Jordan, Heather

2017

Cyclic m-cycle systems of complete graphs minus a 1-factor

Department of Mathematics and Computer Science

https://hdl.handle.net/10133/5154

Downloaded from OPUS, University of Lethbridge Research Repository
Cyclic m-cycle systems of complete graphs minus a 1-factor

HEATHER JORDON

Department of Mathematics and Computer Science
Albion College
Albion, MI 49224
U.S.A.
hjordon@albion.edu

JOY MORRIS

Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, AB
Canada T1K 3M4
joy@cs.uleth.ca

In honour of Dan Archdeacon.

Abstract

In this paper, we provide necessary and sufficient conditions for the existence of a cyclic m-cycle system of $K_n - I$ when m and n are even and $m \mid n$.

1 Introduction

Throughout this paper, K_n will denote the complete graph on n vertices, $K_n - I$ will denote the complete graph on n vertices with a 1-factor I removed (a 1-factor is a 1-regular spanning subgraph), and C_m will denote the m-cycle (v_1, v_2, \ldots, v_m). An m-cycle system of a graph G is a set C of m-cycles in G whose edges partition the edge set of G. An m-cycle system is called hamiltonian if $m = |V(G)|$.

Several obvious necessary conditions for an m-cycle system C of a graph G to exist are immediate: $m \leq |V(G)|$, the degrees of the vertices of G must be even, and m must divide the number of edges in G. A survey on cycle systems is given in [4] and necessary and sufficient conditions for the existence of an m-cycle system of K_n and $K_n - I$ were given in [1, 16] where it was shown that an m-cycle system of K_n or $K_n - I$ exists if and only if $n \geq m$, every vertex of K_n or $K_n - I$ has even degree, and m divides the number of edges in K_n or $K_n - I$, respectively.
Throughout this paper, \(\rho \) will denote the permutation \((0 \ 1 \ \ldots \ n-1)\), so \(\langle \rho \rangle = \mathbb{Z}_n \). An \(m \)-cycle system \(\mathcal{C} \) of a graph \(G \) with vertex set \(V(G) = \mathbb{Z}_n \) is cyclic if, for every \(m \)-cycle \(C = (v_1, v_2, \ldots, v_m) \) in \(\mathcal{C} \), the \(m \)-cycle \(\rho(C) = (\rho(v_1), \rho(v_2), \ldots, \rho(v_m)) \) is also in \(\mathcal{C} \). A cyclic \(n \)-cycle system \(\mathcal{C} \) of a graph \(G \) with vertex set \(\mathbb{Z}_n \) is called a cyclic hamiltonian cycle system. Finding necessary and sufficient conditions for cyclic \(m \)-cycle systems of \(K_n \) is an interesting problem and has attracted much attention (see, for example, \([2, 3, 6, 7, 10, 11, 13, 15]\)). The obvious necessary conditions for a cyclic \(m \)-cycle system of \(K_n \) are the same as for an \(m \)-cycle system of \(K_n \); that is, \(n \geq m \geq 3 \), \(n \) is odd (so that the degree of every vertex is even), and \(m \) must divide the number of edges in \(K_n \). However, these conditions are no longer necessarily sufficient. For example, it is not difficult to see that there is no cyclic decomposition of \(K_{15} \) into 15-cycles. Also, if \(p \) is an odd prime and \(\alpha \geq 2 \), then \(K_{p^\alpha} \) cannot be decomposed cyclically into \(p^\alpha \)-cycles \([7]\).

The existence question for cyclic \(m \)-cycle systems of \(K_n \) has been completely settled in a few small cases, namely \(m = 3 \) \([14]\), 5 and 7 \([15]\). For even \(m \) and \(n \equiv 1 \pmod{2m} \), cyclic \(m \)-cycle systems of \(K_n \) are constructed for \(m \equiv 0 \pmod{4} \) \([13]\) and for \(m \equiv 2 \pmod{4} \) \([15]\). Both of these cases are handled simultaneously in \([10]\). For odd \(m \) and \(n \equiv 1 \pmod{2m} \), cyclic \(m \)-cycle systems of \(K_n \) are found using different methods in \([2, 6, 11]\). In \([3]\), as a consequence of a more general result, cyclic \(m \)-cycle systems of \(K_n \) for all positive integers \(m \) and \(n \equiv 1 \pmod{2m} \) with \(n \geq m \geq 3 \) are given using similar methods. In \([7]\), it is shown that a cyclic hamiltonian cycle system of \(K_n \) exists if and only if \(n \neq 15 \) and \(n \not\in \{p^\alpha \mid p \text{ is an odd prime and } \alpha \geq 2\} \). Thus, as a consequence of a result in \([6]\), cyclic \(m \)-cycle systems of \(K_{2mk+m} \) exist for all \(m \neq 15 \) and \(m \not\in \{p^\alpha \mid p \text{ is an odd prime and } \alpha \geq 2\} \). In \([17]\), the last remaining cases for cyclic \(m \)-cycle systems of \(K_{2mk+m} \) are settled, i.e., it is shown that, for \(k \geq 1 \), cyclic \(km \)-cycle systems of \(K_{2km+m} \) exist if \(m = 15 \) or \(m \in \{p^\alpha \mid p \text{ is an odd prime and } \alpha \geq 2\} \). In \([19]\), necessary and sufficient conditions for the existence of cyclic \(2q \)-cycle and \(m \)-cycle systems of the complete graph are given when \(q \) is an odd prime power and \(3 \leq m \leq 32 \). In \([5]\), cycle systems with a sharply vertex-transitive automorphism group that is not necessarily cyclic are investigated. As a result, it is shown in \([5]\) that no cyclic \(m \)-cycle system of \(K_n \) exists if \(m < n < 2m \) with \(n \) odd and \(\gcd(m,n) \) a prime power. In \([18]\), it is shown that if \(m \) is even and \(n > 2m \), then there exists a cyclic \(m \)-cycle system of \(K_n \) if and only if the obvious necessary conditions that \(n \) is odd and that \(n(n-1) \equiv 0 \pmod{2m} \) hold.

These questions can be extended to the case when \(n \) is even by considering the graph \(K_n - I \). In \([3]\), it is shown that for all integers \(m \geq 3 \) and \(k \geq 1 \), there exists a cyclic \(m \)-cycle system of \(K_{2mk+2} - I \) if and only if \(mk \equiv 0, 3 \pmod{4} \). In \([12]\), it is shown that for an even integer \(n \geq 4 \), there exists a cyclic hamiltonian cycle system of \(K_n - I \) if and only if \(n \equiv 2, 4 \pmod{8} \) and \(n \neq 2p^\alpha \) where \(p \) is an odd prime and \(\alpha \geq 1 \). In \([8]\), it was shown that in every cyclic cycle decomposition of \(K_{2n} - I \), the number of cycle orbits of odd length must have the same parity as \(n(n-1)/2 \). As a consequence of this result, in \([8]\), it is shown that a cyclic \(m \)-cycle system of \(K_{2n} - I \) can not exist if \(n \equiv 2, 3 \pmod{4} \) and \(m \neq 0 \pmod{4} \) or \(n \equiv 0, 1 \pmod{4} \) and \(m \) does not divide \(n(n-1) \). In this paper we are interested in cyclic \(m \)-cycle systems of \(K_n - I \) when \(m \) and \(n \) are even and \(m \mid n \). The main result of this paper is the
Theorem 1.1 For an even integer m and integer t, there exists a cyclic m-cycle system of $K_{mt} - I$ if and only if

1. $t \equiv 0, 2 \pmod{4}$ when $m \equiv 0 \pmod{8}$,
2. $t \equiv 0, 1 \pmod{4}$ when $m \equiv 2 \pmod{8}$ with $t > 1$ if $m = 2p^\alpha$ for some prime p and integer $\alpha \geq 1$,
3. $t \geq 1$ when $m \equiv 4 \pmod{8}$, and
4. $t \equiv 0, 3 \pmod{4}$ when $m \equiv 6 \pmod{8}$.

Our methods involve circulant graphs and difference constructions. In Section 2, we give some basic definitions and lemmas while the proof of Theorem 1.1 is given in Sections 3, 4 and 5. In Section 3, we handle the case when $m \equiv 0 \pmod{8}$ and show that there is a cyclic m-cycle system of $K_{mt} - I$ if and only if $t \geq 2$ is even. In Section 4, we handle the case when $m \equiv 4 \pmod{8}$ and show that there is a cyclic m-cycle system of $K_{mt} - I$ if and only if $t \geq 1$. In Section 5, we handle the case when $m \equiv 2 \pmod{4}$. When $m \equiv 2 \pmod{8}$, we show that there is a cyclic m-cycle system of $K_{mt} - I$ if and only if $t \equiv 0, 1 \pmod{4}$. When $m \equiv 6 \pmod{8}$, we show that there is a cyclic m-cycle system of $K_{mt} - I$ if and only if $t \equiv 0, 3 \pmod{4}$. Our main theorem then follows.

2 Preliminaries

The notation $[1, n]$ denotes the set $\{1, 2, \ldots, n\}$. The proof of Theorem 1.1 uses circulant graphs, which we now define. For $x \not\equiv 0 \pmod{n}$, the modulo n length of an integer x, denoted $|x|_n$, is defined to be the smallest positive integer y such that $x \equiv y \pmod{n}$ or $x \equiv -y \pmod{n}$. Note that for any integer $x \not\equiv 0 \pmod{n}$, it follows that $|x|_n \in [1, \lceil \frac{n}{2} \rceil]$. If L is a set of modulo n lengths, we define the circulant graph $\langle L \rangle_n$ to be the graph with vertex set \mathbb{Z}_n and edge set $\left\{\{i, j\} \mid |i - j|_n \in L\right\}$. Notice that in order for a graph G to admit a cyclic m-cycle decomposition, G must be a circulant graph, so circulant graphs provide a natural setting in which to construct cyclic m-cycle decompositions.

The graph K_n is a circulant graph, since $K_n = \langle \{1, 2, \ldots, |n/2|\}\rangle_n$. For n even, $K_n - I$ is also a circulant graph, since $K_n - I = \langle \{1, 2, \ldots, (n - 2)/2\}\rangle_n$ (so the edges of the 1-factor I are of the form $\{i, i + n/2\}$ for $i = 0, 1, \ldots, (n - 2)/2$).

