Hervet, Vincent Alain Daniel

2016

A review of the McMorran diet for rearing lepidoptera species with addition of a further 39 species

Department of Biological Sciences

https://hdl.handle.net/10133/4513

Downloaded from OPUS, University of Lethbridge Research Repository
A Review of the McMorran Diet for Rearing Lepidoptera Species With Addition of a Further 39 Species

V. A. D. Hervet,1,2,3 R. A. Laird,1 and K. D. Floate2

1Department of Biological Sciences, University of Lethbridge, 4401 University Drive W., Lethbridge, AB, Canada T1J 3M4 (vincen-t.hervet@yahoo.fr; robert.laird@uleth.ca), 2Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1st Ave. S., Lethbridge, AB, Canada T1J 4B1 (kevin.floate@agr.gc.ca), and 3Corresponding author, e-mail: vincent.hervet@yahoo.fr

Subject Editor: Muhammad Chaudhury

Received 23 October 2015; Accepted 5 December 2015

Abstract

Research on cutworms led us to explore the use of the McMorran diet to rear lepidopteran species, mainly Noctuidae, under laboratory conditions. We documented the development of 103 lepidopteran species, including 39 species not previously reported in the literature, to be reared on this diet. Given its low cost, ease of preparation, and wide species’ acceptance, this diet provides a powerful tool for facilitating Lepidoptera and other insects rearing and research in the laboratory.

Résumé

Une recherche sur les noctuelles nous a permis d’élever des larves de nombreuses espèces de lépidoptères, principalement des noctuelles, sur un substrat artificiel du nom de «McMorran diet» en laboratoire. Nous rapportons le développement de 103 espèces de lépidoptères, dont 39 espèces qui n’ont pas encore été documentées, comme pouvant se développer sur ce substrat artificiel. Étant donné son faible coût, facilité de préparation, et large champ d’action, ce substrat artificiel peut grandement faciliter la recherche sur les lépidoptères et autres insectes en laboratoire.

Key words: artificial diet, caterpillar, Lepidoptera, Noctuidae, Tortricidae

Laboratory colonies of herbivorous insects are commonly reared on artificial diets to reduce the labor, time, space, and associated costs of growing their host plants. These diets also simplify the synchronization of insect development with the availability of food and can be optimized to increase insect fitness above that of insects reared on natural foods (McMorran 1965). Furthermore, the nutritional quality of these diets can be manipulated to facilitate research on topics including insect development, entomopathogens, insecticides, and plant resistance factors (George et al. 1960).

We used the McMorran diet to rear primarily pestiferous species of Noctuidae. This diet has been used as a suitable media to rear at least 153 species of insects, mainly Lepidoptera (Table 1). Adkisson et al. (1960) were the first to use wheat germ as an ingredient in an artificial diet they developed to rear the pink bollworm, Pectinophora gossypiella (Sauders) (Gelechiidae). This recipe was modified by Vanderzant et al. (1962) to rear the corn earworm, Helicoverpa zea (Boddie), and further modified by Berger (1963) to rear the corn earworm and the tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae). McMorran (1965) modified this latter recipe to rear the spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). Grisdale (1973) subsequently added linseed oil as an ingredient to this latter recipe to reduce the incidence of wing deformities observed in other Lepidoptera species.

There are publications that provide artificial diet recipes with rearing methods of insects and their relatives and it is not our objective to review these articles. However, it is noteworthy to know the existence of notable publications that summarize diet recipes and rearing procedures, such as Smith (1966), Singh (1977), Singh and Moore (1985), and Wong (1972).

In this article, we provide a list of Lepidoptera that have been reared (i.e., larvae were able to develop) on the McMorran diet by previous researchers and by us. For each species, we provide comments indicating the suitability of the diet for rearing success (Table 1).

