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Abstract 

Oil and gas activities in Alberta require disturbing forested lands, among other 

ecosystems, in order to extract resources. Due to the number of oil and gas sites requiring 

reclamation, monitoring can be problematic. Remote sensing provides cost-effective, 

timely, and repeatable data of these areas in support of monitoring efforts.  

Support Vector Machine (SVM) and Multiple Endmember Spectral Mixture 

Analysis (MESMA) were tested in order to identify tree species around reclaimed and 

abandoned well sites near Cold Lake, Alberta using CHRIS satellite imagery with and 

without airborne LiDAR data. A hierarchical classification approach was employed, 

which achieved an accuracy of 83.4 % when using SVM together with CHRIS imagery 

and LiDAR. This positive result indicates the ability of remote sensing to support 

reclamation management and monitoring objectives within Alberta’s forested areas. 
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Chapter 1  

Introduction 

Alberta is a Canadian province rich in oil and gas resources. In response to 

increasing national and global energy demands, a network of oil and gas operations has 

resulted across the province. One of the primary methods of extracting these resources is 

using to drill wells into the oil and gas reserve cavern. This in-situ method results in the 

land surrounding the well becoming disturbed in an effort to meet operational, safety and 

environmental requirements. At the completion of the oil and gas activities, called 

abandonment, the wellhead is sheared off below the ground surface, the interior of the 

well is filled with concrete, the wellhead capped, and attempts are made to establish the 

pre-vegetated condition on the well-site.  

The rate at which wells are being abandoned and the rate of wells being reclaimed 

are not consistent. In fact, there are significantly more abandoned than reclaimed wells in 

the province (AESRD, 2013a). With approximately 50,000 un-reclaimed wells in Alberta 

in 2012, monitoring the status and health of these sites is a monumental task (Figure 1.1). 

Many studies dealing with reclamation efforts focus on large areas, such as open pit 

mines (Schmid et al., 2013; Lévesque and Staenz, 2008 and 2004; Lévesque et al., 1999) 

rather than concentrating on a smaller scale as is the case for oil and gas well-sites. Based 

on these facts, there is a need for studies focusing on reclamation efforts in Alberta with 

respect to oil and gas well activities. 
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Figure 1.1: Extent of abandoned oil and gas wells in Alberta as of March 2013. 

The current form of well-site reclamation assessment in Alberta is conducted by 

the Alberta Energy Regulator (AER). The responsibility for well-site reclamation 

formally fell to Alberta Environmental Sustainable Resource Development (AESRD). 

The assessment consists of an audit conducted by the compliance staff on approximately 

10 % to 15 % of the reclamation certification applications submitted by companies to 

ensure that well-site reclamation meets compliance guidelines (AESRD, 2013a). This is 

an opportunity to use Remote Sensing, since many wells can be assessed in a single 

image capture. Unless a well-site is exempt from the reclamation process, all reclamation 
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activities in the province are governed by Part 6 of Chapter E-12 of the Revised Statutes 

of Alberta 2000 - Environmental Protection and Enhancement Act (Government of 

Alberta, 2013). This act states, in part, that an inspector can require further reclamation to 

be conducted on a site, even if it has been issued a reclamation certification. The process 

of further reclamation is at the inspector’s discretion. Because the current reclamation 

model has a liability period of 25 years, the land must be monitored during that time to 

ensure it conforms to the regulator reclamation guidelines.  

Reclamation activities attempt to transform the disturbed land back into a 

productive state that is equivalent to pre-disturbance conditions. However, in order for 

this to be accomplished, a baseline of natural vegetation around the site needs to be 

established. One method of accomplishing this is to identify the vegetation species 

present. This can be completed through field transects and site visits, but this is time 

consuming and expensive. A much more realistic option is to use remote sensing, which 

allows for monitoring large areas of land in a cost-effective and timely fashion (Foody 

and Embashi, 1995; Sellers et al., 1995; Mumby et al., 1999). 

Forests cover approximately 60 % of Alberta and specific reclamation guidelines 

dealing with this land-cover type have been created. This thesis will focus on oil and gas 

reclamation monitoring in forested areas and will utilize remote sensing technologies in 

pursuit of tree species mapping. 

1.1 Remote Sensing 

Remote sensing approaches to forest-cover mapping over large geographical areas 

have generally focused on multispectral sensors, such as the ones found on the Landsat 

and Satellite Pour l’Observation de la Terre (SPOT) satellites. The use of these two 
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platforms is well documented in the scientific literature for monitoring land cover and any 

changes that have occurred (Hansen et al., 2013; Hurd et al., 2001; Masek et al., 2000). 

Satisfactory results have been achieved using hyperspectral sensors as shown in Table1.1 

(Dalponte et al., 2013; Galidaki et al., 2012; Ghiyamat and Shafri., 2010; Plourde et al., 

2007; Goodenough et al., 2003a; Martin et al,. 1998).  

