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Abstract

This research focuses on determining the effect of sociolinguistics characteristics (par-

ticularly, gender and region) on computer programs. Previous studies have demonstrated

the use of machine learning techniques to analyze the relationship between sociolinguistics

features and programming language. We collected C++ programs from an open source pro-

gramming contest website. The features were calculated based on three software metrics:

lines of code, cyclomatic complexity and Halstead metrics. Using five machine learning

algorithms we trained several models and performed experiments to compare their perfor-

mance. To investigate the significance of the features, we also carried out statistical and

correlation analysis. As indicated by the experimental results, our models successfully pre-

dicted the gender of the programmers with 91.7% accuracy when programmers solved the

same problems. When the programmers solved different problems, the model achieved an

accuracy of 86.4%. Our models also efficiently classified the region of the programmer

with 75.2% accuracy.
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Chapter 1

Introduction

Sociolinguistics is the study of language and other social factors including gender, re-

gion, and class [43]. The use of a language may vary depending on social variables such

as gender, region, age, social or economic status of the human users. Linguistic vari-

ables are correlated with social variables and can be analyzed to study sociolinguistics

variations [32]. There exist a wide variety of languages, including natural languages and

programming languages. According to Wardhaugh, “Natural language is a rich system

that allows its users to communicate with each other by following some grammar rules”.

Examples include English, Bengali, Hindi, and French [43]. In contrast, a programming

language is defined as a formal language that is employed to provide instructions to com-

puters to perform specific tasks [22]. Several studies have demonstrated gender-based lin-

guistic variations in textual documents [3, 5, 16]. Machine learning techniques are widely

used to categorize text documents [2, 3, 19]. Recently, gender-based analysis of computer

programs has also become an area of interest for researchers [16, 17, 32, 35, 36].

1.1 Motivation and Hypothesis

To examine the effect of gender on computer programs, Fisher et al. [9] analyzed com-

puter programming contest problems and determined several factors that influenced male

and female contestants’ participation while solving a contest problem. The authors claimed

that female participants solved fewer problems than male participants as the female partici-

pants tended to develop efficient solutions rather than rapidly obtaining a working solution.

1



1.1. MOTIVATION AND HYPOTHESIS

Rafee [35] examined C++ computer programs to determine gender and region-based

sociolinguistics variations. The author generated several features (a feature is a measurable

unique characteristic that can be observed to predict labels) based on the software metric

lines of code and suggested that male programmers use fewer comments and blank lines

than female programmers. All of these studies have helped us to generate the following re-

search questions: Do sociolinguistic variations exist in the computer programs of computer

programming contests? Do male and female contestants write programs differently to solve

a particular programming contest problem?

To answer our research questions, we analyze computer programming contest data to

investigate the effect of sociolinguistics variables, gender and region on the computer pro-

grams. To solve any programming contest problem, a programmer has to follow a series of

steps. The first step is to identify the problem. Next, some brainstorming should be done to

figure out the possible ways to start. The next step is to determine the best possible solution

and possibly write some algorithms or pseudo code. The final step is to write the program

and debug if needed [21]. The entire process of solving a programming contest problem

differs from person to person. For example, one programmer may solve a programming

contest problem by writing 100 lines of code. In contrast, another programmer may solve

the same problem by writing 80 lines of code. In the software industry, the development of

a piece of software may require the involvement of many people: analysts, programmers,

developers, testers and users. Thus, the software development process generally follows a

Software Development Life Cycle (SDLC) model, for example the Waterfall model or an

Iterative model [39]. While solving any programming contest problem a contest program-

mer would not follow any SDLC model because of time constraints. As well, they may

be the only contributor. Thus, we hypothesize that computer programs from programming

contests can be analyzed to find differences in programming styles of individual program-

mers, particularly male and female programmers. Since programmers from different parts

of the world participate in programming contests, programming contest data can also be a

2



1.2. CONTRIBUTIONS

potential data source to determine the effect of region on the programmer.

In [35], Rafee considered only one software metric, lines of code. Based on this he cal-

culated several features and executed his experiments. However, the author did not analyze

information such as the cyclomatic complexity and effort of the programs.

Several studies, e.g. [26], have demonstrated a strong correlation between lines of code

and effort analysis, and a stronger correlation between lines of code and complexity analy-

sis. Therefore, in our research, we aim to analyze contest programs and generate features

based on three software metrics: lines of code [7], McCabe’s cyclomatic complexity [25],

and Halstead metrics [12]. We hypothesize that this additional information may offer bet-

ter results or tell us more about the effort, the time required to complete the program, and

the number of instances of decision logic that may vary depending on the gender of the

programmer. These metrics are used in analysis to investigate the gender-based and region-

based sociolinguistics differences of the programming contest programmers through vari-

ous machine learning approaches.

Although Rafee carried out a similar work, that work was performed with a smaller

data set using only one software metric. We aim to repeat the work with larger data sets

and use three different software metrics. In this research our aim is to identify the underly-

ing information whether males and females or people from different regions have different

approaches to programming rather than just the accuracy. Therefore, to identify the differ-

ent programming approaches we plan to use additional features that may help us to get the

underlying information about the approaches of programming.

1.2 Contributions

In this research, we investigate computer programming contest programs to find dif-

ferences in the programming styles of the computer programmers. We attempt to classify

the computer programs based on the two sociolinguistics variables: gender, and region.

The classification is based on analysis of features within the programs based on three soft-

3



1.3. ORGANIZATION OF THESIS

ware metrics: lines of code, McCabe’s cyclomatic complexity, and Halstead metrics. The

machine learning tool WEKA [45] is used to classify the computer programs based on the

gender and region of the programmers. The contributions of our research are as follows:

• In this research, we analyze the programming styles of male and female program-

mers. We also determine which programming features vary according to the region

of the programmers. Therefore, the results of our analysis can potentially benefit

researchers who aim to investigate the thought process of computer programmers.

• We conduct our research based on professional software metrics which are used to

measure the readability and standard of programs. Thus, our sociolinguistics research

could be used to develop a tool/system to guide contest programmers in developing

professional programming styles.

• We determine which features are essential for gender-based and region-based clas-

sification. Our work may assist project managers in software companies to group

programmers who have analogous programming styles such as preference for fewer

lines of code, more comments in the programs, or similar logic implementation pat-

terns. Alternatively, our research may help managers to group programmers prefer-

ring different programming styles, which may be beneficial to achieve a successful

product.

1.3 Organization of Thesis

In Chapter 1, the motivation and hypothesis of this research are discussed with a brief

introduction.

Chapter 2 provides the definitions and details on sociolinguistics, three software met-

rics, machine learning, WEKA, classification algorithms or classifiers, validation technique,

and evaluation methods. The related work is also discussed in this chapter.

4



1.3. ORGANIZATION OF THESIS

Chapter 3 describes our methodology for data collection, data preparation, and feature

selection tasks.

Chapter 4 discusses the programming environment, all the experiments with numerical

results, and the threats to the validity of this research.

Chapter 5 presents an analysis of the features that are highly relevant to identify different

programming styles of the programming contest programmers.

Chapter 6 concludes this thesis with a summary of the research and suggestions for

future research.

5



Chapter 2

Background and Literature Review

2.1 Sociolinguistics

The study of sociolinguistics examines social variables such as language, gender, age,

region, education, and ethnicity to find connections between language and society [43].

Holmes [13] described how the usage of words varies according to the gender of the speak-

ers. The author also provided examples that demonstrate the regional-based linguistic and

pronunciation variations among English-speaking nations. According to Labov [20], social

variables such as gender, region, age, socio-economic class, and ethnicity may influence

an individual’s linguistic expression. Several studies have explored the effect of sociolin-

guistic variables on written documents including [2, 3, 5, 14, 16]. For example, Ishikawa

investigated university students writing under controlled conditions to determine text-based

linguistic variations [14]. In her study the author provided two specified topics and word

limitations to the participants who were asked to write an argumentative essay. The results

showed that male participants used more nouns to describe facts, whereas female partici-

pants used more pronouns, intensifiers, and modifiers to express their opinions.

2.2 Software Metrics

Software metrics are “Measures of evaluating some characteristics or attributes of a

software entity that are computable or countable” [15]. To determine the quality of a piece

of software, various standard metrics are used. Each metric measures some properties of

the software which are known as features. In machine learning, the performance of a model
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highly depends on the selection of appropriate features. Irrelevant features may negatively

affect the performance of the machine learning model. In our research, we consider three

software metrics: Lines of Code [7], McCabe’s cyclomatic complexity [25] and Halstead

metrics [12] to calculate the relevant features. Details of these metrics are given in the

sections below.

2.2.1 Lines of code

Lines of code is one of the simplest and most widely used software metrics. Fenton et

al. [7] defined lines of code as a total of non commented source statements and commented

source statements. Non commented source statements could be any statement in the pro-

gram, including program headers, declarations, executable and non executable statements,

whereas commented source statements could be comments and blank lines.

The features that we use for our research based on lines of code are defined as fol-

lows [35]:

• Total Lines of code (LOC) - The total number of lines or statements including source

code lines, comments and blank lines is referred to as total lines of code.

• Comments - The lines in source code that are useful to provide information about the

source code are termed as comments. All lines provide information, but comments

are not executable.

• Physical executable source lines of code (SLOCP) - Physical executable source

lines of code is defined as the total number of lines in the program excluding the

comment lines. Blank lines are included in SLOCP. The equation for calculating

SLOCP is as follows:

SLOCP = LOC−Comments (2.1)

• Logical executable lines of code (LLOC) - Logical executable lines of code is de-

fined as the total number of lines in the program excluding comments and blank lines.
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The value of LLOC can be calculated, using Equation 2.2:

LLOC = LOC−Comments−blank lines (2.2)

• Blank lines - The total number of lines that are empty and do not contain any char-

acters are referred to as blank lines.

Let us consider the sample program shown in Listing 2.1:

• Total number of lines of code (LOC) = 5,

• total number of comments = 1, and

• total number of blank lines = 0.

From Equation 2.1 SLOCP is calculated as

SLOCP = 5−1

= 4.

Using Equation 2.2, the value of LLOC is calculated as

LLOC = 5−1−0

= 4.

1 // This is a comment
2 for (i = 0; i < 100; i++)
3 {
4 cout <<"This is a sample program";
5 }

Listing 2.1: Sample program for LOC metrics example.
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2.2.2 McCabe’s cyclomatic complexity

According to McCabe [25], cyclomatic complexity is a software complexity metric that

measures the amount of decision logic in a single software module. Cyclomatic complexity

is based on the structure of the software’s control flow graph, and control flow graphs

express the logic structure of software modules. Watson et al. [44] defined a module as “A

single function that could be used as a design component via a call or return mechanism,

and each module has a single entry as well as an exit point”. The authors [44] provided an

example of a control flow graph based on the C programming language. In C, a function

is considered to be a module. Each module has a corresponding flow graph which consists

of nodes and edges to express the logic structure of that module or function. The nodes

correspond to the computational statements, and the edges represent the transfer of control

between nodes. Each possible execution path of a software module has a corresponding

path from the entry node to the exit node in the module’s control flow graph [44].

In order to determine the cyclomatic complexity of each module, the flow graph G of

the module is drawn. For each connected component there is only one single entry node

and one exit node for which 2 is added in the equation of the cyclomatic complexity. Then

the cyclomatic number is found using Equation 2.3

C(G) = e−n+2p (2.3)

where

• C(G) is the cyclomatic number of graph G,

• e is the number of edges in the graph,

• n is the number of nodes, and

• p is the number of the strongly connected components [44].
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The value of C(G) for each module should be less than 10, otherwise the module is

considered to be complex. Since complex modules are generally more difficult to maintain

and modify, they tend to have more errors and bugs [15].

For example, we can consider the sample program shown in Listing 2.2. The program

compares two integer values and returns the greater value.

1 int compare(int x, int y)
2 {
3 if (x > y)
4 int z = x;
5 else
6 z = y;
7 return z;
8 }

Listing 2.2: Sample program for cyclomatic complexity example.

return

z

z = x z = y

x > y

?

Start

End

yes no

Figure 2.1: Control flow graph for the sample program in Listing 2.2.

If we consider the control flow graph in Figure 2.1, excluding the start and end nodes,
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the number of nodes n is 4, the number of edges e is 4 and the number of connected com-

ponents p is 1 since we are considering one control flow graph of a single program.

The cyclomatic complexity for the sample program shown in Listing 2.2 can be calcu-

lated using Equation 2.3.

C(G) = 4−4+2×1

= 2.

The sample program shows a ‘compare’ function where two executable paths for each

instances of decision logic exist. Hence, the cyclomatic complexity number for the ‘com-

pare’ function is 2.

2.2.3 Halstead metrics

Using Halstead metrics a program is considered to be a collection of tokens, and the

tokens are classified as either operators or operands [15]. The goal of the Halstead metrics

is to measure various attributes of a program; for example, program length, vocabulary, vol-

ume, level, difficulty, effort and required programming time. Halstead provided formulas

to measure these attributes [12, 15].

In order to calculate Halstead complexity metrics, we use the following definitions:

• n1= the number of distinct operators,

• n2= the number of distinct operands,

• N1 = the total number of operators,

• N2 = the total number of operands,

Using these definitions, the Halstead metrics can be calculated as follows:
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Length of the program is defined as

N = N1 +N2. (2.4)

Calculated estimated program length is defined as

N̂ = n1 log2 n1 +n2 log2 n2. (2.5)

Vocabulary of the program is defined as

n = n1 +n2. (2.6)

The volume or size measure of the program is defined as

V = N× log2 n. (2.7)

The difficulty of the program is defined as

D =
n1

2
× N2

n2
. (2.8)

Finally, the effort to implement defined as

E = D×V. (2.9)

During Halstead metrics calculation the function names are ignored, but elements inside

the functions are considered for the calculations.

Listing 2.3 shows a program that averages three integer values. As shown in Tables 2.1

and 2.2, the number of operators and operands are calculated for the sample program shown

in Listing 2.3.
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1 int main()
2 {
3 int a, b, c, avg ;
4 cout << " a = " ;
5 cin >> a ;
6 cout << " b = " ;
7 cin >> b ;
8 cout << " c = " ;
9 cin >> c ;

10 avg = ( a + b + c ) / 3 ;
11 cout << " avg = " << avg ;
12 return 0 ;
13 }

Listing 2.3: Sample program for Halstead metrics example.

Table 2.1: Number of operators for the sample program in Listing 2.3.

operators count operators count
int 2 “” 4
cout 4 ; 10
cin 3 , 3
() 2 = 5
{} 1 + 2
<< 5 / 1
>> 3 return 1

In this example,

• the number of distinct operators n1 = 14,

• the number of distinct operands n2 = 6,

• the total number of operators N1 = 46, and

• the total number of operands N2 = 18.

Replacing the values of n1 and n2 in Equation 2.4 gives us

N = 46+18 = 64.
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Table 2.2: Number of operands for the sample program in Listing 2.3.

operands count
a 4
b 4
c 4
avg 4
3 1
0 1

From Equation 2.5 the calculated estimated program length is

N̂ = 14log2 14+6log2 6

= 53.30+15.51

= 68.81.

From Equation 2.6 the vocabulary of the program is

n = 14+6

= 20.

From Equation 2.7 the volume of the program is

V = 64× log2 20

= 276.60.

Replacing the values of n1, n2 and N2 in Equation 2.8 gives the difficulty of the program:

D =
14
2
× 18

6

= 21.
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Lastly, from Equation 2.9 the effort required to maintain the program is

E = D×V

= 21×276.60

= 5808.6.

2.3 Machine Learning

Machine learning (ML) is an application of artificial intelligence (AI) in which a math-

ematical model has the ability to automatically learn and improve from experience without

being explicitly programmed [37]. In the 1990s, Mitchell offered another detailed defini-

tion of machine learning: “A computer program is able to learn from experience E with

respect to some task T and some performance measure P, if its performance as measured

by P, improves with the experience E” [29].

2.3.1 Machine learning approaches

Recently, machine learning approaches such as supervised learning, unsupervised learn-

ing and reinforcement learning have been widely used for analyzing text-based documents [2,

19, 32, 35]. In our research, we use a supervised machine learning approach. Details of

various machine learning approaches are given below.

Supervised Learning

Classifying data instances based on predefined class labels is called supervised learn-

ing. In supervised learning, a data set consisting of sample inputs and their class labels is

provided to the learning algorithm. The goal is to learn the rule(s) which will match the in-

puts to outputs (labels). In supervised learning, the learning algorithm produces an inferred

function by analyzing the training data. This inferred function is used to map the new data

to its corresponding class labels. For example, if the class labels are male or female, then
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the data instances in the data sets should be classified either in the male or female class [32].

In our research, we use supervised machine learning approaches implemented in the WEKA

machine learning tool [46].

Unsupervised Learning

In unsupervised learning, a training data set is provided to the learning algorithms where

the data set consists of sample inputs without any class labels. The goal of unsupervised

learning is to determine any hidden structure or patterns in the input data [41]. For example,

clustering is a form of unsupervised learning.

Reinforcement Learning

In reinforcement learning, a system learns from its own actions and experiences in an

interactive environment to achieve a certain goal or reward. In this machine learning ap-

proach no training data set is given to the system. The system has an expected goal and to

achieve this goal the system takes actions based on experience. According to Sutton [41],

“Reinforcement learning problems involve learning what to do—how to map situations to

actions—so as to maximize a numerical reward signal. Moreover, the learner is not told

which actions to take, as in many forms of machine learning, but instead must discover

which actions yield the most reward by trying them out”. For example, learning to play

chess is a form of reinforcement learning.

2.4 Data

Data are an essential part of any machine learning task. In machine learning, data are

usually constructed as a table with values [45]. The terms used to describe our data are

defined below.

• Instance: Each instance is an individual, independent row of data which consists of

a set of column values.
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• Features: Each column in an instance is a feature or attribute. Multiple columns or

sets of features in a row form a single instance.

• Data set: A table that holds multiple instances and attributes is a data set.

• Training data set: The data set (or portion of the data set) which is used as input to

train the model is termed the training data set.

• Testing data set: The data set which is applied to measure the performance of the

model is defined as the testing data set.

Table 2.3 shows a sample data set representing the conditions of ten cars. In this table,

the features are engine condition, mileage and transmission. There are ten instances. Here,

the first instance is Good, Low, Automatic.

For the example shown in Table 2.3 we might use 70% of the data to train the system

and the other 30% data to test the system.

Table 2.3: Sample data set representing the conditions of ten cars.

Engine condition Mileage Transmission Buy?
Good Low Automatic Yes
Moderate Low Manual Yes
Bad High Manual No
Good Medium Automatic Yes
Moderate High Manual No
Moderate Medium Automatic Yes
Bad Medium Automatic No
Good High Manual No
Bad Low Automatic No
Moderate Medium Manual Yes

2.4.1 Data preparation steps

The learning and performance of any machine learning system is dependent on a well-

organized and processed data set. Before applying any machine learning algorithms, the
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training and testing data sets must be created by following three significant steps: selecting

data, pre-processing the data, and transforming the data.