Let H be a subgraph of a circulant graph $\langle L \rangle_n$. The notation $\ell(H)$ will denote the set of modulo n edge lengths belonging to H, that is,

$$\ell(H) = \{\ell \in L \mid \{g, g + \ell\} \in E(H) \text{ for some } g \in \mathbb{Z}_n\}.$$

Many properties of $\ell(H)$ are independent of the choice of L; in particular, the next lemma in this section does not depend on the choice of L.
Let C be an m-cycle in circulant graph $(L)_n$ and recall that the permutation
\[\rho = (0 \ 1 \ \ldots \ n-1), \]
which generates \mathbb{Z}_n, has the property that $\rho(C) \in \mathcal{C}$ whenever $C \in \mathcal{C}$. We can therefore consider the action of \mathbb{Z}_n as a permutation group acting on the elements of \mathcal{C}. Viewing matters this way, the length of the orbit of C (under the action of \mathbb{Z}_n) can be defined as the least positive integer k such that $\rho^k(C) = C$. Observe that such a k exists since ρ has finite order; furthermore, the well-known orbit-stabilizer theorem (see, for example [9, Theorem 1.4A(iii)]) tells us that k divides n. Thus, if G is a graph with a cyclic m-cycle system \mathcal{C} with $C \in \mathcal{C}$ in an orbit of length k, then it must be that k divides $n = |V(G)|$ and that $\rho(C), \rho^2(C), \ldots, \rho^{k-1}(C)$ are distinct m-cycles in \mathcal{C}.

The next lemma gives many useful properties of an m-cycle C in a cyclic m-cycle system \mathcal{C} of a graph G with $V(G) = \mathbb{Z}_n$ where C is in an orbit of length k. Many of these properties are also given in [7] in the case that $m = n$. The proofs of the following statements follow directly from the previous definitions and are therefore omitted.

Lemma 2.1 Let \mathcal{C} be a cyclic m-cycle system of a graph G of order n and let $C \in \mathcal{C}$ be in an orbit of length k. Then

1. $|\ell(C)| = mk/n$;
2. C has n/k edges of length ℓ for each $\ell \in \ell(C)$;
3. $(n/k) \mid \gcd(m, n)$;

Let $k > 1$ and let $P : v_0 = 0, v_1, \ldots v_{mk/n}$ be a subpath of C of length mk/n. Then

4. if there exists $\ell \in \ell(C)$ with $k \mid \ell$, then $m = n/\gcd(\ell, n)$,
5. $v_{mk/n} = kx$ for some integer x with $\gcd(x, n/k) = 1$,
6. $v_1, v_2, \ldots, v_{mk/n}$ are distinct modulo k,
7. $\ell(P) = \ell(C)$, and
8. $P, \rho^k(P), \rho^{2k}(P), \ldots, \rho^{n-k}(P)$ are pairwise edge-disjoint subpaths of C.

Let X be a set of m-cycles in a graph G with vertex set \mathbb{Z}_n such that $\mathcal{C} = \{\rho^i(C) \mid C \in X, i = 0, 1, \ldots, n-1\}$ is an m-cycle system of G. Then X is called a generating set for \mathcal{C}. Clearly, every cyclic m-cycle system \mathcal{C} of a graph G has a generating set X as we may always let $X = \mathcal{C}$. A generating set X is called a minimum generating set if $C \in X$ implies $\rho^i(C) \notin X$ for $1 \leq i \leq n$ unless $\rho^i(C) = C$.

Let \mathcal{C} be a cyclic m-cycle system of a graph G with $V(G) = \mathbb{Z}_n$. To find a minimum generating set X for \mathcal{C}, we start by adding C_1 to X if the length of the orbit of C_1 is maximum among the cycles in \mathcal{C}. Next, we add C_2 to X if the length of the orbit of C_2 is maximum among the cycles in $\mathcal{C} \setminus \{\rho^i(C_1) \mid 0 \leq i \leq n-1\}$. Continuing in this manner, we add C_3 to X if the length of the orbit of C_3 is maximum among the cycles in $\mathcal{C} \setminus \{\rho^i(C_1), \rho^i(C_2) \mid 0 \leq i \leq n-1\}$. We continue in this manner
Proof: Let \(\rho(C) \) be a cycle in an orbit of length \(k \). Suppose first that \(k \) is odd. Then, \(\ell(C) \) has an odd number of odd integers. Hence, \(\ell(C) \) contains an odd number of odd integers and, since \(|\ell(C)| \) is odd, an even number of even integers, contradicting the choice of \(\rho(C) \). Thus, \(k \) is even.

Since \(k \) is even, \(jk \) is even. Thus, \(\ell(C) \) contains an even number of even integers. If \(k \) is even, then \(\ell(C) \) also contains an odd number of odd integers, contradicting the choice of \(C \). Thus, \(\ell \) is odd.

Now suppose \(\{1, 2, \ldots, (mt - 2)/2\} \) has an odd number of odd integers. Hence there are an odd number of cycles \(C \) in \(X \) with \(\ell(C) \) containing an odd number of odd integers. Again, let \(C \in X \) be such a cycle with \(|\ell(C)| = \ell \), in an orbit of length \(k = \ell t \). Let the subpath of \(C \) starting at vertex 0 of length \(\ell \) end at vertex \(jk \) with \(\gcd(j, m/\ell) = 1 \). Now, if \(k \) is even, then \(jk \) is even so that \(\ell(C) \) contains an even number of odd integers, contradicting the choice of \(C \). Thus \(k \) is odd. Since \(k = \ell t \), we have that \(t \) is odd.

The following corollary is an immediate consequence of Lemma 2.2 and [12].

Corollary 2.3 For an even integer \(m \) and a positive integer \(t \), if there exists a cyclic \(m \)-cycle system of \(K_{mt} - I \), then
(1) \(t \equiv 0, 2 \pmod{4} \) when \(m \equiv 0 \pmod{8} \),

(2) \(t \equiv 0, 1 \pmod{4} \) when \(m \equiv 2 \pmod{8} \) with \(t > 1 \) if \(m = 2p^\alpha \) for some prime \(p \) and integer \(\alpha \geq 1 \),

(3) \(t \equiv 0, 3 \pmod{4} \) when \(m \equiv 6 \pmod{8} \), and

(4) \(t \geq 1 \) when \(m \equiv 4 \pmod{8} \).

Let \(n > 0 \) be an integer and suppose there exists an ordered \(m \)-tuple \((d_1, d_2, \ldots, d_m)\) satisfying each of the following:

(i) \(d_i \) is an integer for \(i = 1, 2, \ldots, m \);

(ii) \(|d_i| \neq |d_j| \) for \(1 \leq i < j \leq m \);

(iii) \(d_1 + d_2 + \cdots + d_m \equiv 0 \pmod{n} \); and

(iv) \(d_1 + d_2 + \cdots + d_r \not\equiv d_1 + d_2 + \cdots + d_s \pmod{n} \) for \(1 \leq r < s \leq m \).

Then an \(m \)-cycle \(C \) can be constructed from this \(m \)-tuple, that is, let \(C = (0, d_1, d_1 + d_2, \ldots, d_1 + d_2 + \cdots + d_{m-1}) \), and \(\{C\} \) is a minimum generating set for a cyclic \(m \)-cycle system of \(\{d_1, d_2, \ldots, d_m\}_n \). Thus, in what follows, to find cyclic \(m \)-cycle systems of \(\langle L \rangle_n \), it suffices to partition \(L \) into \(m \)-tuples satisfying the above conditions. Hence, an \(m \)-tuple satisfying (i)-(iv) above is called a difference \(m \)-tuple and it corresponds to the \(m \)-cycle \(C = (0, d_1, d_1 + d_2, \ldots, d_1 + d_2 + \cdots + d_{m-1}) \) in \(\langle L \rangle_n \).

3 The Case when \(m \equiv 0 \pmod{8} \)

In this section, we consider the case when \(m \equiv 0 \pmod{8} \) and show that there exists a cyclic \(m \)-cycle system of \(K_{mt} - I \) for each even positive integer \(t \). We begin with the case \(t = 2 \).

Lemma 3.1 For each positive integer \(m \equiv 0 \pmod{8} \), there exists a cyclic \(m \)-cycle system of \(K_{2m} - I \).

Proof: Let \(m \) be a positive integer such that \(m \equiv 0 \pmod{8} \), say \(m = 8r \) for some positive integer \(r \). Then \(K_{2m} - I = \langle S' \rangle_{2m} \) where \(S' = \{1, 2, \ldots, m-1\} = \{1, 2, \ldots, 8r-1\} \). The proof proceeds as follows. We begin by finding a path \(P \) of length \(m/2 = 4r \) ending at vertex \(m \), so that \(C = P \cup \rho^m(P) \) is an \(m \)-cycle. Note that \(\{2\}_m \) consists of two vertex disjoint \(m \)-cycles. For the remaining \(4r - 2 \) edge lengths in \(S' \setminus (\ell(P) \cup \{2\}) \), we find \(2r - 1 \) paths \(P_i \) of length 2, ending at vertex 4 or \(-4\), so that \(C_i = P_i \cup \rho^4(P_i) \cup \rho^8(P_i) \cup \cdots \cup \rho^{2m-4}(P_i) \) is an \(m \)-cycle. Then this collection of cycles will give a minimum generating set for a cyclic \(m \)-cycle system of \(K_{2m} - I \).

Suppose first that \(r \) is odd. For \(r = 1 \), let \(P : 0, -3, 3, 7, 8 \) and note that the edge lengths of \(P \) in the order encountered are 3, 6, 4, 1. For \(r = 3 \), let

\[
P : 0, -3, 3, -7, 7, -11, 11, 23, 19, 20, -20, -4, 24
\]
and note that edge lengths of P in the order encountered are 3, 6, 10, 14, 18, 22, 12, 4, 1, 8, 16, 20. For $r \geq 5$, let
\[
P : 0, -3, 3, -7, 7, \ldots, -(4r - 1), 4r - 1, -1, -5, -4, 4, -8, 8, \ldots, -(2r - 4),
2r - 4, 2r + 8, 2r + 12, \ldots, -(4r - 8), 4r, -(4r - 4), 8r
\]
be a path of length $m/2$ whose edge lengths in the order encountered are 3, 6, 10, 14, \ldots, $8r - 6$, $8r - 2$, 4, 1, 8, 12, 16, \ldots, $4r - 4$, 4, $4r - 8$, 4, $4r + 8$, 4, $4r + 12$, \ldots, $8r - 8$, $8r - 4$, $4r + 4$.