The data capture in contiguous narrow bands from these sensors allows for subtle 

variations in the electromagnetic spectrum, which permit better discrimination of tree 

species than with multispectral sensors (Lee et al., 2004; Clark et al., 2005). Additionally, 

the use of structural information within the vegetation, derived from Light Detection and 

Ranging (LiDAR) data, can aid in determining tree species when combined with 

multispectral / hyperspectral sensed imagery (Dalponte et al., 2012; Jones et al., 2010; 

Anderson et al., 2008; Dalponte et al., 2008; Holmgren et al., 2008). 

Table 1.1: Table comparing hyperspectral remote sensing studies. 

Sensor Type Data 

Source 

Classification 

Methods1 

Overall 

accuracy 

Source 

Hyperspectral Hyperion SAM 94% (Galidaki et al,. 2012) 

Hyperspectral Hyperion ML 81% (Goodenough et al,. 2003a) 

Hyperspectral AVIRIS ML 75% (Martin et al., 1998) 

Hyperspectral HySpex SVM, RF 93% (Dalponte et al., 2013) 

1 Classification Methods: Spectral Angle Mapper (SAM), Maximum Likelihood 

(ML), Support Vector Machine (SVM), Random Forest (RF), 

In 2001, the European Space Agency (ESA) launched the Project for On-Board 

Autonomy (PROBA) satellite, in part, to test experimental technologies such as the 

Compact High Resolution Imaging Spectrometer (CHRIS; ESA, 2014). This sensor 

captures data in 62 bands, covering a wavelength range from 400 nm to 1050 nm, at 34-m 

ground sampling distance (GSD) in full-swath mode and from 5 different viewing angles 
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(+55°, +36°, 0°, -36°, -55°) (Table 1.2). Other imaging modes can capture information in 

either 18 or 37 bands with a 17-m GSD. The band ranges for these other modes were 

optimized for applications related to land, water and chlorophyll monitoring (ESA, 2014). 

The different imaging modes vary with respect to both the number and width of spectral 

bands in order to highlight certain areas of the electromagnetic spectrum during data 

capture.  

Table 1.2: CHRIS Imaging modes. 

Mode Specified Use Number of 

Bands 

Swath Width 

(km) 

Ground Sampling 

Distance (m) 

Mode 1 Full Capacity 62 ~14 34 

Mode 2 Land 18 ~14 17 

Mode 3 Water 18 ~14 17 

Mode 4 Chlorophyll 18 ~14 17 

Mode 5 Land 37 ~7 17 

 

The hyperspectral aspect of CHRIS means that the sensor captures a wide range of 

spectral data. However, due to the moderate sized footprint of the sensor (17-m or 34-m), 

the spectral signature recorded by the sensor is a combination of spectral signatures from 

all elements present within the pixel. In order to separate the different materials, including 

different tree species, which may be present within a pixel, sub-pixel spectral unmixing 

algorithms must be applied. Cataloguing vegetation structural parameters, such as canopy 

height and cover, return productivity related information about vegetation species and 

health (Husch et al., 2002), both of which are useful indicators in a reclamation 

assessment.  

Remote sensing systems both passive, observing reflected electromagnetic 

radiation (EMR) emitted by a source other than the remote sensing system, and active, 

observing reflected EMR emitted by the remote sensing system itself, provide the means 
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to acquire these parameters. For example, photogrammetric interpretation of aerial images 

can provide analysts with canopy height and cover measurements. However, it is time 

consuming and requires highly specialized individuals to derive accurate information. 

LiDAR is a more viable tool for reclamation monitoring as this technology can provide 

point measurements over a large area and is able to penetrate the canopy and provide 

multiple ranging measurements for a single point. The information contained within each 

point can be used to derive structural information in a timelier fashion than traditional 

image interpretation methods.  

1.2 Data Fusion 

The fusion of different remotely sensed datasets has been used for a long time in 

remote sensing studies and has proven to be beneficial in that data gaps from one source 

can filled in by another source (Hall, 1992; Genderen and Pohl, 1994). Structural 

information, for example, can support spectral information when investigating land-cover 

and tree-species classification. (Sullivan et al., 2009; Dalponte et al., 2008; Hyde et al., 

2006; Gong and Howarth, 1990). Different vegetation types have different structures 

(e.g., coniferous tree compared to deciduous tree). Accordingly, integrating information 

about the structure type supports the discrimination of the different vegetation species 

present.  

1.3 Tree Types 

Trees can be either evergreen or deciduous. The former means that leaves persist 

throughout the year, while the latter means that leaves are shed at the end of the growing 

season. Coniferous refers to trees that are cone bearing and make up the majority of 
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evergreen trees within the Canadian Boreal region with the exception being Jack Pine and 

Larch. Determining which type of tree it is and, ultimately, what the species is, can be 

accomplished by analyzing the structure of the tree as well as the biological parameters. 

For example, most conifer trees are conical in shape and have needles instead of leaves 

(Figure 1.2). Deciduous trees, on the other hand, have large broad canopies with leaves 

(Figure 1.3). 

    

Figure 1.2: White Spruce tree structure (left) and needles (right). Notice the 

conical shape of the White Spruce trees (darker green). 