(i) Data Selection: The selection of appropriate data related to the defined task is the

first step of data preparation. The selected data set must hold the relevant features that

are necessary to apply the learning algorithms.

(ii) Data Preprocessing: After gathering appropriate data from the original source the

next step is to prepare the data set. This preprocessing step involves formatting, clean-

ing and sampling of the selected data.

(iii) Formatting: The data which has been collected from different sources may not be

suitable for use by the machine learning models. The data should be formatted ac-

cording to the requirements of the machine learning algorithms. For example, an

input file may contain information as text format; however the machine learning algo-

rithms are not capable of working with text input files. Therefore, the text data must

be formatted into an array or vector of integer, string or other compatible formats

suitable for input to the machine learning algorithms.

(iv) Cleaning: The removal of irrelevant, duplicate, missing, or incorrect data is called

cleaning the data. Data which has errors or redundant features are removed from the

selected data set in this cleaning process. For example, in our region-based data set

multiple records or instances have the country name listed as ‘USA’, ‘United States of

America’, or ‘United States America’. To fix the different representation of the same

message, we updated all the strings to be ‘USA’.

(v) Sampling: In order to reduce memory requirements and computational time and com-

plexity, subsets or sample prototypes of a large data set may be used as sample rep-

resentatives. The task of selecting a portion of a large data set as input is called

sampling.
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(vi) Data Transformation: The process of converting data or information from one for-

mat to another is called data transformation. The data is converted from the source

system format into the target system format. For instance, if the data is in CSV-

Comma-Separated Values format, the process of converting it into an ARFF-Attribute

Relation File Format [45] file for the machine learning task can be termed as data

transformation. Other information may include scaling, or digitizing non-numeric data.

2.5 WEKA: A Machine Learning Tool

WEKA is a machine learning package that provides a collection of data preprocessing

tools and implemented state-of-the-art machine learning algorithms [45]. Several studies

have carried out classification experiments using different machine learning tools such as

WEKA [31, 35, 45].

2.5.1 Data Format

(a) ARFF Data Format: In WEKA ARFF (Attribute-Relation File Format) files, the data

sets are represented in such a way that the data sets hold independent and unordered

instances [45].

ARFF files have two main sections: the header and the data.

The header section is composed of two parts: the relation and the attribute. The first

line of an ARFF file is defined as the relation name [45]. The format to write a relation

is @relation < relation−name >. Similarly, the format to write an attribute statement

is @attribute < attribute−name >< datatype >.

The @data statement denotes a single line which represents an instance. Each attribute

or feature value in an instance is separated by commas.

A sample ARFF file is given in Listing 2.4. In the header section the relation is “@re-

lation balanceGender” and one of the attributes is “@attribute program vocabulary nu-

meric”. In the data section, an instance or record is denoted by “62, 263, 307.346455,
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1 @ r e l a t i o n b a l a n c e G e n d e r
2

3 @ a t t r i b u t e program v o c a b u l a r y numer ic
4 @ a t t r i b u t e program l e n g t h numer ic
5 @ a t t r i b u t e c a l c u l a t e d e s t i m a t e d program l e n g t h numer ic
6 @ a t t r i b u t e volume numer ic
7 @ a t t r i b u t e d i f f i c u l t y numer ic
8 @ a t t r i b u t e g en de r {male , f e ma l e }
9

10 @data
11 6 2 , 2 6 3 , 3 0 7 . 3 4 6 4 5 5 , 1 5 6 5 . 9 5 3 6 3 , male
12 6 8 , 2 5 8 , 3 4 5 . 9 8 9 9 1 2 , 1 5 7 0 . 5 6 5 4 1 3 , f em a le

Listing 2.4: Sample file for ARFF File example.

1565.95363, male”.

(b) CSV data format: A CSV (Comma Separated Value) file is a comma-separated values

file, which allows data to be saved in a tabular format. In this format the data is laid out

in a table of rows and columns, and a comma is used to separate the values in a row.

2.5.2 Classification Algorithms

In WEKA, each machine learning algorithm is implemented using a classifier. A clas-

sifier is a hypothesis or discrete-valued function that assigns class labels to particular data

points. In our research work, five WEKA classifiers are used to perform the classification

tasks: Bayes, Functions, Meta, Rules and Trees classifier. The details of these five WEKA

classifiers are described in the sections below [45].

Bayes Classifiers

Bayes classifiers are based on Bayes theorem. The Bayes classifier builds a model

where each data instance belongs to a class with some features and Bayes theorem is ap-

plied to predict the class of a new instance. In WEKA, some Bayesian classifiers are Bayes

Net, NaiveBayes, NaiveBayesSimple, ComplementNaiveBayes, and BayesianLogisticRe-

gression. In our research, we use the Bayes Net or Bayesian Network algorithm.

A simple Bayesian Network is a directed acyclic graph that consists of nodes and edges.
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Each attribute in the Bayesian Network is represented by a node. In the Bayesian Net-

work the parent-child relationship can be shown as an edge from the parent node to child

node [45]. Each node in the network holds a probability distribution table that is used to

determine the class of an instance. For each child node the probability table holds two parts

and the parts are partitioned by a vertical line. The left side in the table holds values for

the parent node and the right side of the table holds values for that particular child node.

Table 2.4 shows data representing the conditions of five cars. Figure 2.2 represents a simple

Bayesian Network based on the data from Table 2.4. The node ‘Buy’ is a parent node that

points to the two child nodes: ‘Engine condition’ and ‘Mileage’. Each node in the Bayesian

Network holds a probability distribution table for the two attribute values. One of the child

nodes ‘Engine condition’ has a left column for the ‘Buy’ parent node values (Yes, No) and

a right column for the Engine condition feature values (Good, Moderate, Bad). Similarly,

the other child node: ‘Mileage’ has a left column for the ‘Buy’ parent node values (Yes,

No) and a right column for the ‘Mileage’ feature values (Low, Medium, High).

Table 2.4: Sample data on cars engine conditions and mileages.

Engine condition Mileage Buy
Good Low Yes
Moderate Low Yes
Bad High No
Good Medium Yes
Moderate High No

The Bayes Net algorithm uses Bayes theorem to calculate the conditional probability

for each attribute value. The attribute values with maximum probabilities are selected for

the classification of an instance. The conditional probability is the probability that an event

will occur based on the occurrence of a previous event.

Let the conditional probability that event A will occur given that another event B occurs

be denoted by P(A|B). Then according to Bayes theorem,
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Table 2.5: The car condition data with counts and probabilities.

Engine condition Mileage Buy
Yes No Yes No Yes no

Good 2 0 Low 2 0 3 2
Moderate 1 1 Medium 1 0
Bad 0 1 High 0 2

Good 2/3 0/2 Low 2/3 0/2 3/5 2/5
Moderate 1/3 1/2 Medium 1/3 0/2
Bad 0/3 1/2 High 0/3 2/2

P(A|B) = P(B|A)P(A)
P(B)

(2.10)

where

• the probability that an event A will occur is denoted by P(A),

• the probability that an event B will occur is denoted by P(B), and

• P(B|A) is the probability that an event B will occur given that event A occurs.

Based on the Table 2.4 we create Table 2.5 with counts and probabilities on five cars

engine condition and mileage.

For example, given Engine Condition = Good and Mileage = Medium, we can calculate

the probability of Buy = Yes.

To handle the zero probabilities, Laplace smoothing is used [45]. In Laplace smoothing,

1 is added to the numerator and for each attribute value 1 is added to the denominator.

Applying Laplace smoothing in Table 2.5, we get Table 2.7 and 2.8.

Table 2.6: A new instance.

Engine condition Mileage Buy
Good Medium ?
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Table 2.7: Computing the car condition data probabilities using Laplace smoothing.

Engine condition Mileage Buy
Yes No Yes No Yes no

Good 2+1/3+3 0+1/2+3 Low 2+1/3+3 0+1/2+3 3+1/5+2 2+1/5+2
Moderate 1+1/3+3 1+1/2+3 Medium 1+1/3+3 0+1/2+3
Bad 0+1/3+3 1+1/2+3 High 0+1/3+3 2+1/2+3

Table 2.8: Car condition data probabilities values after Laplace smoothing.

Engine condition Mileage Buy
Yes No Yes No Yes no

Good 0.50 0.2 Low 0.50 0.2 0.57 0.43
Moderate 0.33 0.4 Medium 0.33 0.2
Bad 0.17 0.4 High 0.17 0.6

From Table 2.8, the likelihood probability for ‘Yes’ is calculated as

P(Yes|Good,Medium) = P(Good|Yes)P(Medium|Yes)P(Yes)

= 0.5×0.33×0.57

= 0.094.

From Table 2.8, the likelihood probability for ‘no’ that the person will not buy the car

is calculated as

P(No|Good,Medium) = P(Good|No)P(Medium|No)P(No)

= 0.2×0.2×0.43

= 0.017.

We apply normalizing to the probabilities (P(Yes), P(No)) so that the sum of P(Yes) and

P(No) equals to 1.
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The probability of Yes after normalizing is

P(Yes|Good,Medium) =
0.941

0.941+0.0172

=
0.941

0.9582

= 0.98

= 98%.

The probability of No after normalizing is

P(No|Good,Medium) =
0.0172

0.941+0.0172

=
0.0172
0.9582

= 0.02

= 2%

So, for the situation where a car’s engine condition is good and the car has medium

mileage, then in this example the decision of a buyer will be ‘Yes’ with a probability value

0.98.

Function Classifiers

Function classifiers combine several machine learning classifiers and develop mathe-

matical functions for data classification [45]. In WEKA, examples of some Function clas-

sifiers are Linear Regression, Logistic, SMO, Multilayer perceptron and Linear Support

Vector Machine (Linear SVM). In our research, we use Sequential Minimal Optimization

(SMO). In WEKA, the Sequential Minimal Optimization (SMO) algorithm is used to train

the Support Vector Machine (SVM) classifier. The goal of the SVM classifier is to solve any

classification problem by creating a hyperplane that uniquely classifies the data instances

of the given classes. A ‘hyperplane’ is a decision boundary that divides the input space into
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             Engine Condition 

 
Buy                  Engine Condition 

                   Good    Moderate   Bad                           

Yes               0.5       0.33          0.17 

No                 0.2       0.4            0.4 

          Buy 

                          Buy 

      Yes                             No 

       0.57                          0.43 

       Mileage 

Buy                      Mileage 

                Low     Medium     High 

Yes           0.5        0.33           0.17 

No             0.2        0.2             0.6 

Figure 2.2: Example of a Bayes classifier, values are calculated based on Table 2.8.

the given number of classes and classifies each data point to a class.

Figure 2.3 shows an SVM classifier for a two-class classification task. Let us assume

that a maximum margin hyperplane classifies all the training instances accurately for a two

class classification task. The two different classes are denoted by blue circles and green

squares. The black line in the center is the maximum margin hyperplane. The dotted line

perpendicular to the maximum margin hyperplane is the ‘maximum margin’ which shows

the maximum distance of the hyperplane from each class. The points that have the minimum

distance to the maximum margin hyperplane are termed the ‘support vectors’. The orange

lines on which the support vectors are located are defined as the ‘decision boundaries’. The

decision boundaries are parallel to the maximum margin hyperplane.

Equation 2.11 defines the maximum margin hyperplane [45]:
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x = b+∑αiyia(i) ·a (2.11)

In Equation 2.11, a(i) and a are vectors. a(i) is the set of attributes for the ith support

vector and yi is the class of the training instance. The a vector is the test instance. There

are two numeric parameters: b and αi. The learning algorithm determines the value of the

two parameters. The Sequential Minimal Optimization (SMO) algorithm uses the polyno-

mial kernel to train the support vectors efficiently. A polynomial kernel is a function that

calculates the dot product of two vectors such as a(i) · a and turns the result to the power

(a(i) ·a)n until the value of errors decreases.

 

Maximum margin hyperplane 

Decision boundaries Support Vectors 

Support Vectors 

Maximum margin 

Figure 2.3: Example of a Functions classifier (SVM).

Meta Classifiers

Meta-learning algorithms take classifiers and turn them into more powerful learners. A

meta classifier incorporates multiple algorithms to form one classifier and generate bet-
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ter results based on performance measures. Some meta-classifier algorithms in WEKA

include Bagging, Boosting, AdaBoostM1, ClassificationViaClustering and Classification-

ViaRegression. For our research, we use the ClassificationViaRegression classifier.

ClassificationViaRegression classifier uses the M5′ algorithm for the classification task.

M5′ algorithm is a combination of Decision Tree and Linear Regression algorithms. During

the training process in the M5′ algorithm, the original data set is used to generate several

new data sets for each class label. The total number of instances in each new data set is

equal to the total number of instances in the original data set. In each new data set the

class label value is set to 1 for a specific class label and 0 for the remaining class labels.

For each data set, several model trees are created. A model tree is a binary decision tree

that can be used for any regression task. The leaf nodes in the decision tree use linear

regression functions to generate probabilities about the class of each instance. Based on

the attribute values of each instance, the class probabilities are calculated. The formula for

linear regression function is calculated using Equation 2.12

x =
n

∑
i=1

k

∑
j=1

w jai
j (2.12)

where

• n is the total number of attributes,

• k is the total number of instances,

• x is the class,

• a is the value of each attribute, and

• w is the weight of each attribute which is calculated during the training process.

During the testing process of a new instance, the attribute values of the given instance

are passed through each model tree. For each class label, the probabilities for the new
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instance are calculated. The class label for which the new instance has the maximum prob-

ability is selected as the final class.

Figure 2.4 shows an example of a Meta classifier. In Figure 2.4, the original data set

has two class labels, Male and Female. From the original data set, two data sets are derived

based on each class label. In data set A: Male, the class value for Male is set to 1 and for

Female the class value is set to 0. In contrast, in data set B: Female, the class value for

Female is set to 1 and for Male the class value is set to 0. Based on the attribute values

of each instance, multiple model trees are generated during the training process. The leaf

nodes in the model trees hold linear regression functions which calculate probabilities of a

class based on the attribute values.

For example, given attribute values of (2.2 3.2 4.3 ?), the new instance is passed through

the model trees and the probabilities for class Male = 0.93 and class Female = 0.07 are

calculated according to the attribute values. Based on the higher probability value, the class

of the new instance is predicted as Male.

Rules Classifiers

Rules classifiers generate rules for classification. For example, the Decision Table is one

of the algorithms that builds a table based on the features of the data. Some other examples

of Rules classifiers are DTNB, OneR and ZeroR [45]. In our research, we use the Decision

Table classifier to build one of the classification models.

Table 2.4 shows data on the engine conditions and mileages of five cars. Based on

the data, the decision-makers will decide which cars they should buy and which cars they

should not.

Let us assume that Table 2.4 is used to train the Decision Table classifier. Based on the

data, the Decision Table classifier generates if-then rules where the class is ‘buy’ and class

labels are: yes, no. The generated rules are shown as follows:

if (Engine condition = Good and Mileage = Low) then Buy = Yes;
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Figure 2.4: Example of a Meta classifier.

if (Engine condition = Moderate and Mileage = Low) then Buy = Yes;

if (Engine condition = Bad and Mileage = High) then Buy = No;

if (Engine condition = Good and Mileage = Medium) then Buy = Yes;

if (Engine condition = Moderate and Mileage = High) then Buy = No;

For a new instance, the Decision Table algorithm will use these if-then rules to make a

decision. For example, if a given instance is

Engine condition = Good, Mileage = Medium, Buy = ?

the Decision Table classifier will classify the new instance as Buy = Yes.

During the training process the Decision Table algorithm generates decision rules based

on the given training data. Given a test instance the algorithm will search the generated

decision rules to find a decision for the test instance. If the algorithm is unable to find a rule
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that matches the instance then the instance is labeled an invalid condition. For example, if

a given instance is

Engine condition = Good, Mileage = High, Buy = ?

the Decision Table classifier will classify the new instance as Buy = Invalid condition.

The analyst may use this data to further train the model.

Trees Classifiers

A tree is a simple representation of classification. Tree classifiers offer a supervised

machine learning approach where the data is continuously split according to a certain pa-

rameter. Tree classifiers in WEKA are BFTree, J48, Random Forest and NBTree. In our

research, we use the Random Forest classifier for the classification tasks.

A decision tree is a tree-like structure that consists of a ‘root’, ‘nodes’, ‘edges or

branches’ and ‘leaf nodes’. An attribute is selected as the root node. Then, the ‘edges’

are created which correspond to the outcome of a test and connect to the next node or leaf.

The ‘leaf nodes’ denote class labels. Random Forest is one of the most popular and pow-

erful supervised machine learning classification algorithms. The algorithm creates a forest

of multiple decision trees. Each decision tree in the forest makes a decision to predict the

class of an instance. Based on the majority decisions of the decision trees, the algorithm

performs the classification tasks with more accurate results [4]. The algorithm uses Infor-

mation Gain to decide which attribute to split at each step of the decision tree. Figure 2.5

illustrates the approach of the Random Forest classifier. The training data are used to de-

velop a Random Forest classifier with n decision trees. For a new instance, each decision

tree predicts a class label.

2.5.3 WEKA Attribute selection

WEKA has multiple algorithms for attribute or feature selection from the data set. Each

data set will contain some features that are more or less relevant for the chosen tasks. The

attribute selection option in WEKA selects the features that are likely to be more reliable
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Figure 2.5: Example of a Random Forest classifier.

in making predictions and less redundant from the experimental data. One of the popular

attribute evaluators in WEKA is ‘InfoGainAttributeEval’ which uses the ‘Ranker’ method

for ranking features that are more relevant to the experiment. Some other feature selection

algorithms are CfsSubsetEval, CostSensitiveSubsetEval and WrapperSubsetEval.

To select the best features for our research, we use ‘InfoGainAttributeEval’ approach.

This approach measures the significance of an attribute by evaluating the information gain

according to the class value. “Information Gain” measures the changes of entropy of the

given attribute values. “Entropy” estimates the impurity or amount of information available

in the values of an attribute. The lower the value of entropy, the higher the value of infor-

mation gain. The attribute which has the highest information gain value is selected as the

“best” attribute. In Section A.1 (Appendix A), an example on the calculation of information

gain is shown in details.
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2.6 Validation Technique

Cross validation is a widely used technique for testing models created by machine learn-

ing algorithms. If most of the data belong to one specific class during the training process,

the learning model may become biased towards the majority class which has more data.

To overcome a learning algorithm’s biasing problem, cross validation is used [42]. Cross

validation uses a fixed number of folds for partitioning a data set [45]. With limited data

a model can make inappropriate predictions during training. This can be the cause of a

situation termed overfitting, when a trained model has a zero error rate for a small training

data set but makes inaccurate predictions with new data [46]. Cross validation can help to

attenuate the risk of overfitting. In WEKA, the k-fold cross validation technique is used for

model validation [32, 45]. In our research work, we use 10-fold (where k=10) cross vali-

dation. In 10-fold cross validation, the entire data set is divided into 10 groups of instances

(each instance is a row of a data table) of equal size which are called folds. The model is

then trained using all folds except one which will be used later on to test the model. Cross

validation is an iterative process and it continues until each fold is used to test the model.