Now suppose that r is even. For $r = 2$, let $P : 0, -3, 3, -7, 7, -1, -5, -4, 16$ and note that the edge lengths of P in the order encountered are 3, 6, 10, 14, 8, 4, 1, 12. For $r \geq 4$, let
\[
P : 0, -3, 3, -7, 7, \ldots, -(4r - 1), 4r - 1, -1, -5, -4, 4, -8, 8, \ldots, -(2r - 4),
2r - 4, 2r - 8, 2r + 8, 2r + 12, \ldots, -(4r - 8), 4r, -(4r - 4), 8r
\]
be a path of length $m/2$ whose edge lengths in the order encountered are 3, 6, 10, 14, \ldots, $8r - 6$, $8r - 2$, 4, 1, 8, 12, 16, \ldots, $4r - 8$, $4r - 4$, $4r + 8$, $4r + 12$, \ldots, $8r - 8$, $8r - 4$, $4r + 4$.

In each case, let $C = P \cup \rho^m(P)$ and observe that C is an m-cycle C with $\ell(C) = \{1, 3, 4, 6, 8, \ldots, 8r - 2\}$. Let $C' = (0, 2, 4, 6, \ldots, 2m - 2)$ and note that C' is an m-cycle with $\ell(C') = \{2\}$.

For $0 \leq i \leq r - 2$, let $P_i : 0, 9 + 8i, 4$ be the path of length 2 with edge lengths 9 + 8i, 5 + 8i and let $P_i' : 0, 11 + 8i, 4$ be the path of length 2 with edge lengths 11 + 8i, 7 + 8i. Let $C_i = P_i \cup \rho^i(P_i) \cup \rho^8(P_i) \cup \cdots \cup \rho^{2m-4}(P_i)$ and $C_i' = P_i' \cup \rho^i(P_i') \cup \rho^8(P_i') \cup \cdots \cup \rho^{2m-4}(P_i')$ and note that each is an m-cycle with $\ell(C_i) = \{5 + 8i, 9 + 8i\}$ and $\ell(C_i') = \{7 + 8i, 11 + 8i\}$.

Finally, let $P_0 : 0, 8r - 3, -4$ be the path of length 2 with edge lengths 8r - 3 and 8r - 1. Let $C'' = P_0'' \cup \rho^i(P_0'') \cup \rho^8(P_0'') \cup \cdots \cup \rho^{2m-4}(P_0'')$ and note that C'' is an m-cycle with $\ell(C'') = \{8r - 3, 8r - 1\}$.

Then $\{C, C', C_0, \ldots, C_{r-2}, C_0', \ldots, C_{r-2}', C''\}$ is a minimum generating set for a cyclic m-cycle system of $K_{2m} - I$.

We now consider the case when t is even and $t > 2$.

Lemma 3.2 For each positive integer k and each positive integer $m \equiv 0 \pmod{8}$, there exists a cyclic m-cycle system of $K_{2mk} - I$.

Proof: Let m and k be positive integers such that $m \equiv 0 \pmod{8}$. Lemma 3.1 handles the case when $k = 1$ and thus we may assume that $k \geq 2$. Then $K_{2km} - I = \langle S' \rangle_{2km}$ where $S' = \{1, 2, \ldots, km - 1\}$. Since $K_{2m} - I$ has a cyclic m-cycle system by Lemma 3.1 and $\langle \{k, 2k, \ldots, mk\} \rangle_{2km}$ consists of k vertex-disjoint copies of $K_{2m} - I$, we need only show that $\langle S \rangle_{2km}$ has a cyclic m-cycle system where $S = \{1, 2, \ldots, mk\} \setminus \{k, 2k, \ldots, mk\}$.

Let \(A = [a_{i,j}] \) be the \((k-1) \times m\) array

\[
\begin{bmatrix}
 k-1 & 2k-1 & 3k-1 & 4k-1 & (m-1)k-1 & mk-1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 2 & k+2 & 2k+2 & 3k+2 & (m-2)k+2 & (m-1)k+2 \\
 1 & k+1 & 2k+1 & 3k+1 & (m-2)k+1 & (m-1)k+1 \\
\end{bmatrix}.
\]

It is straightforward to verify that \(A \) satisfies

\[
\sum_{j \equiv 0,1 \pmod{4}} a_{i,j} = \sum_{j \equiv 2,3 \pmod{4}} a_{i,j},
\]

and

\[
a_{i,1} < a_{i,2} < \ldots < a_{i,m}
\]

for each \(i \) with \(1 \leq i \leq k-1 \).

For each \(i = 1, 2, \ldots, k-1 \), the \(m \)-tuple

\[
(a_{i,1}, -a_{i,3}, a_{i,5}, -a_{i,7}, \ldots, a_{i,m-3}, -a_{i,m-1}, -a_{i,m-2}, a_{i,m-4}, -a_{i,m-6}, \ldots, -a_{i,6}, a_{i,4}, -a_{i,2}, a_{i,m})
\]

is a difference \(m \)-tuple and corresponds to an \(m \)-cycle \(C_i \) with \(\ell(C_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,m}\} \). Hence, \(X = \{C_1, C_2, \ldots, C_{k-1}\} \) is a minimum generating set for a cyclic \(m \)-cycle system of \(\langle S \rangle_{2km} \).

\[\square\]

4 The Case when \(m \equiv 4 \pmod{8} \)

In this section, we consider the case when \(m \equiv 4 \pmod{8} \) and show that there exists a cyclic \(m \)-cycle system of \(K_{mt} - I \) for each \(t \geq 1 \). We begin with the case when \(t \) is odd, say \(t = 2k+1 \) for some nonnegative integer \(k \).

Lemma 4.1 For each nonnegative integer \(k \) and each \(m \equiv 4 \pmod{8} \), there exists a cyclic \(m \)-cycle system of \(K_{m(2k+1)} - I \).

Proof: Let \(m \) and \(k \) be nonnegative integers such that \(m \equiv 4 \pmod{8} \). Since \(K_m - I \) has a cyclic hamiltonian cycle system [12], we may assume that \(k \geq 1 \). Let \(m = 4r \) for some positive integer \(r \). Then \(K_{m(2k+1)} - I = \langle S' \rangle_{(2k+1)m} \) where \(S' = \{1, 2, \ldots, 4rk + 2r - 1\} \). Again, since \(K_m - I \) has a cyclic hamiltonian cycle system [12] and \(\langle \{2k+1, 4k+2, \ldots, (2r-1)(2k+1)\} \rangle_{(2k+1)m} \) consists of \(2k+1 \) vertex-disjoint copies of \(K_m - I \), we need only show that \(\langle S' \rangle_{(2k+1)m} \) has a cyclic \(m \)-cycle system where

\[
S = \{1, 2, \ldots, 4rk + 2r - 1\} \setminus \{2k+1, 4k+2, \ldots, (2r-1)(2k+1)\}.
\]
Let \(r \) and \(k \) be positive integers. Let \(A = [a_{i,j}] \) be the \(k \times m \) array
\[
\begin{bmatrix}
 k & 2k & 3k + 1 & 4k + 1 & 5k + 2 & (4r - 2)k + 2r - 2 & (4r - 1)k + 2r - 1 & 4rk + 2r - 1 \\
 2 & k + 2 & 2k + 3 & 3k + 3 & 4k + 4 & (4r - 3)k + 2r & (4r - 2)k + 2r + 1 & (4r - 1)k + 2r + 1 \\
 1 & k + 1 & 2k + 2 & 3k + 2 & 4k + 3 & (4r - 3)k + 2r - 1 & (4r - 2)k + 2r & (4r - 1)k + 2r
\end{bmatrix}.
\]

It is straightforward to verify that \(A \) satisfies
\[
\sum_{j \equiv 0,1 \mod 4} a_{i,j} = \sum_{j \equiv 2,3 \mod 4} a_{i,j},
\]
and
\[
a_{i,1} < a_{i,2} < \ldots < a_{i,m}
\]
for each \(i \) with \(1 \leq i \leq k \).

For each \(i = 1, 2, \ldots, k \), the \(m \)-tuple
\[
(a_{i,1}, -a_{i,3}, a_{i,5}, -a_{i,7}, \ldots, a_{i,m-3}, -a_{i,m-1}, -a_{i,m-2}, a_{i,m-4}, -a_{i,m-6}, \ldots, -a_{i,6}, a_{i,4}, -a_{i,2}, a_{i,m})
\]
is a difference \(m \)-tuple and corresponds to an \(m \)-cycle \(C_i \) with \(\ell(C_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,m}\} \). Hence, \(X = \{C_1, C_2, \ldots, C_k\} \) is a minimum generating set for a cyclic \(m \)-cycle system of \(K_{m(2k+1)} - I \). \(\Box \)

We now handle the case when \(t \) is even, say \(t = 2k \) for some positive integer \(k \).

Lemma 4.2 For each positive integer \(k \) and each \(m \equiv 4 \mod 8 \), there exists a cyclic \(m \)-cycle system of \(K_{2mk} - I \).

Proof: As before, let \(m \) and \(k \) be positive integers such that \(m \equiv 4 \mod 8 \). Thus \(m = 4r \) for some positive integer \(r \). Then \(K_{2mk} - I = \langle S' \rangle_{2km} \) where \(S' = \{1, 2, \ldots, 4rk - 1\} \). Since \(K_m - I \) has a cyclic hamiltonian cycle system \([12]\) and \(\{2k, 4k, \ldots, (2r - 1)(2k)\}_{2km} \) consists of \(2k \) vertex-disjoint copies of \(K_m - I \), we need only show that \(\langle S \rangle_{2km} \) has a cyclic \(m \)-cycle system where
\[
S = \{1, 2, \ldots, 4rk - 1\} \setminus \{2k, 4k, \ldots, (2r - 1)(2k)\}.
\]
Since \(|S| = m(k - 1) + m/2 \), we will start by partitioning a subset \(T \subseteq S \) with \(|T| = m(k - 1) \) into \(k - 1 \) difference \(m \)-tuples.

Let \(T = \{1, 2, \ldots, 4rk - 1\} \setminus \{1, 2k, 4k - 1, 4k + 1, 6k, 8k - 1, 8k, 8k + 1, \ldots, (4r - 4)k - 1, (4r - 4)k, (4r - 4)k + 1, (4r - 2)k, 4rk - 1\} \), and observe that \(|T| = (k - 1)m \).

