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ABSTRACT 

 

This project investigated whether unsupervised machine learning could detect 

differences in global or local microstates across different rodent brain, in the effects of 

procedural learning, and clustering validity indices effectiveness. Previously obtained 

local field potential recordings of M1 and the hippocampus of freely-behaving male rats 

under naïve and task conditions, including transcranial direct and alternating current 

stimulation (tDCS; tACS), were analyzed and used to assess several methods. Two local 

SWS-like REM microstates were detected along with five global microstates. Learning 

suppressed cortical SWS-like REM microstates, but tDCS negated this effect. Calinski-

Harabasz evaluated clusters had the highest sensitivity, specificity and total accuracy. 

Local and global brain states were effectively detected using PCA and clustering, and 

measures of phase-amplitude coupling were sensitive to the task conditions. These 

changes could underlie consolidation windows for procedural learning with potential 

intervention by tDCS although these results are limited to due the quality of the dataset. 
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1. General Introduction 

It should be emphasized that this project is a methodological one that explores the 

detection capabilities of a sample dataset.  

First, this paper will establish the definitions of key terms in this paper as a 

number of them have various meanings throughout the literature. 

Perhaps the most fundamental definition is that of an oscillation - a repetitive 

displacement, especially in time, around a central value. A swinging pendulum is an 

example of a spatial oscillation. This paper concerns itself with electrical brain 

oscillations. These are generated by the repetitive firing a neuron or neurons, depending 

on scale and can be generated by either spatially and/or temporally connected neurons 

(Cole & Voytek, 2017). For LFP recordings, it is assumed that the dipole generated by 

the movement of charges in and out of firing neurons is spatially limited to only one or a 

few proximal neurons although other signals may be present and should be accounted for 

(Kajikawa & Schroeder, 2011). 

Brain oscillations form the foundation for the level of consciousness, or brain 

state, exhibited by an organism. These can be broader such as awake, asleep or comatose 

or more specific like alert or drowsy. This project focuses on three brain states: awake, in 

REM sleep or in non-REM sleep. It was generally held that these states were global i.e. 

the entirety of the brain could only be in one state at a time such that if an organism was 

in REM sleep, all brain regions would exhibit REM sleep characteristics. Recently, 

research supports the presence of local states where the majority of the brain will be in 

one state while a minority of regions will exhibit traits of another (D’Ambrosio et al., 

2019). There is even a medical disorder where parts of the brain enter a sleep state while 
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the individual is still awake (Vyazovskiy et al., 2011). 

In addition to the occurrence of local states during global ones are finer divisions 

within brain states, particularly sleep states. In humans, the most recognizable of these 

are the stages of sleep, which humans cycle through during a regular night's sleep. The 

stages have distinct traits that are evident not just in the brain, but throughout the body. In 

animals these stages have not been as definitively established with only REM and 

NREM, usually called slow wave sleep, being the only consistent divisions. However, 

there is emerging evidence that SWS and even REM in both humans and animals may be 

more finely divided into microstates. The theory is that there may be consistent periods 

within brain states that underlie specific brain activity and functions. 

One such function is consolidation although it may be more accurate to consider 

this a category of related functions. Consolidation is a complex series of processes that 

begins within minutes and hours of acquisition and can continue for years and even 

decades in some species (McGaugh, 2000). It can be broken down into synaptic 

consolidation, which occurs following acquisition and creates a memory which persists 

for 24 hours (Clopath, 2012). From there, systems consolidation creates a persistent 

memory with a transfer from the hippocampus to the cortex. Systems consolidation is 

multifaceted with numerous theories as to the precise mechanisms governing the many 

types of memories and brain regions involved (Antony & Schapiro, 2019). For instance, 

the amygdala, especially the basolateral nuclei, is heavily involved in emotional memory 

consolidation and plays a significant role in fear conditioning (Beckers & Kindt, 2017). 

There are also differences in consolidation and retrieval of declarative and procedural 

memories. An oft-cited reason for this is because amnesiac patients (individuals lacking 
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declarative memory) can learn and retain novel procedural tasks, the process of 

consolidation between the two types of memory must also be separate (Quillfeldt, 2019). 

Finally, there's also re-consolidation, a hotly debated phenomenon whereby consolidated 

memories are retrieved and consolidated again (Beckers & Kindt, 2017). It's been 

proposed as a mechanism for modifying existing memories and as a tool in 

psychotherapeutic practice. 

1.1 Unsupervised Machine Learning 

Machine learning is a subset of artificial intelligence that refers to the algorithms 

and models that information processors use to perform tasks while relying on patterns and 

inference (Lloyd et al., 2013; Bishop, 2006). Machine learning can be further divided into 

three categories: supervised, unsupervised, and reinforcement learning. In supervised 

learning, the algorithm is given training data, sample data that contains known input and 

matching output data. For example, a publisher wants to know when households cancel 

their subscriptions. They have the subscription history of 10,000 households, 5,000 

cancelled and 5,000 still subscribed. The data of 4,000 cancellation households and 4,000 

subscribed households is given to the model. The model is then used to predict the 

subscription status of the excluded households, which can then be compared against the 

real subscription status to calculate the accuracy of the model. Adjustments are then made 

in order to minimize the differences between the known output and the one generated by 

the algorithm and increasing the accuracy. In unsupervised learning, there is no training 

data set and the algorithm uses the characteristics in the data to find similarities and 

differences to form clusters of like data. Reinforcement learning generally involves a rule 

or condition set that the algorithm follows to achieve a goal with penalties and rewards 
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assigned for failures and successes in a dynamic environment (Lloyd et al., 2013). In 

other words, the algorithm monitors the response to the actions taken and measures that 

against a defined reward or penalty in order to judge the quality of its performance. The 

quality of a run can be considered good or bad with the algorithm adjusting subsequent 

runs to improve the quality by using fewer moves, getting faster completion times, etc. 

Board games and video games are popular environments for these algorithms. For this 

study, unsupervised learning is used to find brain states and substates using an unlabelled 

EEG data set. The unsupervised learning paradigm uses the k-means clustering algorithm 

as it is relatively popular, accessible and is relatively insensitive to noise although it can 

be slower than other algorithms i.e. require a higher number of iterations and may 

occasionally fail to differentiate between small and large clusters near close together 

(Arbelaitz et al., 2013; Hämäläinen et al., 2017). 

Fundamentally, clustering is a method of grouping observations together based on 

how similar they are to each other. Similarity can be defined as a measure of closeness, 

often called distance. Physical distance is a positive value defining two points in relation 

to each other. For example, Hawaii is 6,600 kilometres from Japan and Japan is 6,600 km 

from Hawaii, but it could not be said that Hawaii is -6,600 km from Japan. The 

mathematical distance between data points is relative to zero, so any point can have a 

negative distance. When comparing the distance between points, having opposing signs 

would negate the effect. So clustering algorithms implement a variety of distance 

measurements that prevent summing positive and negative values together. One of the 

most common is squared Euclidean distance, which is used in this study and is passed to 

the k-means algorithm. The k-means algorithm, originally published by Lloyd (1982) and 
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then later refined as k-means++ (Arthur & Vassilvitskii, 2007), begins with a randomly 

selected data point being used as the centre of the first cluster, assuming a k number of 

clusters. The steps for k-means++ are as follows: 

1) Select an observation uniformly at random from the data set, X. The 

chosen observation is the first centroid, and is denoted c1. 

2) Compute distances from each observation to c1. Denote the distance 

between cj and the observation m as d (xm, cj). 

3) Select the next centroid, c2 at random from X with probability 

(1) 

𝑑2(𝑥𝑚, 𝑐1)

∑ 𝑑2(𝑥𝑗 , 𝑐1)
𝑛
𝑗=1

 

4) To choose center j: 

a) Compute the distances from each observation to each centroid, and 

assign each observation to its closest centroid. 

b) For m = 1,...,n and p = 1,...,j – 1, select centroid j at random from X 

with probability 

(2) 

𝑑2(𝑥𝑚, 𝑐𝑝)

∑ 𝑑2(𝑥ℎ , 𝑐𝑝){ℎ; 𝑥ℎ 𝜖 𝐶𝑝}
 

where Cp is the set of all observations closest to centroid cp and xm 

belongs to Cp. 
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That is, select each subsequent center with a probability 

proportional to the distance from itself to the closest center that 

you already chose. 

5) Repeat step 4 until k centroids are chosen. 

There are two key weaknesses of the original algorithm: lengthy running time i.e. 

high number of iterations before convergence, and arbitrarily poor initialization leading 

to a poor clustering result. These shortcomings were improved upon in the k-means++ 

algorithm, increasing the speed (lower number of iterations to convergence) and accuracy 

(improved initialization; Arthur & Vassilvitskii, 2007).  

A key component of the k-means algorithm is selection of a k number of clusters. 

The selection of k can be done in a number of ways, the most common being the use of a 

cluster validity index (CVI; Kaufmann & Rousseeuw, 1990). CVIs establish a rule that 

selects the optimal assignment of data points to k clusters. Just as there are different ways 

of defining distance, there are different ways to value different distances. The optimal 

separation of data points and clusters varies with the type and purpose of a dataset. Thus, 

CVI can be selected to maximise distances between clusters or minimize distances 

between points within a cluster or a number of other criteria as needed. 

There are dozens of indices for k-means clustering including Dunn, Gamma, C, 

negentropy increment, Sym, and COP to name a few. A review by Arbelaitz et al. (2013) 

offers a comprehensive examination of these indices. A key finding of that review was 

that CVIs could be grouped into three tiers, with the CVIs in the first tier having the most 

optimal performance overall and those in the third having the poorest. Each tier was 

significantly different from the other tiers, but CVIs within a tier had little or no statistical 
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differences between them. Within a tier, CVI performance varied in regard to specific 

data characteristics such as type and amount of noise, cluster density and degree of 

overlap, but no single CVI performed well with all data types. For the purposes of this 

study, three first tier CVIs were selected and compared: Silhouette (SH), Davies-Bouldin 

(DB) and Calinski-Harabasz (CH). 

The first aim of this study is to determine the relative effectiveness of the 

three similar CVIs and the suitability of k-means clustering for the detection of 

states and microstates. 

1.2 Brain State Characteristics 

Neuronal oscillations, or brainwaves, which are produced by spike trains, local-

field potentials (LFP) or synchronous neuronal ensemble oscillations, form the 

foundation for fundamental cognitive functions such as perception, motor control, 

memory and information transfer (Başar et al., 2001; Buzsáki & Draguhn, 2004; Fries, 

2005).  LFP is the transient electric potential of the extracellular space, typically of 

spatially and/or temporally summed neurons, generated by changes in the concentration 

of ions immediately outside the cell or cells in question as a result of cellular electrical 

activity (Buzsáki et al., 2012). These oscillations, which are observable at every level of 

the nervous system, can be detected through electroencephalography (EEG) and 

characterised by their frequency in Hertz (Hz), amplitude in millivolts (mV), and phase in 

degrees or radians. Recent advances in modelling techniques and ever improving EEG 

resolution has allowed for even spike train oscillations to be detected by EEG (Haumann 

et al., 2019). EEG recordings can be invasive or non-invasive, low-density or high-

density, but conventionally refers to non-invasive, scalp-recordings with lower resolution 
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than LFP which is also called micro-, depth or intracranial EEG (Buzsáki et al., 2012). 

Frequencies are grouped into EEG bands, or ranges, in order of lowest to highest 

frequency: delta, theta, alpha, beta and gamma. 

The precise frequencies involved vary and some bands can further divided such as 

beta into beta one (12-15 Hz), beta two (15-20 Hz) and beta three (18-40 Hz) in humans 

(Abhang et al., 2016). They can be further characterised by the cortical and subcortical 

structures that produce or propagate them. For example, the cholinergic alpha band is 

generated by the thalamic pacemaker cells and propagated to the occipital lobe (Li et al., 

2017). Thus, EEG bands not only serve as electrical landmarks useful for targeting 

specific brain structures, but those same structures can also be used as a reliable source 

for studying these bands. Furthermore, frequency bands also form tight associations with 

specific brain states related to cognitive functions; such as the frontal midline theta band, 

which often presents during activation of the hippocampus, insula and superior temporal 

areas among others (Li et al., 2017; Käthner et al., 2014). In humans, theta increases with 

mental workloads and is associated with problem-solving, self-monitoring, impulse 

inhibition, working memory, and other encoding processes (Gevins et al., 1998; Gundel 

& Wilson, 1992; Holm et al., 2009; Mecklinger et al., 1992). Thus, patterns of neuronal 

activity can be said to have functional relevance characterised by both frequency and 

location. 

