaoable FPGA architecture
for the AES implementation.

The 32-bit single round unit design results in low area castich makes it suitable
for low-end devices. The combinational logic approach ofSAiEnplementation elimi-
nates the need for BRAMs. Full composite fie@H((2*)?)) based design decreases hard-
ware complexity of arithmetic operations in AES. We applp@pelining technology in
both encryptor and keyschedule modules to optimize thedégesa ratio, which achieves
1.543Mbps/Slice in Virtex 2 XCV2V2000. Besides, the capgbio deal with three key
sizes makes our design an efficient reconfigurable architeof AES.

The throughput of our proposed design achieves 805.8Mbjpequires less than a
guarter of the resources of a Xilinx Spartan2 FPGA, whichis of the smallest FPGA de-
vices. The performance comparison indicates that the gexpAES architecture achieves
higher throughput than previous compact designs.

FIPS standard [20] provides an equivalent inverse ciphéciwdwitches the sequence
of the four transformations in decryption round so that thergption and decryption can
share the same functions, such as the multiplicative irmems subbytes. In our design, the
encryption conducts shiftrows before subbytes. When impl&ing the equivalent inverse
cipher, it only needs to switch the relative sequence ofmxeolumns and addroundkey.
The positions of inv-shiftrows and inv-subbytes are noingeal. The proposed design can
be easily modified into an equivalent cipher.

In conclusion, the proposed compact and reconfigurable A€ERitacture has high

throughput and low area cost, which is very useful in the aating restricted environment

73

and wireless devices.

74

Bibliography

[1]

[2]

[3]

[4]

[5]

Monjur Alam, Santosh Ghosh, Dipanwita RoyChowdhuryd dndranil Sengupta.
Single Chip Encryptor/Decryptor Core Implementation of\Elgorithm. InVLSID
'08: Proceedings of the 21st International Conference orsSVDesign pages 693—
698, Washington, DC, USA, 2008. IEEE Computer Society.

Monjur Alam, Sonai Ray, Debdeep Mukhopadhayay, San@stsh, Dipanwita Roy-
Chowdhury, and Indranil Sengupta. An Area Optimized Regoméible Encryptor for
AES-Rijndael. INDATE '07: Proceedings of the conference on Design, autanati
and test in Europgpages 1116-1121, San Jose, CA, USA, 2007. EDA Consortium.

Philippe Bulens, Francois-Xavier Standaert, Jeamides Quisquater, Pascal Pelle-
grin, and Gael Rouvroy. Implementation of the AES-128 orté¥ir5 FPGAs. In
Progress in Cryptology - AfricaCrypt 200Bages 16 — 26. Springer, 2008.

Chi-Jeng Chang, Chi-Wu Huang, Hung-Yun Tai, and Mao+Ywan. 8-bit AES
Implementation in FPGA by Multiplexing 32-bit AES Operatio In ISDPE ’'07:
Proceedings of the The First International Symposium onaD®&rivacy, and E-
Commercepages 505-507, Washington, DC, USA, 2007. IEEE Computeie§o

Pawel Chodowiec and Kris Gaj. Very Compact FPGA Impletagan of the AES
Algorithm. In CHES pages 319-333, 2003.

[6] Adrian Cosoroaba. Achieve Higher Performance with &6 FPGAs. Xilinx, Inc.

[7]

[8]

Available athttp://china.xilinx.com publications/xcellonlinel/xcell 59/xc_
pdf / p016- 018 59- consor oba. pdf .

J. Daemen and V. Rijmen. AES Proposal: Rijndael. Tecnieport, National Institute of
Standards and Technology (NIST). Availablehat p: // www. ni c. funet. fi/pub/crypt/
crypt ography/ symet ric/ aes/ ni st/ Ri j ndael . pdf.

Kris Gaj and Pawel Chodowiec. Comparison of the HardwRegormance of the AES Can-
didates Using Reconfigurable Hardware ABS Candidate Conferengeages 4054, 2000.

[9] Tim Good and Mohammed Benaissa. AES on FPGA from the Bagtiethe Smallest. In

[10]

[11]

Josyula R. Rao and Berk Sunar, editaZ$JES volume 3659 ol_ecture Notes in Computer
Sciencepages 427-440. Springer, 2005.

D.H. Green and I.S. Taylor. Irreducible Polynomial@pZomposite Galois Fields and Their
Applications in Coding Techniques. pages 935-939, Semefidi4.

Alireza Hodjat and Ingrid Verbauwhede. A 21.54 Gbitbidly Pipelined AES Processor
on FPGA. InFCCM '04: Proceedings of the 12th Annual IEEE Symposium aidFi
Programmable Custom Computing Machinpages 308-309, Washington, DC, USA, 2004.
IEEE Computer Society.

75

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Kimmo U. Jarvinen, Matti T. Tommiska, and Jorma O. $&y® Fully Pipelined Memoryless
17.8 Gbps AES-128 Encryptor. FPGA '03: Proceedings of the 2003 ACM/SIGDA eleventh
international symposium on Field programmable gate arrggges 207-215, New York, NY,
USA, 2003. ACM.