Performance is measured by averaging the results of each fold in order to determine the

efficiency of the model or classifier.

2.7 Evaluation Metrics

To demonstrate the performance of a supervised learning model various evaluation met-

rics are used, including a confusion matrix, precision, recall, and F-measure. A confusion

matrix is a table that represents a model’s performance when assigning data instances to

corresponding class labels [10].

(i) Confusion Matrix: A confusion matrix is a table that represents the performance of a

classifier on a set of test data for which the true or actual values are known. Table 2.9

shows the terms used in the confusion matrix to describe the models’s performance.
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Table 2.9: Structure of a confusion matrix showing the results of machine learning classifi-
cation.

Predicted Class

Actual Class
Positive Negative

Positive TP FN
Negative FP TN

True Positives (TP): The predicted samples that are classified correctly as positives

are referred to as True Positives.

False Positives (FP): The predicted samples that are actually negatives but classified

incorrectly as positives are referred to as False Positives.

True Negatives (TN): The predicted samples that are classified correctly as negatives

are referred to as True Negatives.

False Negatives (FN): The predicted samples that are actually positives but classified

incorrectly as negatives are referred to as False Negative.

Based on the confusion matrix, we determine the values of precision, recall, and F-

measure of each machine learning model or classifier using the WEKA machine learn-

ing tool.

An example confusion matrix is given in Table 2.10. In this confusion matrix, pro-

grams from male programmers are labeled as positive samples and programs from

female programmers are labeled as negative samples. In this example,

• TP (True male written programs): The model correctly classifies 1211 programs

as male written programs.

• TN (True female written programs): The model correctly classifies 1168 pro-

grams as female written programs.

• FN (False female written programs): The model incorrectly classifies 222 pro-
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grams as female written programs.

• FP (False male written programs): The model incorrectly classifies 265 pro-

grams as male written programs.

Table 2.10: Example confusion matrix.

Predicted Class

Actual Class
Male Female

Male 1211 (TP) 222 (FN)
Female 265 (FP) 1168 (TN)

(ii) Accuracy: Accuracy is the ratio of the number of correct predictions over the total

number of predictions calculated as a percentage as shown in Equation 2.13.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.13)

If we compute the accuracy using Table 2.10 we get

Accuracy =
1211+1168

1211+1168+265+222

= 0.8300

= 83.00%.

(iii) Precision: The ratio of correctly classified positive (TP) values over predicted values

(TP+FP) is referred to as precision, as calculated by Equation 2.14. Precision can be

thought of as the percentage of the results that are relevant.

Precision =
T P

T P+FP
(2.14)
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The precision for the confusion matrix shown in Table 2.10 can be calculated as

Precision =
1211

1211+265

= 0.8204

= 82.05%.

(iv) Recall: The ratio of correctly classified positive (TP) values over actual values (TP+FN)

is referred to as recall, as calculated by Equation 2.15. Recall is the percentage of the

results that are relevant and correctly classified.

Recall =
T P

T P+FN
(2.15)

The recall for the confusion matrix shown in Table 2.10 can be calculated as

Recall =
1211

1211+222

= 0.8450

= 84.50%.

(v) F-measure: F-measure is a weighted average of precision and recall, as calculated by

Equation 2.16.

F−measure =
2×Precision×Recall

Precision+Recall
(2.16)

The F-measure for the confusion matrix shown in Table 2.10 can be calculated as
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F−measure =
2×0.8205×0.8450

0.8205+0.8450

= 0.8325

= 83.25%.

2.8 Programming Language: Python

Python is an open source programming language with a large standard library including

various packages [33]. In our research, we use the programming language Python to extract

data and relevant features from the primary data set. We also used Python to calculate new

features from the source code in our data set. We wrote Python programs to calculate

features based on the three metrics: lines of code, cyclomatic complexity, and Halstead

metrics. We used the Python library ‘lizard’ ‘lizard’ 1 to calculate features based on the lines

of code, cyclomatic complexity. Due to the lack of free tools and libraries for calculating

the Halstead metrics, we wrote Python programs using the algorithm of Halstead metrics to

calculate the features.

2.9 Related Work

Ronald Wardhaugh described how sociolinguistics is related to language, society and

gender in [43]. He described how men and women have used language in their own way.

For example, he theorized that women use more polite and surprised language patterns than

men to express their opinion on a particular topic. Regional effect on language is also

described by Wardhaugh [43].

Various research has investigated written text documents to demonstrate the effect of

social variables in natural language [2, 3, 5, 14]. For example, Argamon et al. examined the

British National Corpus (BNC) to explore gender-based differences using machine learning

1https://pypi.org/project/lizard/
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approaches [3]. In other work, Argamon et al. performed analysis on French literature [2]

using the SVM (Support Vector Machine) algorithm. Both sets of work reported 90%

accuracy in predicting the gender of the authors. In recent years, other research have also

analyzed gender-based writing variations in computer programs [17, 32, 35].

In [31], Naz analyzed computer programs to investigate the relationship between so-

ciolinguistics features and programming languages. The authors conducted their research

on 100 C++ programs in which 50 computer programs were from male and 50 from fe-

male. The authors used 50 features and conducted five experiments. In a second set of

experiments the authors reduced the number of features from 50 to 7 and acquired an accu-

racy of 71%. The authors analyzed the features and determined that the keywords bool, /,

==, >= were used with higher frequency in male written programs, whereas the keywords

char, double, + were used more often in female written programs.

Rafee [35] examined C++ computer programs based on gender and region of the pro-

grammers. In his experiments, Rafee considered only one software metric, lines of code,

to calculate features for the classification task. Rafee also investigated the effect of region

in computer programs. The author demonstrated that Canadian programmers wrote more

comments than Bangladeshi programmers. However, in other work, Meulen et al. [26]

claimed that the software metric lines of code has a strong correlation with other software

metrics, such as McCabe’s cyclomatic complexity and Halstead metrics.

In [42], Tasnim analyzed computer programs to classify computer programs based on

the experience of the programmer. Programmers were categorized as being at a beginner

level or an expert level. Their work suggested that beginner level programmers used fewer

functions, fewer executable statements and more blank lines in their programs. On the other

hand, the number of user-defined functions and the executable lines of code (SLOCP) were

higher in expert written programs.

To further investigate the relationship between sociolingiustics features and different

software metrics, Alam [1] conducted four machine learning experiments on GitHub and
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Codeforces data. The author classified the data based on the gender and region of the pro-

grammers. The author analyzed 103 features and used Bagging classifier, Decision Table,

Random Forest, Bayes Net and Logistic Regression algorithms for the classification tasks.

The research showed that the number of average lines of code was higher in North American

programs than the South Asian programs, and suggested that the difficulty measurement of

female written programs tended to be higher than the male written programs. In contrast,

male programmers used exception handling functions more than the female programmers.

McCabe identified that an individual programmer’s style was related to the complexity

measure [25]. The author determined that several programmers who never had any training

in structured programming consistently managed to write programs in the 3 to 7 complexity

range, and the programs with complexity value less than 10 are termed as well-structured

programs. Watson et al. [44] applied the cyclomatic complexity metric to several FOR-

TRAN programs and tested the complexity of the programs and found a high correlation

between cyclomatic complexity and non-commented lines of code.

In [12] the Halstead Metric was analyzed on different Python and C++ programs where

the authors calculated the bugs, effort and time required to run the code. Their work sug-

gested that coding in Python requires less effort and time than C++ language.
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Chapter 3

Methodology

3.1 Data Source: codeforces.com

Our research goal is to analyze the programming styles of male and female contest

programmers from varying regions. We focus on collecting contest problems in which

both male and female programmers solve the same problems. We also aim to analyze the

programming styles of the programmers based on their region. Online programming web-

sites such as codeforces, codechef2, leetcode3, and hackerrank4 individually host different

programming contests and allow the contest programmers to submit their solutions to a

database. Codeforces is a competitive programming website as well as a social networking

site that offers the users a platform to conduct and organize programming contests [27].

3.1.1 Advantages

We selected codeforces to collect data for our research based on the following advan-

tages.

• The user source code is accessible. Anyone can access or view the source code and

user information such as name and country. Other online programming websites

usually have minimal access to such information. The availability of this information

makes codeforces a useful repository for competitive programming research.

• Participants from all over the world participate in the programming contests hosted by

2https://www.codechef.com/
3https://leetcode.com/
4https://www.hackerrank.com/
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codeforces. The source code may have region-based variations and these variations

can be analyzed to investigate the differences of the programming styles.

• Codeforces stores the total number of submissions for each contest problem, and so

we used this facility for collecting our required data.

• Codeforces also has an API that provides access to some of the stored data in machine-

readable JSON format [28].

3.1.2 Disadvantages

Codeforces also has some disadvantages which are detailed below:

• In codeforces, data are retrieved from HTML pages. If there is any update in the

HTML pages, we may also have to make updates to our data collection program to

match the changes.

• The source code is stored in pop-up links. Codeforces allows the web driver to re-

trieve 50 programs per page. By clicking on the pop-up links, the web driver can

fetch up to 50 programs from each page. If the number of submissions is higher,

the automatic collection of the source code for the solution programs may become a

time-consuming task.

• The participation of female programmers in any programming contest is compara-

tively lower than male programmers [9]. In codeforces, the number of the male user

is considerably higher than the female user. However, this is likely to be true of most

coding websites.

3.2 Data Selection Criterion

We selected nine contest problems based on the number of participants and the difficulty

rating of the problems. While selecting the problems, we made the following observations,
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1. High difficulty rated problems (difficulty level: 2300− 4000) were attempted by a

small number of participants, approximately 100 participants. Therefore, the code-

forces organizers tend to receive a small number of submissions for these problems.

2. Low difficulty rated problems (difficulty level: 800− 1600) were solved by a huge

number of programmers, nearly 6000 to 100000 participants. However, after analyz-

ing some low difficulty rated problems, we determined that the programs were too

short. For example, the programs were solved by writing one or two lines of code.

As a result, the scope for calculating features from the programs was limited although

the number of participants is very large. In our work we only considered programs

that were at least 20 lines long, including the comments and blanklines.

3. The medium difficulty rated problems, (difficulty level: 1700− 2200) were solved

by 1500 to 4500 participants. Moreover, the programs had the scope (length) for

calculating features that are required for our research. For example, each program

should have at least 2 logic statements for calculating the cyclomatic complexity.

3.3 Data Collection Process

We divided our data collection process into three major parts:

1. user information collection,

2. source code collection, and

3. adding gender labels.

The details are described in the following subsections.

3.3.1 User information collection

In codeforces, a user profile holds several items of user information including: handle

(which uniquely identifies a user), first name, last name, region, the user’s blog, teams,
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submissions, and a list of contests in which the user participated. Codeforces has several

APIs which allow access to some information from the website. We used the ‘user.info’ API

to collect the information on each user who participated in the different contests hosted and

organized by codeforces operators.

3.3.2 Source code collection

Codeforces has a ‘Problemset’ page which contains information on a problem. The

information on the ‘Problemset’ page is stored in different tabs such as the problem id,

problem name, problem difficulty rating, and solved problems. If the ‘solved problems’

tab is clicked, a pop-up link directs to the corresponding ‘status’ page. The status page

shows information regarding a submission such as submission id, submission time, handle,

problem name, language, verdict, time, and memory. Each submission id contains the

link to the corresponding source code. By clicking on the submission id, the source code

of a submission can be retrieved. As the codeforces API does not provide the ability to

retrieve source code, we used the Selenium5 web driver to fetch the source code or programs

authored by the users or participants. The submission id is linked to each user’s handle,

which directs to the user profile. Thus, we used the handle and submission id to connect

the user information to the collected source code.

We created a Python program that used the Selenium web driver to collect the solution

programs. The link to the solution programs can be found via a uniform resource locator

or url (which is the address of a web page). In our program, we set the url of the targeted

problem to scrape our required data. The program opens the url page and then opens the pop

up links of the submission id to collect the corresponding source code. From each page, the

web driver is allowed to collect programs from 50 submissions, and we set the web driver

to continue scraping the next pages until no records were found. If the submission id did

not contain any pop-up links, the web driver ignored that submission and moved forward to

scrape the next submission.

5https://selenium-python.readthedocs.io/index.html/
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3.3.3 Adding gender labels

Codeforces only provides the first name and last name of a user. Hence, gender infor-

mation is not available for users of codeforces. To add gender labels to the user names, we

used an API genderize.io6. Genderize.io uses the information from user profiles across ma-

jor social networks and provides data on user names through the API. Genderize.io permits

100 free name requests per day. The API adds a gender label (male, female or null) to the

given first names and gives a probability value between 0.0 and 1.0. To reduce the number

of requests, we stored all the responses from the API in the local database. For a given

first name, the name is searched at first in the local database to check if the gender label is

already added to the name. If a gender label is added to the given first name, the request to

the genderize.io is skipped. Otherwise, a request is made to the API and the response from

genderize.io is added to the local database. To verify the added gender labels, we used a

human annotation approach and manually searched the names in the google search engine.

3.4 Data Information

In machine learning, the performance of a model is highly dependent on the prepara-

tion of the data set. Therefore, inconsistent, incomplete, or redundant data are cleaned or

removed in the data preparation step [11].

3.4.1 User information data

We retrieved 11 attribute fields that contained user information. Table 3.1 shows that

only rating and max rating are integer type data, and the rest of the attributes are string type

data. The attribute handle is a unique string identifier for each user profile. A user name

is indicated by first name and last name of the user. The region of a user is denoted by the

country and city. The attribute organization provides information about the user’s institution

such as high school, university. To determine the expertise of a user rank, max rank, rating

6https://www.genderize.io/
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and max rating attributes are used. For our research we selected only 4 attributes from

Table 3.1 and did not use any of the other attributes. The 4 attributes that we selected for

our research are handle, first name, last name and country.

Table 3.1: Attributes in codeforces related to user information.

Attribute Type required
Handle String yes
First Name String yes
Last Name String yes
Country String yes
City String no
Organization String no
Rank String no
Rating Integer no
Max Rank String no
Max Rating Integer no
Registered String no

3.4.2 Source code data

We collected 38430 computer programs for our research. We observed that a user could

submit multiple solutions. The reason for multiple submissions might be that a user wanted

to write an optimized solution. Thus, we selected only one program per user. With this

restriction we retrieved 37451 programs for nine contest problems. Table 3.2 shows the

problem id, title, difficulty,total submissions and the number of programs written in C++

and other languages for the selected contest problems. The problems were solved using

different languages such as ‘C++’, ‘Python’, and ‘JAVA’. As shown in Table 3.2 the number

of programs written in C++ programs is much higher than the number of programs written

in other languages. For our research we selected only programs which were written in the

C++ language and have valid first names, of which there were 18986.

Table 3.3 shows the list of attributes that we collected in this research.

Table 3.3 illustrates that the submission id, memory are integer type data and the source
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Table 3.2: Information about the nine selected contest problems.

Problem id Title Difficulty Submissions
Programs
in C++
language

Programs
in other
languages

1288D
Minimax Problem
binary search

2000 3802 3612 190

1301D Time to run 2000 2926 2793 133
1304E 1-Trees and queries 2000 2956 2757 199
1324F Maximum White Subtree 1800 4196 3978 218
1326D2 Prefix-suffix palindrome 1800 5990 5694 296
1328E Tree queries 1900 4783 4544 239
1332E Height all the same 2100 2604 2432 172
1340B Nastya and Scoreboard 1700 5768 5467 301
1344B Monopole Magnets 2000 4426 4158 268

code, handle, programming language, problem title, submission date are string type data.

When a submission is made a unique submission id is given to each submission and the

submission is saved in the source code field. Each user who made a submission is identified

by the user’s handle. The attribute problem title holds the name of each problem. The

programmers may solve the problem according to his/her choice of programming language.

The programming language attribute shows which programming language is used to solve

the problem. The submission date stores information about the submission day, month and

year. The time and memory required to compile the program are stored in the time and

memory fields of the codeforces website. We did not have to calculate how much time and

memory a programmer used to solve a problem, we just used the data collected from the

website. From Table 3.3, we selected 6 attributes for our research and did not use the other

attributes. The 6 selected attributes were submission id, source code, handle, programming

language, time and memory.
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Table 3.3: Attributes in codeforces related to source code collection.

Attribute Field Type required
Submission id Integer yes
Source code String yes
Handle String yes
Programming
language

String yes

Problem title String no
Time String yes
Submission
date

String no

Memory Integer yes

3.5 Data Preparation

To prepare to analyze the nine problems that were solved using the C++ language, we

first used data cleaning techniques and removed the records which had empty values for

the first name and country attributes. Using a Python program, we merged the valid user

information (in JSON format) and source code (in CSV format) and stored the data set in a

CSV file. After combining the user information and source code, we had a total of 18986

records. In the next step, we extracted all the first names from the CSV file. We used the

‘genderize.io’ API to add the gender label based on the probability of a user’s first name.

The ‘genderize.io’ added gender label to 17415 names and was unable to add the gender

label to 1571 names, and so we removed the records which had an unknown gender label.

This left us with a data set with 17415 records. We then applied the human annotation ap-

proach and used the Google search engine to verify the gender label. Figure 3.1 represents

the data collection and preparation process of our research.

Table 3.4 summarizes the 17415 records remaining after the data preparation steps.

15982 records contained the source code and information on male participants and 1433

contained code and information on female participants. We then categorized the regions

of the programmers into two large regions: the Eastern zone and the Western zone. The

Eastern zone contains the users from Asia, whereas the Western zone holds data from North
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America and Europe. Of the 17415 records, 11792 records were from the Eastern zone and

2944 records were from the Western zone.

Table 3.4: Information on number of records after data preparation steps.

Total records: 17415
Gender-based records

Male : 15982
Female : 1433

Region-based records
Eastern zone : 11792
Western zone : 2921

3.6 Balanced Data Set Creation

The performance of a machine learning model is highly dependent on the prepared data

set. An imbalanced data set may affect the performance of a machine learning model,

and the resulting model may have a substandard performance [8, 18]. If a data set has an

unequal number of records for different class labels for a classification problem, the data

set can be referred to as imbalanced [8, 18]. For example, in our gender-based data set the

number of records for male programmers is 15982 while the number of records for female

programmers is 1433. For our research, we prepared eleven smaller, but balanced data sets.

Ten of these were used for gender-based analysis (data sets 1− 10) and one data set (data

set 11) was used for region-based analysis. Details of these are given below.

3.6.1 Gender-based data sets

We prepared ten data sets to explore the effect of gender in programming styles. Ta-

ble A.3 shows the information on our gender-based data sets.

• Individual problem based data sets

One of our research goals is to determine whether male and female contestants write

programs differently to solve a particular programming contest problem. For this

we wish to study the solutions from the male and female participants who solved the

same problem. Because our initial data sets had 15982 records from male participants
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Figure 3.1: Data collection and preparation process.

and 1433 records for female participants, we balanced our data sets by using the

under-sampling method. In this approach, which is also known as random under-

sampling [8], we randomly removed data from the majority class in order to balance

the data set. For each smaller data set we randomly removed some male records since

the number of records for male programmers was significantly higher in each smaller

data set. Following this approach we prepared nine data sets (data sets 1− 9) for

nine different programming problems, with one data set per problem. Each data set

contains an equal number of records for male and female participants. In Appendix A,
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Table A.3 shows the number of records for each of these data sets.