The general waking brain state is characterised by low-amplitude, desynchronous 

alpha, beta, and gamma activity in the cortex while the waking activity of subcortical 

structures varies by species (Britton et al., 2016). Different cognitive functions and levels 

of alertness occurring during waking periods are often linked with specific EEG bands in 
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a specific brain region (Hinterberger et al., 2014). For example, the cholinergic alpha 

waves predominate in the occipital lobes during wakeful relaxation especially in the 

dominant hemisphere (Roohi-Azizi et al., 2017). 

The sleeping brain is divided into two general states: rapid eye movement (REM) 

sleep and non-rapid eye movement (NREM) sleep, often called slow wave sleep (SWS) 

in animals. In humans, NREM is divided into N1, N2, N3 and N4, with N3 and N4 

commonly grouped together as one deep sleep stage (Harvard University, 2008). A 

resource from the Division of Sleep Medicine at Harvard Medical School, Produced in 

partnership with WGBH Educational Foundation". Harvard University. 2008. Retrieved 

2009-03-11. "The 1968 categorization of the combined Sleep Stages 3–4 was reclassified 

in 2007 as Stage N3."). In animals, NREM can be divided into neocortical UP states, or 

periods of robust spiking activity (“ON”), and DOWN states, or periods where most 

neurons are silent or “OFF” (Steriade et al., 1993).  A recent study by Miyawaki et al. 

(2017) found support for low activity NREM microstates in freely behaving rats 

(“LOW”), in addition to these UP and DOWN states, sometimes referred to as sleep 

small-amplitude irregular activity (S-SIA; Miyawaki et al., 2017; Pickenhain & 

Klingberg, 1967; Bergmann et al., 1987; Jarosiewicz et al., 2002). The SIA acronym was 

originally used to describe quiet waking patterns, so S-SIA will be referred to as LOW in 

this paper.  Transitions between UP and DOWN states can synchronize global brain 

activity and provide a potential window for hippocampal-cortical information transfer 

(Rasch & Born, 2013; Sirota & Buzsáki, 2005). Additional activity patterns also 

characterise SWS including K-complexes (<1 Hz) arising from cortically generated slow 

oscillations and sleep spindles (7-16 Hz) and sharp wave ripples, containing a sharp wave 
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(0.5-50 Hz) and a ripple (100-300 Hz; Buzsáki, 2015; Cutsuridis & Graham, 2019), in the 

hippocampus. 

Sleep spindles are generated by thalamocortical loops and observed in the primary 

sensory and prefrontal areas of the cortex (Lüthi, 2014). Sometimes called sigma waves, 

sleep spindles are bursts of activity with spindle-like appearances on EEG and are often 

accompanied by muscle twitches (Ulrich, 2016). Spindle density increases following 

learning in both humans and animal studies (Ulrich, 2016). A related phenomenon, K-

complexes, often precede sleep spindles and are positively correlated with DOWN-UP 

state transitions and stored-trace reactivation (Johnson et al., 2010). Finally, sharp wave 

ripples are specific to the hippocampus and surrounding brain regions, and are associated 

with memory consolidation and reactivation, similar to K-complexes (Buzsáki, 1989).  

REM sleep, sometimes called paradoxical sleep (PS), is characterised by a saw 

tooth theta rhythm (3-12 Hz) in the rat hippocampus and is accompanied by 

desynchronous cortical activity, similar to wake, and minimal muscular activity as 

detected by electromyography (EMG) with the notable exception of the eyes (Peever & 

Fuller, 2016). REM sleep is at the end of the sleep cycle and is associated with memory 

consolidation and learning (Hasselmo & Stern, 2014). Although the role of REM sleep in 

memory has been controversial due to the difficulty in isolating neural activity in REM 

sleep, direct involvement of REM sleep in spatial and contextual memory consolidation 

was confirmed in mice (Bandarabadi at al., 2019; Boyce et al., 2017) and the current 

theory proposes that both REM and non-REM sleep both contribute to memory 

consolidation in cognitively normal, healthy brains. Recent human fMRI studies show 

preliminary support for microstates within REM; specifically, phasic and tonic REM 
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(pREM and tREM, respectively; Wehrle et al., 2007). Phasic REM is characterised by 

limbic and parahippocampal activity and a lack of reactivity to sensory stimuli while 

auditory stimulation during tonic REM elicited activation of the auditory cortex. Thus, 

tREM is a period of residual alertness while pREM is a period of functional isolation 

within a closed intrinsic loop. Jing et al. (2016) found numerous potential substates in 

SWS and REM sleep using factor analysis. This suggests that tREM and pREM, in 

addition to other microstates, could be conserved between humans and non-human 

animals. 

The precise frequency ranges described by EEG bands in both human and animal 

studies are somewhat arbitrary.  Human EEG bands do not correspond exactly with their 

animal counterparts.  A review by Corsi-Cabrera et al. (2001), observed that EEG bands 

used in animal studies were either arbitrarily determined, borrowed from human studies 

without consideration or no division at all was considered and that the lack of consensus 

among investigations was detrimental to the field. Another review (Corsi-Cabrera et al., 

2000) noted that human studies had similar problems, with EEG bands rarely 

corresponding with EEG generators or with functional meaning of EEG rhythms. 

 To illustrate, the delta range is generally accepted as having a lower limit of 0.5 

Hz, but researchers have used an upper limit of anywhere between 2 and 4 Hz. 

Sometimes even ranging from 6 to 12-14 Hz (Steriade & Deschenes, 1984). Such 

differences can arise from whether the animal is under anesthesia or not, due to the 

changes in the level of membrane hyperpolarization (Steriade & Llinás, 1988). This alone 

presents a challenge when discussing the properties of the delta range in various brain 

structures and the problem is only compounded with each subsequent frequency range.  
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Thus, the second aim of this study is to examine the precise frequencies 

involved in EEG bands using non-arbitrary techniques such as time-resolved phase-

amplitude coupling and determine the relevance of these frequencies with respect to 

states and substates/microstates within wake, NREM and REM, using the 

previously recorded EEG information gathered from the hippocampus and the 

primary motor cortex in Fischer-Brown Norway rats. 

1.3 Sleep and Motor Learning 

Learning, or the acquisition stage of memory, can be separated into procedural 

learning and memory, largely non-hippocampus-dependent, and declarative learning and 

memory, hippocampus-dependent. This difference was most infamously demonstrated by 

the patient H.M. following a bilateral medial temporal lobectomy. With the loss of his 

hippocampus, H.M. lost the ability to form new explicit memories, though his procedural 

memory and working memory remained intact (Scoville & Millner, 1957, Eichenbaum, 

2013). 

The role of sleep in the storage, or consolidation, of declarative memory is well-

established (Rasch & Born, 2013), but despite evidence for sleep improving performance 

of motor skills, a meta-analysis found no conclusive evidence that sleep enhances 

consolidation (Richard & Pan, 2017). Further investigation revealed a potential source of 

variance: baseline learning performance. In one study, offline gain in motor skill 

performance was dependent on the pre-sleep performance such that only performers of 

intermediate skill pre-sleep showed significant improvement post-sleep, with spindle 

counts correlated with the degree of improvement (Wilhelm et al., 2012). No such 

improvement was found in pre-sleep high or low performers. In another study, 
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performance only improved in fast learners and not slow ones (Albouy et al., 2008). A 

comparison of motor skill performance following daytime wakefulness or nighttime sleep 

showed better improvement following sleep (Rångtell et al., 2017). The same study also 

found that baseline performance levels played a role in improvement regardless of the 

whether wakefulness or sleep followed the learning period (i.e. high performers had 

smaller improvement than low performers regardless of whether they slept or not after 

learning). These improvements were only evident when the average retesting trials scores 

were divided by the last three learning trials and not the three best learning trials. 

It is therefore reasonable to consider that some aspect of sleep contributes to the 

stabilization and enhancement of procedural memory. Thus, the third aim of this study 

is to determine whether any changes to a state or due to a procedural memory 

paradigm (i.e. mediated by non-hippocampal brain structures) can be detected. 

Sleep phenomena may also exhibit differences induced by the procedural memory 

paradigm. Thus, the fourth aim is to determine whether any extant phenomena 

affected by procedural learning, most especially during sleep, can be detected as 

well. 

1.4 Cross-Frequency Correlation 

The electrical activity of neural networks observed as oscillations by EEG 

underlies cognitive functions such as perception, attention and memory (Canolty & 

Knight, 2010; Schroeder & Lakatos, 2009; Shirvalkar et al., 2010). They can form 

rhythms categorized by the frequency in Hz. 

Additionally, different frequencies also have different spatial scales with lower 

frequencies modulating activity over larger spatial regions and higher frequencies 
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modulating activity over smaller spatial regions (von Stein & Sarnthein, 2000). 

Furthermore, neural network activity associated with stimulus processing differs 

depending on the phase of ongoing oscillations (Canolty & Knight, 2010). This gives rise 

to a class of complex temporal and spatial interactions between different rhythms known 

as cross-frequency coupling (CFC; Canolty & Knight, 2010). These rhythms have two 

key components that can be used to measure their interactions with other rhythms: 

amplitude and phase. The interactions can be phase-phase (PPC), phase-amplitude 

(PAC), or amplitude-amplitude (AAC) as shown in Figure 1.4.1. The most common 

analytical methods for PPC and AAC are susceptible to mathematical artifacts – a broad 

range of artificial and biological noise will produce results indistinguishable from 

coupled frequencies (Gerber et al., 2016). This leaves PAC as the most reliable method.  

PAC is a type of CFC, also known as a nested oscillation, where the phase of one 

oscillation is coupled with the amplitude of another. Often, PAC describes the association 

between the phase of a lower frequency and the amplitude of a higher frequency (Canolty 

& Knight, 2010). It can be measured in a variety of ways including phase-locking value 

(PLV), mean vector length (MVL), Kullback-Leibler-based modulation index, among 

others. However, no preferred measure has yet emerged due to the relative limitations of 

each. Despite providing similar reliability and accuracy, the principle limitation was the 

inability to measure PAC strength (Samiee & Baillet, 2017; Tort et al., 2010). A 

methodological study by Samiee and Baillet (2017) refined existing PAC analytical 

techniques, allowing for greater temporal resolution, increased sensitivity and introduced 

a measurement of PAC strength. If tPAC provides a measures of PAC locally i.e. 

neuronal synchrony and integration within a region while inter-regional tPAC (IRtPAC) 
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assesses synchrony and integration between regions for PAC. With the issue of accurately 

detecting and measuring PAC resolved, the question remains: What rhythms are likely 

candidates with functional significance? While numerous rhythms can be coupled, 

interactions between theta and gamma oscillations are a hallmark feature of CFC in the 

hippocampus and have been implicated in a number of hippocampus-dependent functions 

(Lynn & Sponheim, 2016). 

Selective optogenetic silencing of theta-rhythm generating cells during REM 

sleep impairs the formation of contextual memory while preserving other types of 

memory (Boyce et al., 2016). This impairment does not occur when these cells are 

silenced during non-REM (NREM) or wakefulness. Further investigation of this 

impairments reveals diminished theta-gamma oscillation PAC concurrent with 

impairment (Bandarabadi et al., 2017). 

Cross-frequency coupling (CFC) within brain regions has been implicated in 

memory and memory-related functions. The strength of theta-gamma coupling in the 

hippocampus predicted performance accuracy in item-context learning tasks (item reward 

dependent on environmental context; Tort et al., 2009), matching-to-place tasks (six-arm 

radial water maze; Shirvalkar et al., 2010) and the T-junction working memory task 

(Yamamoto et al., 2014). The strength of theta-gamma coupling in cortical areas 

including the medial and lateral prefrontal cortex predicted performance accuracy during 

an attention task (Voloh et al., 2015). Working memory deficits across numerous 

modalities have been observed in people with schizophrenia (Lee & Park, 2005). During 

a variety of working memory tasks, those with schizophrenia had decreased theta and 
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gamma amplitudes, absent or abnormal gamma modulation and/or deficient synchrony 

when compared with controls (Lynn & Sponheim, 2016). 

CFC has shown clinical relevance especially in disease states in both human 

patients and animal models. Declines in theta-gamma coupling preceded Aβ 

overproduction in a mouse model of Alzheimer’s disease (Goutagny et al., 2013) and 

PAC during wakefulness and REM was diminished in APP-KO mice (Zhang et al., 

2016). Cross-frequency coupling has been expressed by theta, gamma and other 

oscillations in numerous cortical areas in animal models including, the prelimbic cortex, 

cingulate cortex, retrosplenial cortex, the primary and secondary visual cortex, and the 

temporal cortex (Jing et al., 2016). Similar cortical involvement has also been 

documented in humans. In a study by Reinhart (2017), endogenous theta band coupling 

between the medial frontal cortex and the right lateral prefrontal cortex was non-

invasively manipulated. In-phase stimulation in neurocognitively normal humans 

synchronized theta coupling and rapidly improved performance in a classical time-

estimation task (Reinhart, 2017).  