 

Figure 1.3: Aspen Poplar tree stand (left) and leaves (right). 
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Tree types have different spectral characteristics, which can be exploited in order 

to assist in classifying forest cover in satellite imagery (Nelson et al., 1985; Shen et al., 

1985; Hodgson et al., 1988; Lathrop et al., 1994). 

Determining what tree species are present around an abandoned well-site as well 

as species type of vegetation regrowth within the well-site is part of a broader reclamation 

management plan and is a requirement under Alberta’s reclamation guidelines (AESRD, 

2013a).  

1.4 Objectives and Hypothesis 

This thesis documents the work carried out to combine hyperspectral CHRIS data 

with structural LiDAR data in order to better discriminate tree species in forested regions 

and abandoned well-sites in the area of Cold Lake, Alberta. The LiDAR data are 

processed using an open-source computer program to create the vegetation structure 

products. Selected spectral unmixing and image classification methods are applied to 

CHRIS data alone and in combination with LiDAR data. The two are compared to each 

other to determine the method that yields the best accuracy when compared to field-

reference data. This, in turn, determines whether the inclusion of LiDAR data are 

beneficial for oil and gas reclamation monitoring.  

In order to evaluate this approach, the research objectives for this study are as 

follows:  

(a) Assess the use of hyperspectral data alone and in combination with LiDAR 

data for monitoring species composition in the Cold Lake area of Alberta and  

(b) Evaluate spectral unmixing methods for tree species discrimination. 
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The hypothesis of this study is that combining structural and spectral data over a forested 

reclamation site will yield classification results that are more accurate than those 

extracted from spectral data alone. Furthermore, the use of spectral unmixing will help to 

facilitate tree species discrimination better than discrete classifiers such as SVM. 

1.5 Thesis Organization 

The thesis is organized in a conventional structure where the first chapter provides 

an introduction to the topic and summarizes the research hypothesis and objectives. The 

second chapter reviews current and past research on land reclamation using remote 

sensing as well as including sensor systems and classification technologies. The third 

chapter outlines the methods, which were used for this study and describes the location of 

the study area together with characterization of the local and regional environment. The 

fourth chapter presents the results of the species composition classification and provides 

an evaluation of using hyperspectral data alone and in combination with LiDAR data. The 

fifth chapter discusses the results and reveals their implications for reclamation 

monitoring in the Alberta’s oil patch, while the sixth and final chapter concludes the 

findings of the thesis.  
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Chapter 2  

Literature Review 

The following literature review will examine reclamation practices and criteria, 

related remote sensing fundamentals and data processing techniques, and how remote 

sensing can be beneficial for monitoring tree species at reclaimed oil and gas well-sites. 

2.1 Land Reclamation 

The area of land reclamation is diverse in both the methods used to conduct 

reclamation and the expected outcomes of that reclamation. Taken literally, it can mean 

the creation of new lands for human occupation from otherwise unsuitable areas (Curtis 

and Campopiano, 2013). Notable examples include areas in The Netherlands (Hoeksema, 

2007), Chek Lap Kok Airport in Hong Kong (Liu et al., 2001), and New Orleans, 

Louisiana (Olshansky, 2006; Craig et al., 1979).  

Another definition of reclamation, used primarily in Canada, refers to returning 

disturbed lands, anthropogenic or naturally caused, to a state similar to that of the 

surrounding land or to a state agreed upon by the stakeholders (Bradshaw, 1984). Outside 

of Alberta, the terms remediation and restoration are often used in place of reclamation. 

This can cause confusion when describing similar practices. Accordingly, reclamation 

will be used in this thesis to describe the process outlined by Bradshaw (1984).  

The following subsections will provide a brief history of global and national 

reclamation practices, the methods used to conduct reclamation and its monitoring, and 

finally, an overview of detailed reclamation practices as they apply to oil and gas 

activities in Alberta.  
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2.1.1 History 

One of the first instances of regulations, dealing with contaminated lands, came 

from the United Kingdom in 1936 with the creation of the Public Health Act (Parliament 

of the United Kingdom, 1936). This Act prohibits building on lands where polluting 

materials have not been cleaned up. Adding onto this act was the Town and Country 

Planning Act of 1947 (Parliament of the United Kingdom, 1947) that required a land-use 

plan in place for any new developments and encouraged any resource extraction activities 

to have and enact a reclamation plan. Early forms of reclamation regulations have also 

been in place in Sweden since 1969 with the Environmental Protection Act (Swedish 

Environmental Protection Agency, 1977), Germany since 1972 with the Federal Waste 

Disposal Act (Federal Law Gazette I, 1977) ,the United States since 1976 with the 

Resource Conservation and Recovery Act (EPA, 1992), and the Netherlands since 1984 

with the Soil Protection Act (Ministry of Infrastructure and the Environment, 1996),  

In 1969, the North Atlantic Treaty Organization (NATO) created the Committee 

on the Challenges of Modern Society (CCMS) tasked with studying, in part, issues 

affecting the environments of member nations. A pilot study initiated by NATO/CCMS in 

1980 assessed available environmental reclamation technologies and methods in order to 

understand the impact of military activities on the environment. The study identified 

different reclamation needs and practices in seven nations and sought to provide a means 

by which reclamation information and techniques can be shared between nations (NATO, 

1998).  