• Combined data set

In machine learning, the size of the data set has an impact on the learning process of

the machine. For smaller data sets, the over-fitting problem may affect the learning

process [8]. Therefore, we combined the different solutions for the nine different

contest problems and prepared one larger data set (data set 10). In this data set dif-

ferent solutions for the nine different problems that we collected in data set 1− 9

were analyzed collectively to identify some general programming styles of male and

female programmers. Thus our gender-based combined balanced data set 10 has a

total of 2866 records, which holds the source code and information on two genders,

male: 1433 records, and female: 1433 records.

3.6.2 Region-based data set

Our second research goal is to determine the effect of region on the programmers. Ta-

ble 3.5 represents the information on the region-based data set. We grouped the num-

ber of countries into two regions: Eastern region and Western region. Countries such as

Bangladesh, China, Japan, India, Pakistan, Sri Lanka, Iran, Philippines, Singapore, and

Malaysia are categorized into the Eastern region. We grouped the countries United States

of America, Canada, Italy, France, Germany, Romania, and other European countries into

the Western region. Thus data set 11 contains a total of 5842 records with 2921 records from

the Eastern region and 2921 records from the Western region. We used the under sampling

method since the number of programs from the Eastern region seemed to be higher than the

programs from the Western region.

3.7 Document Representation

Machine learning models require a vector of numeric feature values as input and provide

nominal values as output. In our gender-based classification model, the input feature values
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Table 3.5: Information on the region-based data set.

Region

Data set
No. of records from

Eastern region
No. of records from

Western region
Total Records

11 2921 2921 5842

are numeric and the output class value (male or female) is nominal. Similarly, our region-

based classification model has numeric input feature values and a nominal output class

value (Eastern region or Western region). In this research, we treated each collected C++

program as a text document. Using a Python program, we calculated numeric feature values

based on lines of code, McCabe’s cyclomatic complexity, and Halstead metrics from each

text document. For each C++ program, we counted the numeric values of 13 features.

Next, we represented our data file in the WEKA data format, known as an ARFF (Attribute-

Relation-File-Format) file. To ensure that the feature values are within a similar scale and

represent word occurrence information, we used a Python program and converted the input

feature values into tf-idf (term frequency–inverse document frequency) vectors [45]. Tf-idf

computes the relevance of a feature/term to a document and the occurrences of that feature

or term in all the documents. In total, the ARFF data file will hold several data instances

or records. Each data instance or record in the ARFF data file is represented by a set of

numeric feature values and a class label. For our region-based classification model, the

numeric input feature values are the same as used in our gender-based classification model.

3.8 Selected Features

In our work we use three types of features: sociolinguistics features, software metrics

features and program execution features. We selected seventeen features for our experi-

ments, as shown in Figure 3.2. We consider two sociolinguistics features, thirteen software

metrics features, and two program execution features. We analyzed the gender and conti-

nent region of the programmer as sociolinguistics features. We calculated three types of

software metrics features from the programs. We calculated loc, slocp, lloc, comments and
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Figure 3.2: Types of features used in our work.

blanklines as lines of code features; cyclomatic complexity number and number of function

as cyclomatic complexity features; and program vocabulary, program length, calculated es-

timated program length, volume, difficulty and effort as Halstead metrics features. Details

of these features are given in Sections 2.2.1, 2.2.2 and 2.2.3. We also consider two execu-

tion features, required time and memory to execute the program. Program execution time is

measured from the start of the program when inputs are initiated to the end of the program

when the outputs are delivered [47]. The amount of memory required to store the instruc-

tions of a program is defined as required memory [47]. We extracted the program execution

features from the codeforces submissions.

We use the features listed in Figure 3.2 to conduct the experiments which are described

in Chapter 4.
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Chapter 4

Experiments and Results

In this chapter we discuss the set up of the experiments and the results achieved from

the experiments. The chapter concludes with a discussion on the results and the threats to

the validity of this research.

4.1 Experimental Work

In this work we collected C++ programs from the programming contest website code-

forces.com. We created a total of 11 data sets for our research which were used to train the

classification models, and then tested them using 10-fold cross validation. The goal was

to classify the C++ programs based on the gender and region of the programmer. In the

gender-based classification task, the models predict the class labels male or female while in

the region-based classification task, the models predict the class labels Eastern or Western.

We used five supervised machine learning algorithms from the WEKA tool. The algo-

rithms that we used in our research are as follows:

• From the Bayes classifier, we used the Bayesian Network or Bayes Net algorithm.

• From the Function classifier, we used the Sequential Minimal Optimization (SMO)

algorithm.

• From the Meta classifier, we used the Classification Via Regression algorithm.

• From the Rules classifier, we used the Decision Table algorithm.
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• From the Trees classifier, we used the Random Forest algorithm.

Using these five algorithms we performed a total of 13 experiments. An overview of

these experiments is given below.

• In experiments 1− 10 we classified the gender of the programmers. We used 16

features and five machine learning algorithms to build the classification models. In

experiments 1-9 we used 9 different but smaller data sets (data sets 1− 9), and in

experiment 10 we used a larger data set (data set 10). Finally, we applied 10-fold

cross-validation and measured the performance of the five classification models.

• In experiment 11 we classified the region of the programmers. We used 16 features

and five machine learning algorithms to build the models. In experiment 11 we used

one region-based data set (data set 11) to classify the region of the programmers.

Again, we applied 10-fold cross-validation and measured the performance of the five

models.

• In experiment 12 we reduced the number of features based on the ‘Information Gain’

values and selected 6 features to classify the gender of the programmers. Using

these 6 features and five machine learning algorithms, we built the models. In ex-

periment 12 we used data set 10. As before, we applied 10-fold cross-validation and

measured the performance of the five models. We used the top 6 features to determine

the effect of the reduced features on the performance of the five models.

• In experiment 13 we again reduced the number of features based on the ‘Informa-

tion Gain’ values and selected 6 features, but this time to classify the region of the

programmers. This experiment (13) used data set 11. As before, we applied 10-fold

cross-validation and measured the performance of the five classification models.
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4.2 WEKA Tools

In this work we used WEKA to build the machine learning models. We also used ad-

ditional WEKA tools during the data formatting, feature selection, and model evaluation

processes. These tools included the discretize filter, remove filter, info gain attribute selec-

tor, and cross-validation tool. A brief description of these tools are given below:

• Filters

Filters in WEKA are used for preparing the data set before applying the classifiers.

They may be supervised, which means the class values are taken into consideration,

or unsupervised when the class values are not considered. We used the supervised

discretize filter to discretize the attribute or feature values for the Bayesian Network

algorithm. The discretize filter converts the numeric input attributes or features into

nominal input features or attributes [45]. We used a bin size of 10 for discretization.

For example, we applied the discretize filter on the lines of code (loc) feature and

discretized the values into 10 bins.

We also used the unsupervised remove filter to remove features for experiments 12

and 13, where we removed all but the top 6 features. This is done by selecting the 10

features that we wish to remove and then applying the remove filter.

• InfoGainAttributeEval

To determine the most suitable features and reduce the number of features, we used

one of the attribute evaluators of WEKA called ‘InfoGainAttributeEval’. Using the

attribute evaluator, each attribute in the dataset is evaluated in the context of the out-

put variable or the class. Applying the Ranker algorithm on the training data set, this

evaluator measures the information gain (described in Section 2.5.3) for each feature

and rank the features. In the Ranker algorithm each attribute is evaluated and the

results are listed in a rank order.
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• Cross-validation

To evaluate the performance of the learning models, we used the cross-validation tool

(described in Section 2.6) built into WEKA. In our experiments we set the number of

folds at 10 for the cross-validation process.

4.3 Programming Environment

We used the Python programming language and the machine learning tool WEKA. The

experiments were performed on a Dell laptop with an Intel Core i5 processor, 4 GB RAM,

and a 1 TB Hard Disk. We used the Linux operating system, which is an open-source

command-based operating system, and Windows 8© which is a proprietary graphical oper-

ating system. Linux is used for writing and executing Python code using version Python 3.6.

We used Windows 8 for running the machine learning tool WEKA and Microsoft Excel©

for the statistical analysis of the features.

4.4 Experiment Details

4.4.1 Experiments 1-9

In experiments 1− 9 we aimed to classify the programs based on the gender of the

programmers, however in these experiments each data set contained programs for a single

problem. Table 4.1 shows the number of records used for the gender (individual-problem)

based classification.

We first calculated the numeric feature values of 16 features. Using a Python program,

we transformed the features into TF-IDF form and converted the feature values into the

ARFF file format. Table 4.2 shows the total 16 features that we used in our gender-based

classification.

We used five machine learning algorithms: Bayesian Network, Sequential Minimal Op-

timization (SMO), Classification Via Regression, Decision Table, and Random Forest to

build the classification models. Of these five algorithms, the Bayes Net algorithm is the
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Table 4.1: Total records used for experiments 1−9.

Experiment Total records
1 296
2 228
3 248
4 212
5 564
6 314
7 168
8 480
9 356

only one that required discretized values. Thus we applied the discretize filter prior to train-

ing using the Bayes Net algorithm. Then we applied the 10-fold cross-validation technique

and evaluated the models’ performance. The steps followed for the first 11 experiments

are shown in Figure 4.1. The same process was used for experiments 1− 9, using data

sets 1−9. Results are given in Section 4.5.

4.4.2 Experiment 10

In experiment 10 our goal was to classify the programs based on the gender of the

programmers, however in this experiment our data set was a mix of different problems. We

used data set 10 (described in Section 3.6.1) and calculated the feature values for 2866 data

instances. We followed the same approach as in experiments 1−9.

4.4.3 Experiment 11

In experiment 11 we classified the C++ programs based on the programmer’s region

(Eastern region or Western region). We used data set 11 for this experiment. We calculated

the numeric feature values representing the data set and prepared the data instances in ARFF

file format. In experiment 11 we used 5842 data instances, 16 features and five algorithms

to develop models to predict the classes. The 16 features consisted of the same features

as shown in Table 4.2 except instead of continent, we used gender. As before, we applied
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Table 4.2: Features used in gender-based classification.

Number Features
1 Lines of code (LOC)
2 Physical executable lines of code (SLOCP)
3 Logical executable lines of code (LLOC)
4 Comments
5 Blanklines
6 Cyclomatic complexity
7 Number of function
8 Program vocabulary
9 Program length

10 Calculated estimated program length
11 Volume
12 Difficulty
13 Effort
14 Time
15 Memory
16 Continent

10-fold cross-validation to evaluate the performance of the classification models. As in

experiments 1−10 Figure 4.1 shows the steps that we followed to conduct experiment 11.

The results are given in Section 4.5.11.

4.4.4 Experiment 12

In experiment 12 our goal was to see whether we could reduce the features and still

classify the programs with comparable accuracy. Therefore, we reduced the number of fea-

tures from 16 to 6 and classified the programs based on the gender of the programmers. We

used data set 10 (described in Section 3.6.1) and calculated the feature values for 2866 data

instances using all 16 features. Then we transformed the data set into TF-IDF form and pre-

pared the data set in the ARFF file format. We next used the ‘InfoGainAttributeEval’ filter

of WEKA and selected the top 6 features based on the Information Gain values (described

in Section 2.5.3) of the attributes. Applying the remove filter, we removed 10 features and

reduced the number of features to the 6 which are shown in Table 4.3. Results are shown in
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Figure 4.1: Steps followed for experiments 1-11.

Section 4.5.12.

Table 4.3: Reduced six features for gender-based classification.

Number Features
1 Memory
2 Cyclomatic complexity
3 Time
4 Program Length
5 Physical executable lines of code (SLOCP)
6 Volume

4.4.5 Experiment 13

In experiment 13 we used 5842 data instances and 6 features to predict the class labels

Eastern and Western. We again reduced the number of features from 16 to 6, but for this

experiment we classified the C++ programs based on the region (Eastern, Western) of the
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Figure 4.2: Steps followed for experiments 12-13.

programmer. We used data set 11 to perform the experiment. We selected the top 6 features

based on the Information Gain values (described in Section 2.5.3) of the attributes. Table 4.4

shows the top 6 features selected for this experiment. Figure 4.2 shows the steps that we

followed for experiment 13. The results of experiment 13 are discussed in Section 4.5.13.

Table 4.4: Reduced six features for region-based classification.

Number Features
1 Memory
2 Time
3 Cyclomatic complexity
4 Program vocabulary
5 Calculated estimated program length
6 Difficulty
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4.5 Results

This section describes the classification results of the 13 experiments that were per-

formed using 11 different data sets. We tried to investigate the reasons why different models

achieved the best results. Therefore, we visually analyzed 10 randomly chosen programs

(5 female-written programs and 5 male-written programs) in each data set and found some

interesting relationships among the classification models and the problem tags. These re-

lationships are shown in Table 4.5. The concepts or problem tags required to solve the

problems in data sets 1−9 are shown in Table 4.6.

Table 4.5: Relationships between the problem tags and the classification models.

Serial Problem Tag Model
Number
1 Dynamic Programming/ Depth-first search Bayes Net
2 Tree/ Graph/ Search Decision Table
3 Structure/ Matrix Random Forest
4 Greedy Classification Via Regression
5 Hashing Sequential Minimal Optimization

Table 4.6: Concepts required to solve the problems in data sets 1−9.

Problem Id Data set number Problem tags
1288D 1 Binary search, dynamic programming
1301D 2 Constructive algorithm (Greedy, Dynamic Programming)
1304E 3 Tree, graph
1324F 4 Graph, dynamic programming, depth-first

search
1326D2 5 Search, greedy
1328F 6 Tree, graph, depth-first search
1332E 7 Matrix, constructive algorithm (greedy), hashing
1340B 8 Graph, dynamic programming
1344B 9 Depth-first search, graph, constructive

algorithm (matrix)
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4.5.1 Experiment 1

The goal of experiment 1 was to classify the programs when an equal number of male

and female programmers solved a given programming problem. Table 4.7 shows the over-

all performance measures of the five models. The table shows that the Bayes Net model

achieves the highest accuracy of 80.4%. As shown in Table 4.8, the Bayes Net model

classified the highest number of male-written programs accurately at 133 (TP). Out of the

148 female-written programs, both the Bayes Net and Decision Table models accurately

classified the highest number of female-written programs at 105 (TN).

As shown in Table 4.6 the problem tags for data set 1 were binary search and dynamic

programming. From our visual analysis of the 10 random programs we found that the male

programmers used the dynamic programming concepts more than the female programmers,

and the Bayes Net model classified the highest number of male-written programs accurately.

In contrast, the female programmers used the search (binary search) concept in their pro-

grams, and the Decision Table identified the highest number of female-written programs.

However, the female-written programs also showed the use of dynamic programming con-

cepts, and the Bayes Net model also classified the highest number of female-written pro-

grams. Therefore, we hypothesize that there is a relationship between the problem tags and

the models (Bayes Net and Decision Table), as shown in Table 4.5. If the programmers

used dynamic programming concepts, the Bayes Net model showed a better performance,

whereas the Decision table model performed better when the programmers used search

concepts. Further discussions are provided in Section 4.6.1.

4.5.2 Experiment 2

In experiment 2 the Classification Via Regression model showed the highest accuracy of

82.5% as shown in Table 4.9. The precision, recall, and F-measure values of the Classifica-

tion Via Regression model are 83.0%, 82.5%, and 82.4%. Table 4.10 shows that the Bayes

Net model correctly classified 103 (TP) male-written programs out of a total of 114 male-
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Table 4.7: Cross-validation results from experiment 1 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 80.4 19.6 81.5 80.4 80.2
Sequential Minimal 75.7 24.3 76.4 75.7 75.5
Optimization
Classification Via 69.6 30.4 69.7 69.6 69.5
Regression
Decision Table 79.0 21.0 79.8 79.1 78.9
Random Forest 75.7 24.3 75.8 75.7 75.6

Table 4.8: Confusion matrix for experiment 1 (16 features).

Model
TP
(/148)

FP
(/148)

TN
(/148)

FN
(/148)

TP Rate
(%)

FP Rate
(%)

Bayes Net 133 15 105 43 80.4 19.6
Sequential Minimal 124 24 100 48 75.7 24.3
Optimization
Classification Via 109 39 51 97 69.6 30.4
Regression
Decision Table 129 19 105 43 79.1 20.9
Random Forest 118 30 42 106 75.7 24.3

written programs. However, the Classification Via Regression model correctly classified

the highest number of female-written programs at 87 (TN).

In Table 4.6, the problem tag for data set 2 is the constructive algorithm. If a program

holds the problem tag constructive algorithm, there can be many possible solutions for

the problem. To obtain a suitable solution, programmers can use a variety of appropriate

algorithms. In data set 2 the male programmers seemed to use dynamic programming

concepts, and we see that the Bayes Net model correctly classified the highest number of

male-written programs. In contrast, the female programmers used greedy concepts, and

the Classification Via Regression model correctly classified the highest number of female-

written programs. This suggests the existence of the relationships between the problem tags

and the models (Bayes Net and Classification Via Regression) as shown in Table 4.5. If the
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programmers used dynamic programming concepts, the Bayes Net model showed a better

performance, whereas the Classification Via Regression model performed better when the

programmers used greedy concepts. Further discussions are provided in Section 4.6.1.

Table 4.9: Cross-validation results from experiment 2 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 81.1 18.9 82.2 81.1 81.0
Sequential Minimal 64.0 36.0 64.0 64.0 64.0
Optimization
Classification Via 82.5 17.5 83.0 82.5 82.4
Regression
Decision Table 75.9 24.1 77.0 75.9 75.6
Random Forest 78.5 21.5 78.9 78.5 78.4

Table 4.10: Confusion matrix for experiment 2 (16 features).

Model
TP
(/114)

FP
(/114)

TN
(/114)

FN
(/114)

TP Rate
(%)

FP Rate
(%)

Bayes Net 103 11 82 32 81.1 18.9
Sequential Minimal 72 42 74 40 64.0 36.0
Optimization
Classification Via 101 13 87 27 82.5 17.5
Regression
Decision Table 98 16 75 39 75.9 24.1
Random Forest 96 18 83 31 78.5 21.5

4.5.3 Experiment 3

In experiment 3 the Decision Table model shows the highest accuracy of 81.5% as

shown in Table 4.11. The precision, recall, and F-measure values of the Decision Table

model are 82.3%, 81.5%, and 81.3%, respectively. Table 4.12 shows that the Decision

Table model accurately classified the highest number of male-written programs at 111 (TP).

The Decision Table model also correctly classified the highest number of female-written

programs at 91 (TN).
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As shown in Table 4.6 the problem tags for data set 3 are tree and graph. The male

and female programmers both used the concepts of tree and graph. Again, the Decision

table model correctly classified the highest number of male-written and female-written pro-

grams. These suggested relationships between the problem tags and the models are shown

in Table 4.5. If the programmers used the tree or graph concept, the Decision Table model

showed a better performance. Further discussions are provided in Section 4.6.1.