Let \(A = [a_{i,j}] \), with entries from the set \(T \), be the \((k - 1) \times m\) array
\[
\begin{bmatrix}
 k & 2k - 1 & 3k - 1 & 4k - 2 & 5k & 6k - 1 & 7k - 1 & 8k - 2 & 9k \\
 \vdots & \vdots \\
 3 & k + 2 & 2k + 2 & 3k + 1 & 4k + 3 & 5k + 2 & 6k + 2 & 7k + 1 & 8k + 3 \\
 2 & k + 1 & 2k + 1 & 3k & 4k + 2 & 5k + 1 & 6k + 1 & 7k & 8k + 2
\end{bmatrix}.
\]
It is straightforward to verify that the array A satisfies

$$\sum_{j \equiv 0, 1 (\text{mod } 4)} a_{i,j} = \sum_{j \equiv 2, 3 (\text{mod } 4)} a_{i,j},$$

and

$$a_{i,1} < a_{i,2} < \ldots < a_{i,m}$$

for each i with $1 \leq i \leq k - 1$.

For each $i = 1, 2, \ldots, k - 1$, the m-tuple

$$(a_{i,1}, -a_{i,3}, a_{i,5}, -a_{i,7}, \ldots, a_{i,m-3}, -a_{i,m-1}, -a_{i,m-2}, a_{i,m-4}, -a_{i,m-6}, \ldots, -a_{i,6}, a_{i,4}, -a_{i,2}, a_{i,m})$$

is a difference m-tuple and corresponds to an m-cycle C_i with $\ell(C_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,m}\}$. Hence, $X = \{C_1, C_2, \ldots, C_{k-1}\}$ is a minimum generating set for a cyclic m-cycle system of $\langle B \rangle_{2km}$.

It now remains to find a minimum generating set for a cyclic m-cycle system of $\langle B \rangle_{2km}$ where $B = \{1, 4k - 1, 4k + 1, 8k - 1, 8k + 1, \ldots, (4r - 4)k - 1, (4r - 4)k + 1, 4rk - 1\}$. For $i = 1, 2, \ldots, r$, define $d_{2i-1} = 4(i - 1)k + 1$ and $d_{2i} = 4ik - 1$. Observe that $B = \{d_1, d_2, \ldots, d_{2r}\}$ and $d_{j+2} - d_j = 4k$ for $j = 1, 2, \ldots, 2r - 2$. Since $m \equiv 4 \pmod{8}$, it follows that r is odd. Let $P_1 : 0, 1, 4k$, and let $P_i : 0, d_{2i+1}, 4k$ if i is even and let $P_i : 0, d_{2i}, 4k$ if i is odd. Let $C_i' = P_1 \cup \rho^{4k} (P_1) \cup \rho^{8k} (P_1) \cup \cdots \cup \rho^{(2m-4)k} (P_1)$, and note that C_i' is an m-cycle with $\ell(C_i') = \{1, 4k - 1\}$, $\ell(C_i') = \{d_{2i-1}, d_{2i+1}\}$ if i is even, and $\ell(C_i') = \{d_{2i-2}, d_{2i}\}$ if i is odd. Then $\ell(C_i) = \ell(C_i') \cup \cdots \cup \ell(C_r') = B$ so that $\{C_1', C_2', \ldots, C_r'\}$ is a minimum generating set for $\langle B \rangle_{2km}$.

5 The Case when $m \equiv 2 \pmod{4}$

In this section, we consider the case when $m \equiv 2 \pmod{4}$ and prove parts (2) and (4) of Theorem 1.1. We divide this proof into three parts, each dealt with in its own subsection. First we consider the case $t \equiv 0 \pmod{4}$. Then we consider the case $m \equiv 2 \pmod{8}$ and $t \equiv 1 \pmod{4}$. Finally we consider the case $m \equiv 6 \pmod{8}$ and $t \equiv 3 \pmod{4}$.

5.1 The case when $t \equiv 0 \pmod{4}$.

We consider the case $t \equiv 0 \pmod{4}$, starting with the special case $t = 4$.

Lemma 5.1 For each positive integer $m \geq 6$ with $m \equiv 2 \pmod{4}$, there exists a cyclic m-cycle system of $K_{4m} - I$.
Proof: Let $m \geq 6$ be a positive integer with $m \equiv 2 \pmod{4}$. Then $K_{4m} - I = \langle S' \rangle_{4m}$ where $S' = \{1, 2, \ldots, 2m - 1\}$. The proof proceeds as follows. We begin by finding one difference m-tuple which corresponds to an m-cycle C with $|\ell(C)| = m$. Note that $\langle \{4\} \rangle_{4m}$ consists of four vertex-disjoint m-cycles. For the remaining $m - 2$ edge lengths in $S' \setminus (\ell(C) \cup \{4\})$, we find $(m - 2)/2$ paths P_i of length 2, ending at vertex 8 or -8, so that $C_i = P_i \cup \rho^8(P_i) \cup \rho^{16}(P_i) \cup \cdots \cup \rho^{4m-8}(P_i)$ is an m-cycle. Then this collection of cycles will give a minimum generating set for a cyclic m-cycle system of $K_{4m} - I$.

Consider the difference m-tuple

$$(1, -2, 6, -10, \ldots, 2m - 6, -(2m - 2), -3, 8, -12, \ldots, 2m - 12, -(2m - 8), 2m - 4)$$

and the corresponding m-cycle C with $\ell(C) = \{1, 2, 3, 6, 8, \ldots, 2m - 2\}$. It is straightforward to verify that the odd vertices visited all lie between $-m + 1$ and $m - 1$ with no duplication. Similarly, the even vertices visited all lie between $-2m + 4$ and -4, and have no duplication.

Let $C' = (0, 4, 8, \ldots, 4m - 4)$ and note that C' is an m-cycle with $\ell(C') = \{4\}$.

Let $m = 8k + m'$, so m' is either 2 or 6. If $k = 0$, then $m' = 6$ and let $P : 0, 13, 8$ be the path of length 2 with edge lengths 11, 5. Then, $C'' = P \cup \rho^8(P) \cup \rho^{16}(P)$ is a 6-cycle with $\ell(C'') = \{1, 5\}$. Then $\{C, C', C''\}$ is a minimum generating set for cyclic 6-cycle system of $K_{24} - I$. Now suppose that $k \geq 1$. For $0 \leq i \leq k - 1$, let $P_i : 0, 13 + 16i, 8$ be the path of length 2 with edge lengths $13 + 16i, 5 + 16i$; let $P'_i : 0, 15 + 16i, 8$ be the path of length 2 with edge lengths $15 + 16i, 7 + 16i$; and let $P''_i : 0, 17 + 16i, 8$ be the path of length 2 with edge lengths $17 + 16i, 9 + 16i$; and let $P'''_i : 0, 19 + 16i, 8$ with edge lengths $19 + 16i, 11 + 16i$. Let $C_i = P_i \cup \rho^8(P_i) \cup \rho^{16}(P_i) \cup \cdots \cup \rho^{4m-8}(P_i)$, $C'_i = P'_i \cup \rho^8(P'_i) \cup \rho^{16}(P'_i) \cup \cdots \cup \rho^{4m-8}(P'_i)$, $C''_i = P''_i \cup \rho^8(P''_i) \cup \rho^{16}(P''_i) \cup \cdots \cup \rho^{4m-8}(P''_i)$, and $C'''_i = P'''_i \cup \rho^8(P'''_i) \cup \rho^{16}(P'''_i) \cup \cdots \cup \rho^{4m-8}(P'''_i)$ and note that each is an m-cycle with $\ell(C_i) = \{5 + 16i, 13 + 16i\}$, $\ell(C'_i) = \{7 + 16i, 15 + 16i\}$, $\ell(C''_i) = \{9 + 16i, 17 + 16i\}$, and $\ell(C'''_i) = \{11 + 16i, 19 + 16i\}$.

If $m' = 2$, then $\{C, C', C_0, C'_0, C''_0, \ldots, C_{k-1}, C'_{k-1}, C''_{k-1}\}$ is a minimum generating set for a cyclic m-cycle system of $K_{4m} - I$. If $m' = 6$, then let $P_k : 0, 2m - 1, -8$ and $P'_k : 0, 2m - 3, -8$ be paths of length 2 with $\ell(P_k) = \{2m - 1, 2m - 7\}$ and $\ell(P'_k) = \{2m - 3, 2m - 5\}$. Let $C_k = P_k \cup \rho^8(P_k) \cup \rho^{16}(P_k) \cup \cdots \cup \rho^{4m-8}(P_k)$ and $C'_k = P'_k \cup \rho^8(P'_k) \cup \rho^{16}(P'_k) \cup \cdots \cup \rho^{4m-8}(P'_k)$ and observe that each is an m-cycle with $\ell(C_k) = \{2m - 1, 2m - 7\}$ and $\ell(C'_k) = \{2m - 3, 2m - 5\}$. Thus, $\{C, C', C_0, C'_0, C''_0, \ldots, C_{k-1}, C'_{k-1}, C''_{k-1}, C_k, C'_k\}$ is a minimum generating set for a cyclic m-cycle system of $K_{4m} - I$. □

We now consider the case when $t \equiv 0 \pmod{4}$ with $t > 4$.

Lemma 5.2 For each positive integer k and each positive integer $m \equiv 2 \pmod{4}$ with $m \geq 6$, there exists a cyclic m-cycle system of $K_{4mk} - I$.

Proof: Let $m \geq 6$ and k be positive integers such that $m \equiv 2 \pmod{4}$. Lemma 5.1 handles the case when $k = 1$ and thus we may assume that $k \geq 2$. Then
$K_{4km} - I = \langle S'\rangle_{4km}$ where $S' = \{1, 2, \ldots, 2km - 1\}$. Since $K_{4m} - I$ has a cyclic m-cycle system by Lemma 5.1 and $\langle \{k, 2k, \ldots, 2km\}\rangle_{4km}$ consists of k vertex-disjoint copies of $K_{4m} - I$, we need only show that $\langle S\rangle_{2km}$ has a cyclic m-cycle system where $S = \{1, 2, \ldots, 2km\} \setminus \{k, 2k, \ldots, 2km\}$.

Let $A = [a_{i,j}]$ be the $2k \times m$ array

$$
\begin{bmatrix}
2k & 4k & 6k & 8k & (m-1)2k & 2km \\
2k-1 & 2k+1 & 6k-1 & 8k-1 & (m-1)2k-1 & 2km-1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
2 & 4k-2 & 4k+2 & 6k+2 & (m-2)2k+2 & (m-1)2k+2 \\
1 & 4k-1 & 4k+1 & 6k+1 & (m-2)2k+1 & (m-1)2k+1 \\
\end{bmatrix}.
$$

(Observe that the second column does not follow the same pattern as the others.)