Reinhard (2017) also notes anti-phase stimulation impaired performance and 

desynchronized CFC, but that state could be immediately rescued by in-phase 

stimulation. The persistent neural activity and behavioural changes following stimulation 

suggests that this externally modified coupling changed the participants’ behaviour as a 

result of neuroplastic changes in functional connectivity. These findings open up the 

possibility of drug-free interventions with bidirectional capability allowing for the 

impairment of excessive synchrony or the rescue of deficient synchrony (Reinhart, 2017). 
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While the presence of cross-frequency coupling within the waking brain has been 

firmly established, its presence within the sleeping brain is more nebulous. Memory, of 

any cognitive functions, seems especially sensitive to the strength of cross-frequency 

coupling, but whether that memory must be hippocampus-dependent has yet to be 

determined. There is a lack of data with respect to the simultaneous activity of both 

cortical and subcortical regions in regard to CFC and it is unclear whether a CFC 

interaction between brain regions plays a role in cognitive functions such as memory. 

Due to this, the fifth and final aim of this study is to determine whether the 

sensitivity of CFC to memory and learning is limited to hippocampus-dependent 

memory and the role of the cortex in the event of either outcome. 

 
Figure 1.4.1: Types of Cross-Frequency Coupling. A) Amplitude-amplitude coupling. B) 

Phase-phase coupling C) Phase-amplitude coupling. Adapted from Jirsa and Müller, 2013, 

Front Comput Neurosci, 7, 78. Copyright 2013 Jirsa and Müller. 
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2. Materials and Methods 

2.1 LFP Recordings 

The EEG data used in this study was collected at the Tatsuno Lab of the Centre of 

Canadian Behavioural Neuroscience at the University of Lethbridge in 2015 and 2016. 

The data are from two groups of adult male Fischer-Brown Norway rats (two groups of 

n=3 for a total of n=6) with a sampling frequency of 2000 Hz. The data acquisition was 

part of a research program exploring transcranial direct and alternating current 

stimulation (tDCS and tACS, respectively).  Twisted bipolar electrodes (~600 µm tip 

separation) were bilaterally implanted in the hippocampus and in the dominant 

hemisphere’s primary motor cortex (this was the right hemisphere for all rats). 

Dominance was determined by observing the favoured forelimb used in the Wishaw 

reaching task paradigm during habituation. EMG electrodes were bilaterally implanted in 

the acromiotrapezius muscle. A single stainless steel ground screw was also implanted in 

each rat’s cranium.  The University of Lethbridge Animal Care Services and the 

Canadian Council on Animal Care guidelines were followed for all surgical and 

behavioral procedures. Two animals were excluded from the task analysis due to 

insufficient recording days shared with the other subjects as well as one animal that 

removed its recording electrode. Thus, the task data for only three animals was used. The 

stim conditions applied to each animal is listed in Table 2.1.1. These subjects shared four 

of twelve task days (Days 1, 3, 8 and 8) which were then analyzed. Figure 2.1.1 shows 

representative raw LFP recordings. 
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Table 2.1.1: Subject Stimulation by Task Day. Three subjects underwent the procedural 

learning task with the same timing. tDCS was delivered during pre-task REM. tACS was 

delivered during post-task SWS. 

Day 

Rat 
1 3 6 8 

3 tDCS tDCS tDCS tDCS 

4 Sham Sham Sham Sham 

6 tACS tACS tACS tACS 

 

Figure 2.1.1 Raw LFP Data. For baseline, animals were placed in the sleep pot for 

approximately 2 hours uninterrupted. For task, animals had about 1 hour in the sleep pot 

followed by the reaching task in the reaching box. This was followed by another hour in 

the sleep pot. 

 

2.2 Sleep Scoring 

For automated sleep scoring, each recording was initially divided into motionless 

and non-motionless epochs according a movement threshold of 1.5 times the median of 

the EMG signal. The median was chosen for its resistance to outliers. Motion epochs less 

than one second were removed along with motionless epochs less than 20 seconds. The 

recordings were then down-sampled and band-pass filtered as an initial preprocessing 

step. In order to reduce fragmentation, SWS and REM epochs were merged within 5 

seconds of each other and epochs with durations under 10 seconds were removed. Theta 

(5-12 Hz) and delta (1-4 Hz) were obtained from hippocampal CA1 recordings and 

applied to REM detected. REM epochs were found by calculating when a ratio of theta to 

delta power divided by EMG amplitude exceeded a threshold of the 85th percentile of the 

overall ratio during a motionless epoch. As the REM and SWS detection algorithms run 
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independently of each other, automated and manual checks were run to ensure no 

overlap. When an overlap occurred, epochs were either truncated or removed, depending 

on which ratio was larger. In addition, suspect REM epochs, periods that were scored as 

REM, but did not contain recognizable theta oscillations, that the automatic scoring script 

failed to remove were manually removed. SWS epochs were calculated by taking the 

ratio of delta power to theta power divided by the EMG amplitude. The SWS epoch 

threshold was also the 85th percentile of the overall ratio. Motionless periods that failed to 

meet both the SWS and REM thresholds remained classified as wakefulness periods. 

These periods were not distinguished from wakefulness with motion over the threshold. 

For manual scoring, baseline recordings with an available video were verified 

manually. Each 0.5 second was categorized as either “motion” or “motionless” and then 

checked against the automatic sleep score after a binary conversion (motion = 1, 

motionless = 0). Periods of motionlessness or non-motionlessness were required to have a 

minimum duration of 5 seconds. The automatic scores needed to agree within a 10% 

tolerance limit of the manual scores to be considered identical. Trials that failed the 

tolerance test were redone with increased thresholds until the trial passed the tolerance 

test. The hippocampal EEG traces of REM and SWS epochs were manually reviewed for 

characteristic theta sawtooth waves or large amplitude, slow wave oscillations (~1 Hz), 

respectively. 

2.3 Behaviour Scoring 

Security videos were available from a select number of baseline days for four of the six 

animals. Each 0.5 second segment was classified as one of five behavioural categories: 

motionless (M), sniffing/whisking (SF), grooming (G), head shift/movement (HS), and 
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body shift/movement (BM). Due to technical difficulties switching between the security 

camera and the high-speed reaching task camera, there were no videos of task days 

available for comparison. 

2.4 tDCS and tACS Stimulation 

Following baseline sleep recordings, task recordings were obtained for three of 

the six animals. These consisted of 1 hour of pre-task sleep followed by a ~30 minute 

Whishaw reaching task with a 1 hour post-task sleep session (Whishaw et al., 1986). The 

tDCS stimulation was delivered during pre-task REM and the tACS stimulation was 

delivered during post-task SWS (Figure 2.4.1). The task session length was dependent on 

the length of time it took for the animal to complete ten reaches. Animals in the stim 

condition received either 10.1 µA of DC stimulation or 10.1 µA, 0.8 Hz of AC 

stimulation with the electrode in the motor cortex and the cathode in the deep posterior 

brain. The duration of the stimulation was 30 seconds with a cumulative maximum of 600 

seconds or 20 stimulation episodes. Stimulation was administered with a delayed onset of 

10 seconds. Acquisition runs where stimulation was not delivered were listed as sham 

trials. Stim time points were tracked and eliminated from the analyzed recording data. 



22 

A

 
B                                                                                     C 

                       
Figure 2.4.1: Representative Sleep Scored Spectra and Traces. EMG (white overlay) used 

to detect motionless periods (grey). Ratio of spectral power between delta and theta bands 

(REM: upper yellow trace, SWS: lower yellow trace) used to calculate SWS (green) and 

REM (red) periods. A) Baseline/Sham sleep score without stimulation in either REM sleep 

or SWS. B) Pre-task REM sleep tDCS of 10 µA (upper yellow overlays). SWS and REM 

epochs that extended into non-motionless periods were truncated (lower yellow overlay). 

C) Post-task SWS tACS of 10 µA at 0.8 Hz. 

 

2.5 Dimensionality Reduction 

Following the initial pre-processing and sleep scoring step, the power spectrum 

was estimated for each brain state using the multi-taper time-frequency spectrum – 

continuous process function from Chronux (Mitra, P. & Bokil, H., 2008). Chronux is 

documented and freely available for download from http://chronux.org/. The spectrogram 

was then log-transformed and analysed using the Matlab principal component analysis 

(PCA) function. PCA is a statistical procedure that uses an orthogonal transformation to 
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convert data containing possibly correlated variables into a values of linearly uncorrelated 

principal components. The transformation calculates maximal variance, so that the first 

principal component and eigenvector have the largest possible variance. The second 

principal component has the second most and so on. Following the PCA transformation, 

the data was projected onto the top three eigenvectors. The top components were selected 

according to three criteria, which is shown in Figure 2.5.1. First, the total explained 

variance was at least 90%. Second, the last component’s eigenvalue was at least double 

that of the following component’s value. Third, the eigenvalues included were above the 

“elbow” on a scree plot where the slope of the eigenvalues changes. Although these can 

be considered subjective measures, no method has been proven to be any better or worse 

than any other and remain acceptable methods of selecting components. 

A                                                                     B

 
Figure 2.5.1: Principal Component Selection. A) Principal component plot with the total 

variance explained of each. Components were chosen to have a cumulative variance 

explained of at least 90%. B) Scree plot with elbow indicated by arrow. Components above 

elbow were kept and those below were disregarded. 

 

2.6 Coherence and Cross Power Spectral Density 

Correlation (r) and coherence (coh) are very similar; correlation is a means of 

determining the extent to which two variables covary over time and can be expressed as a 
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normalized score between -1 and 1 while coherence determines the similarity of two 

variables covary across frequencies. Autocorrelation or self-coherence can describe how 

well a signal is correlated to itself across multiple time points, but in the case of multiple 

signals, especially without temporal cues of some kind, the differences between 

correlation and coherence can become large. In the signals recorded by LFP, coherence is 

the more appropriate method although there is a high comparability between the two 

(Guevara & Corsi-Cabrera, 1996; Eberly, 2016). Figure 2.6.1 illustrates the differences 

between coherence and correlation. Although correlation and coherence are similar, there 

can be signals that are coherent and not correlated. Coherence, or magnitude-squared 

coherence, is a function of frequency with values between 0 and 1 indicating the degree 

of coherence i.e. how well the amplitude of one signal corresponds to another at each 

frequency. It is a function of the auto power spectral densities, 𝑃𝑥𝑥(𝑓) and 𝑃𝑦𝑦(𝑓), given 

by the equation: 

(3) 

𝐶𝑥𝑦(𝑓) =
|𝑃𝑥𝑦(𝑓)|

2

𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)
 

The significance level for coherence is given by coherency as described in the 

following equation defined by Shumway and Stoffer (2017), pg. 212, equ. 4.105: 

  (4) 

𝐶𝛼 =
𝐹2,2𝐿−2(𝛼)

𝐿 − 1 + 𝐹2,2𝐿−2(𝛼)
 

where F is the inverse of the cumulative distribution of the F-distribution, α is the 

probability of a type I error, and L is the number of degrees of freedom, approximately 

n*B, where n is the number of observations and B is the bandwidth. The Matlab script for 
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this equation was adapted from the original script created by David M. Kaplan (2004), 

which is freely available for download. There is another reason correlation is not an ideal 

measure for LFP recordings: volume conduction. Field potentials in the brain are an 

epiphenomenon of electrical activity in both single cells and cell ensembles, and thus, the 

signal may have almost any relationship with the contributing source or sources. Field 

potentials are present even in regions where the units are not firing when there are 

subthreshold afferent activity or inhibitory currents. Localizing the signal is of critical 

importance regardless of scale due to Ohm’s Law (V = IR), which describes the 

proportionality between voltage (V) across a conductor of resistance (R) in an electrical 

circuit and the current (I) flowing through the system. The consequences of this principle 

are well-known: despite efforts to record from purely proximal sources, LFP has become 

infamous for distal sources and sinks contributing to the “local” potentials. These sources 

and sinks, by virtue of the transmission of the charge through space (i.e. current), may be 

considered as generators of the recorded potential. 