Table 4.11: Cross-validation results from experiment 3 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 77.8 22.2 78.6 77.8 77.7
Sequential Minimal 74.6 25.4 74.9 74.6 74.5
Optimization
Classification Via 68.1 31.9 68.2 68.1 68.1
Regression
Decision Table 81.5 18.5 82.3 81.5 81.3
Random Forest 75.8 24.2 76.2 75.8 75.7

Table 4.12: Confusion matrix for experiment 3 (16 features).

Model
TP
(/124)

FP
(/124)

TN
(/124)

FN
(/124)

TP Rate
(%)

FP Rate
(%)

Bayes Net 107 17 86 38 77.8 22.2
Sequential Minimal 99 25 86 38 74.6 25.4
Optimization
Classification Via 89 35 80 44 68.1 31.9
Regression
Decision Table 111 13 91 33 81.5 18.5
Random Forest 102 22 86 38 75.8 24.2

4.5.4 Experiment 4

In experiment 4 the Bayes Net and Decision Table demonstrate the same highest accu-

racy of 81.6% as shown in Table 4.13. Again, Table 4.14 shows that the Bayes Net model

correctly classified the highest number of male-written programs at 98 (TP). However, the
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Decision Table model correctly classified the highest number of female-written programs

at 81 (TN).

As shown in Table 4.6 the problem tags for data set 4 were graph, dynamic program-

ming and depth-first search. From the visual analysis we saw that the male programmers

used the concept of dynamic programming or depth-first search, and the Bayes Net model

correctly classified the highest number of male-written programs. In contrast, the female

programmers used primarily graph concepts and we see that the Decision Table model cor-

rectly classified the highest number of female-written programs. Again, these proposed

relationships between the problem tags and the models (Bayes Net and Decision Table) are

shown in Table 4.5. If the programmers used dynamic programming or depth-first search

concepts in their programs, the Bayes Net model performs well, whereas the Decision Table

model showed a better performance when the programmers used graph concepts. Further

discussions are provided in Section 4.6.1.

Table 4.13: Cross-validation results from experiment 4 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 81.6 18.4 83.2 81.6 81.4
Sequential Minimal 70.3 29.7 70.7 70.3 70.1
Optimization
Classification Via 76.4 23.6 76.8 76.4 76.3
Regression
Decision Table 81.6 18.4 81.9 81.6 81.6
Random Forest 78.3 21.7 78.6 78.3 78.3

4.5.5 Experiment 5

In experiment 5 the Random Forest model provides the highest accuracy of 86.2% as

shown in Table 4.15. Again, Table 4.16 shows that the Decision Table model correctly

classified the highest number of male-written programs at 265 (TP). In contrast, the Classi-

fication Via Regression model accurately classified the highest number of of female-written
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Table 4.14: Confusion matrix for experiment 4 (16 features).

Model
TP
(/106)

FP
(/106)

TN
(/106)

FN
(/106)

TP Rate
(%)

FP Rate
(%)

Bayes Net 98 8 75 31 81.6 18.4
Sequential Minimal 82 24 67 39 70.3 29.7
Optimization
Classification Via 87 19 75 31 76.4 23.6
Regression
Decision Table 92 14 81 25 81.6 18.4
Random Forest 88 18 78 28 78.3 21.7

programs at 230 (TN).

As shown in Table 4.6 the problem tags for data set 5 were search and greedy. From the

visual analysis we see that the male programmers used search concepts in their programs,

and the Decision Table model correctly classified the highest number of male-written pro-

grams. In contrast, the female programmers used greedy concepts to write their programs

and the Classification Via Regression model accurately classified the highest number of

female-written programs. Although the problem tags were search and greedy, the pro-

grammers (male and female) also used arrays as the data structure. This could be why the

Random Forest model showed the highest performance. If the programmers used greedy

concepts the Classification Via Regression model performs better, whereas the Decision

Table performed well when search concepts were used. In addition, the Random Forest

model performed well when the programmers used arrays as the data structure. Further

discussions are provided in Section 4.6.1.

4.5.6 Experiment 6

In experiment 6 the Decision Table model showed the highest accuracy of 86.6% as

shown in Table 4.17. Again, Table 4.18 shows that the Bayes Net model correctly classified

the highest number of male-written programs 147 (TP). However, the Decision table model

accurately classified the highest number of female-written programs at 132 (TN).
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Table 4.15: Cross-validation results from experiment 5 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 83.5 16.5 84.2 83.5 83.4
Sequential Minimal 82.6 17.4 82.9 82.6 82.6
Optimization
Classification Via 83.7 16.3 83.7 83.7 83.7
Regression
Decision Table 85.6 14.4 86.7 85.6 85.5
Random Forest 86.2 13.8 86.5 86.2 86.1

Table 4.16: Confusion matrix for experiment 5 (16 features).

Model
TP
(/282)

FP
(/282)

TN
(/282)

FN
(/282)

TP Rate
(%)

FP Rate
(%)

Bayes Net 256 26 215 67 83.5 16.5
Sequential Minimal 245 37 221 61 82.6 17.4
Optimization
Classification Via 242 40 230 52 83.7 16.3
Regression
Decision Table 265 17 218 64 85.6 14.4
Random Forest 257 25 229 53 86.2 13.8

In Table 4.6 the problem tags to solve the problem in data set 6 were tree, graph and

depth-first search. From the visual analysis of 10 programs it appeared that the male pro-

grammers used the concept of depth-first search more in their programs, and we saw that the

Bayes Net model correctly classified the highest number of male-written programs. In con-

trast, the female-programmers used tree or graph concepts to write the programs, and the

Decision table model accurately classified the highest number of female-written programs.

These relationships between the problem tags and the models (Bayes Net and Decision Ta-

ble) are shown in Table 4.5. In this table we can see that the Bayes Net performed well when

the problem tag was depth-first search and the Decision Table showed better performance

when the problem required the concept of tree or graph.
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Table 4.17: Cross-validation results from experiment 6 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 85.0 15.0 86.1 85.0 84.9
Sequential Minimal 80.6 19.4 80.9 80.6 80.5
Optimization
Classification Via 76.1 23.9 76.4 76.1 76.0
Regression
Decision Table 86.6 13.4 86.7 86.6 86.6
Random Forest 81.8 18.2 82.3 81.8 81.8

Table 4.18: Confusion matrix for experiment 6 (16 features).

Model
TP
(/157)

FP
(/157)

TN
(/157)

FN
(/157)

TP Rate
(%)

FP Rate
(%)

Bayes Net 147 10 120 37 85.0 15.0
Sequential Minimal 134 23 119 38 80.6 19.4
Optimization
Classification Via 128 29 111 46 76.1 23.9
Regression
Decision Table 140 17 132 25 86.6 13.4
Random Forest 138 19 119 38 81.8 18.2

4.5.7 Experiment 7

In experiment 7 the Random Forest model demonstrates the highest accuracy of 91.7%

as shown in Table 4.19. Again, Table 4.20 shows that the Sequential Minimal Optimiza-

tion (SMO) model correctly classified the highest number of male-written programs at 82

(TP), whereas the Random Forest model accurately classified the highest number of female-

written programs at 74 (TN).

In Table 4.6 the problem tags for data set 7 were matrix, constructive algorithm (greedy)

and hashing. From the visual analysis it appeared that the female programmers used ma-

trix approaches in their programs, while the Random Forest model accurately classified the

highest number of female-written programs. In contrast, the male programmers used the

concept of hashing, and the Sequential Minimal Optimization (SMO) model correctly clas-

sified the highest number of male-written programs. As before in experiments 2 and 5 we
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saw a relationship between the problem tag greedy and the Classification Via Regression

model. In this experiment the male and female programmers also used the concept of con-

structive algorithm (greedy). This may be why the Classification Via Regression model cor-

rectly classified the second highest number of male-written and female-written programs.

The relationships between these problem tags and the models (Random Forest, Sequential

Minimal Optimization and Classification Via Regression) are shown in Table 4.5. If the

programmers used the concept of matrix the Random Forest model showed a better perfor-

mance and the Sequential Minimal Optimization (SMO) model performed well when the

concept of hashing was used. Again, the Classification Via Regression model performed

better when the concept of greedy algorithm was used. Further discussions are provided in

Section 4.6.1.

Table 4.19: Cross-validation results from experiment 7 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 88.7 11.3 89.1 88.7 88.7
Sequential Minimal 83.9 16.1 86.7 83.9 83.6
Optimization
Classification Via 90.5 9.5 91.1 90.5 90.4
Regression
Decision Table 88.1 11.9 88.4 88.1 88.1
Random Forest 91.7 8.3 91.9 91.7 91.7

Table 4.20: Confusion matrix for experiment 7 (16 features).

Model
TP
(/84)

FP
(/84)

TN
(/84)

FN
(/84)

TP Rate
(%)

FP Rate
(%)

Bayes Net 79 5 70 14 88.7 11.3
Sequential Minimal 82 2 59 25 83.9 16.1
Optimization
Classification Via 81 3 71 13 90.5 9.5
Regression
Decision Table 78 6 70 14 88.1 11.9
Random Forest 80 4 74 10 91.7 8.3
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4.5.8 Experiment 8

In experiment 8 the Bayes Net model demonstrates the highest accuracy of 83.1% as

shown in Table 4.21. Again, Table 4.22 shows that the Decision Table model correctly

classified 222 (TP) male-written programs, and the Bayes Net model correctly classified

the highest number of female-written programs at 178 (TN).

As shown in Table 4.6, the problem tags for data set 8 were graph and dynamic pro-

gramming. From the visual analysis we observed that the female programmers seemed to

use the dynamic programming concepts, while the Bayes Net model correctly classified

the highest number of female-written programs. Again, the male programmers used the

concept of graph in their programs and the Decision Table model correctly classified the

highest number of male-written programs. The male programmers also used the concept

of dynamic programming, and the Bayes Net model correctly classified the second highest

number of male-written programs at 221 (TP). Again the relationships between the prob-

lem tags and the models (Bayes Net and Decision Table) are shown in Table 4.5. If the

programmers used the dynamic programming concepts, the Bayes Net showed a better per-

formance, whereas the Decision Table performed better when the programmers used the

graph concepts. Further discussions are provided in Section 4.6.1.

Table 4.21: Cross-validation results from experiment 8 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 83.1 16.9 84.2 83.1 83.0
Sequential Minimal 72.3 27.7 73.2 72.3 72.0
Optimization
Classification Via 77.3 22.7 77.5 77.3 77.2
Regression
Decision Table 81.7 18.3 83.2 81.7 81.4
Random Forest 79.6 20.4 80.1 79.6 79.5
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Table 4.22: Confusion matrix for experiment 8 (16 features).

Model
TP
(/240)

FP
(/240)

TN
(/240)

FN
(/240)

TP Rate
(%)

FP Rate
(%)

Bayes Net 221 19 178 62 83.1 16.9
Sequential Minimal 197 43 150 90 72.3 27.7
Optimization
Classification Via 197 43 174 66 77.3 22.7
Regression
Decision Table 222 18 170 70 81.7 18.3
Random Forest 206 34 176 64 79.6 20.4

4.5.9 Experiment 9

In experiment 9 the Bayes Net model shows the highest accuracy of 79.5% as shown in

Table 4.23. However, Table 4.24 shows that the Bayes Net model also correctly classified

the highest number of male-written programs at 159 (TP). Out of 178 female-written pro-

grams, the Decision Table and Random Forest models each accurately classified the same

highest number of female-written programs at 128 (TN).

From Table 4.6 we can see that the problem tags for data set 9 were depth-first search,

graph and constructive algorithm (matrix). From the visual analysis of 10 programs it

seemed that the male programmers used the depth-first search concept, and the Bayes Net

model correctly classified the highest number of male-written programs. In contrast, the

female programmers used the concepts of graph and matrix in their programs. Again, the

Decision Table and Random Forest model each accurately classified the same highest num-

ber of female-written programs. The resulting (hypothesized) relationships between the

problem tags and the models (Bayes Net, Decision Table and Random Forest) are shown

in Table 4.5. If the programmers used the depth-first search concept, the Bayes Net model

showed a better performance, whereas the Decision Table and Random Forest models per-

formed better when the programmers used the concepts of graph and matrix in their pro-

grams, respectively.
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Table 4.23: Cross-validation results from experiment 9 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 79.5 20.5 80.7 79.5 79.3
Sequential Minimal 74.2 25.8 74.4 74.2 74.1
Optimization
Classification Via 73.3 26.7 73.6 73.3 73.2
Regression
Decision Table 78.9 21.1 79.5 78.9 78.8
Random Forest 77.5 22.5 77.9 77.5 77.5

Table 4.24: Confusion matrix for experiment 9 (16 features).

Model
TP
(/178)

FP
(/178)

TN
(/178)

FN
(/178)

TP Rate
(%)

FP Rate
(%)

Bayes Net 159 19 124 54 79.5 20.5
Sequential Minimal 141 37 123 55 74.2 25.8
Optimization
Classification Via 140 38 121 57 73.3 26.7
Regression
Decision Table 153 25 128 50 78.9 21.1
Random Forest 148 30 128 50 77.5 22.5

4.5.10 Experiment 10

In experiment 10 all the programs of from data sets 1-9 were combined for the gender-

based classification using 16 features. Data set 10 was a combination of data sets 1−9 and

contained all the problems tags. All of the five models show an accuracy over 81.0%. As

shown in Table 4.25 the Random Forest model showed the highest accuracy of 86.4%. Ta-

ble 4.26 shows that the Sequential Minimal Optimization (SMO) model correctly classified

the highest number of male-written programs at 1295 (TP). In contrast, the Random Forest

model accurately classified the highest number of female-written programs at 1201 (TN).

Further discussion is given in Section 4.6.1.
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Table 4.25: Cross-validation results from experiment 10 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 83.5 16.5 83.9 83.5 83.4
Sequential Minimal 85.9 14.1 86.2 85.9 85.9
Optimization
Classification Via 84.5 15.5 84.5 84.5 84.5
Regression
Decision Table 81.0 19.0 81.4 81.0 81.0
Random Forest 86.4 13.6 86.5 86.4 86.4

Table 4.26: Confusion matrix for experiment 10 (16 features).

Model
TP
(/1433)

FP
(/1433)

TN
(/1433)

FN
(/1433)

TP Rate
(%)

FP Rate
(%)

Bayes Net 1277 156 1116 317 83.5 16.5
Sequential Minimal 1295 138 1167 266 85.9 14.1
Optimization
Classification Via 1222 211 1199 234 84.5 15.5
Regression
Decision Table 1237 196 1085 348 81.0 19.0
Random Forest 1276 157 1201 232 86.4 13.6

4.5.11 Experiment 11

In experiment 11 we built five classification models to classify the region of the pro-

grammer. The Random Forest model has the highest accuracy of 75.2% as shown in Ta-

ble 4.27. Again, Table 4.28 shows that the Classification Via Regression model classified

the highest number of programs from the Eastern region accurately at 2309 (TP), and the

Bayes Net model correctly classified the highest number of programs from the Western

region at 2311 (TN). Further discussions are given in Section 4.6.2.

4.5.12 Experiment 12 (Gender-based classification with reduced features)

In experiment 12 our goal was to see whether the reduced features could classify the

programs with comparable accuracy. In this experiment the Bayes Net model demonstrates

the highest accuracy of 84.6% as shown in Table 4.29. Table 4.30 shows that the Bayes Net
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Table 4.27: Cross-validation results from experiment 11 (16 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 69.6 30.4 70.3 69.6 69.3
Sequential Minimal 72.9 27.1 73.2 72.9 72.8
Optimization
Classification Via 74.4 25.6 74.6 74.4 74.3
Regression
Decision Table 70.0 30.0 70.3 70.0 69.9
Random Forest 75.2 24.8 75.3 75.2 75.2

Table 4.28: Confusion matrix for experiment 11 (16 features).

Model
TP
(/2921)

FP
(/2921)

TN
(/2921)

FN
(/2921)

TP Rate
(%)

FP Rate
(%)

Bayes Net 1753 1168 2311 610 69.6 30.4
Sequential Minimal 2280 641 1980 941 72.9 27.1
Optimization
Classification Via 2309 612 2036 885 74.4 25.6
Regression
Decision Table 2221 700 1870 1051 70.0 30.0
Random Forest 2245 676 2151 770 75.2 24.8

model correctly classified the highest number of male-written programs at 1305 (TP). How-

ever, the Classification Via Regression and the Random Forest models accurately classified

the same highest number of female-written programs at 1177 (TN). We observed that the

reduced features were successful to achieve comparable results to experiment 10. Further

discussions are provided in Chapter 5, Section 5.1.1.

4.5.13 Experiment 13 (Region-based classification with reduced features)

In experiment 13 we reduced the number of features from 16 to 6 to see whether the

reduced features could achieve comparable results to experiment 11. In this experiment

the Classification Via Regression model has the highest accuracy of 73.6% as shown in

Table 4.31. Again, Table 4.32 shows that the Classification Via Regression model also ac-

curately classified the highest number of programs from the Eastern region at 2301 (TP).
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Table 4.29: Cross-validation results from experiment 12 (6 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 84.6 15.4 85.2 84.6 84.5
Sequential Minimal 83.6 16.4 83.8 83.6 83.5
Optimization
Classification Via 84.0 16.0 84.0 84.0 84.0
Regression
Decision Table 79.2 20.8 79.8 79.2 79.1
Random Forest 84.0 16.0 83.9 83.9 83.9

Table 4.30: Confusion matrix for experiment 12 (6 features).

Model
TP
(/1433)

FP
(/1433)

TN
(/1433)

FN
(/1433)

TP Rate
(%)

FP Rate
(%)

Bayes Net 1305 128 1120 313 84.6 15.4
Sequential Minimal 1261 172 1134 299 83.6 16.4
Optimization
Classification Via 1230 203 1177 256 84.0 16.0
Regression
Decision Table 1235 198 1035 398 79.2 20.8
Random Forest 1227 206 1177 256 83.9 16.1

In contrast, the Bayes Net model accurately classified the highest number of programs

from the Western region at 2173 (TN). Further discussions are provided in Chapter 5, Sec-

tion 5.1.2.

4.6 Discussion of experimental results

In this section, we discuss the summary of the experimental results. We tried to investi-

gate the best models based on the performance measures of the 13 experimental results. A

description of the findings is given below.
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Table 4.31: Cross-validation results from experiment 13 (6 features).

Model
Correctly
Classified (%)

Incorrectly
Classified (%)

Precision
(%)

Recall
(%)

F-measure
(%)

Bayes Net 72.0 28.0 72.0 72.0 72.0
Sequential Minimal 72.8 27.2 73.1 72.8 72.7
Optimization
Classification Via 73.6 26.4 73.8 73.6 73.5
Regression
Decision Table 67.5 32.5 67.8 67.5 67.4
Random Forest 72.7 27.3 72.7 72.7 72.7

Table 4.32: Confusion matrix for experiment 13 (6 features).