Reclamation legislation in Canada is the jurisdiction of the provinces and 

territories for administration/regulation. Each province tailors the regulations to the 
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industry operating within its borders (Sousa, 2001). Reclamation within Alberta is 

primarily focused on the oil and gas industry; however, for example, it is also applicable 

to mines, sand and gravel pits, and commercial development.  

Prior to 1963, reclamation of industrial lands was not required and, therefore, not 

often conducted. The introduction of the Surface Reclamation Act (Government of 

Alberta, 1963) required that minimum standards be met, such as hazard removal and site 

clean-up, in order for a reclamation certificate to be issued. This act was created in part 

due to public concerns over the environmental impacts of petroleum exploration and 

extraction as well as land-owner surface rights compared to mineral rights. This 

surface/mineral rights discussion focused on the idea that land should be returned to the 

same condition in which it was found before the disturbance took place (Powter et al., 

2012). 

In 1973, the Land Surface Conservation and Reclamation Act (Government of 

Alberta, 1973) replaced the Surface Reclamation Act. This new act created monitoring, 

enforcement, and soil salvage guidelines and the establishment of a Land Reclamation 

Division (LRD) and Land Conservation and Reclamation Council (LCRC). Both entities 

were tasked with developing policy, monitoring reclamation and issuing reclamation 

certificates. 

Beginning in 1992, the Government of Alberta introduced the Environmental 

Protection and Enhancement Act (Government of Alberta, 1992) and added the 

Conservation and Reclamation Regulation Act a year later (Government of Alberta, 

1993). The former consolidated and replaced previous environmental protection acts, 

while the latter outlined regulatory processes related to the issuance of reclamation 
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certificates and enforcement of reclamation guidelines. Furthermore, it identified the 

objective of reclamation as a return of the land to an Equivalent Land Capability (ELC; 

Government of Alberta, 2013). Reclamation efforts relating to energy extraction are a 

large part of Alberta’s reclamation programs and much effort has been devoted to 

defining what reclamation entails for the industry involved in natural resource and energy 

extraction (Powter et al., 2012). 

2.1.2 Reclamation Methods 

The methods used to reclaim disturbed lands vary depending on the level of 

severity and the expected condition of the land after the completion of reclamation. 

Regardless of the desired outcome, all reclamation activities start with an assessment of 

the disturbed site. The assessment process is in place in order to decide if a specific site 

poses a risk to human health and/or to the environment (Burger, 2008; DEFRA, 2004). 

This process is also in place to identify realistic management and technological decisions 

for reclamation of a specific site (Bardos et al., 2001).  

Following an assessment phase, the actual reclamation of the disturbed land takes 

place. A site can be left to regenerate naturally through vegetation succession, or it can be 

transformed through changes in topography as well as seeding and planting vegetation to 

meet specific reclamation goals outlined in the assessment phase. Attention to the 

biological condition of the site and surrounding lands also needs to be considered.  

For some reclamation plans, this can mean simply seeding the site with grass to 

cover the bare earth and prevent erosion (AESRD, 1995). For other situations, more-

involved reclamation activities are required, including an understanding of the soil types 
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and vegetation species present around the site as well as the environmental controls 

dictating vegetation growth.  

After the disturbed land has been transformed to a reclaimed state, the land needs 

to be monitored to identify any deviations between the reclamation plan and the current 

reclamation state. Monitoring is also conducted to ensure that plants and animals on the 

site are not adversely affected by either the reclamation itself or any contaminants left on 

the site. 

Burger (2008) identified nine steps for reclamation of a disturbed site. The first 

three steps take the form of a reclamation assessment where the ecosystems of 

surrounding lands are identified. The remaining six steps address the need for physical 

manipulation of the site, the selection of appropriate plants and animals, and the creation 

of a reclamation timeline that mimics the natural succession of vegetation on the site. 

While these steps are very thorough, they cannot be applied to every site and instead must 

be tailored to the site in question. Tailoring a site may be due to budgetary constraints or 

reclamation goals (i.e. different land-use),  

Creating a reclamation management plan is crucial for a successful reclamation 

campaign. Tailoring these plans to specific areas and disturbance types ensures that 

appropriate reclamation goals are addressed and met. 

2.2 Alberta Specific Reclamation Methods 

Upstream (i.e., site of resource extraction) oil and gas reclamation can fall into the 

three land-cover types, cultivated lands, native grasslands, and forested lands, each 

having different criteria for reclamation (AESRD, 2013 a,b, and c). Within each disturbed 

site, the following three parameters must be assessed: landscape, soils, and vegetation. 



 

15 

 

Cultivated lands and native grasslands are beyond the scope of this research, and within 

the context of forested land reclamation, the focus will be on vegetation. A summary of 

the vegetation parameters considered for reclamation assessment within forested lands is 

presented in Table 2.1. 

Table 2.1: Summary of the reclamation criteria for vegetation parameters of forested 

lands (courtesy of AESRD, 2011) . 

Assessment Parameter Forested Lands 

Species Composition Type and mix (woody and herbaceous) 

should be consistent with native species 

present and should meet reasonable land 

management objectives. 