During 4 yr of research on Lepidoptera, we serendipitously discovered an increasing number of species that successfully develop on the McMorran diet but as it was not our objective to assess rearing success of insect species on this diet we do not have data on specific fitness of each species reared. Nonetheless, the information presented here should greatly ease rearing of Lepidoptera larvae and others for many studies. The research we conducted included rearing of field collected Lepidoptera larvae until either parasitoids emerged...
Table 1. Species of Lepidoptera reared (i.e., were able to grow) on McMorran diet as reported in the literature and from this study

<table>
<thead>
<tr>
<th>Species (Family)</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Erebidae (Arctiidae)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estigmene acrea (Drury) [Saltmarsh caterpillar]</td>
<td>Barber et al. (1993) and this study</td>
<td>Reared from egg to at least third instar (Barber et al. 1993); Partly developed larvae reared to adults (n = 3) (this study)</td>
</tr>
<tr>
<td>Hyphantria cunea (Drury) [Fall webworm]</td>
<td>Morris (1967)</td>
<td>Reared over one generation and a partial second generation, severe wing deformities, degeneration</td>
</tr>
<tr>
<td>Lymantria monacha (L.)</td>
<td>Grijpma et al. (1987)</td>
<td>Reared for at least one full generation</td>
</tr>
<tr>
<td>Orgyia antiqua (L.) [Rusty tussock moth]</td>
<td>Grant (1977)</td>
<td>Likely at least one full generation</td>
</tr>
<tr>
<td>Orgyia cana Edwards</td>
<td>Grant (1977)</td>
<td>Likely at least one full generation</td>
</tr>
<tr>
<td>Orgyia definita Packard</td>
<td>Grant (1977)</td>
<td>Likely at least one full generation</td>
</tr>
<tr>
<td>Orgyia leucostigma (J.E. Smith) [Whitemarked tussock moth]</td>
<td>Percy et al. (1971), Grisdale (1973)</td>
<td>Reared over multiple generations</td>
</tr>
<tr>
<td>Orgyia pseudotsugata (McDunnough) [Douglas-fir tussock moth]</td>
<td>Nonmodified (Morris 1970, Grisdale 1973) and modified recipe (Lyon and Flake 1966)</td>
<td>Reared over multiple generations</td>
</tr>
<tr>
<td>Spilosoma congrua</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Spilosoma virginica (F.) [Yellow woollybear]</td>
<td>Barber et al. (1993), this study</td>
<td>Reared from egg to adult (n = ~200)</td>
</tr>
<tr>
<td><strong>Gelechiidae</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Filatima obscurocelella</em> (Chambers)</td>
<td>This study</td>
<td>Partly developed larvae reared to adults (n = 7)</td>
</tr>
<tr>
<td><strong>Geometridae</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Lambdina fiscellaria fiscellaria</em> (Guèneé) [hemlock looper]</td>
<td>Otvos et al. (1973)</td>
<td>Reared for at least one full generation</td>
</tr>
<tr>
<td>Operophtera bruceata (Hulst) [Bruce spanworm]</td>
<td>Ives and Cunningham (1980)</td>
<td>Reared from egg to pupa</td>
</tr>
<tr>
<td>Operophtera brumata (L.) [Winter moth]</td>
<td>Feeny (1968)</td>
<td>Reared at least from eggs to pupae; modified recipe</td>
</tr>
<tr>
<td><strong>Lasiocampidae</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Malacosoma disstria</em> Huëbner [Forest tent caterpillar]</td>
<td>Stairs (1965), Grisdale (1973)</td>
<td>Reared at least for one full generation</td>
</tr>
<tr>
<td><strong>Noctuidae</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abagrotis orbis (Grote)</td>
<td>This study</td>
<td>2nd instars reared to adults (n = ~80); Reared from egg to adult (n = ~50)</td>
</tr>
<tr>
<td>Abagrotis reedi Buckett</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~20)</td>
</tr>
<tr>
<td>Actebias balanitis (Grote)</td>