Let A' be the $(2k-2) \times m$ array obtained from A by deleting rows 1 and $k+1$. Then the entries in A' are precisely the elements of S. Also, it is straightforward to verify that A' satisfies

$$a_{i,j} + a_{i,j+3} = a_{i,j+1} + a_{i,j+2}$$

for each positive integer $j \equiv 3 \pmod{4}$ with $j \leq m - 3$,

$$a_{i,1} + a_{i,2} + a_{i,m-3} + a_{i,m-1} = a_{i,m-2} + a_{i,m},$$

and

$$a_{i,1} < a_{i,2} < \ldots < a_{i,m}$$

for each i with $1 \leq i \leq 2k - 2$.

For each $i = 1, 2, \ldots, 2k - 2$, the m-tuple

$$(a_{i,1}, a_{i,2}, -a_{i,4}, a_{i,6}, -a_{i,8}, a_{i,10}, \ldots, -a_{i,m-2}, -a_{i,m}, a_{i,m-3}, -a_{i,m-5}, a_{i,m-7}, \ldots, a_{i,3}, a_{i,m-1})$$

is a difference m-tuple and corresponds to an m-cycle C_i with $\ell(C_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,m}\}$. Hence, $X = \{C_1, C_2, \ldots, C_{2k-2}\}$ is a minimum generating set for a cyclic m-cycle system of $\langle S\rangle_{4km}$.

What remains is to find cyclic m-cycle systems of $K_{mt} - I$ for the appropriate odd values of t, which we do in the following subsections.

5.2 The case when $m \equiv 2 \pmod{8}$ and $t \equiv 1 \pmod{4}$.

In this subsection, we find a cyclic m-cycle system of $K_{mt} - I$ when $m \equiv 2 \pmod{8}$ and $t \equiv 1 \pmod{4}$. We begin with two special cases, namely when $m = 10$ or $t = 5$.

Lemma 5.3 For each positive integer $t \equiv 1 \pmod{4}$ with $t > 1$, there exists a cyclic 10-cycle system of $K_{10t} - I$.
Proof: Let \(t \equiv 1 \pmod{4} \) with \(t > 1 \), say \(t = 4s + 1 \) where \(s \geq 1 \). Then \(K_{10t} - I = \langle S' \rangle_{10t} \) where \(S' = \{1, 2, \ldots, 20s + 4\} \). Consider the paths \(P_1 : 0, 5t - 1, 2t \) and \(P_2 : 0, 5t - 2, 2t \). Then, \(\ell(P_1) = \{3t - 1, 5t - 1\} \) and \(\ell(P_2) = \{3t - 2, 5t - 2\} \). For \(i \in \{1, 2\} \), let \(C_i = P_i \cup \rho^{2i}(P_i) \cup \rho^{4i}(P_i) \cup \cdots \cup \rho^{8i}(P_i) \). Then clearly each \(C_i \) is an \(10 \)-cycle and \(X = \{C_1, C_2\} \) is a minimum generating set for \(\{3t - 2, 3t - 1, 5t - 2, 5t - 1\}\) of \(S \). Since \(3t - 3 = 12s \) and \(5t - 2 = 20s + 3 \), it remains to find a cyclic 10-cycle system of \(\langle S \rangle_{10t} \) where \(S = \{1, 2, \ldots, 12s, 12s + 3, 12s + 4, \ldots, 20s + 2\} \). Let \(A = [a_{i,j}] \) be the \(2s \times 10 \) array

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 8s + 1 & 8s + 3 & 12s + 3 & 12s + 4 & 12s + 5 & 12s + 6 \\
5 & 6 & 7 & 8 & 8s + 2 & 8s + 4 & 12s + 7 & 12s + 8 & 12s + 9 & 12s + 10 \\
& & & & & & & & & \\
& & & & & & & & & \\
8s - 3 & 8s - 2 & 8s - 1 & 8s & 12s - 2 & 12s & 20s - 1 & 20s & 20s + 1 & 20s + 2
\end{bmatrix}
\]

Clearly, for each \(i \) with \(1 \leq i \leq 2s \),

\[
a_{i,2} + \sum_{j \equiv 0,1 \pmod{4}} a_{i,j} = a_{i,1} + \sum_{j \equiv 2,3 \pmod{4}} a_{i,j} \quad \text{(where } 3 \leq j \leq 10)\]

and

\[
a_{i,1} < a_{i,2} < \ldots < a_{i,10}.
\]

Thus the 10-tuple

\[
(a_{i,1}, -a_{i,2}, a_{i,3}, -a_{i,4}, a_{i,5}, -a_{i,6}, a_{i,7}, -a_{i,8}, a_{i,9}, -a_{i,10})
\]

is a difference 10-tuple and corresponds to a 10-cycle \(C'_i \) with \(\ell(C'_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,10}\} \). Hence, \(X' = \{C'_1, C'_2, \ldots, C'_{2s}\} \) is a minimum generating set for a cyclic 10-cycle system of \(\langle S \rangle_{10t} \).

We now consider the case when \(t = 5 \).

Lemma 5.4 For each positive integer \(m \equiv 2 \pmod{8} \), there exists a cyclic \(m \)-cycle system of \(K_{5m} - I \).

Proof: Let \(m \) be a positive integer such that \(m \equiv 2 \pmod{8} \), say \(m = 8r + 2 \) for some positive integer \(r \). By Lemma 5.3, we may assume \(r \geq 2 \). Then \(K_{5m} - I = \langle S' \rangle_{5m} \) where \(S' = \{1, 2, \ldots, 20r + 4\} \).

Let \(2r = 6q + 4 + b \) for integers \(q \geq 0 \) and \(b \in \{0, 2, 4\} \). Let \(a \) be a positive integer such that \(1 + \log_2(q + 2) \leq a \leq 1 + \log_2(5q + 2) \), and note that \(a \) exists since if \(q = 0 \) then \(\log_2(q + 2) \) is an integer, while if \(q \geq 1 \) then \(2(q + 2) = 2q + 4 \leq 4q + 2 < 5q + 2 \).

For nonnegative integers \(i \) and \(j \), define \(d_{i,j} = 10(2r - i) + j \). Consider the path \(P_{i,j} : 0, d_{i,j}, 5 \cdot 2^a \) and observe that \(\ell(P_{i,j}) = \{10(2r - i) + j, 10(2r - i) + j - 5 \cdot 2^a\} \).

If \(0 < j < 10 \), then \(C_{i,j} = P_{i,j} \cup \rho^{10}(P_{i,j}) \cup \rho^{20}(P_{i,j}) \cup \cdots \cup \rho^{5m-10}(P_{i,j}) \) is an \(m \)-cycle since \(m \equiv 2 \pmod{8} \) gives \(\gcd(5 \cdot 2^a, 5m) = 10 \). Thus, if \(0 < j < 10 \), \(\ell(C_{i,j}) = \{10(2r - i) + j, 10(2r - i) + j - 5 \cdot 2^a\} \).

Let \(X = \{C_{0,j} \mid 1 \leq j \leq 4\} \cup \{C_{i,j} \mid 1 \leq i \leq q \text{ and } 1 \leq j \leq 6\} \cup \{C_{q+1,j} \mid 6 - b + 1 \leq j \leq 6\} \)
and let
\[
B = \{20r + j, 20r + j - 5 \cdot 2^a | 1 \leq j \leq 4\}
\]
\[
\cup \{10(2r - i) + j, 10(2r - i) + j - 5 \cdot 2^a | 1 \leq i \leq q \text{ and } 1 \leq j \leq 6\}
\]
\[
\cup \{10(2r - q - 1) + j, 10(2r - q - 1) + j - 5 \cdot 2^a | 6 - b + 1 \leq j \leq 6\},
\]
where if \(q = 0\) or \(b = 0\), we take the corresponding sets to be empty as necessary. Now \(B\) will consist of \(4r\) distinct lengths and \(X\) will be a minimum generating set for \(\langle B\rangle_{5m}\) if \(20r + 4 - 5 \cdot 2^a \leq 10(2r - q - 1) + 6 - b\). Note that \(1 + \log_2(q + 2) \leq a \leq 1 + \log_2(5q + 2)\) gives \(q + 2 \leq 2^{a-1} \leq 5q + 2\). So,
\[
20r + 4 - [10(2r - q - 1) + 6 - b] = 10q + 8 + b \leq 10q + 12
\]
and
\[
(10q + 12)/10 < q + 2 \leq 2^{a-1}.
\]
Thus \(20r + 4 - 5 \cdot 2^a \leq 10(2r - q - 1) + 6 - b\) so that \(B\) consists of \(4r\) distinct lengths, and \(X\) is a minimum generating set for \(\langle B\rangle_{5m}\).

It remains to find a cyclic \(m\)-cycle system of \(\langle S' \setminus B\rangle_{5m}\). The smallest length in \(B\) is \(10(2r - q - 1) + 6 - b + 1 - 5 \cdot 2^a\), and we wish to show \(10(2r - q - 1) + 6 - b - 5 \cdot 2^a \geq 12\). So,
\[
10(2r - q - 1) + 6 - b - 12 = 20r - 10q - 16 - b \geq 20r - 10q - 20
\]
and \((20r - 10q - 20)/10 \geq 2r - q - 2\). Now
\[
2r - q - 2 = 5q + 2 + b \geq 5q + 2 \geq 2^{a-1}.
\]
Hence, \(10(2r - q - 1) + 6 - b - 5 \cdot 2^a \geq 12\). Since \(|B| = 4r\), we have \(|S' \setminus B| = 20r + 4 - 4r = 2(8r + 2)\). Now
\[
S' \setminus B = \{1, 2, \ldots, 10(2r - q - 1) + 6 - b - 5 \cdot 2^a\}
\]
\[
\cup \{10(2r - i) - 5 \cdot 2^a - 3, 10(2r - i) - 5 \cdot 2^a - 2, 10(2r - i) - 5 \cdot 2^a - 1, 10(2r - i) - 5 \cdot 2^a | 0 \leq i \leq q\}
\]
\[
\cup \{10(2r) + 5 - 5 \cdot 2^a, \ldots, 10(2r - q - 1) + 6 - b\}
\]
\[
\cup \{10(2r - i) - 3, 10(2r - i) - 2, 10(2r - i) - 1, 10(2r - i) | 0 \leq i \leq q\}.
\]

Note that each the sets \(\{1, 2, \ldots, 10(2r - q - 1) + 6 - b - 5 \cdot 2^a\}, \{10(2r - i) - 5 \cdot 2^a - 3, 10(2r - i) - 5 \cdot 2^a - 2, 10(2r - i) - 5 \cdot 2^a - 1, 10(2r - i) - 5 \cdot 2^a | 0 \leq i \leq q\}, \{10(2r) + 5 - 5 \cdot 2^a, \ldots, 10(2r - q - 1) + 6 - b\}, and \{10(2r - i) - 3, 10(2r - i) - 2, 10(2r - i) - 1, 10(2r - i) | 0 \leq i \leq q\} \) has even cardinality and consists of consecutive integers. Therefore, we may partition \(S' \setminus B\) into sets \(T, S_1, S_2, \ldots, S_{sr-4}\) where \(T = \{1, 2, \ldots, 12\}\) and for \(i = 1, 2, \ldots, 8r - 4\), let \(S_i = \{b_1, b_i + 1\}\) with \(b_1 < b_2 < \cdots < b_{8r-4}\).