Natural Recovery: stem count of 51 is 

required. 

Planted sites: stem count of 21 is required 

for the merchantable seedlings; a 

minimum of 2 growing seasons 

required after planting prior to 

conducting the vegetation 

assessment. 

Plant Height 

Plant Density 

Head/Pod/Tuber – Length 

Head/Pod/Tuber – 

Weight 

No criteria requirements. 

Litter No criteria requirements. 

Plant Health Plants should be healthy, signs of stress 

onsite should be comparable to those 

observed offsite 

Head/Pod/Tuber – Health No criteria requirements. 

Weeds Weeds present (i.e., composition and 

distribution) onsite must be comparable to 

offsite. Weeds must be managed as per the 

weed control act; restricted weeds destroyed 

and noxious weeds controlled. Must not 

impede landowner operability. 

1 A circular plot with a radius of 1.78 -m (10m2) is to be 

used for the assessment. 

From Table 2.1, plant height and density are the only structurally related criteria 

in the assessment parameters. However, observing reclaimed vegetation structure, such as 

canopy height and canopy cover, and comparing it to undisturbed vegetation structure, 
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can help regulators to determine if reclamation is proceeding normally or if further 

reclamation activities are needed. Additionally, vegetation structure parameters can be 

useful for enhancing species composition mapping using passive optical remote sensing 

(Jung, 2011; Puttonen et al., 2010; Dalponte et al., 2008; Hill and Thomson, 2005; Lefsky 

et al., 2001; Dubayah and Drake, 2000).  

2.3 Equivalent Land Capability 

The objective of ELC is to ensure that the ability of any land after a disturbance to 

support different land uses is similar to the ability that existed prior to the land that was 

disturbed. The above statement is a paraphrase of the definition of ELC in the 

Conservation and Reclamation Regulation (Government of Alberta, 1993). It further 

states that what defines ELC for a site must be determined by stakeholders. 

 The capability of the land refers to what the intended land-use of the site will be. 

Accordingly, in a forested region, the intended land-use might be a return to a forested 

area or it might be deemed that an ELC is a grassy meadow (OSRIN, 2011). The Alberta 

regulations regarding reclamation in forested areas are such that in order for ELC to be 

met, a previously forested area must be returned to a forested state unless an exemption is 

made (AESRD, 2013a). 

If an oil and gas company meets the criteria listed in the reclamation criteria for 

well-sites and associated facilities (AESRD, 2013a,b, and c) and has achieved an ELC, it 

can apply for a reclamation certificate, stating that they have performed reclamation on 

the site in question and that it has been returned to a productive state. Companies are 

liable for any issues relating to improper reclamation for 25 years after which liability 
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reverts to the Alberta Government. However, liability remains with the company for 

lifetime regarding any issues related to contamination (AESRD, 2012b). 

 Remote sensing science aims to assess what parameters about a target can be 

assessed from a distance. It can help with long-term monitoring efforts as mapping and 

monitoring of forests has been ongoing for over 60 years, and the methods used to assess 

forest parameters have been evolving and improving over that time span (Losee, 1942; 

Seely, 1949). The technologies, employed when applying remote sensing, are able to 

cover large geographical areas and can provide information about vegetation health and 

composition in a timely fashion. Remote sensing technologies have been used to monitor 

global forest change over time (Hansen et al., 2013), mine growth and reclamation 

(Townsend et al., 2009) and seasonal variability in vegetation health (Van Leeuwen, 

2008; Huete and Didan., 2004).  

2.4 Application of Remote Sensing to Reclamation 

Vegetation stress at a reclaimed site can be indicative of issues regarding improper 

reclamation practices or simply a need for further reclamation to be done. Additional 

reclamation can be needed due to residual effects of the disturbance or out-dated 

reclamation practices. Gauging the vegetation species development at a reclaimed site can 

help reclamation managers to assess moisture regimes, topographic controls and soil 

composition, because certain tree species prefer to grow in specific environmental 

conditions (Hosie, 1979). Additional information can be obtained about a reclamation site 

by observing it over a long period of time. These long-term monitoring studies help to 

account for variability within a site and present a more holistic view of the reclamation 

area by assessing if a site is following the established reclamation plan or not. 
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In order to help frame the use of remote sensing in reclamation management, a 

brief introduction to remote sensing is presented. Following the remote sensing 

introduction, literature that deals with vegetation assessment will be presented and will 

describe how these studies relate to reclamation monitoring. Emphasis will be placed on 

tree species mapping, as that is the stated objective of this thesis. However, attention will 

also be given to vegetation health monitoring, defined in this thesis as vegetation density, 

height, and canopy cover. Studies identifying long-term monitoring efforts for 

reclamation will also be presented.  