<td>This study</td>
<td>Previously mentioned on the Insect Production Services website (when visited in 2012), but no longer is.</td>
</tr>
<tr>
<td>Actebia fennica (Tauscher)</td>
<td>?</td>
<td>Reared for two generations (n = ~100)</td>
</tr>
<tr>
<td>Agrotis ipsilon (Hufnagel) [Black cutworm]</td>
<td>Barber et al. (1993); this study</td>
<td>Reared from egg to adult (n = ~100)</td>
</tr>
<tr>
<td>Agrotis vancoverensis (Grote)</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~80)</td>
</tr>
<tr>
<td>Anagraphe falcifera (Kirby) [Celery looper]</td>
<td>Barber et al. (1993); this study</td>
<td>Reared from egg to adult (n = ~80)</td>
</tr>
<tr>
<td>Anaplectoides prasina (Denis &amp; Shciffermüller) [Glassy cutworm]</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~20)</td>
</tr>
<tr>
<td>Anaplectoides presina (Grote) [Forest tent caterpillar]</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Anarta (Hadula) trifoli (Hufnagel) [Clover cutworm]</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~100); few specimens with deformed wings</td>
</tr>
<tr>
<td>Anticarsia gemmatalis (Hübner) [Clover cutworm]</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~70)</td>
</tr>
<tr>
<td>Apamea devastator (Brace) [Glassy cutworm]</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~2)</td>
</tr>
<tr>
<td>Apamea lignicolora (Guèneé)</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~20)</td>
</tr>
<tr>
<td>Apamea sordens (Hufnagel)</td>
<td>This study</td>
<td>Partly developed larvae reared to adults (n = 5)</td>
</tr>
<tr>
<td>Autothropa binaculata (Stephens) [Clover cutworm]</td>
<td>This study</td>
<td>Last instar larvae reared to adults (n = 2)</td>
</tr>
<tr>
<td>Autothropa californica (Speyer) [Alfalfa looper]</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~200)</td>
</tr>
<tr>
<td>Autothropa flagellum (Walker)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Autothropa precatiens (Guèneé)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Caradma Mopheus (Hufnagel)</td>
<td>This study</td>
<td>Reared from egg to adult (n = ~100)</td>
</tr>
<tr>
<td>Cerastis salicarum (Walker)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Chrysodeixis includens (Walker)</td>
<td>Grisdale (1973); this study</td>
<td>Reared from egg to adult (n = ~60)</td>
</tr>
<tr>
<td>Crocographa normani (Grote) [Climbing cherry cutworm]</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Species</td>
<td>Reference</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Cryptocala acadiensis (Bethune)</td>
<td>Barber et al. (1993); this study</td>
<td>Reared from egg to adult (<em>n</em> = ~30)</td>
</tr>
<tr>
<td>Cucullia intermedia [Speyer]</td>
<td>This study</td>
<td>Three last instars reared to adults (<em>n</em> = 1); the younger instars did not feed very willingly on the diet</td>
</tr>
<tr>
<td>Dargida diffusa (Walker)</td>
<td>This study</td>
<td>Partly developed larvae reared to adults (<em>n</em> = ~20)</td>
</tr>
<tr>
<td>Diabrysia aeroides (Grote)</td>
<td>This study</td>
<td>Partly developed larvae reared to adults (<em>n</em> = 5)</td>
</tr>
<tr>
<td>Diarsia rubifera</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Diarsia jucaunda</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Evenetagrotis attenta (Grote)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Eupalastrum tristigmata (Grote)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Euxoa tristicula</td>
<td>This study</td>
<td>Reared from egg to adult (<em>n</em> = ~60)</td>
</tr>
<tr>
<td>Euxoa auxiliaris (Grote) [Army cutworm]</td>
<td>This study</td>
<td>Reared from egg to adult (<em>n</em> = ~50)</td>