To identify and measure the contribution of current generators to the LFP signal, 

current source density (CSD) methods have been widely implemented. The cross-

spectrum of two signals x(t) and y(t) is defined as the Fourier transform of the covariance 

function of x and y. The cross power spectral density (CPSD) 𝑃𝑥𝑦(𝜔) is determined from 

the ensemble average of the Fourier transform of x(t) multiplied by the complex 

conjugate of the Fourier transform of y(t). Thus, the CPSD is said to be the Fourier 

transform of the cross-correlation function. The cross power spectral density is the 

distribution of power per Hz and is defined as: 

(5) 
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𝑃𝑥𝑦(𝜔) = ∑ 𝑅𝑥𝑦

∞

𝑚=−∞

(𝑚)𝑒−𝑗𝜔𝑚 

where 𝑅𝑥𝑦(𝑚) is the cross-correlations sequence. As such,  

signals with zero phase lag, while having high correlation and potentially high 

coherence, would likely be volume-conducted. While in human scalp EEG, correlation is 

often used as there are other methods for accounting for volume conduction, in this study, 

only coherence and CPSD will be considered. The methods of correcting for volume 

conduction in scalp EEG studies are often computationally complex and involve 

calculations between multiple paired electrodes which were not available for this study. 

Figure 2.6.1: Coherence and Correlation. The Pearson product-moment coefficients at 0 

lag (r) and coherence (COH) values for each 1-s epoch, and the mean r (rm) and coh for 

the successive four epochs are given for each pair of signals. Voltage and phase were 

manipulated in one of the signals of each pair. Voltage was multiplied by 3 in A and B. 

Phase was delayed by 90 degrees in B and C. A illustrates that in signals with both a 

consistent amplitude and phase to each other, coherence and correlation produce the same 

result while in B and C, changes in either amplitude or phase can influence coherence and 

correlation to different extents. Adapted from Guevara and Corsi-Cabrera, 1996, Int J 

Psychophysiol, 23, 145-153. Copyright 1996 Guevara and Corsi-Cabrera. 

 

2.7 Time-Resolved Phase-Amplitude Coupling 

Following pre-processing and sleep scoring, CFC analysis was carried out. The 

cortical and hippocampal recordings were imported into the Brainstorm interface (Tadel 

A 

 

 

 

B 

 

 

 

C 
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et al., 2011), which is documented and freely available for download online under the 

GNU general public license (http://neuroimage.usc.edu/brainstorm). The recordings were 

segmented into epochs of equal lengths and analyzed using tPAC and IRtPAC as 

introduced by Samiee and Baillet (2017) and then averaged. The equation for phase-

amplitude coupling where the amplitude a fast frequency 𝐴𝑓𝐴 with a frequency 𝑓𝐴  is 

modulated by the phase, ϕfp, of a slower frequency, 𝑓𝑃and 𝑓𝑃 < 𝑓𝐴 is as follows: 

(6) 

{
  
 

  
 𝑧 =

∫ 𝐴𝑓𝐴(𝑡). 𝑒
𝜙𝑓𝑝(𝑡)  𝑑𝑡

𝑡𝑝
0

√
1
𝑡𝑝
∫ 𝐴𝑓𝐴

2𝑡𝑝
0

(𝑡) 𝑑𝑡

, 𝑡𝑃𝐴𝐶 = |𝑧|,         𝜙𝑡𝑃𝐴𝐶 = 𝑎𝑛𝑔𝑙𝑒 (𝑧)

𝑡𝑝 = 
1

𝑓𝑝∗
× argmax
𝑘:𝑖𝑛𝑡𝑒𝑔𝑒𝑟>1

{𝑘 × 1 𝑓𝑝
∗⁄ ≤ ∆}

 

Where 

𝑡𝑃: data length for averaging (equal or less than sliding window length) 

k: n full cycles of 𝑓𝑃 in the sliding window 

𝐴𝑓𝐴(𝑡): amplitude envelope of  𝑥𝑓𝑃(𝑡) 

𝑥𝑓𝑃(𝑡): bandpass filtered signal of centre frequency of 𝑓𝐴 

In this methodology, a range of potential frequencies of phase (𝑓𝑃
∗) can be entered 

with the caveat of a sliding window large enough to contain at least 1 cycle of the slowest 

frequency in the range. For example, if the sliding window is 1 second long, then the 

lowest end of the range of frequencies of phase must be at least 1 Hz. The test can be run 

sequentially, so if the frequency of interest is faster than the minimum in the first run, a 

second run be done with smaller windows and increased temporal resolution as a result. 

The coupling strength of (𝑓𝑃, 𝑓𝐴) is given by a two-dimensional comodulogram. 
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2.8 K-Means Clustering 

The PCA component score was passed as an argument into the k-means++ 

clustering algorithm. Rather than analyze the entirety of the random variables in the 

untransformed dataset, the three-dimensional projection of the dataset was clustered. The 

selection of the optimal k number of clusters for each CVI was generated by creating a 

matrix of k-means results using a range of clusters (k=1:15) and passing the results 

through one of three CVI evaluation functions: Calinski-Harabasz (CH), Davies-Bouldin 

(DB) and Silhouette (SH). CVI performance was determined from behavioural relevance 

(whether the resulting clusters were separated according to some metric of behaviour 

such as intensity and type) and whether there was significant distinction between the 

variable and clusters statistics of each mean cluster. Clustering was carried out on 

individual sessions before being aggregated through tolerance testing. 

Mean cluster spectra were derived for each sleep state under each condition 

through selection of initial prototype clusters (Pascual-Marqui et al., 1995) followed by 

double-layered tolerance testing where successive clusters were compared to each of the 

prototypes and determined to be similar and concatenated together or dissimilar and the 

cluster listed as a new prototype. Clusters within a relative tolerance of 5% were 

concatenated with the given prototype provided delta and theta ranges were also within 

95% similarity. Clusters outside the tolerance limits were set as new prototypes. Delta 

and theta ranges were selected as key tolerance limits due to the high coherence 

previously found in those ranges. For the sake of simplicity, only microstates detected in 

multiple sessions were considered. Once all the clusters were assigned to a prototype, 

variable and cluster statistics were extracted and the prototypes evaluated as microstates. 
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Variable statistics included band power and the peak amplitude and its associated 

frequency for each band. Five bands were selected: delta, theta, spindle, gamma and 

ripple. Cluster statistics included two metrics: 1) lifespan, or duration of a cluster, and 2) 

cluster coverage, or the ratio of the total time assigned to a given cluster over the total 

recording time. These metrics give a measure of the stability of a given cluster class. 

Duration was determined by labelling the spectra bins with their respective timecode and 

then determining which bins were adjacent following clustering. The average number of 

adjacent bins was than multiplied by the bin length to create an average duration. For 

each spectra, the incidence rate of adjacent groups of bins was also counted to control for 

spectra that consisted of noise (no adjacent bins) or single occurrences (all bins in cluster 

are adjacent). 

2.9 Statistical Analysis 

CFC data analysis was performed with Brainstorm. Additional analysis was 

carried out using Matlab 2018a and SPSS 24. Pair-wise comparisons are reported using 

an F statistic. Bonferroni corrected p-values were used to determine significance for all 

multiple comparisons tests.
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3. Results  

Three key goals underlie this project: 1) the establishment of microstates through 

arbitrary, semi-arbitrary and non-arbitrary means, 2) the effectiveness of semi-arbitrary 

and non-arbitrary techniques in detection of brain states and microstates, and 3) the effect 

of procedural learning on microstates. The relationship between these goals and the five 

hypotheses of this project is shown in Figure 3.0.1. EEG synchronicity, which underlies 

communication between regions and facilitates coherent cognition and behaviour (Varela 

et al., 2001; Ward, 2003) was examined using coherence and CPSD as semi-arbitrary 

metrics under naïve and learning conditions, as well as in the presence of two stim 

conditions: tDCS and tACS. Second, CFC both within and between regions was 

examined using tPAC and IRtPAC, respectively, as arbitrary metrics. Third, k-means 

clustering analysis was carried out on dimensionally-reduced data projections and 

evaluated for potential microstates. Fourth, clustering was compared against behaviour in 

naïve animals to determine correspondence between clustering and behaviour. Finally, 

clustering was carried out on motion scored datasets to assess the ability of PCA and k-

means clustering as non-arbitrary techniques to distinguish between brain states. 

 
Figure 3.0.1: Grouped Aims. 

 

3.1 Clustering of Sleep-Scored Data Reveals Stable and Transient Microstates 

To investigate the presence of microstates, mean cluster spectra were generated 
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from the normalized spectra of the k-means clustering data points. To detect the presence 

of microstates, two sets of cluster features were first extracted: 1) variable statistics, or 

the characteristics of the data within a cluster, and 2) cluster statistics, or the 

characteristics of the cluster itself. In this study, cluster lifespan and coverage were used 

as cluster statistics (See Section 2.8). Tolerance tests were carried out to establish mean 

clusters such that clusters with features within tolerance of each other were merged 

together while those with features outside of the tolerance tests were kept separate. 

The tolerance tests resulted in three SWS microstates: ON, OFF and LOW (See 

Section 1.1). Four REM microstates were differentiated as well: two consistent with 

tREM and pREM and two that greatly resembled cortical SWS spectra. Figure 3.1.1 

shows representative SWS and REM microstates from pre-task sham to illustrate. Note 

that the bins are not a continuous time series, but discrete units. There is some overlap 

between ON and OFF states, but not sufficient to exceed tolerance. 

REM and SWS classes were compared using a two-layer tolerance test. If 95% of 

the spectrum of interest was within 95% of the values of the contrasting spectrum, they 

were considered spectrally identical. While the hippocampal REM and SWS states were 

distinct, there was overlap between the cortical states. Figure 3.1.2 shows cortical SWS-

like REM spectra and their SWS counterparts that failed the tolerance test i.e. were 

within 95% tolerance of each other. Figure 3.1.3 shows the power spectral density plots 

of these microstates. There were two transient cortical clusters spectrally similar to a 

SWS counterpart; these can be categorized as a high amplitude delta range cluster and a 

neocortical high gamma cluster. These clusters were present in baseline, all pre-task 
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conditions and post-task tDCS. There was no significant difference in the variable or 

cluster statistics between any of the conditions (p=0.87).  

Table 3.1.1 shows the two cluster statistics of the REM and SWS microstates. 

Consistent with the literature, the LOW microstate had an extended lifespan well above 

either the OFF or ON states. The corresponding cortical state also had an extended 

lifespan. Among the SWS-like REM microstates (SR1 and SR2), the state corresponding 

with the neocortical ripple state (SR2) was less prevalent than the high delta state (SR1). 

Among the REM states in both the hippocampus and cortex, tREM (high amplitude theta; 

R2) was less prevalent than pREM (increased power across multiple bands; R1).  

The states using PCA and k-means techniques support previous findings in the 

literature including the ON, OFF and LOW SWS states as well as the tonic and phasic 

REM states. Furthermore, SWS-like REM states were also detected and suggest local 

disconnect between the primary motor cortex and hippocampus-led global brain state. 

 

 

Figure 3.1.1:  Mean Spectrograms for SWS and REM Clusters. A) Mean SWS clusters 

for pre-task sham (1 subject, 4 sessions). Left to right: DOWN, UP, LOW. B) Mean 

REM clusters for pre-task sham. Left: tonic REM (~6 Hz), Right: phasic REM (~8 Hz) 
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Figure 3.1.2: SWS-like REM Cluster Spectrograms in the Primary Motor Cortex. Left: 

REM, Right: SWS. 1 subject, 4 sessions.  
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Figure 3.1.3: SWS-like REM Microstate Power Density. A) High amplitude delta state B) 

Neocortical ripple state. Left: REM, Right: SWS. 1 subject, 4 sessions. 

 

Table 3.1.1: Features of Cortical and Hippocampal Microstates. S: SWS, R: REM, SR: 

SWS-like REM. Values are presented as mean ± SEM. 43 total sessions from 3 subjects. 