2.4.1 Remote Sensing Introduction 

Reflective optical remote sensing focuses on the interaction of vegetation to EMR 

in the visible (VIS; 400 – 700 nm), near infrared (NIR; 700 – 1000 nm), and short wave 

infrared (SWIR; 1000 – 2500 nm) regions. The response of vegetation to the incoming 

radiation is dependent on the internal structure and chemical composition of this material 

(Figure 2.1). Within the VIS region, EMR is used by healthy plants to facilitate plant 

growth by converting EMR into sugars through photosynthesis. Vegetation interactions 

within the NIR and SWIR regions are dominated by internal plant water content and the 

physical characteristics of the plant itself. By assessing the different spectral features 

within the response of vegetation canopies, inferences can be made to the health and 

species of the plant in question (Myneni et al., 1995). 
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Figure 2.1: Reflectance spectrum of photosynthetically active vegetation 

highlighting three different EMR regions as well chemical absorption features. 

2.4.2 Remote Sensing for the Purpose of Reclamation  

Remote sensing studies for reclamation management have focused on pipeline-

right-of ways in the oil and gas industry and mining activities (e.g., open pit mining and 

mine tailings). Um and Wright (1998) conducted research into monitoring vegetation 

succession along pipeline right-of-ways for the purpose of reclamation monitoring. They 

determined that using remote sensing as a tool to monitor large areas was a viable method 

of reclamation management. This approach is well suited for Alberta where many sites, 

spread out over large areas, need to be monitored. Other studies dealing with reclamation 

along right-of-ways used remote sensing to assess vegetation health as a proxy for 
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infrastructure problems (e.g., pipeline leaks; Gauthier et al., 2001) and to determine to 

what impact spectral resolution influences vegetation anomaly detection for the purpose 

of identifying pipeline leaks (Booth and Cox, 2009). 

Mining activities, in particular open-pit mining, disturb large areas of land and 

will require reclamation once mining activities have ceased. The ability of remote sensing 

to cover large tracts of land at medium (approximately 30 m) and high-spatial resolution 

(approximately 5 m), makes it an ideal monitoring tool for reclamation (Schmid et al., 

2013; Townsend et al., 2009; Lévesque and Staenz, 2008; Brown et al., 2005; Irons et al., 

1980).  

2.4.3 Tree Species 

Understanding the distribution of tree species within a forest can help reclamation 

managers with planning and reclamation following a disturbance (Plourde et al., 2007). 

Field surveys, aerial photo interpretation and digital satellite remote sensing are all means 

by which tree species distribution can be estimated. However, the former two are time 

consuming to plan and execute and cannot cover large areas in a timely manner as 

quickly compared to satellite remote sensing. It can provide timely data over a large area 

and is shown to be a good estimator of tree species and their distribution (Dalponte et al., 

2012; Galidaki et al., 2012; Heinzel and Koch., 2012; Vaughn et al., 2012; Puttonen et 

al., 2010; Dalponte et al., 2008; Peddle et al., 2004; Dennison and Roberts, 2003a; Martin 

et al., 1998; Roberts et al., 1998).  

For forest reclamation, identification of the tree species is important not only as a 

measurement tool to check reclamation success, but also as a way to help guide the entire 

reclamation strategy, including the ELC for a site. There are many remote sensing 
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techniques by which tree species can be assessed, but they generally fall into the two 

categories, discrete classification methods, whereby a pixel is assigned only to one class, 

and sub-pixel unmixing methods, whereby a pixel is assumed to contain a proportion of 

different spectral signatures, including but not limited to different tree species. Some 

examples of different approaches are presented below. 

The spatial resolution of a remotely sensed image can be a factor in determining 

the remote sensing techniques that will be used for reclamation monitoring. A lower 

spatial resolution, which is the smallest object on the ground that can be detected in an 

image, coupled with a discrete classification method can fail to observe tree species by 

only classifying the dominant spectral signature within a pixel. Conversely, a high-spatial 

resolution image coupled with a sub-pixel unmixing method can overwhelm an unmixing 

algorithm with too many different spectral signatures, thus, rendering the classifier unable 

to reliably determine tree species within the pixel. While these issues are not unique to 

tree species identification using remote sensing nor are they unique to reclamation 

management, they highlight a need for further studies investigating tree species mapping 

within the land reclamation framework.  

Nevertheless, tree species mapping using remote sensing technologies is a way for 

reclamation managers to track the progress of vegetation growth on a reclamation site. 

Understanding the type of tree species present at a site ensures that one of the criteria 

towards ELC is met. For a more in-depth assessment of the vegetation health at a 

reclamation site, a vegetation health-monitoring program is needed. 
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2.4.4 Vegetation Health Monitoring  

Vegetation can be affected by natural stressors such as competition, fire, and 

insects (Goodwin et al., 2008; Tømmervik et al., 1995; Carter, 1993) or anthropogenic 

stressors, such as vegetation isolation through harvesting, oil and gas activities, and 

climate change (Bachelet et al., 2001; Pezeshki et al., 2000; Halpern and Spies, 1995). 

Remote sensing provides the tools by which quantitative measures of vegetation health 

affect the spectrum and can be assessed. 

In a study on monitoring vegetation stress after a petrochemical spill, Li et al. 