Model
TP
(/2921)

FP
(/2921)

TN
(/2921)

FN
(/2921)

TP Rate
(%)

FP Rate
(%)

Bayes Net 2030 891 2173 748 72.0 28.0
Sequential Minimal 2283 638 1970 951 72.8 27.2
Optimization
Classification Via 2301 620 1997 924 73.6 26.4
Regression
Decision Table 2147 774 1799 1122 67.5 32.5
Random Forest 2125 796 2122 799 72.7 27.3

4.6.1 Gender-based classification discussion

Individual problem based discussion

• We analyzed the relationships between the problem tags and the models to find a

connection between them. The Bayes Net model showed better performance when

the problem tags were the dynamic programming and depth-first search. To create

a Bayesian Network the concept of depth-first search and dynamic programming are

used [38]. This is likely why the Bayes Net model showed a better performance when

the programmers used depth-first search and dynamic programming concepts in their

programs.

• Again, the concept of graph and tree are used for creating the decision tree of a Deci-

sion Table model [40]. This could explain why the Decision Table model performed
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better when the problem tags were tree and graph.

• A structure creates a data type that can be used to categorize different items into a

single type. However, a Random Forest model creates multiple decision trees and

based on the majority decisions of the trees, the model classifies an instance to a

specific class. To identify the structure in the data, a Random Forest model gener-

ates a matrix [24]. Since Random Forest uses the concept of matrix and structure,

this could explain why the model was successful in identifying the male-written and

female-written programs that used the concept of matrix and structure.

• In contrast, the Classification Via Regression model uses the original data set to gen-

erate several new data sets for each class label. Using a model tree and a linear re-

gression function, the model generates probabilities about the class of each instance.

A greedy algorithm makes one greedy choice continuously and reduces each given

problem into a smaller one. Researchers have used the concept of greedy algorithm

to address the linear regression problems [34]. This may be a key factor in why the

Classification Via Regression model showed a better performance when the program-

mers used the greedy algorithm concept.

• In [23] the authors demonstrated that hashing can be used with the Support Vector

Machines learning algorithm. Hence, this could be why the Sequential Minimal Opti-

mization model performed better when the programmers used the concept of hashing

in their programs.

• One of the possible reasons for the differences in the performance of the five models

is the problem tags or concepts used to solve the problems. We can choose a particular

model for better if we know what the underlying problem tags are. The models were

successful in identifying the classes potentially because of the underlying effect of

the problem tags and how the programs were designed based on these tags.
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• In gender-based (individual problem) classification tasks (experiments 1− 9), the

Bayes Net model generally performed better than the other models. As shown in

Table 4.33 the Bayes Net model achieved the highest accuracy in four experiments

(experiments 1, 4, 8, and 9). In Table 4.6 the problem tags for the data sets 1, 4,

8, and 9 show the requirement of either dynamic programming or depth-first search

concept. From 4.5 we can see that the Bayes Net model performed well when the

problem tags were the dynamic programming and depth-first search. This could be

why the Bayes Net model showed efficient performance in these four experiments.

• In contrast, the Sequential Minimal Optimization model showed the lowest accuracy,

in particular for experiments 2, 4, 5, 7, and 8. From Table 4.5 we can see that the

Sequential Minimal Optimization model performed well when the problem tag was

hashing. Although data sets 5 and 7 required the concept of hashing, the overall

uses of the other tags were higher in the submitted programs. This could be the

possible reason why the other models performed well in these five experiments and

the Sequential Minimal Optimization model showed the lowest performance.

• The Bayes Net model classified the highest number of male-written programs for five

experiments out of the nine experiments. Using 16 features, the Bayes Net model

correctly classified the highest number of male-written programs in experiments 1, 2,

4, 6, and 9. To solve the problems in data sets 1, 2, 4, 6, and 9, the male programmers

used more dynamic programming or depth-first search concept in their programs than

the other concepts. This could be why the Bayes Net model classified the highest

number of male-written programs.

• In five experiments, the Decision Table model performed better than the other models

and correctly classified the highest number of female-written programs. The Decision

Table model using 16 features accurately classified the highest number of female-

written programs in experiments 1, 3, 4, 6, and 9. To solve the problems in data
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sets 1, 3, 4, 6, and 9, the female programmers used more tree or graph concepts than

the other concepts. This could be a possible reason why the Decision Table model

classified the highest number of female-written programs.

• Analyzing the results of experiments 1− 9, we observed that in all experiments the

male-written and female-written programs were classified by different models, except

experiment 3. In experiment 3 there was limited scope to apply different concepts,

therefore the male and female programmers used the same concepts. In other eight

experiments the male and female programmers seemed to use different approaches

or problem tags while solving the same problems. That could be why different mod-

els classified male-written and female-written programs based on the use of different

problem tags. We can also hypothesize that male and female programmers use differ-

ent approaches when they solve a particular problem. Thus we can see a gender-based

variations in the computer programs of the computer programming contests. There-

fore, these observations give the possible answers to our two research questions: Do

sociolinguistic variations exist in the computer programs of computer programming

contests? Do male and female contestants write programs differently to solve a par-

ticular programming contest problem?

Combined problem based discussion (with 16 features)

• Table 4.34 demonstrates that the Random Forest has the highest accuracy in the gen-

der (combined problem) based classification. The Random Forest model using 16

features showed an accuracy of 86.4%, which is the highest accuracy of the five

models. From a total of 1433 records (in data set 10), 732 records were from the

data sets 5 and 7. From Table 4.1 we can see that the experiments 5 and 7 used the

data sets 5 (564 records) and 7 (168 records), respectively. In these two experiments

the Random Forest model showed the highest performance. In experiment 10 we

used the combined data set 10 where the same records of the data sets 5 and 7 were
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Table 4.33: Comparison of the best and worst models for gender-based (individual problem)
classification.

Experiment Best Model
Accuracy
of the Best model

Worst Model
Accuracy
of the Worst model

1 Bayes Net 80.4% Classification
Via Regression

69.6%

2
Classification
Via Regression

82.5%
Sequential
Minimal
Optimization

64.0%

3 Decision Table 81.5%
Classification
Via Regression

68.1%

4
Bayes Net,
Decision Table

81.6%
Sequential
Minimal
Optimization

70.3%

5 Random Forest 86.2%
Sequential
Minimal
Optimization

82.6%

6 Decision Table 86.6%
Classification
Via Regression

76.1%

7 Random Forest 91.7%
Sequential
Minimal
Optimization

83.9%

8 Bayes Net 83.1%
Sequential
Minimal
Optimization

72.3%

9 Bayes Net 79.5% Classification
Via Regression

73.3%

present. This could be why the Random Forest model showed the highest perfor-

mance in experiment 10. Again, data set 10 was comparatively large and the Random

Forest model performs well for the larger data sets [4]. These are likely the reasons

the Random Forest model showed the highest accuracy.

• The Sequential Minimal Optimization model using 16 features (experiment 10) ac-

curately classified the highest number of male-written programs. The Sequential

Minimal Optimization (SMO) model performed well when the programmers used

the concept of hashing. Hashing is a data structure that uses the array and mapping
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concepts. From the visual analysis we found that the male-written programs used the

concept of array or mapping in their programs, this could be a possible reason that

the SMO model correctly classified the highest number of male-written programs.

• In contrast, the female-written programs seemed to use the matrix and structures in

their programs, this could be why the Random Forest model correctly classified the

highest number of the female-written programs.

Table 4.34: Comparison of the best and worst models for gender-based (combined problem)
classification.

Experiment Best Model
Accuracy
of the Best model

Worst Model
Accuracy
of the Worst model

10 Random Forest 86.4% Decision Table 81.0%
12 Bayes Net 84.6% Decision Table 79.2%

4.6.2 Region-based classification discussion (with 16 features)

• As shown in Table 4.35, the Random Forest shows the highest accuracy in the region-

based classification tasks (experiment 11). The Random Forest model using 16 fea-

tures performed better with an accuracy of 75.2% than the other models. We used the

submissions of all of the nine problems and prepared the data set 11. Therefore, the

data set 11 contained all the problem tags that are shown in Table 4.6. From the visual

analysis we found that the programmers from the Eastern and Western regions both

used the concepts of structure and matrix. From Table 4.5 the Random Forest model

showed better performance when the problem tags were structure and matrix. Again,

data set 11 was comparatively large and the Random Forest model performed well

for the larger data sets [4]. These are likely the reasons the Random Forest model

showed the highest accuracy.

• We observed that the Classification Via Regression model correctly identified the

highest number of programs from the Eastern region. From the visual analysis of
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the 10 random programs we saw that the programmers from the Eastern region used

the greedy concept in their programs, and the Classification Via Regression model

classified the highest number of programs from the Eastern region. As shown in

Table 4.5 the Classification Via Regression model showed a better performance when

the programmers used the concept of greedy algorithm.

• In contrast, the programmers from the Western region seemed to use the concept

of dynamic programming and depth-first search, and the Bayes Net model correctly

classified the programs from the Western region. As shown in Table 4.5 the Bayes

Net model performed better when the programmers used the concept of dynamic

algorithm or depth-first search.

Table 4.35: Comparison of the best and worst models for region-based classification.

Experiment Best Model
Accuracy
of the Best model

Worst Model
Accuracy
of the Worst model

11 Random Forest 75.2% Bayes Net 69.6%

13
Classification
Via Regression

73.6% Decision Table 67.5%

4.7 Limitations

There may be some potential threats to the validity of this research.

• In this research, the gender of a programmer is predicted based on the first name of

that person. A programmer may use a name to hide his/her identity or other errors

may occur in the gender prediction process. Therefore, there may be some inaccurate

information regarding the gender of the programmer.

• Country and city information is provided by programmers, and we use this to de-

termine the origin of the programmer. If the country information is inaccurate, this

could impact the model development.
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• We used only three types of features based on software metrics for this research.

There may be other features that may give us better results. Some suggestions on this

are given in Section 6.1 Future Work.

• In codeforces the number of female-written programs is significantly lower than the

male-written programs. If we could explore more female-written programs, the out-

come might differ from our current analysis. For a small number of data the risk of

over-fitting may occur which may lead to an inaccurate representation of all female

programmers. This is a potential threat to the validity of this research.
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Chapter 5

Discussion

This chapter discusses the statistical analysis of the features that are used to determine

the gender-based and region-based programming styles of the contest programmers.

5.1 Reduction of Features

In experiments 10 and 11 (as described in Chapter 4), we used 16 features for the classi-

fication tasks. Using the ‘InfoGainAttributeEval’ attribute evaluator of WEKA, we reduced

the number of features from 16 to 6 to conduct experiments 12 and 13. The selected 6

features for gender-based classification were

• memory,

• cyclomatic complexity,

• time,

• program length,

• slocp, and

• volume.

Again, for region-based classification the selected 6 features were

• memory,

• cyclomatic complexity,
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• time,

• program vocabulary,

• calculated estimated program length, and

• difficulty.

Using these features, we built new classification models for experiments 12 and 13.

Then, we compared the results to determine whether the feature reduction approach helped

to improve the models’ performance.

5.1.1 Gender-based classification

We hypothesized that analysis of the computer programs from programming contests

can help to determine the differences in programming styles of groups of programmers,

particularly male and female programmers. Table 5.1 shows the comparative analysis of

the performance of the five classification models for gender-based classification. Overall

we found that the Bayes Net model’s accuracy improved slightly with the reduced fea-

tures among the five classification models. The accuracy of the other classification models

decreased by 0.5% to 2.6%. Although the Random Forest model achieved the highest ac-

curacy (86.4%) using 16 features, the Bayes Net model’s performance increased with the

reduction to 6 features. However, the removal of the irrelevant features had minor effect on

the performance of all the models and the changes in the performance might be evaluated

as insignificant. Overall, the models using 6 features were successful in achieving results

comparable to the models using 16 features.

The Bayes Net model creates a directed acyclic graph that consists of nodes and edges,

where each attribute or feature is represented by a node. As described in Section 2.5.2,

the Bayes Net model calculates the conditional probability for each attribute value and

the attribute values with maximum probabilities are selected for the classification of an

instance. When the number of attributes is reduced, consequently the number of nodes in
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the Bayes Net graph will also decrease. Using the reduced number of nodes, the Bayes

Net model can create a less complex probabilistic model and predict the most important

relationships among the features (represented as nodes). This could be why the performance

of the Bayes Net model increased with reduced features. However, the Sequential Minimal

Optimization model uses a function, the Classification Via Regression model uses a model

tree and a linear regression algorithm, the Decision Table creates a tree and the Random

Forest model uses multiple decision trees which all may perform better for larger data sets

using more features. This is one possible reason that these models showed a decrease in

performance.

Table 5.1: Accuracy in gender-based classification.

Model Accuracy (%)
16 features 6 features

Bayes Net 83.5 84.6
Sequential Minimal Optimization 85.9 83.6
Classification Via Regression 84.5 84.0
Decision Table 81.0 79.2
Random Forest 86.4 84.0

5.1.2 Region-based classification

Programmers from many different parts of the world participate in programming con-

tests. Therefore, we hypothesized that programming contest data can also be analyzed to

determine the effect of region on computer programs. Again, we tried to investigate whether

the reduction of the features had any significant effect on the performance of the five mod-

els. In Table 5.2, the performance of the models with 16 and 6 features is shown. After

reducing the features, again only the Bayes Net model saw an increase in accuracy (from

69.9% to 72.0%, or about 2.1%). A possible reason for the Bayes Net model’s slightly

improved performance is the probabilistic approach underlying this model (as described in

Section 4.6.2 and in Section 2.5.2). Of the five models using 6 features, the Classifica-

tion Via Regression model achieved the highest accuracy of 73.6%. Although the Random
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Forest model with 16 features shows the highest accuracy (75.2%), the performance of the

Random Forest model slightly decreased by 2% with the reduced 6 features.

The Classification Via Regression model is a meta learning algorithm that incorporates a

decision tree and a linear regression algorithm to calculate probabilities for a specific class.

The leaf nodes in the decision tree use linear regression functions to generate probabilities

about the class of each instance. Based on the attribute values of each instance, the class

probabilities are calculated. After the feature reduction, the leaf nodes in the decision tree

use the reduced features and linear regression functions to generate probabilities about the

class of each instance. If the reduced features set contains less highly correlated features,

the model can generate more accurate probabilities about the class of an instance [30]. For

example, in region-based classification the features lines of code and calculated estimated

program length were highly correlated (as described in Section 5.3). Based on the infor-

mation gain we selected the calculated estimated program length and removed the lines

of code. The selection of less highly correlated features could be a reason that the Clas-

sification Via Regression model achieved the highest performance with the reduction to 6

features. However, the changes in the performance of the models were insignificant and the

models using 6 features achieved very close results to the models using 16 features.

Table 5.2: Accuracy in region-based classification.

Model Accuracy (%)
16 features 6 features

Bayes Net 69.6 72.0
Sequential Minimal Optimization 72.9 72.8
Classification Via Regression 74.4 73.6
Decision Table 70.0 67.5
Random Forest 75.2 72.7

In gender-based and region based classifications three features seemed to be present in

both of the reduced features set. Time, memory and cyclomatic complexity feature values

have variance for which these three features showed higher information gain values. Out

of six features other three features were different in gender-based and region-based classi-
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fication. In gender-based classification we can see that the feature program length is one

of the top features which is measured by counting total number of operators and operands.

Again, in gender-based classification the other two features are volume and slocp which

measure the size of the programs. Therefore, in gender-based classification we can see

that the length of the programs, total operator and operands based features provided higher

information gain.

In contrast, in region based classification program vocabulary and calculated estimated

program length are two of the features which are calculated using unique operator and

operands. The other feature difficulty is used to measure the effort that is required to main-

tain a program. Therefore, in region-based classification we can see that the difficulty,

unique operator and operands based features provided higher information gain.

5.2 Statistical Analysis

In this research, one goal was to determine any differences in the programming styles of

male and female programmers. Our other goal was to investigate the programming styles

of Eastern and Western programmers. We hypothesized that the analysis of computer pro-

grams from programming contests may help us to identify any variations in the program-

ming styles. To answer our questions, we conducted a total of 13 experiments with five

classification models. The experimental results demonstrated that the models performed

with an average 84.5% accuracy for gender-based (combined problem) classification and

72.4% accuracy for region-based classification. To determine the significance of the results

we performed a statistical test termed a ‘T-test’. This statistical test investigates the differ-

ence between the two groups and compares the mean or average values between them [35].

For an example, in gender-based classification data sets we have two classes, male and fe-

male with 15 features. For each feature we conducted a T-test and compared the average

values of the male and female classes to determine any difference.

In a T-test, two hypotheses are tested in contrast to the other; that is, a null hypothesis
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H0 is tested against an alternative hypothesis HA. The null hypothesis states that there is no

remarkable difference between the mean of the two groups. In contrast, the alternative hy-

pothesis states that there are effective differences between the two groups. To demonstrate

that the difference is authentic or coincidental, ρ value is calculated during the T-test. We

used the T-test formula = T.T EST (array1,array2, tails, type) in Microsoft Excel©. We

used the male data in array1, the female data in array2, tail = 2 for two tailed distribution,

and type = 2 for two-sample equal variance T-test.

In general, a threshold ρ value of 0.05 is used for the hypothesis testing. If ρ < 0.05,

H0 is rejected and HA is accepted; this also indicates that the statistical difference between

the two groups is authentic. Alternatively, if ρ > 0.05, H0 is accepted and HA is rejected;

this indicates that the statistical difference between the two groups is not significant.

5.2.1 Gender-based statistical analysis

We performed a T-test for individual features to see if there was a statistically significant

difference in each feature values for each group. We conducted a two-tailed T-test and

determined whether the mean of one group is similar to the other group [6]. In these T-tests

the gender (male or female) of the programmer is used as an independent variable and the

features are used as dependent variables. We performed T-tests for the individual problem

based data sets (where the programmers solved the same problems) as well as the combined

problem data set (where the programmers solved different problems).

Individual problem based analysis

We first performed T-tests for the 15 features on data sets 1−9 to investigate any stat-

ically significant difference in each feature for male-written and female-written programs

when they solved the same problems. In Appendix B, Table B.1 shows that 13 features have

ρ values less than 0.05. For these 13 features, the null hypothesis H0 (there is no difference

between the two groups) is rejected, and the alternative hypothesis HA (there is difference

between the two groups) is accepted. Therefore, these features show statistically significant
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differences between the two groups of programmers (male, female) when they solved the

same problem. These 13 features are loc, slocp, lloc, comments, blanklines, cyclomatic

complexity, number of function, program vocabulary, program length, calculated estimated

program length, volume, difficulty, and effort.

As shown in Table B.1 in Appendix B, the ρ values for time (for seven data sets out of 9

data sets) and memory (for four data sets out of 9 data sets) are greater than 0.05. For these

two features, the null hypothesis H0 is accepted and alternative hypothesis HA is rejected.

Thus we observed that time and memory seem to have no impact on the results when male

and female programmers solved the same programming problem. The usage of time and

memory were almost equal in male-written and female-written programs. This may be the

reason that the differences for these two features (time and memory) do not appear to be

statistically significant.