Cluster Statistics 

Cortex 

Features S1 S2 S3 R1 R2 SR1 SR2 

Coverage (%) 39.49 19.40 41.76 42.84 8.82 40.39 5.35 

SEM 0.00 0.02 0.00 0.06 0.00 0.00 0.00 

Lifespan (sec) 1.73 2.19 8.09 2.59 1.39 2.12 1.17 

SEM 0.12 0.06 0.14 0.02 0.00 0.02 0.00 

Hippocampus 

Features S1 (ON) S2 (OFF) S3 (LOW) R1 R2 

Coverage (%) 33.65 29.00 7.25 65.74 34.75 

SEM 0.00 0.00 0.02 0.00 0.04 

Lifespan (sec) 1.08 1.25 5.41 4.02 2.30 

SEM 0.93 0.05 0.07 0.58 0.08 

 

3.2 K-Means Clustering Sensitive and Specific to Behaviour 

To investigate whether clustering had behavioural relevance, cluster sequences 

were compared against baseline behaviour scoring. Three aspects of the distribution of 
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behaviour between different clusters were focused on: 1) the separation of motionlessness 

from non-motionlessness i.e. sniffing, grooming, etc., 2) the degree to which a given 

cluster only contained a single behaviour, and 3) the degree to which a behaviour was 

contained in a single cluster. Given the variability of the maximum number of clusters 

and the triangular separation of the three most extreme behaviours (motionless, minimal 

movement and maximal movement), the three clusters at the vertices of the triangular 

separation were used to analyze behavioural distribution. The primary behaviour of the 

cluster at each vertex was used to classify them such that the top vertex was classified as 

the motionless cluster (M), the left vertex was classified as the minimal movement cluster 

(SF) and the right vertex was classified as the maximal movement cluster (BM). Only the 

Calinski-Harabasz-evaluated clustering results are shown due to its significantly more 

frequent detection of the motionless cluster across sleep stages compared with Davies-

Bouldin and Silhouette (Bonferroni: p < 0.001; See Figure S8 for examples of Davies-

Bouldin and Silhouette) 

Figure 3.2.1 shows a representative k-means clustering plot. The cortical plot for 

the sleep scored data illustrates the triangular distribution of three key clusters: 1) a 

motionless cluster at the peak positive y-axis position, 2) a minimal movement cluster at 

the peak negative x-axis position, and 3) a maximal movement cluster at the peak positive 

x-axis position. The hippocampus rarely distinguished the motionless cluster and is not 

clearly distinguishable in either the sleep scored (top right) or motion scored (bottom 

right) data sets. 
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Figure 3.2.1: Representative Clustering in Sleep Scored and Motion Scored Data. Top: 

Motion Scored, Bottom: Sleep Scored. Left: Cortex, Right: Hippocampus. Black circle: 

Motionless cluster. The x-axis is the first principal component and the y-axis is the 

second principal component. 

 

Figure 3.2.2 shows the mean cluster counts in baseline and task (No statistical 

difference was found following paired t-tests with cluster strength accounted for; p-value 

0.92; see figure S10). There was a significant difference between the cortical and 

hippocampal clusters counts for wake and REM in baseline and pre-task sham. Baseline 

SWS was also significantly different while pre-sham SWS approached significance 

(p=0.07). In contrast, there was a significant difference in post-task sham for SWS, which 

was shared by post-task tACS. All other conditions showed no difference between cortex 

and hippocampus. Thus, naïve and pre-task sham exhibit increased local clustering in the 

primary motor cortex during wake and REM while post-task sham and tACS have 

increased cortical clustering during SWS. 

PC 1 PC 2 

PC 3 

PC 1 PC 2 

PC 3 

PC 1 PC 2 

PC 3 

PC 1 PC 2 

PC 3 



37 

 

 

 
Figure 3.2.2: Cluster Count Comparison in Baseline and Task. Baseline cortical counts 

were significantly higher than hippocampal counts in all three brain states.  * p <0.05 ** 

p<0.01. Top: Wake, Middle: SWS, Bottom: REM. BASE: Baseline, S-Pre: Sham Pre-

Task, S-Post: Sham Post-Task, Pre-D: Pre-Task tDCS, Post-D: Post-Task tDCS, Pre-A: 

Pre-Task tACS, Post-A: Post-Task tACS 
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Figure 3.2.3 shows the inverse relationship between maximal movement and 

minimal movement and illustrates the tendency of the algorithm to overfit. Clusters along 

the horizontal axis contained a mixture of minimal, moderate and maximal movements. 

From left to right, the percentage of the cluster that was classified as minimal movement 

decreased while maximal movement increased. Four clusters can be visually 

distinguished, but the central “mixed behaviour” cluster had a tendency to be overfit.  

  

 
 

Figure 3.2.3: Inverse Horizontal Relationship of Minimal and Maximal Behaviour. Values 

indicate the cluster and then the percentage of the cluster described by the predominant 

behaviour within it. Black circles indicate intuitive clusters. The central cluster, containing 

compound behaviours, suffers from overfit. The purest behaviours at the three apices are 

more clearly separated than the central compound behaviours, which create a spectrum of 

behaviour differentiated by the clustering algorithm.  
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The wake motionless cluster was only distinguished in the cortex by CH 

evaluation (91.7% of clusters). Davies-Bouldin (15.3%) and Silhouette (0%) did not 

sufficiently distinguish the motionless cluster to be used in behavioural analysis. The 

cortical clustering separated the motionless cluster from the non-motionless ones 

significantly more frequently than in hippocampal clustering (p < 0.001). It should be 

noted that only two of the three subjects had videos (11 baseline days) for behavioural 

analysis. 

Table 3.2.1 shows the cluster specificity (the percentage of the cluster that is a 

given behaviour) by primary behaviours and sleep stage. Cortical clusters were 

significantly more specific than hippocampal ones with respect to Wake motionless 

(Tukey’s Student-t test; p<0.05) and REM maximal movement clusters (Tukey’s Student-

t test; p<0.05). Maximal movement during all three brain states was significantly less 

specific than those of either minimal movement or motionlessness (Tukey’s Student-t 

test; p<0.01). Body movement during different sleep and wake states was not clearly 

differentiated between them and merged into a single cluster. In contrast, minimal 

movement and motionlessness were highly specific to the sleep stage. 

Table 3.2.1: Behavioural Specificity in Sleep Scored Clusters. Clusters were selected using 

Calinski-Harabasz evaluated for this analysis. n = 11 (2 subjects). 

 Wake SWS REM 

Region Value M SF BM M SF BM M SF BM 

CTX Mean 89.4 88.1 56.4 91.4 92.0 28.4 99.2 93.5 41.3 

 SEM 4.2 3.8 5.5 3.6 3.2 6.7 0.8 2.5 9.4 

HIP Mean 58.9 74.3 50.2 76.9 90.1 15.4 97.1 90.8 18.3 

 SEM 6.8 4.3 5.1 22.5 2.5 4.9 3.4 2.9 6.4 

 

Table 3.2.2 shows the behavioural sensitivity (the percentage of a behaviour 

found in a given cluster) of clusters derived from sleep-scored data. Although motionless 

and minimal movement clusters were highly specific to brain states, they were noticeably 
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less sensitive. The cortex clustering was more sensitive to wake minimal movement 

(p<0.05).  

The wake motionless clustering and REM maximal movement clustering were 

both sensitive and specific. REM maximal movement clusters were unexpectedly the 

most sensitive and the least specific. Clustering of behaviour, while specific to primary 

behaviours at the vertices of distribution, was less sensitive. This is consistent with only 

the vertices containing the extremes of the behavioural distribution while other clusters 

on the axis contained mixtures of complex behaviours such as grooming, exploratory 

sniffing, head movement, etc. The occurrence of pure behaviour (pure motionlessness, 

pure whisking, etc.) would be considerably less than the occurrence of mixtures of the 

these and other behaviours. 

Table 3.2.2: Behavioural Sensitivity in Sleep Scored Clusters. n = 11 (2 subjects). 

 Wake SWS REM 

Region Value M SF BM M SF BM M SF BM 

CTX Mean 79.8 26.8 13.5 35.8 39.8 41.9 44.7 36.8 61.6 

 SEM 5.4 5.8 3.1 9.2 7.5 8.7 6.2 3.6 9.8 

HIP Mean 57.3 12.8 5.5 23.6 33.0 47.0 25.3 56.1 63.5 

 SEM 19.5 3.1 1.2 9.5 3.3 5.9 6.0 5.4 5.0 

 

The behavioural distribution of the motion scored clusters was then investigated 

to further establish the suitability of the selected algorithm and evaluation indices. The 

motion scored clusters were the same recordings as the scored ones, but without sleep 

scoring. The clusters were characterized as “Wake,” “SWS” or “REM” according to the 

predominant epoch contained within them. Behaviour was tracked according to the 

originating sleep stage such that under a behavioural category, there would be up to three 

subcategories indicating the sleep-scored epoch i.e. under head shift, there would be head 

shift – wake, head shift – SWS and head shift – REM. The gross behaviour was the total 
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of all behaviour regardless of origin while epoch behaviour was the percentage of the 

gross behaviour originating in a specific epoch. As such, the behaviour does not change, 

just whether it is all of the behaviour or the behaviour from a specific period of time. For 

each of the clusters, the corresponding epoch was used for this relationship such that for 

the motionless wake cluster, the epoch total would be the percentage of the gross 

behaviour that originated in wake clusters. 

Table 3.2.3 shows specificity of the motion scored clusters for the gross and 

epoched behaviour. While the clusters were less specific to the total behaviour, they were 

noticeably more specific to the epoched behaviour, especially in the case of wake and 

SWS minimal and maximal behaviour. Unlike the sleep-scored clustering, there was no 

significant different between hippocampal and cortical clustering. Motion scored clusters 

were generally less specific than sleep-scored clusters. 

Table 3.2.3: Behavioural Specificity in Motion Scored Clusters. Calinski-Harabasz 

evaluation was used in cluster selection for this analysis. n = 11 (2 subjects). 

Gross Behaviour 

 Wake SWS REM 

Region Value M SF BM M SF BM M SF BM 

CTX Mean 10.3 46.5 18.9 67.5 41.4 0.8 61.1 33.9 2.2 

 SEM 2.9 3.1 2.0 10.9 10.3 0.2 9.0 8.9 0.3 

HIP Mean 9.3 43.5 19.7 51.0 30.6 1.5 57.1 36.2 2.5 

 SEM 2.9 4.1 2.3 10.9 10.8 0.6 7.5 7.6 0.5 

Epoch Behaviour 

 Wake SWS REM 

Region Value M SF BM M SF BM M SF BM 

CTX Mean 32.1 88.1 93.3 80.7 74.0 56.0 60.6 24.0 19.9 

 SEM 11.3 3.1 1.7 7.8 9.3 8.7 8.8 9.9 8.7 

HIP Mean 39.0 87.6 92.0 78.4 66.8 59.3 46.1 26.4 7.8 

 SEM 13.3 2.9 2.2 8.3 9.8 10.1 8.7 8.9 3.0 

 

To supplement the results in Table 3.4.3, which outlined the distribution of sleep 

states into single clusters, Table 3.2.4 shows the distribution of the predominant 

behaviour from each epoch in the motion scored clusters. The gross behaviour total was 
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calculated from the total behaviour across all brain states and the epoch behaviour total 

was limited to the total behaviour in a single brain state.  

The “wake” cluster contains the vast majority of maximal movement and the 

movement from the sleep scored wake state. The “REM” cluster contained comparable 

amounts of total behaviour to the sleep-scored clusters, which were themselves highly 

sensitive to the epoched behaviour. The “SWS” clustering was less sensitive, but 

contained a comparable amount of total behaviour and epoched behaviour to the sleep-

scored data. In contrast with the sleep-scored datasets, the hippocampal and cortical 

clustering were not significantly more or less sensitive than the other with the exception 

of wake motionlessness (p<0.05). 

K-means clustering of sleep-scored data is highly specific, but less sensitive while 

clustering of the motion scored data is highly sensitive, but less specific. Clustering of the 

motion scored data was sensitive to both gross and epoched behaviour. 

Table 3.2.4: Behavioural Sensitivity in Motion Scored Clusters. n = 11 (2 subjects). 

Gross Behaviour 

 Wake SWS REM 

Region Value M SF BM M SF BM M SF BM 

CTX Mean 15.2 51.5 78.3 30.1 26.4 11.9 44.1 24.7 12.3 

 SEM 4.9 8.2 5.5 5.2 4.9 3.9 6.0 4.2 3.2 

HIP Mean 9.7 44.3 74.2 36.4 18.2 7.2 41.7 18.3 11.0 

 SEM 3.9 6.8 4.4 3.2 4.1 2.0 5.6 2.9 2.8 

Epoch Behaviour 

 Wake SWS REM 

Region Value M SF BM M SF BM M SF BM 

CTX Mean 50.0 69.8 85.2 42.4 47.9 26.2 79.8 93.3 59.8 

 SEM 8.6 6.8 5.4 3.5 7.2 5.8 5.0 3.9 14.3 

HIP Mean 21.5 63.8 79.0 46.0 41.4 20.0 86.2 84.9 58.8 

 SEM 7.8 6.7 5.6 5.2 5.1 5.0 2.7 3.8 7.5 

 

3.3 K-Means Clustering TAC Dependent on Sample Size 

To investigate the suitability of k-means clustering as a non-arbitrary method of 
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sleep stage scoring, motion scored data was presented to the k-means algorithm without 

restriction. The same features extracted from the scored clusters were also extracted from 

the motion scored ones and served as a basis of comparison. In order to determine the 

effectiveness of k-means clustering as a non-arbitrary technique for sleep stage detection, 

the relative effectiveness was calculated as the agreement between motion scored clusters 

and sleep scored stage stages. The total accuracy (TAC; TAC = (A+B+C)/3) was an 

overall measure of the sensitivity, or the amount of a scored epoch found in a given 

clusters, and specificity, or the amount of a cluster represented by a given epoch. 