Stefan Lemsitzer, Johannes Wolkerstorfer, Norbetbéte and Matthias Braendli. Multi-
gigabit GCM-AES Architecture Optimized for FPGAs. In Pdskaillier and Ingrid Ver-
bauwhede, editor€CHES volume 4727 olecture Notes in Computer Sciengages 227—
238. Springer, 2007.

Liberatori, M. Otero, F. Bonadero, J.C. Castineir&d)NMDP, and Mar del Plata. AES-128
Cipher. High Speed, Low Cost FPGA Implementation. pages-198, Mar del Plata, 2007.
IEEE Computer Society.

Rudolf Lidl and Harald Niederreiter.Finite Fields (Encyclopedia of Mathematics and its
Applications) Addison-Wesley, 1983.

Robert J. McElieceFinite Fields for Computer Scientists and Enginedfduwer Academic
Pub, 1987.

Maire McLoone and John V. McCanny. High Performancegki-Chip FPGA Rijndael Al-
gorithm Implementations. IGHES '01: Proceedings of the Third International Workshop o
Cryptographic Hardware and Embedded Systgmages 65—76, London, UK, 2001. Springer-
Verlag.

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Vans€wt. Handbook of Applied
Cryptography CRC Press, Inc., Boca Raton, FL, USA, 1996.

Mike Nelson. Why You Should Use FPGAs in Data SecuritylinX is an Ideal Plat-
form for Data Security Applications. Storage and Servemxtival Markets. Xilinx, Inc.
Available athtt p: //ww. xi | i nx. com publ i cations/xcel | online/xcell 57/xc_pdf/
p054- 057_57- secure. pdf .

NIST. Announcing the ADVANCED ENCRYPTION STANDARD (AE). Available aht t p:
[/ csrc.nist.gov/publications/fips/fipsl97/fips-197.pdf.

Christof PaarEfficient VLSI Architectures for Bit-Parallel ComputationGalois Fields PhD
thesis, Institute for Experimental Mathematics — Univgrsi Essen, 1994.

Norbert Pramstaller, Stefan Mangard, Sandra Domsyiland Johannes Wolkerstorfer. Ef-
ficient AES Implementations on ASICs and FPGAs. In Hans DdbbheVincent Rijmen,
and Aleksandra Sowa, editoSES Conferengevolume 3373 oLecture Notes in Computer
Sciencepages 98-112. Springer, 2004.

Norbert Pramstaller and Johannes Wolkerstorfer. Avelsial and Efficient AES Co-processor
for Field Programmable Logic Arrays. 3203/2004:565-5004

Vincent Rijmen. Efficient Implementation of the RijreleS-box. Available abt t p: / / www.
conms. sci tech. susx. ac. uk/fft/crypto/rijndael - shox. pdf.

76

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vifgymar, Josyula R. Rao, and Pankaj
Rohatgi. Efficient Rijndael Encryption Implementation iv€omposite Field Arithmetic. In
CHES '01: Proceedings of the Third International Workshap @ryptographic Hardware
and Embedded Systenpages 171-184, London, UK, 2001. Springer-Verlag.

Giacinto Paolo Saggese, Antonino Mazzeo, Nicola Magzap and Antonio G. M. Strollo.
An FPGA-Based Performance Analysis of the Unrolling, Glirand Pipelining of the AES
Algorithm. InFPL, pages 292-302, 2003.

Sounak Samanta. FPGA Implementation of AES Encrypind Decryption. Sardar Val-
labhbhai National Institute of Technology, Surat. Avaiéahthtt p: // wwv. desi gn- reuse.
comarticles/ 13981/ fpga- i npl enent at i on- of - aes- encrypti on- and- decrypti on.
htn .

Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Mtioh. A Compact Rijndael Hard-

ware Architecture with S-Box Optimization. IASIACRYPT '01: Proceedings of the 7th
International Conference on the Theory and Application offfology and Information Se-

curity, pages 239-254, London, UK, 2001. Springer-Verlag.

Lin Shu and Costello Daniel Error Control Coding: Fundamentals and Applicatiorren-
tice Hall, 1983.

William Stallings. Cryptography and Network Security-Principles and Praesi¢Fourth Edi-
tion). Pearson Prentice hall, 2006.

Francois-Xavier Standaert, Gaél Rouvroy, Jeampdes Quisquater, and Jean-Didier Legat.
Efficient Implementation of Rijndael Encryption in Reconfigble Hardware: Improvements
and Design Tradeoffs. IGHES pages 334-350, 2003.

Johannes Wolkerstorfer, Elisabeth Oswald, and Maemberger. An ASIC Implementation
of the AES SBoxes. IICT-RSA '02: Proceedings of the The Cryptographer’s Tracthat
RSA Conference on Topics in Cryptolpggges 67—78, London, UK, 2002. Springer-Verlag.

Namin Yu and H.M. Heys. Investigation of Compact Hardevémplementation of the Ad-
vanced Encryption Standard. pages 1069— 1072, 2005.

Xinmiao Zhang and Keshab K. Parhi. High-speed VLSI dedtures for the AES algorithm.
IEEE Trans. Very Large Scale Integr. Sy412(9):957-967, 2004.

77