</tr>
<tr>
<td>Euxoa ochrogaster (Gueneé)</td>
<td>This study</td>
<td>Reared for two generations (<em>n</em> = ~150)</td>
</tr>
<tr>
<td>Euxoa satis (Harvey)</td>
<td>This study</td>
<td>Reared for three generations (<em>n</em> = ~300); ca. 5% adults had deformed wings</td>
</tr>
<tr>
<td>Euxoa satis (Harvey)</td>
<td>This study</td>
<td>Reared for two generations (<em>n</em> = ~80)</td>
</tr>
<tr>
<td>Euxoa tristicula (Morrison)</td>
<td>This study</td>
<td>Reared for five generations (<em>n</em> = ~600)</td>
</tr>
<tr>
<td>Felta berilia (Grote)</td>
<td>This study</td>
<td>Reared from egg to adult (<em>n</em> = ~30)</td>
</tr>
<tr>
<td>Felta saulitha (Gueneé)</td>
<td>This study</td>
<td>Reared for two generations (<em>n</em> = ~60)</td>
</tr>
<tr>
<td>Helicoverpa zea (Boddie) [Corn earworm]</td>
<td>Gridale (1973); this study</td>
<td>Reared for two generations (<em>n</em> = ~80)</td>
</tr>
<tr>
<td>Heliothis virescens (E.) [Tobacco budworm]</td>
<td>This study</td>
<td>Reared for two generations (<em>n</em> = ~80)</td>
</tr>
<tr>
<td>Homorthodes fiscifera (Grote)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Hyppa xyloides (Gueneé)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Lacanobia grandidis (Gueneé)</td>
<td>Barber et al. (1993); this study</td>
<td>Reared from egg to adult (<em>n</em> = ~40)</td>
</tr>
<tr>
<td>Lacanobia radicis (Walker)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Lacimpola renigera (Stephens)</td>
<td>This study</td>
<td>Reared from egg to adult (<em>n</em> = ~40)</td>
</tr>
<tr>
<td>Lacimpola sareta (Smith)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to adult (<em>n</em> = ~50)</td>
</tr>
<tr>
<td>Leucania multilicula Walker</td>
<td>Barber et al. (1993); this study</td>
<td>Reared from egg to adult (<em>n</em> = ~50); last instar was highly cannibalistic</td>
</tr>
<tr>
<td>Mamestra configurata Walker</td>
<td>Gridale (1973); this study</td>
<td>Partly developed larvae reared to last instar (<em>n</em> = 3); two of them died from parasitoids, the last one from disease.</td>
</tr>
<tr>
<td>Melanchra picta (Harris)</td>
<td>This study</td>
<td>Reared from egg to adult (<em>n</em> = ~50); few specimens with deformed wings</td>
</tr>
<tr>
<td>Melanchra pulvulnera (Smith)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Morrisonia latex (Gueneé)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Mythimna unipuncta (Haworth)</td>
<td>Barber et al. (1993); this study</td>
<td>Reared for over five generations (<em>n</em> = ~1,000)</td>
</tr>
<tr>
<td>[True armyworm]</td>
<td>This study</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Noctua promessa (Linnaeus)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Orthosia ricini (Walker) [Rusty whitesided caterpillar]</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Oligia illoca (Walker)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Phlogophora franklini (Gueneé)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Pitypergesa multifera (Walker)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Plodia putnami Grote</td>
<td>This study</td>
<td>Last instars reared to adults (<em>n</em> = 2)</td>
</tr>
<tr>
<td>Pyrrhia eximia (Walker)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Sideris rosea (Harvey)</td>
<td>This study</td>
<td>Reared from egg to adult (<em>n</em> = ~20); most adults with deformed wings</td>
</tr>
<tr>
<td>Spaelotis clandestina (Harris)</td>
<td>This study</td>
<td>Reared from egg to adult (<em>n</em> = ~20)</td>
</tr>
<tr>
<td>Spodoptera eridania (Stoll)</td>
<td>This study</td>
<td>Reared for three generations (<em>n</em> = ~200)</td>
</tr>
</tbody>
</table>