First, the sensitivity of the clustering was determined. The maximum percentage 

of a given sleep stage contained in any motion scored cluster for each CVI was used. For 

the purposes of this study, the EMG-derived sleep-scored epochs were assumed to be 

100% accurate for the sake of simplicity. The motion scored clustering was not subject to 

the same constraints as the sleep-scoring algorithm, most notably, the minimum state 

duration and gap. Table 3.3.1 shows the distribution of sleep stages in the motion scored 

clusters. Naïve clustering (n=19) was notably sensitive to REM and SWS detection as 

were sham and tDCS and to a lesser extent, tACS. Wake, by contrast, had the lowest 

agreement in any of the conditions. 
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Table 3.3.1: Sleep Stage Sensitivity in Motion Scored Clusters. Values give the mean 

percentage of a given sleep stage found in an motion scored cluster ± SEM. Baseline n = 

19 (3 subjects), task = 4 (1 subject) 

 Pre-Task Post-Task 

Cond. Region Wake SWS REM Wake SWS REM 

Base. CTX 63.9 ± 1.7 86.7 ± 2.7 97.7 ± 0.4  -  

 HIP  67.4 ± 1.9 69.5 ± 4.3 87.9 ± 4.0  -  

Sham CTX 57.2 ± 8.8 60.8 ± 8.3 92.5 ± 1.1 54.8 ± 2.5 72.8 ± 8.6 80.7 ± 7.9 

 HIP 48.8 ± 1.7 73.3 ± 3.4 62.3 ± 6.0 57.6 ± 2.6 67.0 ± 9.5 78.8 ± 8.3 

tDCS CTX 65.8 ± 8.8 67.5 ± 7.2 98.1 ± 1.1 69.0 ± 3.4 73.2 ± 11.6 95.6 ± 6.0 
 HIP 69.4 ± 8.1 61.3 ± 16.8 98.1 ± 1.1 61.6 ± 9.7 61.2 ± 7.3 93.0 ± 14.2 

tACS CTX 57.8 ± 3.1  67.5 ± 5.6 86.2 ± 4.4 48.5 ± 1.8 65.7 ± 4.6 85.4 ± 5.8 

 HIP 46.0 ± 1.5 53.6 ± 1.2 69.0 ± 2.5 56.0 ± 1.9 57.8 ± 0.9 60.7 ±2.3 

 

Next, the cluster features of the motion scored clusters were extracted and 

compared to standard sleep scoring criteria in rats (Pagliardini et al., 2013; Timo-Iaria et 

al., 1970). SWS was defined as ≥40% of total power in the delta band and REM was 

defined as ≥ 40% total power in the theta band.  Figure 3.3.1 shows the variable statistics 

of the motion scored baseline clusters.  

Table 3.3.2 shows the extracted cluster statistics of the motion scored clusters. 

There was no interaction between task conditions and band power (two-way repeated 

measures ANOVA, F=0.56, p=0.472). However, there was a significant difference 

between the cluster statistics of the cortical and hippocampal states (F=50.88, p<0.001). 

Table 3.3.2: Cluster Statistics of Motion Scored Sleep States. Values are presented as mean 

± SEM unless otherwise indicated. 

Cluster Statistics 
 Cortex Hippocampus 

Features UP DOWN REM Wake UP DOWN REM Wake 

Coverage (%) 18.08 20.99 6.53 40.73 17.11 21.48 20.04 27.17 

SEM 0.00 0.02 0.03 0.26 0.01 0.05 0.17 0.14 

Lifespan (sec) 1.54 2.15 1.20 9.96 0.98 1.14 0.85 1.51 

SEM 0.08 0.05 0.08 1.24 0.01 0.04 0.02 0.06 
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Figure 3.3.1: Absolute Spectral Power of Motion Scored Sleep States. Top: Cortex. 

Bottom: Hippocampus.  

 

3.4 Coherence Sensitive to Procedural Learning Paradigm and Stimulation 

To determine whether there was coherence between the primary motor cortex and 

the hippocampus, the magnitude-squared coherence was determined under naïve baseline 

and task conditions. To further clarify the relevance of the coherence, CPSD analysis was 

also conducted to determine the phase delay between coherent frequencies. Figure 3.4.1 

shows the mean coherence and coherency in wake, SWS and REM sleep in baseline 

recordings and Figure S1 shows the coherence by day. SWS coherence shows limited 

coherence in the delta range, possibly due to competition with respiration-entrained 

oscillations in the same range. The peaks in the theta range in REM are consistent with 

the desynchronization characteristic of REM. It should be noted that unless the peaks are 

found in both the coherence and CPSD analyses, they can be assumed to be “noise” (See 

Methods Section 2.6 for further clarification). 

Figure 3.4.2 shows the mean coherence in wake, SWS and REM sleep during pre-

task rest and post-task rest in task conditions. There is notable coherence conservation of 

the theta peaks in REM across conditions. Unexpectedly, the trend in tACS SWS more 
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closely resembled REM than either of the other SWS conditions, potentially as a result of 

the disruption of SWS by the application of the stim. The low delta coherence could be 

due to the presence of non-hippocampal, competing delta range inputs such as 

respiration-entrained oscillations. The pre-task average for sham REM also had peaks in 

the delta range that were not present in post-task REM. Figures S2-7 shows the sham, 

tDCS and tACS coherence by day. Figure S9 shows the confidence interval of artifact 

peaks. Significant coherence supports coupling between the primary motor cortex and the 

hippocampus, but must be further investigated to determine whether the coherent signals 

are real or not i.e. non-volume conducted signals. In this study, cross power spectral 

density and phase delay measurements were used to that end. 

  
Figure 3.4.1: Mean Baseline Coherence. Cp<0.001 in all brain states. Frequencies above 

100 Hz are significant in wake. Note the limited coherence in the delta range of SWS, the 

increase in theta range of REM and increase in both the delta and theta ranges of Wake. 3 

subjects across a total of 19 sessions. 
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Figure 3.4.2: Mean Task Coherence. Cp<0.001 in all brain states and conditions. Blue 

traces and red traces indicate pre-task and post-task, respectively. A) Wake. B) SWS. C) 

REM. Note the significant differences between pre- and post-task sham during REM. 1 

subject/condition with 4 sessions. 

 

The CPSD gives the correlation of the cortical and hippocampal signals while 

maintaining phase information. Non-zero power and zero lag indicate the likely presence 

of a volume conducted signal. There are special cases where there can be non-zero 

power, zero lag signals without volume conduction (Hindrinks et al., 2016), but they are 

ignored for the purposes of this study as the detection methods require a different 

experimental design. Positive phase delay indicates the phase of cortical signal preceded 

the hippocampal one and negative phase delay indicates the inverse. In stationary signals, 

this also serves as a measure of causality between input and output signals, but in this 

case, the signals are non-stationary and the positive and negative phase delay should not 

be considered an indication of the causal relationship between the signals. A significance 

threshold (coherency) was applied to all phase delay calculations to minimize noise. 
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Figure 3.4.3 shows the CPSD and phase delay in degrees of the cortical and 

hippocampal signals during the baseline recordings. In REM, the division of low (4-7 Hz) 

and high theta (7-12 Hz) between different degrees of phase lag is of especial interest as 

this would imply that different ranges within theta originate in different structures. There 

is positive phase delay from the high spindle range through the low and high gamma 

range. The CPSD and phase delay plots also reveal that some of the high coherence peaks 

were likely volume conducted signals, leaving only a few remaining in SWS and REM. 

None of the ripple range peaks remain, only frequencies under 50 Hz in the case of SWS 

and 100 Hz in the case of REM. The high coherence in the majority of wake frequencies 

also had zero phase lag with the exception of the theta range, implying a large amount of 

volume conduction during wake with only lower frequencies coupling between the 

primary motor cortex and the hippocampus. 

Figure 3.4.4 and Figure 3.4.5 show the CPSD and the phase delay, respectively, 

of the cortical and hippocampal signals under task conditions. Unexpectedly, the phase 

delay for the pre-task tDCS REM theta range was paralleled in post-task, appearing 

inverted compared to the post-task range in sham and tACS. This contrasts with the 

suppression of coherence observed in tACS SWS, which otherwise mirrors baseline. To a 

lesser extent, pre-task across all three brain states resembled baseline in tDCS and sham. 

The phase delay in tDCS and tACS wake is consistent with baseline coherency and is of 

further interest as it would seem contrary to the desynchronization expected during 

wakefulness.  

Thus, learning-dependent changes to real i.e. non-volume conducted coherent 

signals between the primary motor cortex and hippocampus appear inverted by tDCS and 
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suppressed by tACS delivered during their respective sleep stages through visual 

inspection. 

 

 
Figure 3.4.3: Baseline Mean Cross Power Spectral Density and Phase. Black and red traces 

give the mean and SEM, respectively. A) Cross power spectral density of wake, SWS and 

REM sleep in M1 and HIP. Deflections from the trend indicate shared cross power 

contribution to the power of that frequency. B) Cross spectrum phase of signals from M1 

and HIP. 19 total sessions from 3 subjects 
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Figure 3.4.4: Task Cross Power Spectral Density. Black and red traces give the mean and 

SEM, respectively. Deflections from the trend indicate frequencies where both M1 and HIP 

contributed to power. Note that the deflections mirror the peaks in the magnitude-squared 

coherence. A) Sham pre- and post-task. B) tDCS pre- and post-task. C) tACS pre- and post-

task. 1 subject/condition with 4 sessions each. 
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Figure 3.4.5: Task Cross Spectrum Phase. Black and red traces give the mean and SEM, 

respectively. Zero phase delay (degrees) and CPSD ≠ 0 indicate the signal was volume 

conducted. Positive values indicate the phase of the M1 signal was ahead of the HIP one 

and negatives values the inverse. A significance threshold (Cp<0.001) was applied prior to 

averaging. Left: Pre-task. Right: Post-task. A) Sham B) tDCS. C) tACS. 1 subject/condition 

with 4 sessions each. 
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3.5 Cross-Frequency Coupling Strength Increases Inter-Regionally 

With the presence of strong coherency established i.e. coupling of the same 

frequency, further investigation of frequency-domain coupling was undertaken, 

specifically cross-frequency coupling. Functionally significant CFC has been observed in 

numerous hippocampal-dependent processes (See Section 1.4), but its presence in 

hippocampal-independent processes is less known. In phase-amplitude coupling, a fast 

frequency (𝑓𝐴) is entrained by a slow frequency (𝑓𝑃) such that its amplitude changes 

according to the slow frequency. The tPAC algorithm gives a measure of the strength of 

the coupling between 𝑓𝐴 and 𝑓𝑃. Figure 3.5.1 shows representative hippocampal tPAC 

and IRtPAC comodulograms and the intersection of peak frequency for amplitude and 

peak frequency for phase (red circle). Only the maximum peak in each epoch was 

analyzed in this study. 

 
Figure 3.5.1: Representative tPAC and IRtPAC Comodulograms. The hippocampal tPAC 

comodulogram is on the left and the IRtPAC on the right. Red circle indicates intersection 

of peak frequency for phase and amplitude. The figure was smoothed through interpolation. 

 

Datasets were segmented such that the lowest frequency for phase of interest (0.5 

Hz<𝑓𝑃) could complete at least 4 cycles within the epoch before being analysed with 

tPAC and averaged. Because of the segmentation, the minimum n (the number of 

segments) for each session was 50 for wake, 50 for SWS and 20 for REM. Table 3.5.1 
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outlines the phase-amplitude coupling in baseline and task wake. Despite a stable 

frequency for phase and coupling strength across conditions, the frequency for amplitude 

changed in both sham and tACS conditions. In sham, it increased from the beta range to 

high gamma while in tACS, the inverse was observed. The coupling of delta range (~1 

Hz) oscillations with beta (~20 Hz) and gamma range (90 – 300 Hz) is consistent with 

respiration-entrained oscillations (RR). These oscillations are temporally and spatially 

ubiquitous and can only be distinguished from other slow wave oscillations by measuring 

the respiration rate. The coupling in the hippocampus was insensitive to the learning 

paradigm during wake. Thus, there is a stimulus- and learning-insensitive CFC 

relationship (delta-beta and delta-gamma) during wake in both the hippocampus and the 

primary motor cortex. 

Table 3.5.1: Wake Phase-Amplitude Coupling.  