(2005) investigated polynomial fitting and Spectral Mixture Analysis (SMA) as means of 

detecting vegetation stress. The authors used two hyperspectral Airborne Visible / 

Infrared Imaging Spectrometer (AVIRIS) datasets, one prior to the spill and one post 

spill. They found that while the fitting methods were inconsistent in detecting a spectral 

change, SMA was able to show a decrease between 10 % and 30 % in vegetation 

abundance. The authors attributed this decrease to vegetation stress due to a change in 

vegetation cover. 

The spectral profile of vegetation can be examined to derive vegetation stress 

indicators, such as chlorophyll content, Leaf Area Index (LAI), and water content (Wang 

and Li. 2011; Delegido et al., 2008; Zarco-Tejada et al., 2001; Serrano et al., 2000; 

Peddle et al., 1999).  

Remote sensing for vegetation health assessment has proven to be a useful tool for 

large and small vegetation monitoring projects and will continue to be. This is evident by 

the recent satellite launches from the Landsat and Sentinel remote sensing programs of 

the National Aeronautics and Space Administration (NASA) in collaboration with the 
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United States Geological Survey (USGS) and European Space Agency (ESA), 

respectively. An understanding of the vegetation health in and around a reclamation site 

can inform managers about the efficiency of their reclamation practices. However, in 

order to understand vegetation health trends and how they can be implemented in 

reclamation management, a series of measurements over time is required. 

2.4.5 Temporal Studies 

Time series analysis of remote sensing data is able to provide a history of changes 

within an area and can be useful for reclamation managers in charting site development. 

A multi-temporal approach was used by Townsend et al. (2009) to monitor and map land-

cover as it changed from an active mine site to reclaimed land. Emphasis was placed on 

the use of good ancillary Geographic Information System (GIS) data such as land-cover 

polygon classes in order to help identify how land cover changed over time and to chart 

the trajectory of reclamation management practices. The authors found a reduction in 

surface mine areas using the remotely sensed images. Furthermore, the authors were able 

to quantify the reduction in surface mine areas between image acquisition dates. A similar 

approach was used by Champagne et al., (2004) using the Hyperion hyperspectral sensor 

and Landsat 5 multispectral sensor to monitor vegetation health over reclaimed mine 

areas in Sudbury, Ontario. The authors were interested in the ability of remote sensing to 

provide reliable land-cover information over long time periods. Their results showed that 

remote sensing produces information on land cover that is consistent with field based 

campaigns. 

Remote sensing is well suited for use in forest reclamation management and 

monitoring projects as it provides the ability to monitor environmental receptors, such as 



 

24 

 

tree species and vegetation health. Both of which are able to provide indications to the 

status of previous reclamation practices and highlight the need, if any exists, for further 

reclamation management. Furthermore, by capturing remotely sensing images of a long-

time period, trends in progression of reclamation can be evaluated. 

2.5 Remote Sensing and Remote Sensing Methods 

Remote sensing systems can capture radiance data that needs to be processed 

before reliable information can be retrieved. This involves the calibration of the radiance 

data and correcting for atmospheric attenuations, geometric alignment due to topographic 

effects, and sensor artifacts, such as smile and keystone, if any are present. The 

processing procedure converts the data received by the sensor into physically meaningful 

values such as reflectance. These steps are known as pre-processing, because they create 

data that will be further processed using dedicated algorithms to extract information 

related to the surface condition. 

The electromagnetic energy that is reflected and emitted by the Earth’s surface 

that reaches a remote sensing system is affected by some atmospheric gases (e.g., H2O, 

CO2) and scattering effects by particulates in the atmosphere. The signal reaching the 

sensor is recorded as a digital number (DN). It is consistent within the image and between 

spectral bands with respect to illumination angles and corrected for sensor artifacts such 

as keystone and smile. However, it is not consistent between different acquisition dates 

nor is it consistent between different sensors, (Franklin, 2001).  
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Converting the DN to at-sensor radiance helps to compare images from different 

sensors and different dates. This is accomplished by using calibration coefficients 

(published by the sensor manufacturer) to calculate the at-sensor radiance as follows 

(Teillet, 1986) : 

 𝐿𝑠 = 𝑎0 +  𝑎1𝐷𝑁, (2.1) 

 

where 𝐿𝑠 is the at-sensor radiance in (W m-2 μm-1 sr-1), 

𝑎0 (offset) and 𝑎1 (gain) are the sensor calibration coefficient and offset, and DN is the 

digital number.  

To remove atmospheric scattering and absorption effects, correction algorithms 

and programs, such as the Moderate resolution atmospheric Transmission) (MODTRAN) 

code, are applied to the at-sensor radiance data. Through these algorithms, surface 

reflectance can be computed (Gao et al., 2009; Liang et al., 2001; Berk et al., 1999; 

Richter, 1997). The conversion to reflectance produces a physically meaningful measure 

in order to compare images from different periods in time and under different 

atmospheric conditions. Once a physical measure for a pixel has been computed, remote 

sensing products that depict information about land condition, such as change over time 

or concentrations of chemical components, can be created. 