(continued)
from them or until they metamorphosed to adults for moths and parasitoids identification, and investigation of the host range of a parasitoid. The use of McMorran diet was ideal for these investigations. It allowed us to quickly handle high numbers of field collected caterpillars of various species. It saved us tremendous time, space, and money because we did not need to grow plants, and we did not need to develop species based rearing knowledge as we were pretty much ensured that any Noctuidae would develop on this diet. It also facilitated insects maintenance as the food remained good for at least 2 wk at 4°C and 5–7 d at room temperature (as per rearing conditions described under Materials and Methods section), and the rearing cages and cups remained relatively clean until insects completed their development.

### Materials and Methods

To compile the list of Lepidoptera previously reported to have been reared on the McMorran diet, we examined all papers reported in the Web of Science, in Google, and Google scholar as citing “McMorran 1965” and “Grisdale 1973” (Table 1). Scopus was also searched but did not provide additional information.

For use in our laboratory, we purchased McMorran diet ingredients from the Insect Production Services (Great Lakes Forestry Centre, Canadian Forest Service, Sault Ste. Marie, ON, Canada). Ingredients were preserved for up to 6 mo in air-sealed packages (excluding linseed oil and potassium hydroxide (KOH), which were kept in bottles) at 2.5°C. We prepared new diet on a weekly basis in our laboratory; this diet was held for up to 2 wk at 4°C before use.

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spodoptera exigua (Hu¨bner)</td>
<td>This study</td>
<td>Reared for two generations ($n \approx 200$)</td>
</tr>
<tr>
<td>[Beet armyworm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spodoptera frugiperda (J.E. Smith) [Fall armyworm]</td>
<td>This study</td>
<td>Reared for two generations ($n \approx 100$)</td>
</tr>
<tr>
<td>Trichoplusia ni (Hu¨bner) [Cabbage looper]</td>
<td>Grisdale (1973); this study</td>
<td>Reared for at least three generations, multiple times ($n &gt; 10,000$)</td>
</tr>
<tr>
<td>Trichordesia lilacina (Harvey)</td>
<td>This study</td>
<td>Reared from egg to adult ($n = 12$)</td>
</tr>
<tr>
<td>Xestia c-nigrum (L.)</td>
<td>Barber et al. (1993); this study</td>
<td>Reared from egg to adult ($n = 40$)</td>
</tr>
<tr>
<td>Xestia smithii (Snellen)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Xylela nupera (Lintner)</td>
<td>This study</td>
<td>Partly developed larvae reared to adults ($n = 1$); wings of adult deformed</td>
</tr>
<tr>
<td>Zanclognatha pedipalis (Guene¨e) [Grayish zanclognatha]</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Pieridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pieris napi (L.)</td>
<td>Barber et al. (1993)</td>
<td>Reared from egg to at least third instar</td>
</tr>
<tr>
<td>Pyralidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioricytra remicolloides</td>
<td>Hamel (1977)</td>
<td>Field collected larvae to?</td>
</tr>
<tr>
<td>[Mutuura &amp; Munroe] [Spruce coneworm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioricytra abietivorella (Grote) [Fir coneworm]</td>
<td>Trudel et al. (1995)</td>
<td>Fourth instars to adults</td>
</tr>
<tr>
<td>Ostrina nubilalis (Hubner) [European corn borer]</td>
<td>Grisdale (1973)</td>
<td>Reared for at least one full generation</td>
</tr>
<tr>
<td>Saturnidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyalophora cecropia (L.) [Cecropia moth]</td>
<td>Grisdale (1973)</td>
<td>Reared for at least one full generation</td>
</tr>
<tr>
<td>Sphinxidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnis nerii (L.)</td>
<td>Retnakaran et al. (1985)</td>
<td>Previously mentioned on the Insect Production Services website (when visited in 2012), but no longer is.</td>
</tr>
<tr>
<td>Hyles gallii (Rottemburg)</td>
<td>This study</td>
<td>Reared over 30 generations</td>
</tr>
<tr>
<td>[Bedstraw hawk-moth]</td>
<td></td>
<td>Penultimate instar to pupae ($n = 5$)</td>
</tr>
<tr>
<td>Manduca sexta (L.)</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Tortricidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acleris gloverana (Walsingham)</td>
<td>Gray and Shepher (1993)</td>
<td>Field collected caterpillars reared until parasitoid emergence</td>
</tr>
<tr>
<td>Archips cerassivorana (Fitch)</td>
<td>Grisdale (1973)</td>
<td>Reared for at least one full generation</td>
</tr>
<tr>
<td>[Uglynest caterpillar]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choristoneura conflicta (Walker) [Large aspen tortrix]</td>
<td>Grisdale (1973)</td>
<td>Reared for at least one full generation</td>
</tr>
<tr>
<td>Choristoneura funiferana (Clemens) [Spruce budworm]</td>
<td>McMorran (1965); Grisdale (1973)</td>
<td>Reared over multiple generations</td>
</tr>
<tr>
<td>Choristoneura occidentalis (Freeman) [Western spruce budworm]</td>
<td>Clancy (1991)</td>
<td>Reared over multiple generations; modified ingredients</td>
</tr>
<tr>
<td>Choristoneura pinus pinus (Freeman) [Jack pine budworm]</td>
<td>Allen et al. (1958)</td>
<td>Reared for multiple generations, degeneration observed</td>
</tr>
<tr>
<td>Choristoneura rosaceana (Harris) [Obliquebanded leafroller]</td>
<td>Barber et al. (1993)</td>
<td>Reared to at least third instar</td>
</tr>
</tbody>
</table>