 Cortex Hippocampus 

Condition Time PAC (x10-3) 𝑓𝑃 𝑓𝐴 PAC (x10-3) 𝑓𝑃 𝑓𝐴 

Base Pre 18.0 1.0 277.9 11.4 1.0 20.0 

Sham Pre 17.0 1.3 20.0 15.6 1.0 20.0 

 Post 16.4 1.0 241.1 14.5 1.3 20.0 

tDCS Pre 15.8 1.0 20.0 15.6 1.3 152.6 

 Post 15.9 1.0 20.0 17.2 1.0 152.6 

tACS Pre 16.1 1.0 255.8 12.4 1.5 93.7 

 Post 20.3 1.0 20.0 11.7 1.5 93.7 

 

Table 3.5.2 shows the phase-amplitude coupling in baseline and task SWS. 

Notable differences in the hippocampal frequency for amplitude were observed. In both 

tACS and sham, it increased from beta and low gamma to high gamma. The PAC 

strength in cortical tACS nearly doubled between pre- and post-task sessions while PAC 

strength in sham and tDCS decreased. SWS coupling strength was inversely sensitive to 

learning and tACS, unlike the frequency for amplitude changes. Delta-beta coupling in 

the cortex during SWS appears to strengthen following tACS, but weaken during sham 
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and tDCS while in the hippocampus, the strongest CFC relationship in sham and tACS 

conditions changed from delta-beta and delta-low gamma to delta-high gamma. 

Table 3.5.2: SWS Phase-Amplitude Coupling. 

 Cortex Hippocampus 

Condition Time PAC (x10-3) 𝑓𝑃 𝑓𝐴 PAC (x10-3) 𝑓𝑃 𝑓𝐴 

Base Pre 21.7 1.0 20.0 16.4 1.0 130.5 

Sham Pre 23.4 1.3 20.0 17.9 1.0 20.0 

 Post 19.2 1.3 20.0 18.3 1.5 123.2 

tDCS Pre 18.2 1.0 20.0 27.7 1.0 137.9 

 Post 14.2 1.0 20.0 23.0 1.3 137.9 

tACS Pre 18.4 1.0 20.0 13.0 1.5 49.5 

 Post 32.8 1.0 20.0 11.5 1.3 108.4 

 

Table 3.5.3 shows the phase-amplitude coupling in baseline and task in REM. 

Note that the coupling strength is significantly lower during REM than in either wake or 

SWS. Unlike in the other brain states, the frequency for phase was not conserved between 

the cortex and the hippocampus, mirroring the division in the theta range coherence. The 

hippocampal frequency for phase remained at a consistently high theta frequency while 

the cortical frequencies varied between low and high theta across sessions. The frequency 

for amplitude slowed in both the hippocampus and cortex in post-task tDCS. The cortical 

frequency for amplitude in cortical sham increased from low gamma to high gamma. 

While the PAC strength increased in both sham and tDCS, it decreased in tACS. Phase-

amplitude coupling within the cortex and hippocampus was sensitive to learning and both 

stim conditions during their respective delivery periods. The learning-associated changes 

often contrasted with the stim-associated ones. 
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Table 3.5.3: REM Phase-Amplitude Coupling. 

 Cortex Hippocampus 

Condition Time PAC (x10-3) 𝑓𝑃 𝑓𝐴 PAC (x10-3) 𝑓𝑃 𝑓𝐴 

Base Pre 3.8 3.8 64.2 4.4 7.3 20.0 

Sham Pre 4.8 3.8 64.2 3.5 7.1 137.9 

 Post 6.8 4.5 285.3 5.0 6.8 137.9 

tDCS Pre 4.9 3.8 152.6 8.0 7.1 79.0 

 Post 6.0 3.8 137.9 8.7 7.3 20.0 

tACS Pre 6.6 4.0 152.6 11.4 6.3 49.5 

 Post 5.7 3.8 152.6 7.0 7.1 49.5 

   

Throughout the tPAC analysis, similar frequencies for phase and amplitude were 

observed in the hippocampus and cortex. To determine whether these coincidental 

similarities reflected phase-amplitude coupling between the two regions, IRtPAC analysis 

was carried out. 

Table 3.5.4 shows the IRtPAC results for baseline and task conditions in all brain 

states. The most striking difference was the increase in coupling strength in all three brain 

states across all conditions compared to tPAC. In wake, coupling strength increased in 

sham and decreased in tDCS and tACS post-task. The frequency for amplitude increased 

in both sham and tDCS to high gamma while in decreased modestly in tACS. In SWS, 

the coupling strength decreased in sham and tACS although only modestly in the case of 

tACS, while it increased in tDCS. The frequency for amplitude in sham increased from 

the beta range to the low gamma range. This low gamma range was maintained in both 

pre- and post-task tDCS while in tACS, the frequency for amplitude increased within the 

high gamma range. In REM, the coupling strength increased in sham and tACS while 

decreasing in tDCS. The frequency for phase increased to high theta in sham, but not 

tDCS or tACS post-task. The frequency for amplitude slowed in both sham and tDCS, 

but to different extents. 
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IRtPAC coupling strength in both stim conditions tended to decrease during the 

sleep stage of the respective delivery periods. IRtPAC and tPAC coupling strength was 

responsive to both stim conditions as well as the learning paradigm. 

Stimulation appeared to disrupt inter-regional coupling between the primary 

motor cortex and the hippocampus compared to stim. The PAC strength was elevated 

following learning in all three conditions compared to baseline. In connection with the 

coherence and CPSD analysis, not only does there appear to be endogenous coupling 

between the primary motor cortex and hippocampus, it also affected by a procedural 

learning task and electrical manipulation. 

Table 3.5.4: Inter-Regional Phase-Amplitude Coupling. 

  Wake SWS REM 

Cond. Time PAC (x10-3) 𝑓𝑃 𝑓𝐴 PAC (x10-3) 𝑓𝑃 𝑓𝐴 PAC (x10-3) 𝑓𝑃 𝑓𝐴 

Base Pre 21.2 1.0 241.1 24.3 1.0 211.6 8.9 3.8 64.2 

Sham Pre 35.1 1.0 108.4 45.6 1.3 20.0 10.4 4.0 71.6 

 Post 40.3 0.8 182.1 36.4 0.8 49.5 14.9 6.8 20 

tDCS Pre 34.6 1.3 20.0 24.7 0.8 49.5 16.0 3.8 123.2 

 Post 26.7 1.3 182.1 26.3 1.3 49.5 9.9 3.8 93.7 

tACS Pre 41.7 1.0 152.6 35.8 1.3 241.1 12.4 3.8 49.5 

 Post 36.0 1.3 123.2 34.6 1.0 255.8 16.0 3.8 211.6 
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4. Discussion 

This project examined the relative effectiveness of an unsupervised algorithm in 

the detection of global and local microstates in the primary motor cortex of male rats and 

the effect of a procedural learning paradigm on these microstates under sham and stim 

conditions as described by the outcomes of several semi- and non-arbitrary techniques. 

K-means clustering revealed several stable and transient microstates in SWS and REM as 

well as the presence of cortical SWS-like REM states. Clustering of motion scored data 

exceeded the threshold for successful sleep stage detection with high concordance with 

automated sleep scoring. There was significant coherence verified by CPSD found in the 

theta and gamma ranges of tDCS and sham conditions that was sensitive to the 

procedural learning task. Clustering was sensitive and specific to behaviour. Calinski-

Harabasz was the most behaviourally relevant in both scored and motion scored 

clustering. Together, these results support several global and local microstates within 

SWS and REM sleep in the primary motor cortex that are sensitive to procedural learning 

and suggest a window for consolidation of memory. 

These findings support the presence of local and global LFP microstates, 

implicating them in procedural learning, and their detection through PCA and k-means 

clustering as non-arbitrary techniques. Clustering is relatively sensitive and specific to 

sleep states in motion scored data. Coherence, tPAC and IRtPAC are responsive to 

procedural-learning and transcranial stimulation. The persistence of these states under 

other conditions and the extent of their physiological roles requires further research. 

4.1 Clustering as an Effective Technique in Microstate Detection 

Mean clustering classes supported three SWS divisions, two REM divisions and 
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two SWS-like REM states in the cortex. In this study, data-driven estimates of the 

clusters/microstates were used to explain the data rather than a priori selection although 

both are accepted in the literature (Tibshirani & Walther, 2005; Pascual-Marqui et al., 

1995; Khanna, et al., 2014). Three SWS states were detected (LOW, UP, DOWN), which 

was consistent with the recent LFP and spiking studies (Miyawaki et al., 2017; 

Logothetis et al., 2012). LOW states often follow REM periods and precede periods of 

massive activations of association and primary cortical regions and potentially mediate a 

privileged interaction state or procedural memory consolidation between the 

hippocampus and cortex by silencing extraneous subcortical output centres (Miyawaki et 

al., 2017; Logothetis et al., 2012). The detection of cortical SWS-like REM states also 

supports recent findings of microstates within REM and the lack of homogeneity within 

both SWS and REM sleep in rodents. The absence of the two cortical SWS-like REM 

clusters following learning strongly suggest a learning-dependent local brain state in the 

primary motor cortex during natural sleep. The recovery of this microstate following pre-

task administration of the tDCS could represent a change in learning dynamics. A 

comparison of task performance with and without intervention and the presence or 

absence of these microstates would serve to clarify this relationship. For example, 

modulation of these microstates before or after a task could influence acquisition or later 

retrieval.  This has a number of implications for the underlying networks and the 

associated cognitive functions, especially with respect to memory consolidation. The 

presence of these states at baseline, but not following learning is suggestive of a shift 

between a global brain state dominated or strongly regulated by the hippocampus 

following learning, but that is sufficiently diminished outside of that to allow for 
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neocortical disconnect. 

4.2 Clustering as an Effective Classifier of Sleep Stages 

K-means clustering-mediated sleep detection was sensitive and specific to each 

brain state, especially REM, and extracted cluster features were consistent with the 

standard rat sleep phase metrics (Zhang & Wu, 2018; Timo-Iaria et al., 1970; Miyawaki 

et al., 2017). Overall performance based on the total accuracy reported in the literature for 

sleep detection methods is usually between 70% and 95% (Charbonnier et al., 2011). 

With a baseline TAC between 74.9% and 82.8%, the clustering implemented here was 

comparable with automated sleep scoring ratings and has the potential for improved 

performance with additional information passed to the algorithm including: EMG data 

and minimum durations for sleep periods. It is clear that the algorithm is sensitive to the 

sample size and case should be taken in implementation. However, there is such a wide 

variety of automatic sleep detection methods that comparisons of only TAC are difficult 

and do not reflect the reliability or convenience of the methodology (Charbonnier et al., 

2011; Libourel et al., 2015). Many methods have for automatic sleep stage classification 

have been developed involving different techniques (Kassiri et al., 2017). However, these 

methods are often complex and require knowledge and expertise in advanced 

computational modelling, making them inaccessible (Zhang & Wu, 2018). The quality of 

expert manual scoring depends on individual experience and fatigue in addition to the 

time-consuming nature of the task. K-means clustering is becoming increasingly popular 

across a wide variety of analytical fields as its methodology is more accessible to the non-

expert analyst and the flexibility of the datasets it can be used with. The method 
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presented here is a sensitive and specific non-arbitrary alternative to both manual scoring 

and automated scoring derived from arbitrary frequency boundaries. 

4.3 Coherence Sensitivity to Procedural Learning and Transcranial Stimulation 

Coherence was found to be sensitive to both the learning paradigm and tDCS and 

tACS stimulation. While procedural learning and tDCS seemed to increase coherence, 

tACS appeared to suppress it. The coherence in the SWS delta range was not especially 

high, likely due to the presence of overlapping respiration-entrained oscillations. During 

deep sleep, the respiration cycle is less than 1.5 Hz (Lockmann et al., 2016) and can thus 

be distinguished from theta oscillations, but not delta oscillations. It is important to note 

that the respiration-entrained oscillations are not artifacts of muscle activity or electrode 

movement (Tort et al., 2018). While the motor cortex and hippocampus respond 

preferentially to theta oscillations over RR in REM and exploratory wake, RR are a 

globally-detected phenomenon ranging between 1 Hz and 14-15 Hz and without 

monitoring respiration are impossible to differentiate from other physiological signals 

(Tort et al., 2018). The coherent theta signal in REM was expected, but the apparent 

division of low theta and high theta is of especial interest. This result supports both the 

existence of finer divisions of frequency bands representing potential microstates, 

especially pREM and tREM, and the presence of endogenous theta band coupling 

between the primary motor cortex and the hippocampus (Jing et al., 2016; Wehrle et al., 

2007). Theta band coupling has been implicated in a wide variety of neuropathological 

states, cognitive functions and behaviour in both humans and animals (Goutagny et al., 

2013; Reinhart, 2017; Zhang et al., 2016). Coherence estimates were verified by CPSD 

analysis, which accurately identifies volume conduction effects beyond the margins of 
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activated neuronal substrates, but has a slight bias against higher frequencies such that it 

increasingly underestimates coherence in proportion to the frequency (Kajikawa & 

Schroeder, 2011). These results support coherent theta and respiration-coupled delta, 

which have been implicated in connecting distant brain regions and mediation of memory 

networks. 