Let \(A = [a_{ij}]\) be the \(2 \times m\) array
\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 9 & 11 & b_1 & b_1 + 1 & b_2 & b_2 + 1 & \cdots & b_{4r-2} & b_{4r-2} + 1 \\
5 & 6 & 7 & 8 & 10 & 12 & b_{4r-1} & b_{4r-1} + 1 & b_{4r} & b_{4r} + 1 & \cdots & b_{8r-4} & b_{8r-4} + 1
\end{bmatrix}
\]
Thus, let \(B \) be positive integers such that \(\sum_{1 \leq i \leq 2} b_i \leq 2 \).

\[
a_{i,2} + \sum_{j \equiv 0,1 \pmod{4}} a_{i,j} = a_{i,1} + \sum_{j \equiv 2,3 \pmod{4}} a_{i,j} \quad \text{(where } 3 \leq j \leq m)\]

and

\[
a_{i,1} < a_{i,2} < \ldots < a_{i,m}.\]

Hence, for \(1 \leq i \leq 2 \), the \(m \)-tuple

\[
(a_{i,1}, -a_{i,2}, a_{i,3}, -a_{i,5}, a_{i,7}, \ldots, a_{i,m-3}, -a_{i,m-1}, -a_{i,m-2}, a_{i,m-4}, -a_{i,m-6}, \ldots, a_{i,6}, -a_{i,4}, a_{i,m})
\]

is a difference \(m \)-tuple and corresponds to an \(m \)-cycle \(C_i \) with \(t(C_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,m}\} \). Hence, \(X' = \{C_1, C_2\} \) is a minimum generating set for a cyclic \(m \)-cycle system of \(\langle S' \setminus B \rangle_{5m} \).

We are now ready to prove the main result of this subsection, namely, that \(K_{mt} - I \) has a cyclic \(m \)-cycle system for every \(t \equiv 1 \pmod{4} \) and \(m \equiv 2 \pmod{8} \) with \(t > 1 \) if \(m = 2p^\alpha \) for some prime \(p \) and integer \(\alpha \geq 1 \).

Lemma 5.5 For each positive integer \(t \equiv 1 \pmod{4} \) and each \(m \equiv 2 \pmod{8} \) with \(t > 1 \) if \(m = 2p^\alpha \) for some prime \(p \) and integer \(\alpha \geq 1 \), there exists a cyclic \(m \)-cycle system of \(K_{mt} - I \).

Proof: Let \(m \) and \(t \) be positive integers such that \(m \equiv 2 \pmod{8} \) and \(t \equiv 1 \pmod{4} \). Thus \(m = 8r + 2 \) for some positive integer \(r \). Then \(K_{mt} - I = \langle S' \rangle_{mt} \) where \(S' = \{1, 2, \ldots, (mt - 2)/2\} \). Since \(K_m - I \) has a cyclic hamiltonian cycle system [12] if and only if \(m \neq 2p^\alpha \) for some prime \(p \) and integer \(\alpha \geq 1 \), we may assume that \(t > 1 \). Thus, let \(t = 4s + 1 \) for some positive integer \(s \). By Lemmas 5.3 and 5.4, we may assume that \(s \geq 2 \) and \(r \geq 2 \).

The proof proceeds as follows. We begin by finding a set \(B \subseteq S' \) such that \(|B| = 4r \) and \(\langle B \rangle_{mt} \) has a cyclic \(m \)-cycle system with a minimum generating set \(X \) consisting of cycles each with two distinct lengths and orbit \(2t \). We then construct an \((|S' \setminus B|/m) \times m\) array \(A = [a_{i,j}] \) with the property that for each \(i \) with \(1 \leq i \leq |S' \setminus B|/m \),

\[
a_{i,2} + \sum_{j \equiv 0,1 \pmod{4}} a_{i,j} = a_{i,1} + \sum_{j \equiv 2,3 \pmod{4}} a_{i,j} \quad \text{(where } 3 \leq j \leq m)\]

and

\[
a_{i,1} < a_{i,2} < \ldots < a_{i,m}.
\]

Thus for each \(i = 1, 2, \ldots, |S' \setminus B|/m \), the \(m \)-tuple

\[
(a_{i,1}, -a_{i,2}, a_{i,3}, -a_{i,5}, a_{i,7}, \ldots, a_{i,m-3}, -a_{i,m-1}, -a_{i,m-2}, a_{i,m-4}, -a_{i,m-6}, \ldots, a_{i,6}, -a_{i,4}, a_{i,m})
\]
is a difference m-tuple and corresponds to an m-cycle C_i with $\ell(C_i) = \{a_i, a_i + 1, \ldots, a_i + m\}$. Hence, $X' = \{C_1, C_2, \ldots, C_{|S' \setminus B|/m}\}$ will be a minimum generating set for a cyclic m-cycle system of $(S' \setminus B)_{mt}$.

Let $w = \lfloor r/2 \rfloor$, and let $\delta_0 = 2(r/2 - w)$, so that $\delta_r = 1$ if r is odd and $\delta_r = 0$ if r is even. Write $w = qs + b$ where q and b are non-negative integers with $0 \leq b < s$ (note that it may be the case that $q = 0$). For integers i and j, define $d_{i,j} = 4(r-2i)t+j$. Consider the path $P_{i,j} : 0, d_{i,j}, 4t$ and observe that $\ell(P_{i,j}) = \{4(r-2i)t+j, 4(r-2i-1)t+j\}$.

If $0 < j < t$, then $C_{i,j} = P_{i,j} \cup \rho^2(P_{i,j}) \cup \rho^4(P_{i,j}) \cup \cdots \cup \rho^{(m-2)t}(P_{i,j})$ is an m-cycle since $m \equiv 2 \pmod{8}$ gives $\gcd(4t, mt) = 2t$. Thus, if $0 < j < t$, $\ell(C_{i,j}) = \{4(r-2i)t+j, 4(r-2i-1)t+j\}$. Let

$$X = \{C_{i,j} \mid 0 \leq i < q-1 \text{ and } 1 \leq j < t-1\} \cup \{C_{q,j} \mid t-4b - 2\delta_r \leq j \leq t-1\}$$

and let

$$B = \{4(r-2i)t+j, 4(r-2i-1)t+j \mid 0 \leq i < q-1 \text{ and } 1 \leq j < t-1\} \cup \{4(r-2q)t+j, 4(r-2q-1)t+j \mid t-4b - 2\delta_r \leq j \leq t-1\},$$

where we take the appropriate sets to be empty if $q = 0$ or $b = 0$. Observe that X is a minimum generating set for $(B)_{mt}$, and consider the set $S' \setminus B$. Now $|X| = 4qs + 4b$ so that $|B| = 2(4qs + 4b) = 4r$. Hence $|S' \setminus B| = (4r+1)t - 1 - 4r = 2s(8r+2)$ and

$$S' \setminus B = \{1, 2, \ldots, 4(r-2q-1)t + t - 1 - 2\delta_r - 4b\} \cup \{4(r-2q-1)t + t, 4(r-2q-1)t + t + 1, \ldots, 4(r-2q)t + t - 1 - 2\delta_r - 4b\} \cup \{4kt + t, 4kt + t + 1, \ldots, 4k + 1)t \mid r-2q \leq k \leq r-1\}.$$

Note that $S' \setminus B$ has been written as the disjoint union of sets, each of which has even cardinality and consists of consecutive integers.

The smallest length in B is $4(r-2q-1)t + t - 4b - 2\delta_r$, and we wish to show this length is at least $12s + 1$. Now $r \geq 2w = 2(qs + b) > 2q + 1$ since $s \geq 2$. Next since $0 \leq b < s$ and $t = 4s + 1$, we have $t - 1 - 4b = 4s - 4b \geq 4$. Therefore, $4(r-2q-1)t \geq 4t > 16s$, and thus $4(r-2q-1)t + t - 3 - 4b > 16s + 2 > 12s$. Since the smallest length is $S' \setminus B$ is at least $12s + 1$ and since $S' \setminus B$ consists of sets of consecutive integers of even cardinality, we may partition $S' \setminus B$ into sets $T, S_1, \ldots, S_{8rs-4s}$ where $T = \{1, 2, \ldots, 12s\}$, and for $i = 1, 2, \ldots, 8rs - 4s$, $S_i = \{b_i, b_i + 1\}$ with $b_1 < b_2 < \cdots < b_{8rs-4s}$. Let $A = [a_{i,j}]$ be the $2s \times m$ array

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 8s+1 & 8s+3 & b_1 & b_1+1 \\
5 & 6 & 7 & 8 & 8s+2 & 8s+4 & b_{4r-1} & b_{4r-1}+1 \\
8s-3 & 8s-2 & 8s-1 & 8s & 12s-2 & 12s & b_{8rs-4s-4r+3} & b_{8rs-4s-4r+3}+1 \\
& b_2 & b_2+1 & \cdots & b_{4r-2} & b_{4r-2}+1 \\
& b_{4r} & b_{4r}+1 & \cdots & b_{8r-4} & b_{8r-4}+1 \\
& \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
& b_{8rs-4s-4r+4} & b_{8rs-4s-4r+4}+1 & \cdots & b_{8rs-4s} & b_{8rs-4s}+1
\end{bmatrix}.
\]
Clearly, for each i with $1 \leq i \leq 2s$,

$$a_{i,2} + \sum_{j \equiv 0,1 \text{ (mod 4)}} a_{i,j} = a_{i,1} + \sum_{j \equiv 2,3 \text{ (mod 4)}} a_{i,j} \quad \text{(where 3 \leq j \leq m)}$$

and

$$a_{i,1} < a_{i,2} < \ldots < a_{i,m}.$$

Thus the m-tuple

$$(a_{i,1}, a_{i,2}, a_{i,3}, a_{i,7}, \ldots, a_{i,m-3}, a_{i,m-1}, a_{i,m-2}, a_{i,m-4}, a_{i,m-6}, \ldots)$$

is a difference m-tuple and corresponds to an m-cycle C_i with $\ell(C_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,m}\}$. Hence, $X' = \{C_1, C_2, \ldots, C_{2s}\}$ is a minimum generating set for a cyclic m-cycle system of $\langle S' \setminus B \rangle_{mt}$. \square

5.3 The Case when $m \equiv 6 \text{ (mod 8)}$ and $t \equiv 3 \text{ (mod 4)}$

In this subsection, we find a cyclic m-cycle system of $K_{mt} - I$ when $m \equiv 6 \text{ (mod 8)}$ and $t \equiv 3 \text{ (mod 4)}$. We begin with three special cases, namely when $m = 6$, $m = 14$, or $t = 3$. We first consider the case $m = 6$.