| Table 1. Continued |
|---------------------|-------------------|-------------------------------------------------|
| Species             | Reference         | Comments                                        |
| Spodoptera exigua (Hu¨bner) | This study | Reared for two generations ($n \approx 200$) |
| [Fall armyworm]     |                   |                                                 |
| Xestia c-nigrum (L.) | Barber et al. (1993) | Reared from egg to adult ($n = 40$)             |
| Xestia smithii (Snellen) | Barber et al. (1993) | Reared from egg to at least third instar        |
| Xylela nupera (Lintner) | This study | Partly developed larvae reared to adults ($n = 1$); wings of adult deformed |
| Zanclognatha pedipalis (Guene¨e) [Grayish zanclognatha] | Barber et al. (1993) | Reared from egg to at least third instar        |
The diet was prepared as per the recipe provided to us by Insect Production Services, which corresponds to that of Grisdale’s (1973) modification of the recipe developed by McMorran (1965). Ingredients for 2-liter diet: 1,720 ml distilled water, 34.72 g agar, 70 g casein, 70 g sucrose, 61.39 g toasted wheat germ, 20 g Wesson’s salt, 10 ml 4 M KOH, 10 ml linseed oil, 10 ml alphacel, 8 g ascorbic acid, 4.2 g aureomycin, 3 g methyl paraben, 2 g choline chloride, 1 ml 37% formalin, 20 ml vitamin solution. Ingredients for 2 l vitamin solution: 2 l water, 2 g nicotinic acid, 2 g calcium pantothenate, 2 g riboflavin, 0.5 g thiamine hydrochloride, 0.5 g pyridoxine hydrochloride, 0.5 g folic acid, 0.04 g biotin, and 0.004 g vitamin B12. To better preserve the vitamins, we replaced 200 ml (for 2 l of diet) of water by 200 g of crushed ice, which was blended with the hot mixture in a blender for one minute just before adding the vitamin solution in order to reduce temperature of the mixture. When the diet was ready, the head foam was scraped away, and the diet was poured into 22 ml plastic cups. When the diet was set (~30 min after pouring), these cups were refrigerated until use. Considering that we keep the ingredients already predivided for 2-liter batches, it takes us only 1 h to prepare one batch including washing of equipment.

Most lepidopteran species were purchased as eggs or recovered from adults collected from UV light traps. Commercial sources were Insect Production Services (Sault Ste. Marie, ON, Canada) and Benzon Research Inc. (Carlisle, PA). Importation of species from the United States was done with import permits issued by the Canadian Food Inspection Agency (Permit No. P-2011-04397, P-2013-02134, and P-2014-02394). Light traps were operated in the city of Lethbridge, Alberta, Canada, during the summer and fall of 2012–2014. Additional species were collected as larvae or eggs on various
Table 2. Lepidoptera species that do not successfully develop on McMorran diet in this study