Next, we performed a comparative analysis of the statistically significant features be-

tween the male-written and female-written programs using the nine single-problem data

sets. In Appendix C, Table C.1 shows that female-written programs have significant usage

of 6 features: comments, effort, loc, volume, blanklines, and number of functions. The use

of these 6 features are significantly higher (from 62% to 75%) in female-written programs

than in male-written programs, when the programmers solved the same problem. The us-

age of the other 6 features are moderately higher (from 52% to 61%) in female-written

programs.

The female programmers used more lines of code, logical lines of code, physical lines of

code, comments, and blanklines in their programs than the male programmers. While solv-

ing the same programming problems, female programmers used more operators, operands

and wrote difficult programs that require more effort. For example, the use of more vari-

ables (as operands) and arithmetic operators will increase the volume of a program. This

increase in volume will make the program more complex, and the programmers have to give

more effort to maintain a difficult programs. Since female-written programs used more op-
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erators and operands, this usage of operators and operands increased the volume of their

programs.

Combined problems based analysis

We next performed T-tests on the results from data set 10 to investigate the statistically

significant difference in each feature for male-written and female-written programs when

they solved different problems. In Appendix B, Table B.2 demonstrates that time is the

only feature that has ρ value greater than 0.05. For this feature, H0 (there is no difference

between the two groups) is accepted, and HA (there is difference between the two groups)

is rejected. Therefore, time does not show statistically significant differences between the

two groups when the programmers solved different problems. The use of time was almost

equal in male-written and female-written programs. This could be the reason that time do

not appear to be statistically significant. Table B.2 also shows that 14 features have ρ value

less than 0.05. For these 14 features, H0 is rejected and HA is accepted. These 14 features

are loc, slocp, lloc, comments, blanklines, cyclomatic complexity, number of function, pro-

gram vocabulary, program length, calculated estimated program length, volume, difficulty,

memory, and effort.

Next we conducted a comparative analysis of the statistically significant features be-

tween the male and female-written programs when they solved different problems. 13 of

the statistically significant features are the same as when we used the 9 data sets (individual

problem).

In Appendix C, Table C.2 shows the relative usage of the features. From this table we

can see that the male-written and female-written programs show similar usage of the fea-

tures when they solved a particular problem. As before, the female programmers seemed

to use more logic decisions, and write more longer and difficult programs than the male

programmers when they solved different problems. Therefore, these features may help to

identify the programming styles of the male and female programmers when they solve a par-
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ticular or different problems. Additionally, they may tell us about the different approaches

used by male and female programmers. We can hypothesize that male and female pro-

grammers write programs differently regardless of whether they solve the same problems

or different problems.

5.2.2 Region-based statistical analysis

We also performed T-tests on the region-based data set to determine the difference be-

tween the programs from Eastern and Western regions. In this two-tailed T-test, we treated

the region of the programmer (Eastern or Western) as the two groups and performed T-tests

on 15 features. In Appendix B, Table B.3 demonstrates that 12 features have a ρ value

less than 0.05. For these 12 features, H0 is rejected and HA is accepted and we can say

that these 12 features are statistically significant features for region-based data set. These

12 features are loc, lloc, comments, blanklines, number of function, program vocabulary,

program length, calculated estimated program length, volume, difficulty, memory, and time.

We observed that the cyclomatic complexity, slocp and effort have ρ value greater than

0.05. For these three features, H0 (there is no difference between the two groups) is ac-

cepted, and HA (there is difference between the two groups) is rejected. We found that ex-

cept these 3 features the other 11 features are statistically significant in both gender-based

(combined problems) and region-based data sets. As the size of the gender and region-

based data sets are large, these statistically significant 11 features are the same for both of

the data sets.

In Appendix C, Table C.3 shows a comparative analysis of features between the pro-

grams from Eastern and Western regions. From the table, we observed that the use of

time (70%) appears to be significantly higher in the programs from the Western region than

from the Eastern region. The features volume, calculated estimated program length, and

difficulty are also higher (56%) in the programs from the Western region. In contrast, the

programs from the Eastern region used more memory (55%) and blanklines (52%) than
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the Western region. We can thus hypothesize that the 11 statistically significant features as

shown in Table 5.3 can help to identify the programming styles based on the gender and

region of the programmers.

Table 5.3: Statistically important features in gender-based (combined problem) and region-
based data sets.

Feature number Features
1. Loc
2. Lloc
3. Comments
4. Number of function
5. Program vocabulary
6. Program length
7. Calculated estimated program length
8. Volume
9. Difficulty
10. Blanklines
11. Memory

5.3 Relationships between features

We next performed correlation analysis to investigate the relationships between pairs

of features. We were interested to know which pairs of features are linearly dependent on

each other for each data set. A linear relationship means that the increase or decrease in one

feature value will cause an equivalent increase or decrease in the other feature value. We

tried to determine the relationship between the features by calculating the correlation coef-

ficient (γ) value between each pair of features. For gender-based experiments, we measured

the γ value for male-written programs and female-written programs. From the statistical

T-tests we found that the analysis for the smaller data sets (individual problems) gave the

same results for the larger data set (combined problems). Therefore, we did not perform

correlation analysis for the smaller gender-based data sets (individual problems), rather we

performed correlation analysis for the larger gender-based data set (combined problems).
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Similarly, we also measured the γ value for programs from the Eastern and Western regions

for our region-based research. The value of γ ranges from −1 to +1 [46]. Based on the

value of γ, there can be three types of relationship between a pair of features:

• For γ = 0, the pair of features is said to be independent of each other, and there is no

relationship between the features.

• For γ > 0, the pair of features is positively correlated and if the frequency of one

feature increases, the frequency of the other feature will also increase. For higher γ

values (γ > 0.5), the features are said to be strongly correlated.

• For γ< 0, the pair of features is negatively correlated. If the frequency for one feature

increases, the frequency of the other feature will decrease.

Relationship between features for gender-based data set

In Appendix D, the correlation matrix of features for the gender-based data set is shown

in Table D.1. From Table D.1, there are 3 pairs of features that have γ = 0. Thus, these

features are independent of each other. These 3 pairs of features are

• time with memory,

• time with program vocabulary, and

• time with calculated estimated program length.

The program execution time depends on factors such as the algorithm time complexity,

input data size, instructions and CPU speed [47] while the required memory depends on

other factors such as the processor, operating system, and registers. Again, an increase in

program vocabulary means more unique operators and operands are used. Hence, time does

not depends on how many unique operators or operands are used. This may be a possible

reason that time is independent of the memory and the number of the unique operators and

operands.
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As shown in Table D.1, there exist 12 pairs of features for which γ < 0. The pairs of

features which are negatively correlated are listed in Table 5.4. As we can see time has

negative correlation with 10 features which are used as instructions to the computer. This is

logical, as the use of these features will certainly influence the performance of the execution

time. For example, if a programmer gives more effort and writes an efficient program, then

the execution time may be reduced.

Table 5.4: Negatively related pairs of features for gender-based data set.

Pair number Pairs of features
1. Time, Program length
2. Time, Volume
3. Time, Difficulty
4. Time, Effort
5. Time, Loc
6. Time, Slocp
7. Time, Lloc
8. Time, Blanklines
9. Time, Cyclomatic complexity
10. Time, Number of function
11. Memory, Program vocabulary
12. Memory, Calculated estimated program length

There are 90 pairs of features that have γ > 0 which means these pairs of features are

positively correlated. Out of 90 pairs of positively correlated features, 33 pairs of features

have γ > 0.5. Thus these 33 pairs of features are strongly correlated. In Appendix D, Ta-

ble D.2 shows the pairs of features that are strongly correlated. For example, for the pair

volume and difficulty γ = 0.6 thus these features are strongly correlated. Again there is a

clear reason for this: if the size of the program (or volume) increases, the programs be-

comes more difficult to maintain. Similarly, for the pair cyclomatic complexity and number

of function the value of γ = 0.65. The use of more functions with if-else statements will in-

crease the cyclomatic complexity of a program. There are other clearly evident connections

for the pairs lines of code with comments (γ = 0.72), lines of code with physical executable
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lines of code (γ = 0.88), lines of code with logical executable lines of code (γ = 0.78), and

lines of code with blanklines (γ = 0.54). If more comments, blanklines, physical executable

lines of code and logical executable lines of code are added to a program, the value of the

total lines of code will definitely increase.

Relationship between features for region-based data set

In Appendix D, Table D.3 demonstrates the correlation matrix of features for the region-

based data set. In this table there are 3 pairs of features that have γ = 0, indicating that these

pairs of features have no relationship between them. These pairs of features are

• time with number of functions,

• time with blanklines, and

• time with volume.

The program execution time depends on factors including the algorithm time complex-

ity, input data size, instructions and CPU speed, and time has no linear relationship with the

number of the functions used, the blanklines and the volume or the size of the programs.

For example, a program using more functions to implement an inefficient algorithm may

not always help to reduce the execution time.

Table 5.5: Negatively related pairs of features for region-based data set.

Pair number Pairs of features
1. Time, Program length
2. Time, Comments
3. Time, Effort
4. Time, Loc
5. Time, Slocp
6. Time, Lloc
7. Time, Cyclomatic complexity

Table D.3 shows that 7 pairs of features are negatively correlated to each other. These

7 pairs of features are listed in Table 5.5. As we can see time is negatively correlated
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with 7 features. These features may negatively influence a program’s execution time. For

example, a program using more logic decisions and an efficient algorithm may require

less execution time. In contrast, a different program using fewer logic decisions and an

inefficient algorithm may require more execution time.

We noticed that 95 pairs of features have a positive correlation with each other. Out

of these 95 pairs of features, 39 pairs of features are strongly correlated. In Appendix D,

Table D.4 shows the pairs of strongly correlated features for the region-based data set. For

example, for the pair volume with difficulty the value of γ = 0.72, thus these features are

strongly correlated. If the size of the program or volume increases, the program becomes

more difficult to maintain. Again, for the pair number of function with logical executable

lines of code (lloc) the value of γ = 0.52. If more functions are added, this will increase

the logical executable lines of code. Similarly, for the pair effort with difficulty the value

of γ = 0.85, this is clearly evident that more effort will be required to maintain a difficult

program.

In this research, we hypothesized that the analysis of features based on three software

metrics (lines of code, cyclomatic complexity and Halstead metrics) may offer better re-

sults or tell us more about the use of these features depending on the gender and region

of the programmer. We observed that 31 pairs of features are strongly correlated in both

gender-based and region-based data sets. These pairs of features are shown in Table 5.6.

For example, in Table 5.6 we can see that the feature physical executable lines of code

(slocp) has a positive relationship with the program length which measures total number of

operator and operands. If the total number of operators and operands increase, the number

of physical executable lines of code (slocp) will also increase. Since a strong correlation

may indicate redundancy, possibly only one feature would be needed from a pair of strongly

correlated features for better accuracy.
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Table 5.6: Strongly related pairs of features in gender-based (combined problem) and
region-based data sets.

Pair number Pairs of features
1. Number of function Cyclomatic complexity
2. Number of function Volume
3. Number of function Lloc
4. Slocp program length
5. Slocp Loc
6. Slocp Cyclomatic complexity
7. Slocp Volume
8. Slocp Lloc
9. Program length Loc
10. Program length Program vocabulary
11. Program length Cyclomatic complexity
12. Program length Volume
13. Program length Effort
14. Program length Calculated estimated program length
15. Program length Lloc
16. Program length Difficulty
17. Loc Comments
18. Loc Cyclomatic complexity
19. Loc Volume
20. Loc Lloc
21. Cyclomatic complexity Lloc
22. Volume Effort
23. Volume Calculated estimated program length
24. Volume Difficulty
25. Volume Lloc
26. Effort Difficulty
27. Calculated estimated program length Difficulty
28. Program Vocabulary Volume
29. Program Vocabulary Calculated estimated program length
30. Program Vocabulary Difficulty
31. Program Vocabulary Volume

5.4 Comparison with previous work

In [32], Naz analyzed 100 C++ programs that were collected from students’assignments.

The author conducted six experiments and built four classification models using 50 features.

From the Tree and Bayes classifiers, the author used the J48 algorithm and Naive Bayes al-
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gorithms, respectively. In [35], Rafee collected 160 C++ programs from students and tried

to classify the programs based on the gender and region of the programmers. The author

used 16 features and built seven classification models. In [35], Rafee used the Bayes Net al-

gorithm from the Bayes classifier and the Random Forest algorithm from the Tree classifier

to build two models out of the seven classification models. Similarly, in [1], Alam classi-

fied 12034 programs according to gender and 12680 programs according to the region of

the programmers. Alam used 103 features and five classification models for the research,

including the Bayes Net and Random Forest algorithms.

Table 5.7: Comparison with previous models for gender-based classification.

Classifier Naz’s result Rafee’s result Alam’s result Our result
Trees 63% 89% 62.6% 86.4%
Bayes 66% 92% 54.3% 83.5%

Table 5.8: Comparison with previous models for region-based classification.

Classifier Rafee’s result Alam’s result Our result
Trees 92.5% 78.36% 75.2%
Bayes 82.5% 71.28% 69.6%

Tables 5.7 and 5.8 show the comparison of models for gender and region-based clas-

sification. Comparing all the results, we observed that the Tree-based classifier performed

best for the classification tasks. For gender-based classification, our result outperformed

Alam’s and Naz’s work. Our Tree classifier successfully achieved an accuracy of 86.4%,

whereas Naz’s and Alam’s Tree classifier achieved an accuracy of 63% and 62.3%. Rafee’s

Tree classifier has the highest accuracy of 92%. For our gender-based (combined problem)

classification, our Tree classifier’s accuracy was close to Rafee’s Tree classifier’s accu-

racy. However, we observed that one of our gender-based (individual problem) experiments

demonstrated an accuracy of 91.7%, which was similar to Rafee’s Tree classifier’s accu-

racy. For the region-based classification, our Tree classifier’s accuracy was 75.2% which

was close to Alam’s Tree classifier’s accuracy of 78.3%.
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The accuracy of Rafee’s Tree classifier is the highest among all the classification results.

However, the reason for Rafee’s Tree classifier’s high performance may be that the size of

the data set is comparatively small, and the programmers themselves directly provided the

gender information. Moreover, the author collected data only from two specific regions.

In comparison the size of our data set is comparatively larger than Rafee’s data set, and

we predicted the gender of the programmers using an API. As well our region-based data

set consisted of programs that were submitted by programmers from a wide variety of

regions. Rafee calculated features based on only lines of code of the programs, whereas we

considered cyclomatic complexity, Halstead metrics, and program execution based features

for our research. Since our data collection approach, prepared data sets and classification

models are completely different than Rafee’s work, a comparison may not be particularly

useful. It is worth noting that our classification models were successful in achieving better

accuracy results for larger data sets considering different features.
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Chapter 6

Conclusion

In this work, our research goal was to investigate the effect of the sociolinguistics fea-

tures such as gender and region on computer programs. Our other goal was to determine

whether male and female contestants write programs differently to solve a particular pro-

gramming contest problem. Therefore, we collected the user information and C++ pro-

grams from an open-source programming contest website codeforces.com. We added gen-

der labels (male and female) to the user names by using an API. Additionally, we cate-

gorized the programs into two regions (Eastern and Western). From the collected C++

programs, we calculated 13 features based on three software metrics: lines of code, cyclo-

matic complexity, and Halstead metrics. Applying different data preprocessing techniques

we prepared 11 balanced data sets. The preparation of 11 different data sets was one of our

research challenges and we successfully completed this challenge.

Next, we performed 13 experiments using different data sets (1− 11) and features (16

and 6). To conduct the experiments five algorithms were used from the WEKA machine

learning tool: Bayesian Network, Sequential Minimal Optimization (SMO), Classification

Via Regression, Decision Table, and Random Forest algorithms. We used an attribute se-

lector to find out the best features. In each experiment, we applied 10-fold cross-validation

technique. To measure the models’ performance, we used the accuracy values. Table 6.1

shows information on experiments 1− 13. In experiments 1− 9 we used data sets 1− 9

with 16 features and classified the gender of the programmers when they solved the same

problems. Again, in experiment 10 we used 16 features and classified the gender of the pro-
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grammers when they solved different problems. To classify the region of the programmers

using 16 features, we used data set 11 and performed experiment 11. We also reduced the

number of features from 16 to 6, used data sets 10 and 11, and performed experiments 12

and 13, respectively. We saw a variety in the performances of the classification models and

found some interesting relationships among the classification models and the problem tags

based on the results of these 13 experiments.

Table 6.1: Information on experiments 1−13.

Experiment Classification Number of features Data set
1-9 Gender-based (Individual problems) 16 1-9
10 Gender-based (Combined problems) 16 10
11 Region-based 16 11
12 Gender-based (Combined problems) 6 10
13 Region-based 6 11

In experiments 1− 9 we used data sets consisting of the same problems addressed by

all the programmers. In these nine experiments, we were able to achieve the best accuracy

of 91.7% with a Random Forest model using 16 features in experiment 7. Other models

also showed better performances. Of the five classification models, the Bayes Net model

performed best, achieving the highest accuracy in four experiments. The Bayes Net model

also classified the highest number of male-written programs. Out of nine experiments the

Bayes Net model accurately classified the highest number of male-written programs in

five experiments. In contrast, the Decision Table model successfully predicted the highest

number of female-written programs.

We also classified the gender of the programmers when they solved different problems

in a programming contest. In experiment 10 the Random Forest model demonstrated the

best accuracy of 86.4%. In this classification, the Sequential Minimal Optimization model

successfully predicted the highest number of male-written programs, whereas the Random

Forest model predicted the highest number of female-written programs.

After reducing features in experiment 12, the Bayes Net model achieved the highest ac-
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curacy of 84.6% among five models and classified the most male-written programs. How-

ever, the Random Forest model and Classification Via Regression model both classified

the highest number of female-written programs. In addition, the models using 6 features

showed comparable accuracy results to the models using 16 features.

In region-based classification the Random Forest model demonstrated the best perfor-

mance with an accuracy of 75.2%. After reducing the features, the Classification Via Re-

gression model showed the highest accuracy of 73.6% and achieved comparable results.

The Classification Via Regression model classified the highest number of programs from

the Eastern region. In contrast, the Bayes Net model accurately predicted the highest num-

ber of programs from the Western region.

We also executed statistical T-tests to determine the statistically significant features and

analyzed the use of the features to demonstrate how the programmers of a particular region

or gender used these features in their programs. Additionally, we performed correlation

analyses to investigate the relationship between features.

The findings from the experiments and feature analysis are given below:

• Analyzing the results of experiments 1− 10 and 12 we observed that in all exper-

iments different models classified male-written and female-written programs based

on the use of different problem tags. Based on this relationship between the problem

tags and the classification models we hypothesize that male and female programmers

use different approaches to solve a particular or different problems. Thus we can see

a gender-based variations in the computer programs of the computer programming

contests.

• Again, analyzing the results of experiments 11 and 13 we observed that different

models classified programs from the Eastern and Western region based on the use

of different problem tags. Thus we can see a region-based variation in the computer

programs of the computer programming contests. We hypothesize that the program-

mers from the Eastern and Western regions use different approaches when they solve
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the contest problems.

• From the statistical analysis we noticed that the female programmers use more com-

ments, effort, lines of code, volume, blanklines, and number of function than the

male programmers. Moreover, the female programmers seemed to use more logic

decisions and write longer programs than the male programmers when they solved

the same or different problems.