Lemma 5.6 For all positive integers $t \equiv 3 \text{ (mod 4)}$, there exists a cyclic 6-cycle system of $K_{6t} - I$.

Proof: Let t be a positive integer such that $t \equiv 3 \text{ (mod 4)}$, say $t = 4s + 3$ for some non-negative integer s. Then $K_{6t} - I = \langle S' \rangle_{6t}$ where $S' = \{1, 2, \ldots, 12s + 8\}$.

Consider the paths $P_i: 0, 3t - i, 2t$, for $1 \leq i \leq 4$; then $\ell(P_i) = \{3t - i, t - i\}$. Next, let $C_i = P_i \cup P_i'^t \cup P_i'^{2t}$. Then each C_i is a 6-cycle and $X = \{C_1, C_2, C_3, C_4\}$ is a minimum generating set for $\langle B \rangle_{6t}$ where $B = \{3t - i, t - i \mid 1 \leq i \leq 4\}$. Now, $t - 5 = 4s - 2$ and thus $S' \setminus B = \{1, 2, \ldots, 4s - 2, 4s + 3, 4s + 4, \ldots, 12s + 4\}$, and so we must find a cyclic 6-cycle system of $\langle S' \setminus B \rangle_{6t}$. Let $A = [a_{i,j}]$ be the $2s \times 6$ array

$$
\begin{bmatrix}
1 & 2 & 3 & 4 & 8s + 5 & 8s + 7 \\
5 & 6 & 7 & 8 & 8s + 6 & 8s + 8 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
4s - 3 & 4s - 2 & 4s + 3 & 4s + 4 & \alpha & \alpha + 2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
8s + 1 & 8s + 2 & 8s + 3 & 8s + 4 & 12s + 2 & 12s + 4 \\
\end{bmatrix}
$$

where

$$\alpha = \begin{cases}
10s + 2 & \text{if } s \text{ is even}, \\
10s + 3 & \text{if } s \text{ is odd}.
\end{cases}$$
Clearly, for each \(i \) with \(1 \leq i \leq 2s \),
\[
a_{i,2} + \sum_{j \equiv 0,1 \pmod{4}} a_{i,j} = a_{i,1} + \sum_{j \equiv 2,3 \pmod{4}} a_{i,j} \quad \text{(where } 3 \leq j \leq 6)\]
and
\[
a_{i,1} < a_{i,2} < \ldots < a_{i,6}.
\]
Thus the 6-tuple
\[
(a_{i,1}, -a_{i,2}, a_{i,3}, -a_{i,4}, -a_{i,5}, a_{i,6})
\]
is a difference 6-tuple and corresponds to a 6-cycle \(C'_i \) with \(\ell(C'_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,6}\} \).
Hence, \(X' = \{C'_1, C'_2, \ldots, C'_{2s}\} \) is a minimum generating set for a cyclic 6-cycle system of \(\langle S' \setminus B \rangle_{14t} \).
\[
\]
Next we consider the case when \(m = 14 \).

Lemma 5.7 For all positive integers \(t \equiv 3 \pmod{4} \), there exists a cyclic 14-cycle system of \(K_{14t} - I \).

Proof: Let \(t \) be a positive integer such that \(t \equiv 3 \pmod{4}, \) say \(t = 4s + 3 \) for some non-negative integer \(s \). Then \(K_{14t} - I = \langle S' \rangle_{14t} \) where \(S' = \{1, 2, \ldots, 28s + 20\} \).
Consider the paths \(P_i : 0, 7t - i, 2t, \) for \(1 \leq i \leq 10 \); then \(\ell(P_i) = \{7t - i, 5t - i\} \).
Next, let \(C_i = P_i \cup \rho^{2t}(P_i) \cup \rho^{4t}(P_i) \cup \cdots \cup \rho^{12t}(P_i) \). Then each \(C_i \) is a 14-cycle and \(X = \{C_1, C_2, \ldots, C_{10}\} \) is a minimum generating set for \(\langle B \rangle_{14t} \) where \(B = \{7t - i, 5t - i \mid 1 \leq i \leq 10\} \).
Now, \(5t - 10 = 20s + 5 \) and thus \(S' \setminus B = \{1, 2, \ldots, 20s + 4, 20s + 15, 20s + 16, \ldots, 28s + 10\} \), and so we must find a cyclic 14-cycle system of \(\langle S' \setminus B \rangle_{14t} \).
Let \(A = [a_{i,j}] \) be the \(2s \times 14 \) array
\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 8s + 1 & 8s + 3 & 12s + 1 & 12s + 2 & 12s + 3 & 12s + 4 \\
5 & 6 & 7 & 8 & 8s + 2 & 8s + 4 & 12s + 5 & 12s + 6 & 12s + 7 & 12s + 8 \\
9 & 10 & 11 & 12 & 8s + 5 & 8s + 7 & 12s + 9 & 12s + 10 & 12s + 11 & 12s + 12 \\
\vdots & \vdots \\
8s - 3 & 8s - 2 & 8s - 1 & 8s & 12s - 2 & 12s & 20s - 3 & 20s - 2 & 20s - 1 & 20s \\
20s + 1 & 20s + 2 & 20s + 3 & 20s + 4 \\
20s + 15 & 20s + 16 & 20s + 17 & 20s + 18 \\
20s + 19 & 20s + 20 & 20s + 21 & 20s + 22 \\
\vdots & \vdots & \vdots & \vdots \\
28s + 7 & 28s + 8 & 28s + 9 & 28s + 10
\end{bmatrix}
\]
Clearly, for each \(i \) with \(1 \leq i \leq 2s \),
\[
a_{i,2} + \sum_{j \equiv 1 \pmod{4}} a_{i,j} = a_{i,1} + \sum_{j \equiv 2,3 \pmod{4}} a_{i,j} \quad \text{(where } 3 \leq j \leq 14)\]
and
\[
a_{i,1} < a_{i,2} < \ldots < a_{i,14}.
\]
Thus the 14-tuple
\[(a_{1,1}, a_{1,2}, a_{1,3}, a_{1,5}, a_{1,7}, a_{1,9}, a_{1,11}, a_{1,13}, -a_{1,12}, a_{1,10}, -a_{1,8}, a_{1,6}, -a_{1,4}, a_{1,14})\]
is a difference 14-tuple and corresponds to a 14-cycle \(C'_r\) with \(\ell(C'_r) = \{a_{1,1}, a_{1,2}, \ldots, a_{1,14}\}\). Hence, \(X' = \{C'_1, C'_2, \ldots, C'_{2n}\}\) is a minimum generating set for a cyclic 14-cycle system of \(\langle S' \setminus B \rangle_{14t}\).

We now consider the case when \(t = 3\).

Lemma 5.8 For all positive integers \(m \equiv 6 \pmod{8}\), there exists a cyclic \(m\)-cycle system of \(K_{3m} - I\).

Proof: Let \(m\) be a positive integer such that \(m \equiv 6 \pmod{8}\), say \(m = 8r + 6\) for some non-negative integer \(r\). By Lemmas 5.6 and 5.7, we may assume \(r \geq 2\). Then \(K_{3m} - I = \langle S' \rangle_{m} \) where \(S' = \{1, 2, \ldots, 12r + 8\}\). Write \(2r = 4q + b + 2\) for integers \(q \geq 0\) and \(b \in \{0, 2\}\), and let \(a\) be a positive integer such that \(1 + \log_2(q + 1) \leq a \leq 1 + \log_2(3q + 4/3 + 5b/6)\). For integers \(i\) and \(j\), define \(d_{i,j} = 6(2r - i) + j\). Then consider the path \(P_{i,j} : 0, d_{i,j}, 3 \cdot 2^a; \) so \(\ell(P_{i,j}) = \{6(2r - i) + j, 6(2r - i) + j - 3 \cdot 2^a\}\).

Now, let \(C_{i,j} = P_{i,j} \cup \rho^b(P_{i,j}) \cup \cdots \cup \rho^{3(m-2)}(P_{i,j})\). Then \(C_{i,j}\) is an \(m\)-cycle since \(m \equiv 6 \pmod{8}\) implies \(\gcd(3 \cdot 2^a, 3m) = 6\). Thus, \(\ell(C_{i,j}) = \ell(P_{i,j})\).

Now, let
\[
X = \{C_{0,j} \mid j = 7, 8\}
\cup \{C_{i,j} \mid 0 \leq i \leq q - 1 \text{ and } 1 \leq j \leq 4\}
\cup \{C_{q,j} \mid 5 - b \leq j \leq 4\}
\]
and let
\[
B = \{12r + 7, 12r + 7 - 3 \cdot 2^a, 12r + 8, 12r + 8 - 3 \cdot 2^a\}
\cup \{6(2r - i) + j, 6(2r - i) - 3 \cdot 2^a + j \mid 0 \leq i \leq q - 1 \text{ and } 1 \leq j \leq 4\}
\cup \{6(2r - q) + j, 6(2r - q) - 3 \cdot 2^a + j \mid 5 - b \leq j \leq 4\}
\]
where, if \(q = 0\) or \(b = 0\), we take the corresponding sets to be empty as necessary.