<table>
<thead>
<tr>
<th>Species</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Drepanidae</strong></td>
<td></td>
</tr>
<tr>
<td><em>Halosyne scripta</em> (Gosse)</td>
<td>First instars ($n = \sim 60$)</td>
</tr>
<tr>
<td><strong>Gelechiidae</strong></td>
<td></td>
</tr>
<tr>
<td><em>Syncopacma</em> sp.</td>
<td>Partly developed larvae collected on</td>
</tr>
<tr>
<td><strong>Hesperiidae</strong></td>
<td></td>
</tr>
<tr>
<td><em>Epargyreus clarus</em> (Cramer) [silverspotted skipper]</td>
<td>Partly developed larvae ($n = 2$)</td>
</tr>
<tr>
<td><strong>Nymphalidae</strong></td>
<td></td>
</tr>
<tr>
<td><em>Aglas milberti</em> (Godart) [Milbert’s tortoiseshell]</td>
<td>Partly developed larvae ($n = \sim 60$)</td>
</tr>
<tr>
<td><em>Coenonympha tullia</em> (Müller)</td>
<td>First instars ($n = \sim 15$)</td>
</tr>
<tr>
<td><em>Limenitis arthemis</em> (Drury) [White admiral]</td>
<td>Partly developed larvae ($n = 3$)</td>
</tr>
<tr>
<td><strong>Papilionidae</strong></td>
<td></td>
</tr>
<tr>
<td><em>Papilio Canadensis</em> (Rothschild &amp; Jordan) [Canadian tiger swallowtail]</td>
<td>First instars ($n = 1$)</td>
</tr>
<tr>
<td><em>Papilio multicaudata</em> Kirby</td>
<td>First instars ($n = 1$)</td>
</tr>
<tr>
<td><strong>Pieridae</strong></td>
<td></td>
</tr>
<tr>
<td><em>Colias philodice</em> Godart [Clouded sulphur]</td>
<td>Partly developed larvae ($n = \sim 20$)</td>
</tr>
<tr>
<td><em>Pieris rapae</em> (L.)</td>
<td>Partly developed larvae ($n = \sim 50$)</td>
</tr>
<tr>
<td><strong>Saturniidae</strong></td>
<td></td>
</tr>
<tr>
<td><em>Hemileuca eglanterina</em> (Boisdauval)</td>
<td>Partly developed larvae ($n = 2$)</td>
</tr>
</tbody>
</table>

Plants in and near Lethbridge, and near Magrath (Cardston county), Alberta.

Eggs were recovered from field-collected adults by placing female moths in Plexiglass cages (40 cm by 34 cm by 30 cm [length × width × height]). A screened window (10 cm in diameter) on each side of the cage provided ventilation. The front of the cage had an opening (15 cm in diameter) with an attached cloth sleeve to provide access into the cage. Females were provided with sucrose crystals, water, and a choice of oviposition materials; i.e., cheese cloth, paraffin film (“Parafilm”), brown paper, paper towel, and fine sand. Eggs on the oviposition substrate were placed into new cages of the same design in which the hatched caterpillars were reared until pupation or until used in experiments. We usually reared about 50 caterpillars per cage (or 30 for Plusiinae). Eggs obtained commercially were similarly handled. For species maintained for more than one generation, pupae were placed in clean cages of this same design for emergence, mating, and oviposition.

In the laboratory, insects were reared in growth cabinets at 20°C, 70–80% humidity, and 12:12 (L:D) cycle under low incandescent and fluorescent lighting. Caterpillars were provided with blocks of diet (20 cm²) positioned mainly near the sides and corners of the cage. Small pieces of paraffin film (~9 cm²) placed beneath and on top of each diet block facilitated its removal, reduced desiccation, and allowed caterpillars to feed while standing on the underside of the upper piece of the paraffin film (Fig. 1) as they would under a plant leaf in natural conditions. Fresh diet was added about every 5–7 d when the previous one became too old or dry. The diet had to be replaced about four times to sustain complete larval development of most species reared. For cages with first- to third-instar larvae, and any instar of Plusiinae (i.e., “loopers”), fresh diet blocks were placed as close as possible to the old blocks to facilitate the movement of caterpillars onto the fresh diet as these caterpillars have difficulty moving on the floor of the cage. Blocks of old diet were removed from cages after about 10 d.

Variously sized pieces of brown paper (laid flat or slightly crumpled) were placed in the cages of Noctuidae species (except Plusiinae) to provide sheltered areas. This noticeably reduced diurnal activity of the caterpillars and biting of each other (V.A.D.H., personal observation). Cannibalism of aggressive species (e.g., bertha armyworm and corn earworm) was further reduced by placing an increasing amount of crumpled brown paper, using bigger cages, having fewer caterpillars in a cage, and adding of a few centimeters of vermiculite on the bottom of the cage (Fig. 2).