• We also observed that the use of effort was higher in the programs from the Western

region than from the Eastern region. The features volume, calculated estimated pro-

gram length, and difficulty are also higher in the programs from the Western region.

In contrast, the programs from the Eastern region used more memory and blanklines

than the Western region.

6.1 Future work

Some of the suggestions for the future research are given below:

• We analyzed the computer programs based on the gender and region of the program-

mers. In our future work, we would like to investigate other sociolinguistics factors

such as age, ethnicity and experience level of the programmers.

• In this research, we only collected C++ programs from an online programming con-

test website. However, there are other programming contest websites and software

repositories such as codechef and Github. It would be interesting to analyze the pro-

grams of these repositories.

• We only collected the programs written in the C++ language. Our future work may

include the analysis of other programming languages such as Java and Python.

• In this research, we tried to determine the programming styles of the programmers

when they solved programming contest problems. Our future work may include the
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comparative analysis of stress during programming. We would like to analyze how a

programmer solves competitive programming contest problems as opposed to regular

programming problems.

• We calculated three software metrics based features such as lines of code, Halstead

Metrics, and cyclomatic complexity. We would like to incorporate other software

metrics for example, maintainability index with the sociolinguistics features in our

future work.

• While collecting data, we observed that programmers in a programming contest web-

site submit multiple solutions as they intended to achieve the optimized solutions.

Therefore, our future work may include developing a tool that will help a novice

programmer to develop his/her programming skills based on professional software

metrics and code optimization techniques.

• Some programs were used to analyze the programs that performed better on different

types of programs/concepts. To choose a machine learning tool based on the program

concept we need to test more programs. If we could test more than 10 programs, this

could provide some quantitative support to our work. Our future work may include

analysis of more programs to support the possible connection between problem tags

and the algorithms.

In this research we observed that the gender and region of the programmers influence

the programming styles of the contest programmers. Using different software metrics as

features we were successful to identify the programming styling differences of the pro-

grammers. Therefore, based on the hypotheses we can say that the analysis of sociolin-

guistics features with different software metrics can be used to identify the variations of

programming styles of the programmers.
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Appendix A

Additional details

A.1 Detailed calculation on information gain
Let us assume that a data point in the training data set D belongs to a class Ci. The

probability Pi of that data point is calculated using Equation A.1.

Pi =
the number o f records in D that belong to Ci

the total number o f records in D
(A.1)

Using the values in Table 2.4 the probability value for each class can be calculated using
Equation A.1.

PY : buys-car = “Yes” = 3
5

PN : buys-car = “No” = 2
5

The expected information or entropy needed to classify a data record or instance is
calculated using Equation A.2

Info(D) =−
m

∑
i=1

Pi log2(Pi) (A.2)

where m is the number of classes that D contains. Table 2.4 contains two classes.
Therefore, in this example the value of m = 2.

Using Equation A.2, the entropy of this data set is calculated as follows:

Info(D) =−PY log2(PY )−PN log2(PN)

=−3
5

log2
3
5
− 2

5
log2

2
5

= 0.971.

The example data set D is partitioned according to each attribute value. Attribute ‘En-
gine condition’ has three values: Good, Moderate and Bad. The other attribute ‘Mileage’
has three values: Low, Medium and High.

From Table A.1, the expected information for attribute ‘Engine condition’ can be cal-
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culated using Equation A.3.

InfoEngine condition(D) =
|DGood |
|D|

Info(DGood)+
|DModerate|
|D|

Info(DModerate)+
|DBad |
|D|

Info(DBad)

(A.3)

Replacing the values of |DGood|, |DModerate|, |DBad|, |D|, Info (DGood), Info (DModerate)
and Info(DBad) in Equation A.3 gives

InfoEngine condition(D) =
2
5
(−2

2
log2

2
2
− 0

2
log2

0
2
)+

2
5
(−1

2
log2

1
2
− 1

2
log2

1
2
)

+
1
5
(−0

1
log2

0
1
− 1

1
log2

1
1
)

= 0.4.

From Table A.2, the value of expected information for attribute ‘Mileage’ can be calcu-
lated using Equation A.4.

InfoMileage(D) =
|DHigh|
|D|

Info(DHigh)+
|DMedium|
|D|

Info(DMedium)+
|DLow|
|D|

Info(DLow)

(A.4)
Replacing the values of |DHigh|, |DMedium|, |DLow|, |D|, Info (DHigh), Info (DMedium)

and Info (DLow) in Equation A.4 gives

InfoMileage(D) =
2
5
(−0

2
log2

0
2
− 2

2
log2

2
2
)+

1
5
(−1

1
log2

1
1
− 0

1
log2

0
1
)

+
2
5
(−2

2
log2

2
2
− 0

2
log2

0
2
)

= 0.

The value of Gain for attribute ‘Engine condition’ can be calculated using Equation A.5.

GainEngine condition = Info(D)− InfoEngine condition(D) (A.5)

From Equation A.5 the Gain of attribute ‘Engine condition’ can be calculated.

GainEngine condition = 0.971−0.4 = 0.571.

For attribute ‘Mileage’, the value of Gain can be calculated using Equation A.6.

GainMileage = Info(D)− InfoMileage(D) (A.6)

Using Equation A.6, the value of Gain is calculated as follows:
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GainMileage = 0.971−0 = 0.971.

The attribute ‘Mileage’ has higher information gain than the other attribute ‘Engine
condition’. Thus the attribute ‘Mileage’ will be more likely selected in feature selection.

Table A.1: Frequency of Yes and No for Buy depending on Engine condition attribute.

Records Engine condition
Buy?

Total
Yes No

DGood Good 2 0 2
DModerate Moderate 1 1 2
DBad Bad 0 1 1

Table A.2: Frequency of Yes and No for Buy depending on Mileage attribute.

Records Mileage
Buy?

Total
Yes No

DHigh High 0 2 2
DMedium Medium 1 0 1
DLow Low 2 0 2

A.2 Gender-based data sets

Table A.3: Information on the gender-based data sets.

Gender
Data set Male written programs Female written programs Total records

1 148 148 296
2 114 114 228
3 124 124 248
4 106 106 212
5 282 282 564
6 157 157 314
7 84 84 168
8 240 240 480
9 178 178 356
10 1433 1433 2866
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T-test ρ values of features

Table B.1: T-test ρ values of features for gender-based (individual problem) classification.

Features ρ values
dataset 1 dataset 2 dataset 3 dataset 4 dataset 5 dataset 6 dataset 7 dataset 8 dataset 9

Memory 4.5x10-01 7.7x10-02 3.9x10-03 7.1x10-03 1.9x10-06 5.5x10-09 6.2x10-02 4.9x10-02 8.6x10-01

Cyclomatic
complexity

1.1x10-06 2.4x10-04 5.2x10-06 1.2x10-04 1.1x10-25 1.6x10-14 1.1x10-07 1.0x10-13 7.7x10-10

Time 6.7x10-01 5.3x10-01 8.1x10-01 5.3x10-02 4.2x10-03 5.3x10-04 8.1x10-01 9.0x10-01 3.2x10-01

Difficulty 3.1x10-07 1.3x10-05 6.2x10-03 4.3x10-04 5.4x10-19 4.3x10-10 1.0x10-06 9.3x10-07 1.1x10-03

Lloc 2.1x10-07 2.6x10-04 6.9x10-06 8.2x10-03 1.9x10-18 6.8x10-13 1.7x10-09 1.0x10-19 1.5x10-18

Sloc-p 6.3x10-10 2.0x10-04 1.7x10-07 2.1x10-04 1.1x10-27 9.3x10-15 2.0x10-11 4.3x10-22 6.7x10-21

Number
of function

1.6x10-06 8.0x10-03 7.7x10-06 2.1x10-05 1.9x10-07 1.1x10-09 1.9x10-05 1.4x10-05 3.4x10-03

Comments 2.7x10-21 1.0x10-04 9.0x10-09 2.3x10-12 3.3x10-32 4.9x10-21 1.5x10-14 1.4x10-20 2.1x10-16

Program
Length

8.8x10-18 3.3x10-06 2.9x10-14 2.6x10-13 1.5x10-20 1.8x10-18 2.8x10-09 5.5x10-16 3.5x10-12

Calculated
estimated
program
length

2.6x10-10 2.1x10-06 5.4x10-05 2.1x10-09 6.3x10-25 1.3x10-09 1.5x10-10 1.7x10-06 6.7x10-06

Program
vocabulary

4.5x10-10 1.6x10-06 7.0x10-04 3.5x10-08 7.5x10-26 4.4x10-08 1.3x10-10 2.8x10-05 3.9x10-05

Loc 2.6x10-20 9.4x10-05 2.1x10-18 2.6x10-11 3.6x10-45 5.7x10-26 3.0x10-17 5.6x10-27 1.9x10-23

Volume 1.6x10-17 5.6x10-05 3.2x10-14 4.1x10-13 8.4x10-17 3.7x10-17 1.4x10-08 3.0x10-14 4.9x10-11

Blanklines 7.4x10-06 5.8x10-02 3.1x10-04 7.5x10-04 3.6x10-12 1.2x10-05 4.7x10-08 6.1x10-08 3.9x10-07

Effort 7.5x10-13 1.5x10-03 1.6x10-09 1.3x10-07 1.1x10-02 2.2x10-10 7.5x10-04 2.5x10-07 1.4x10-06
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Table B.2: T-test ρ values of features for gender-based (combined problem) classification.

Features ρ value
Loc 5.63 x10-120

Comments 1.82 x10-119

Program Length 2.03 x10-85

Volume 3.65 x10-73

Sloc-p 2.08 x10-67

Calculated estimated program length 2.67 x10-62

Program vocabulary 9.91 x10-57

Cyclomatic complexity 3.41 x10-53

Lloc 2.36 x10-52

Difficulty 1.09 x10-45

Blanklines 6.17 x10-40

Number of function 3.84 x10-30

Effort 1.21 x10-11

Memory 3.20 x10-08

Time 0.391

Table B.3: T-test ρ values of features for region-based classification.

Features ρ value
Program vocabulary 8.44x 10-78

Time 2.99x 10-76

Calculated estimated program length 9.02x 10-67

Difficulty 1.27x 10-22

Volume 5.45x 10-21

Program Length 5.10x 10-20

Memory 1.10x 10-11

Comments 2.48x 10-04

Number of function 0.00131
Loc 0.00231
Effort 0.00236
Lloc 0.0328
Sloc-p 0.0509
Cyclomatic complexity 0.0529
Effort 0.281
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Use of features

Table C.1: Use of features in gender-based (individual problem) classification.

Features Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9
M F M F M F M F M F M F M F M F M F

Cyclomatic
complexity

44% 56% 32% 68% 43% 57% 43% 57% 37% 63% 37% 63% 28% 72% 40% 60% 43% 57%

Difficulty 45% 55% 43% 57% 47% 53% 45% 55% 38% 62% 42% 58% 31% 69% 46% 54% 46% 54%
Lloc 43% 57% 32% 68% 43% 57% 45% 55% 41% 59% 39% 61% 35% 65% 40% 60% 39% 61%
Sloc-p 42% 58% 33% 67% 42% 58% 44% 56% 39% 61% 39% 61% 34% 66% 39% 61% 39% 61%
Number
of function

37% 63% 31% 69% 42% 58% 38% 62% 33% 67% 30% 70% 23% 77% 28% 72% 32% 68%

Comments 27% 73% 29% 71% 32% 69% 25% 75% 24% 76% 25% 75% 20% 80% 28% 72% 29% 71%
Program
Length

41% 59% 34% 66% 43% 57% 39% 61% 34% 66% 36% 64% 26% 74% 40% 60% 41% 59%

Calculated
estimated
program
length

45% 55% 43% 57% 47% 53% 43% 57% 40% 60% 43% 57% 36% 64% 46% 54% 46% 54%

Program
vocabulary

46% 54% 45% 55% 48% 52% 45% 55% 42% 58% 45% 55% 39% 61% 47% 53% 47% 53%

Loc 38% 62% 32% 68% 38% 62% 37% 63% 35% 65% 34% 66% 28% 72% 36% 64% 36% 64%
Volume 40% 60% 32% 68% 42% 58% 38% 62% 32% 68% 34% 66% 23% 77% 39% 61% 39% 61%
Blanklines 35% 65% 39% 61% 37% 63% 35% 65% 30% 70% 36% 64% 29% 71% 34% 66% 33% 67%
Effort 34% 66% 22% 78% 37% 63% 31% 69% 16% 84% 24% 76% 7% 92% 32% 68% 32% 68%
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Table C.2: Use of features in gender-based (combined problem) classification.

Features Male-written programs Female-written programs
Program vocabulary 45% 55%
Calculated estimated program length 43% 57%
Difficulty 42% 58%
Lloc 40% 60%
Sloc-p 39% 61%
Memory 38% 62%
Cyclomatic complexity 38% 62%
Program Length 37% 63%
Volume 36% 64%
Loc 35% 65%
Loc 34% 66%
Number of function 32% 68%
Effort 26% 74%
Comments 26% 74%

Table C.3: Use of features in region-based classification.

Features Eastern region Western Region
Memory 55% 45%
Blanklines 52% 48%
Lloc 49% 51%
Loc 49% 51%
Comments 48% 52%
Number of function 47% 53%
Program Length 45% 55%
Program vocabulary 45% 55%
Difficulty 44% 56%
Calculated estimated program length 44% 56%
Volume 44% 56%
Time 30% 70%
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Correlation analysis of features

Table D.1: Correlation matrix of features for gender-based data set.

Features time memory program program calculated volume difficu- effort loc sloc-p lloc comme- blank cyclo- numb-
vocabul- length estimated lty nts line matic er of
ary program compl- funct-

length exity ion
time 1
memory 0 1
program 0 -0.07 1
vocabulary
program -0.08 0.11 0.71 1
length
calculated 0 -0.06 0.99 0.75 1
estimated
program
length
volume -0.06 0.09 0.73 0.99 0.77 1
difficulty -0.05 0.06 0.54 0.62 0.53 0.6 1
effort -0.02 0.08 0.42 0.7 0.48 0.74 0.56 1
loc -0.06 0.14 0.28 0.66 0.32 0.64 0.19 0.24 1
sloc-p -0.08 0.18 0.18 0.6 0.21 0.57 0.22 0.22 0.88 1
lloc -0.08 0.18 0.15 0.55 0.17 0.52 0.2 0.2 0.78 0.97 1
comments 0.01 0.01 0.3 0.45 0.33 0.45 0.07 0.17 0.72 0.31 0.15 1
blankline -0.02 0.05 0.14 0.3 0.16 0.29 0.12 0.11 0.54 0.31 0.06 0.64 1
cyclomatic -0.18 0.29 0.26 0.67 0.3 0.65 0.37 0.32 0.67 0.76 0.73 0.24 0.24 1
complexity
numberof -0.01 0.01 0.36 0.57 0.42 0.59 0.19 0.31 0.52 0.39 0.33 0.48 0.3 0.57 1
function
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D. CORRELATION ANALYSIS OF FEATURES

Table D.2: Strongly related pairs of features for gender-based data set.

Pair number Pairs of features
1. Program vocabulary Program Length
2. Program vocabulary Calculated estimated program length
3. Program vocabulary Volume
4. Program vocabulary Difficulty
5. Program length Calculated estimated program length
6. Program length Volume
7. Program length Difficulty
8. Program length Effort
9. Program length Loc
10. Program length Sloc-p
11. Program length Lloc
12. Program length Cyclomatic complexity
13. Calculated estimated program length Volume
14. Calculated estimated program length Difficulty
15. Volume Difficulty
16. Volume Effort
17. Volume Loc
18. Volume Sloc-p
19. Volume Lloc
20. Volume Cyclomatic complexity
21. Volume Number of function
22. Difficulty Effort
23. Loc Sloc-p
24. Loc Lloc
25. Loc Comments
26. Loc Blanklines
27. Loc Cyclomatic complexity
28. Loc Number of function
29. Sloc-p Lloc
30. Sloc-p Cyclomatic complexity
31. Lloc Cyclomatic complexity
32. Comments Blanklines
33. Cyclomatic complexity Number of function
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D. CORRELATION ANALYSIS OF FEATURES

Table D.3: Correlation matrix of features for region-based data set.

Features numb- sloc-p program blank loc program comme- memory cyclo- volume effort calculated difficu- time lloc
er of length line vocabul- nts matic estimated lty
funct- ary compl- program
ion exity length

numberof 1
function
sloc-p 0.53 1
program 0.7 0.62 1
length
blankline 0.1 0.18 0.13 1
loc 0.62 0.92 0.66 0.27 1
program 0.6 0.39 0.8 0.07 0.47 1
vocabulary
comments 0.54 0.46 0.5 0.3 0.78 0.42 1
memory 0.04 0.29 0.21 0.04 0.26 0.13 0.11 1
cyclomatic 0.7 0.8 0.75 0.13 0.76 0.56 0.42 0.35 1
complexity
volume 0.72 0.58 1 0.12 0.63 0.82 0.49 0.19 0.74 1
effort 0.22 0.14 0.64 0.03 0.14 0.32 0.1 0.03 0.22 0.65 1
calculated 0.65 0.4 0.83 0.07 0.48 0.99 0.43 0.13 0.59 0.85 0.35 1
estimated
program
length
difficulty 0.26 0.27 0.72 0.05 0.26 0.52 0.13 0.1 0.37 0.72 0.85 0.51 1
time 0 -0.04 -0.01 0 -0.05 0.05 -0.05 0.08 -0.07 0 -0.01 0.05 0.02 1
lloc 0.52 0.99 0.61 0.06 0.9 0.39 0.42 0.29 0.8 0.57 0.14 0.4 0.27 -0.04 1
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Table D.4: Strongly related pairs of features for region-based data set.

Pair number Pair of features
1. Number of function Sloc-p
2. Number of function Program length
3. Number of function Loc
4. Number of function Program vocabulary
5. Number of function Comments
6. Number of function Cyclomatic complexity
7. Number of function Volume
8. Number of function Calculated estimated program length
9. Number of function Lloc
10. Sloc-p Program length
11. Sloc-p Loc
12. Sloc-p Cyclomatic complexity
13. Sloc-p Volume
14. Sloc-p Lloc
15. Program length Loc
16. Program length Program vocabulary
17. Program length Cyclomatic complexity
18. Program length Volume
19. Program length Effort
20. Program length Calculated estimated program length
21. Program length Difficulty
22. Program length Lloc
23. Loc Comments
24. Loc Cyclomatic complexity
25. Loc Volume
26. Loc Lloc
27. Program vocabulary Cyclomatic complexity
28. Program vocabulary Volume
29. Program vocabulary Calculated estimated program length
30. Program vocabulary Difficulty
31. Cyclomatic complexity Volume
32. Cyclomatic complexity Calculated estimated program length
33. Cyclomatic complexity Lloc
34. Volume Effort
35. Volume Calculated estimated program length
36. Volume Difficulty
37. Volume Lloc
38. Effort Difficulty
39. Calculated estimated program length Difficulty
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