4.4 Behavioral Segregation by Clustering 

K-means clustering had behavioural relevance with respect to both scored and 

unscored datasets. The behaviour contained at the vertices of the distribution were highly 

specific, but not especially sensitive, which is consistent with these clusters containing 

uncontaminated primary behaviours i.e. sniffing without any other movement, 

locomotion and complete motionlessness. The proportion of motionlessness during REM 

was expected given REM sleep is characterised by low muscle tone despite being only 

~20% of the total sleep duration and would thus contain a disproportionate amount of 

motionlessness given its relative brevity. The ratio of sniffing to motionlessness in SWS 

was unexpected as sniffing is conventionally regarded as an active, investigatory 

behaviour typically indicative of arousal (Seelke & Blumberg, 2004). However, the 

ubiquity of sniffing during both wakefulness and rest is consistent with the literature 

(Seelke & Blumberg, 2004). Regardless, the behaviour classified as sniffing in this study 

was not limited to exploratory sniffing and likely contained respiration changes and 

myoclonic twitching as a limitation of the low-resolution video recordings used for 

behaviour scoring. As a result, both sniffing and motionlessness were likely contaminated 

with off-target behaviour. Still, both scored and unscored behaviour were within 

reasonable bounds of minimal/no movement as expected of sleep. The first two principal 
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components also described behaviourally relevant aspects of the explained variance. The 

first principal component largely defined the degree of movement, which explained the 

greatest variability of the data, while the second principal component described the 

separation of complete motionlessness from non-motionlessness. Thus, PCA is a suitable 

method of dimensionally reducing datasets without loss of information. Together with 

higher resolution videos, PCA and k-means clustering would likely have stronger 

sensitivity and specificity. 

4.5 Cross-Frequency Coupling Relevance to Task and Stimulation Conditions 

Cross-frequency coupling was inversely sensitive to the procedural learning 

paradigm and both tDCS and tACS. The coupling strength and frequency for amplitude 

were the most directly affected. There was consistent delta-beta and delta-gamma 

coupling during wake and SWS in both baseline and task sessions, which was consistent 

the significant coherence at those frequencies. Delta-gamma coupling is both region and 

brain state-specific and robustly correlated with theta or RR oscillations (Zhong et al., 

2017). Unexpectedly, gamma and ripple range coupling was found in the cortex during 

SWS. However, ripple, gamma, high gamma and ultra-high gamma (200 – 800 Hz) have 

been observed during sleep in primary motor cortex of rodents (Averkin et al., 2016; 

Hasenstaub et al., 2005; Kandel & Buzsáki, 1997). While cortical gamma and ripple 

range coupling could be the result of volume-conducted hippocampal ripples, given the 

presence of gamma range peaks in the CPSD analyses and the CPSD bias against higher 

frequencies, it is more likely that this coupling is the result of real cortical signals. 

Simultaneous oscillatory activity is characteristic of the cortical network activation and 

has been reported as instrumental in several higher-order cognitive processes including 
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post-task success and reward (Buzsáki & Draguhn, 2004; McBain & Fisahn, 2001; 

Salinas & Sejnowski, 2001; Singer & Gray, 1995; Steriade, 2000; van der Meer & 

Redish, 2009). 

4.6 Relative Effectiveness of Cluster Validity Indices 

With respect to behaviour, Calinski-Harabasz outperformed both Davies-Bouldin 

and Silhouette in terms of relative effectiveness. There are roughly three tiers of 

statistically distinct CVIs where CVIs within a tier are not statistically different from a 

peer in overall performance, but can vary greatly when given particular types of data 

(Arbelaitz et al., 2013; Hämäläinen et al., 2017). CH, DB and SH were all tier one CVIs, 

but there is no reliable a priori test of the effectiveness of a CVI with respect to a given 

dataset, so best practice supports selecting multiple CVIs and repeating the analysis with 

each. The k-means++ algorithm requires more iterations with noisy datasets than other 

clustering algorithms, but handles increases in dimensionality better than other clustering 

methods, especially when used in conjunction with CH (Hämäläinen et al., 2017). This is 

ideal for the complex data generated by EEG and other physiological recordings. 

However, it can also struggle to differentiate small subclusters near larger ones such as 

the marked differences in the durations of SWS and REM sleep. These characteristics 

could lead to the a priori assumption that k-means++ clustering and CH would be 

unsuitable for sleep state detection. However, k-means++ exceeded the threshold of 

successful sleep detection, which while contrary to expectations, underlines the lack of 

clear a priori criteria for CVI selection. This study supports the best practice of selecting 

multiple CVIs from a tier and examining the resulting clusters. 
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4.7 Limitations 

The limitations of this study must also be acknowledged. First, there is the effect 

of the low number of subjects between conditions. There was only one animal 

undergoing each condition in the task sessions, so there is the possibility that the animals 

could be outliers. As a result, it is difficult to isolate the source of an effect during task 

conditions. While differences between pre- and post-task results were observed in the 

sham animal, the animals under stim conditions frequently also had differences between 

pre- and post-task. As such, there are two assumptions that can be made which affect the 

interpretation of these results: First, the results are sensitive to the learning paradigm. 

Thus, either a) the animals are insensitive to one or more stim conditions, so the 

differences from the sham trial are due to between-subject variability, or b) the animals 

are sensitive to the one or more stim conditions, so the differences from the sham trial are 

due to the interaction of stim and learning. Second, the results are insensitive to the 

learning paradigm and thus the differences are either between-subject variability or the 

results are sensitive to one or more of the stim conditions. Ideally, three or more animals 

would undergo the same condition to control for this ambiguity. There is the additional 

constraint of limited behavioural videos. As a result, task performance could not be 

assessed and automated sleep scoring could not be verified, limiting the degree of 

clustering accuracy. What videos were available were not taken with this analysis in mind 

and thus, were occasionally of poor quality with a limited view of the animal, so there is 

the potential for misclassified behaviour. It must also be acknowledged that sleep scoring 

is not a precise discipline regardless of whether it is automated or carried out manually. It 

is not unusual for even expert scoring to vary by as much as 10%. As such, there is the 
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possibility that the proposed local brain states are artifacts of misattributed SWS as REM. 

Second, there is the possibility that the scoring criteria was overly generous in its gap 

allowance resulting in clusters that only contain the interruptions to the sleep state rather 

than true microstates. This is unlikely for two reasons. First, the average duration of these 

cortical clusters is beyond the limits imposed by the scoring criteria and second, brief 

interruptions to otherwise steady states are far more frequent than appears to be contained 

in these clusters. Finally, the study design and data collection resulted in inconsistent 

recording lengths within and between conditions. Within baseline, recording lengths 

could vary by up to three hours and the start of the post-task sleep recording varied 

between immediately after the task to up to an hour later. Many post-task changes are 

found in the first thirty minutes of post-task sleep and would have dissipated entirely in 

some cases (Eschenko et al., 2008). However, the differences between roughly two hours 

of uninterrupted sleep and approximately hour-long sleep sessions interrupted by 

handling and a task should not be underestimated. Ideally, baseline recordings should 

have been divided into two sleep sessions with the handling by the researcher and 

placement in the test chamber. Additionally, animals would also be recorded from across 

the same days in order to allow for proper comparisons. There are also certain 

considerations for clustering that should encourage caution when evaluating the results of 

clustering algorithms. First, without a known output which would establish an endpoint, 

clustering will carry on until convergence, regardless of meaningfulness. A common 

convergence problem arises when each data point becomes a cluster with perfect, but 

meaningless separation. A way around this is by evaluating the clusters with a CVI. 

However, there is a remarkable number of CVIs all with various level accessibility and 
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meaningfulness without reliable a priori tests for suitability between datasets and 

evaluation criteria, sorting through them quickly becomes a headache. The field often 

uses subjective post hoc determinations of usefulness with few methods of validating the 

results. Validation usually amounts to using synthetic datasets which may or may not be 

representative of the real data in question or reshuffled data, a process beyond the 

processing power of the operating system used for this paper. 

4.8 Future Directions 

Aside from reproducing this study to overcome the various limitations outlined 

above, this study presents several new questions to be answered. First, the nature of the 

task may influence whether the associated cortical area is more or less concurrent with 

the global brain state and to differing extents. In this study, a motor learning task was 

utilized and the motor cortex investigated, but the presentation of a visual task could 

affect these outcomes. This leads to a line of questioning regarding whether certain 

cortical areas are more flexible when it comes to reliably entering the global brain state 

and whether tasks that rely on those areas can affect adherence to global or local brain 

states. 

Second, given the nature of this motor task paradigm, laterality could be a factor 

in these effects. This paradigm was undertaken in a freely behaving rodent, which would 

naturally limit measuring the degree to which ipsilateral and contralateral motor 

behaviours were expressed. However, the question remains as to whether the contralateral 

motor cortex would adhere to either the global brain state or a local state found in the 

corresponding ipsilateral cortex. This remains a question in both naïve and task-

dependent states. 
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Finally, there is a question of whether other techniques could complement those 

used in this study and clarify underlying mechanisms of action. LFP recordings in 

conjunction with behavioural data have given the gross outline of a difference in 

function. To get a finer picture, other techniques such as single-unit recordings would be 

useful in determining whether there are cellular changes in excitation or inhibition 

mediating the effects found here or whether these effects are mediated by a specific 

population or subpopulation of neurons.
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5. Conclusion 

These findings support the presence of local and global LFP microstates, 

implicating them in procedural learning, and their detection through PCA and k-means 

clustering as non-arbitrary techniques. Clustering is relatively sensitive and specific to 

sleep states in unscored data and behaviour. Coherence, tPAC and IRtPAC are responsive 

to procedural-learning and transcranial stimulation. The persistence of these states under 

other conditions and the extent of their physiological roles requires further research, 

especially due to the limitations imposed the dataset. 
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7. APPENDIX 
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Figure S1: Baseline Coherence by Day. A) Wake. B) SWS. C) REM. Representative days 

selected. 
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Figure S2: Pre-Task Sham Coherence by Day. A) Wake. B) SWS. C) REM. 
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Figure S3: Post-Task Sham Coherence by Day. A) Wake. B) SWS. C) REM. 
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Figure S4: Pre-Task tDCS Coherence by Day. A) Wake. B) SWS. C) REM. 



81 

 

A  

 

B  

 
C  

 
Figure S5: Post-Task tDCS Coherence by Day. A) Wake. B) SWS. C) REM. 
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Figure S6: Pre-Task tACS Coherence by Day. A) Wake. B) SWS. C) REM. 
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Figure S7: Post-Task tACS Coherence by Day. A) Wake. B) SWS. C) REM. 
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Figure S8: Representative Plots of Davies-Bouldin and Silhouette Cluster Evaluation. 

The motionless cluster (Cluster 7; red) was not distinguished by either Davies-Bouldin or 

Silhouette. The overfit exhibited in the Calinski-Harabasz validation was determined to 

be less detrimental to the analysis than the more accurate cluster counts in Davies-

Bouldin and Silhouette with inappropriate divisions. 

 

 
Figure S9: Artifact Peaks in Coherence. When artifact peaks were present, they were the 

precise frequency to a tenth of a Hertz. There was no deviation from the frequency in any 

condition although the strength of the peak varied. BASE = Baseline, TASK = Task, 

Total = Baseline and Task combined. REM, SWS and Wake were combined as the 

artifact peaks were present in all states. Values are given as proportion with 95% 

confidence interval. 
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Figure S10: Representative Cluster Strength and Count Distribution. Cluster strength 

was calculated according to a formula by Fellous et al., 2004. There was no statistical 

difference between the “strongest” cluster count by this formula and those selected by 

Calinski-Harabasz. The strength value varied significantly (p-value < 0.05), but both 

the Calinski-Harabasz selected clusters and the Fellous clusters were considered strong 

(mean strength >2). This was consistent between all conditions and brain states. It 

should be noted that the strength measure varied unpredictably with “near” clusters (±1 

cluster) often having a significantly different strength score whereas “near” clusters in 

more popular measures have values approaching the optimum. Grey = Fellous, black = 

Calinski-Harabasz. An example of strong Calinski-Harabasz clustering is also included 

(Clustering Strength 27.8). 
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