Lepidoptera larvae were also reared individually in translucent plastic (Polar Plastic Ltd.) 8 oz (240 ml) containers (Fig. 3). These included caterpillars hatched from eggs in the laboratory or collected outside (same species as these reared in cages). A nonthreeding sewing machine was used to ease piercing of holes (0.5 mm in diameter) in the bottom and lid of containers to prevent the accumulation of condensation within. This reduced the incidence of mold on the diet and prevented early-instar larvae from becoming trapped and dying in water droplets. Each cup contained a piece of filter paper (55 mm in diameter) onto which a block of diet was placed (6.7 or 10 cm³, depending upon the size of the larva), with a piece of paraffin film beneath and on top as described previously. Rearing conditions were as described for caterpillars reared in cages. The caterpillars pupated either in their cages or individual cups. They remained this way under the conditions described above until moth emergence.

**Results and Discussion**

The results of our literature search and laboratory studies are reported in Tables 1 and 2. Many studies do not report if the diet used contained linseed oil as per Grisdale’s modification (1973) or any other modification. Table 1 reports Lepidoptera species successfully reared on the McMorran diet, whereas Table 2 reports species that we were unable to rear on this diet. Grisdale (1973) reports successfully rearing grasshoppers, *Melanoplus* spp. (Orthoptera: Acrididae) on the McMorran diet for at least one generation.

Rearing successive generations of Lepidoptera on nutritionally unbalanced diets can cause wing deformities (Morris 1967; V.A.D.H. personal observation), reductions in insect weight, fecundity, longevity, and increased mortality of all life stages (Morris 1967). The suitability of the McMorran diet for rearing successive generations of the species listed in Table 1 typically was not assessed. Some species were unwilling or unable to feed on McMorran diet as early instars but fed on the diet in later instars to complete their development; i.e., *Hyles*
Minor modifications to the McMorran diet can enhance rearing success. For example, Syme and Green (1972) reared larvae of European pine shoot moth, *Rhagonycha buoliana* (Denis & Schiffermüller) (Tortricidae) with the addition of 1 ml soya bean oil per 100 ml of McMorran diet. Gardiner (1970) reared to adults larvae of 49 identified species (and additional unidentified species) of Cerambycidae (Coleoptera), 17 of them from the egg, by adding 5 ml of dried pulverized host plant material to 100 ml McMorran diet. Similarly, Trudel (1994) successfully reared immature stages of the white pine weevil, *Pissodes strobi* Peck (Coleoptera: Curculionidae), and maintained adults, by adding 5% pulverized white pine bark to the McMorran diet.

Other diets similar in composition to the McMorran diet include that of Adkisson et al. (1960), Vanderzant and Adkisson (1962), and the “Vanderzant-Adkisson special wheat germ diet” (marketed by MP Biomedicals, headquartered in Santa Ana, CA), which have also been used to rear a wide range of Lepidoptera and some Coleoptera species. This ability has been attributed to their wheat germ base (Cohen 2004).

Research that requires maintenance of laboratory colonies over multiple generations or aiming to study species performance should try to determine suitability of the McMorran diet for specific species, which may require adjustments of the recipe and further investigation into insect performance, to ensure maintenance of healthy colonies. Nonetheless, we showed that the McMorran diet can be used to facilitate the laboratory rearing of numerous species, both in cages and in 240 ml containers, and can likely be used to rear many more species than those reported here.

**Acknowledgments**

We acknowledge our research assistants Kayla Johnson, Jayden Dyck, Briona Smith, Beadon Schaufert, and Marko Mićović for their technical support and their great enthusiasm. We also thank Bob Byers and Paul Coghlin for being instrumental in helping to collect and identify species and providing various technical help. This research was supported by the Canola Council of Canada (Canola Agronomic Research Program Project 2012–1, to K.D.F.), Alberta Conservation Association (Grants in Biodiversity, to V.A.D.H.), and the Natural Science and Engineering Research Council of Canada (Discovery Grant, to R.A.L.). This is Lethbridge Research Centre Publication (No. 387-15019).

**References Cited**


Trudel, R. 1994. Variation in the ground white pine concentration in artificial diet relation to egg laying, feeding, and mortality of *Pissodes strobi* (Coleoptera: Curculionidae). *J. Econ. Entomol.* 87: 96–100.