Now \(B\) will consists of \(4r\) distinct lengths and \(X\) will be a minimum generating set for \(\langle B \rangle_{3m}\) if \(12r + 8 - 3 \cdot 2^a \leq 6(2r - q) + 5 - b - 1\). Note that \(1 + \log_2(q + 1) \leq a\) so that \(q + 1 \leq 2^{a-1}\). Next,
\[
12r + 8 - [6(2r - q) + 5 - b - 1] = 6q + 4 + b \leq 6q + 6 = 6(q + 1) \leq 6 \cdot 2^{a-1} = 3 \cdot 2^a,
\]
and hence \(12r + 8 - 3 \cdot 2^a \leq 6(2r - q) + 5 - b - 1\). Thus, \(B\) consists of \(4r\) distinct lengths, and \(X\) is a minimum generating set for \(\langle B \rangle_{3m}\). Now, the smallest length in \(B\) is \(6(2r - q) + 5 - b - 3 \cdot 2^a\) and we want this length to be greater than 8. Recall that \(a \leq 1 + \log_2(3q + 3/2 + 5b/6)\) and thus \(2^{a-1} \leq 3q + 3/2 + 5b/6\). Hence, \(3 \cdot 2^a \leq
18q + 9 + 5b = 12r - 6q - 3 - b since 2r = 4q + b + 2. Therefore, 6(2r - q) + 5 - b - 3 \cdot 2^a \geq 8. Since |B| = 4r, we have |S' \setminus B| = 8r + 8. Note that
\[
S' \setminus B = \{1, 2, \ldots, 6(2r - q) + 5 - b - 3 \cdot 2^a - 1\} \\
\cup \{6(2r - i) - 3 \cdot 2^a + 5, 6(2r - i) - 3 \cdot 2^a + 6 \mid 0 \leq i \leq q\} \\
\cup \{12r - 3 \cdot 2^a + 9, \ldots, 6(2r - q) + 5 - b - 1\} \\
\cup \{6(2r - i) + 5, 6(2r - i) + 6 \mid 0 \leq i \leq q\}.
\]

Note that $S' \setminus B$ has been written as the disjoint union of sets, each of which has even cardinality and consists of consecutive integers. Therefore, we may partition $S' \setminus B$ into sets $T, S_1, S_2, \ldots, S_{4r}$ where $T = \{1, 2, \ldots, 8\}$ and for $i = 1, 2, \ldots, 4r$, let $S_i = \{b_i, b_i + 1\}$ with $b_1 < b_2 < \cdots < b_{4r}$. Consider the m-tuple
\[(1, -3, 6, -7, b_1, -b_2, b_3, -b_4, \ldots, b_{4r-1}, -b_{4r}, -(b_{4r-1} + 1), b_{4r-2} + 1, \ldots, (b_{4r-3} + 1), b_{4r-4} + 1, \ldots, b_2 + 1, -(b_1 + 1), 8, -5, b_{4r} + 1)\]

which is a difference m-tuple and corresponds to an m-cycle C_1 with
\[
\ell(C_1) = \{1, 3, 5, 6, 7, 8, b_1, b_1 + 1, b_2, b_2 + 1, \ldots, b_{4r}, b_{4r} + 1\}.
\]

Then consider the path $P : 0, 2, 6$; so $\ell(P) = \{2, 4\}$. Now, let $C_2 = P \cup \rho^5(P) \cup \cdots \cup \rho^{3(m-2)}(P)$. Then C_2 is an m-cycle since $m \equiv 6 \pmod{8}$ implies $\gcd(6, 3m) = 6$. Thus, $\ell(C_2) = \ell(P) = \{2, 4\}$. Hence, $X' = \{C_1, C_2\}$ is a minimum generating set for a cyclic m-cycle system of $\langle S' \setminus B \rangle_{3m}$. \hfill \Box

We now prove the main result of this subsection, namely that $K_{mt} - I$ has a cyclic m-cycle system for every $t \equiv 3 \pmod{4}$ and $m \equiv 6 \pmod{8}$.

Lemma 5.9 For all positive integers $t \equiv 3 \pmod{4}$ and $m \equiv 6 \pmod{8}$, there exists a cyclic m-cycle system of $K_{mt} - I$.

Proof: Let m and t be positive integers such that $m \equiv 6 \pmod{8}$ and $t \equiv 3 \pmod{4}$. Then $m = 8r + 6$ and $t = 4s + 3$ for some non-negative integers r and s. Then $K_{mt} - I = \langle S' \rangle_{mt}$ where $S' = \{1, 2, \ldots, (4r + 3)t - 1\}$.

By Lemmas 5.6, 5.7, and 5.8, we may assume $s \geq 1$ and $r \geq 2$. First, write $6r + 4 = (2t - 2)q + (t - 1)\ell + b$ for integers q, ℓ and b with $q \geq 0, 0 \leq b < 2t = 2, \ell = 0$ if $6r + 4 < t - 1$, or $\ell = 1$ otherwise. For integers i and j, define $d_{i,j} = 2t(2r - 2i - 1) + j$. Consider the path $P_{i,j} : 0, d_{i,j}, 2t$ and note that $\ell(P_{i,j}) = \{2t(2r - 2i - 1) + j, 2t(2r - 2i - 2) + j\}$. If $0 < j < 2t$, then $C_{i,j} = P_{i,j} \cup \rho^2(P_{i,j}) \cup \rho^{4t}(P_{i,j}) \cup \cdots \cup \rho^{(m-2)\ell}(P_{i,j})$ is an m-cycle since $m \equiv 6 \pmod{8}$ implies $\gcd(2t, mt) = 2t$. Thus, if $0 < j < 2t$, then $\ell(C_{i,j}) = \ell(P_{i,j})$.

Now, let
\[
X = \{C_{-1,j} \mid 1 \leq j \leq t - 1\} \\
\cup \{C_{i,j} \mid 0 \leq i \leq q - 1 \text{ and } 1 \leq j \leq 2t - 2\} \\
\cup \{C_{q,j} \mid 2t - 1 - b \leq j \leq 2t - 2\}
\]
and let

\[B = \{2t(2r + 1) + j, 2t(2r) + j \mid 1 \leq j \leq t - 1\} \]
\[\cup \{2t(2r - 2i - 1) + j, 2t(2r - 2i - 2) + j \mid 1 \leq j \leq 2t - 2\text{ and } 0 \leq i \leq q - 1\} \]
\[\cup \{2t(2r - (2q + 1)) + 2t - 1 - b + j, 2t(2r - 2q - 2) + 2t - 1 - b + j \mid 0 \leq j \leq b - 1\}. \]

where we take the first set to be empty if \(\ell = 0 \), the second to be empty if \(q = 0 \), and the third to be empty if \(b = 0 \). Then \(X \) is a minimum generating set for \(\langle B \rangle_{mt} \).

Now we must find a cyclic \(m \)-cycle system of \(\langle S' \setminus B \rangle_{mt} \). First, \(|B| = 2[(2t - 2)q + (t - 1)\ell + b] = 12r + 8 \) so that \(|S' \setminus B| = (4r + 3)t - 1 - 12r - 8 = (8r + 6)(2s) \).

Moreover,

\[S' \setminus B = \{1, 2, \ldots, 2t(2r - 2q - 1) - b - 2\} \]
\[\cup \{2t(2r - 2q - 1) - 1, 2t(2r - 2q - 1), \ldots, 2t(2r - 2q) - b - 2\} \]
\[\cup \{2t(2r - i) - 1, 2t(2r - i) \mid 0 \leq i \leq 2q\} \]
\[\cup \{4rt + t, 4rt + t + 1, \ldots, 4rt + 2t\}. \]

The smallest length in \(B \) is \(4t(r - q - 1) + (2t - 1) - b \), and we must verify that this length is at least \(12s + 1 \). Note that we have \(2t - 1 - b > 1 \). Thus, it is sufficient to prove that \(4t(r - q - 1) \geq 12s \), or \(t(r - q - 1) \geq 3s \). This inequality follows if \(r > q + 1 \). Clearly, this is true if \(q = 0 \) since \(r \geq 2 \), so assume \(q \geq 1 \). Then \(\ell = 1 \), and so \(6r + 4 = 2q(4s + 2) + (4s + 2) + b \), or

\[3r + 2 = q(4s + 2) + 2s + 1 + b/2 \]
\[= 4qs + 2q + 2s + 1 + b/2 \]
\[\geq 6q + 3 \text{ (since } s \geq 1\text{).} \]

So, \(r \geq 2q + 1/3 > q + 1 \) since \(q \geq 1 \). Since the smallest length in \(B \) is at least \(12s + 1 \) and \(S' \setminus B \) consists of sets of consecutive integers of even cardinality, we may partition \(S' \setminus B \) into sets \(T, S_1, \ldots, S_{8rs} \) where \(T = \{1, 2, \ldots, 12s\} \), and for \(i = 1, 2, \ldots, 8rs, S_i = \{b_i, b_i + 1\} \) with \(b_1 \leq b_2 \leq \cdots \leq b_{8rs} \). Let \(A = [a_{i,j}] \) be the \(2s \times m \) array

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 8s + 1 & 8s + 3 & b_1 & b_1 + 1 \\
5 & 6 & 7 & 8 & 8s + 2 & 8s + 4 & b_{4r+1} & b_{4r+1} + 1 \\
\vdots & \vdots \\
8s - 3 & 8s - 2 & 8s - 1 & 8s & 12s - 2 & 12s & b_{8rs-4r+1} & b_{8rs-4r+1} + 1
\end{bmatrix}
\]

with

\[
\begin{bmatrix}
b_2 & b_2 + 1 & \cdots & b_{4r} & b_{4r} + 1 \\
b_{4r+2} & b_{4r+2} + 1 & \cdots & b_{8r} & b_{8r} + 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
b_{8rs-4r+2} & b_{8rs-4r+2} + 1 & \cdots & b_{8rs} & b_{8rs} + 1
\end{bmatrix}.
\]
Clearly, for each i with $1 \leq i \leq 2s$,
\[
a_{i,2} + \sum_{j \equiv 0,1 \pmod{4}} a_{i,j} = a_{i,1} + \sum_{j \equiv 2,3 \pmod{4}} a_{i,j} \quad \text{(where } 3 \leq j \leq m)\]
and
\[
a_{i,1} < a_{i,2} < \ldots < a_{i,m}.
\]
Thus the m-tuple
\[
(a_{i,1}, -a_{i,2}, a_{i,3}, -a_{i,5}, a_{i,7}, \ldots, a_{i,m-3}, -a_{i,m-1}, -a_{i,m-2}, a_{i,m-4}, -a_{i,m-6}, \ldots, a_{i,6}, -a_{i,4}, a_{i,m})
\]
is a difference m-tuple and corresponds to an m-cycle C_i with $\ell(C_i) = \{a_{i,1}, a_{i,2}, \ldots, a_{i,m}\}$. Hence, $X' = \{C_1, C_2, \ldots, C_{2s}\}$ is a minimum generating set for a cyclic m-cycle system of $\langle S' \setminus B \rangle_{mt}$.

References

(Received 13 Nov 2015; revised 19 May 2016)