Geometric alignment of pixels within an image is performed so that users can be 

sure that the data recorded by a sensor at a specific location is the same as if a user 

physically visited that location (Jensen, 2009). Geometric correction is also used to 

correct for topographical variation within a scene (Congalton, 1991a). Inherent in most 

sensors are artifacts, which affect the recorded signal. Examples include pixel dropout 

and image striping (Gómez-Chova et al., 2008). The latter is found in Landsat 
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Multispectral Scanner (MSS), Landsat Thematic Mapper (TM), GOES Visible-Infrared 

Spin-Scan Radiometer (VISSR), SPOT pan, and Hyperion data (Sun et al., 2008). 

Correcting for these artifacts requires algorithms, which look for patterns within the data 

and attempt to correct it by interpolating new pixel values from surrounding unaffected 

pixels (Gao et al., 2009). The new pixel values then replace the noise-affected pixels. If 

the image is left uncorrected, improper and incorrect data can be used for image 

classification and for the retrieval of biophysical and biochemical parameters.  

2.5.1 Hyperspectral Remote Sensing 

Hyperspectral sensors, like CHRIS, typically have more than 40 spectral bands 

that are able to measure EMR in contiguous narrow spectral regions. Data from these 

sensors highlight subtle variations in the spectral response curves of a given material that 

would otherwise be hidden when using multispectral sensors (Lee et al., 2004).  

Due to the large number of spectral bands present in hyperspectral images and the 

fact that hyperspectral sensors often, but not exclusively, capture high-spatial resolution 

data, attention must be given to the processing steps involved. A high degree of 

sophistication and engineering goes into designing of hyperspectral sensors and with that 

a higher chance of sensor artifacts such as smile and keystone occurs. Smile is a property 

whereby the center wavelength of a band is shifted for each column in the image. Thus, a 

specific band in an image will not have the same wavelength and the image will be 

spectrally distorted (Neville et al., 2008). Keystone is a property whereby a pixel within 

an individual band is spatially shifted and does not align properly with pixels in other 

bands, thus, spatially distorting the image (Yokoya et al., 2010; Neville et al., 2004).  
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In addition to the sensor properties that can cause problems in hyperspectral image 

processing, the higher spectral dimensional nature of hyperspectral imagery lends itself to 

issues, whereby the increased number of spectral bands for a target decreases the 

resolving power of a classifier (Chi et al., 2008; Canty, 2006). Because there are more 

data available to a classifier and that data can be highly correlated, the amount of data 

needed to reliably determine a class for a pixel grows. 

However, the subtle spectral variations present in hyperspectral imagery increase 

accuracies when compared to multispectral imagery as shown in the literature in studies 

investigating species composition (Dalponte et al., 2013; Galidaki et al., 2012; 

Goodenough et al., 2003b). Furthermore, the subtle spectral variations present in 

hyperspectral imagery can help to identify vegetation health and stress. 

2.5.2 Image Classification 

Classification of remote sensing imagery is performed in order to place pixels 

with similar spectral characteristics into classes that are meaningful and of use to a user. 

Land-cover and land-use maps are remote sensing products, which are created using 

classification procedures (Foody, 2002). These products can be used by users in 

determining land-use policies and for decision making, such as wetland classification 

(Ozesmi and Bauer., 2002), Mountain Pine Beetle infestation (Wulder et al., 2006), and 

grassland inventory (Xu et al., 2014).  

Image classification falls into three categories, supervised, unsupervised, and a 

hybrid that combines the former two. In a supervised classification system, the user with 

a priori knowledge of the area under investigation selects regions of interests (training 

samples) in the image that the analyst is confident belongs to a certain class (Jensen, 
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2009). The selected regions, or training areas, are then fed to the classifier to assign pixels 

in the rest of the image to the appropriate classes based on factors such as similarity 

between the pixel’s DN value and the average class DN value. 

An unsupervised classification system attempts to spectrally separate pixels and 

group them into classes without any user guidance (Lillesand et al., 2004). This process is 

often run when there is not enough knowledge about an area and is sometimes used in 

order to investigate potential training areas for supervised classifiers. However, this 

creates a conundrum, because an unsupervised classifier may define two or more classes 

that are, from a user’s perspective, in fact one class, but simply have a large degree of 

spectral heterogeneity. The bottleneck of unsupervised classification systems is the 

labelling of the classes. Because unsupervised classifications do not label classes, it is up 

to the user to apply meaningful labels either through the use of spectral libraries or 

through ground verification. 

Iterative Self-Organizing Data (ISODATA) and K-means clustering are examples 

of unsupervised classifiers. Both of these classifiers are iterative processes whereby pixels 

are assigned to a class based on the closest class mean within the feature space. In 

ISODATA, a class mean will change at each iteration until a maximum number of 

iterations is run or a tolerance threshold, the smallest distance a pixel will move to a class 

mean, is reached. K-means requires clusters to be defined prior to running the algorithm 

(Duda and Hart, 1973), while ISODATA does not. ISODATA is a modification of K-

means, but allows for classes to be split and merged at each step based on thresholds. For 

example, using ISODATA, a class can be split into two different classes if the standard 

deviation of the mean associated with the original class exceeds a defined threshold. 
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Alternatively, a class can be merged if the number of pixels within the class is below a 

predefined threshold (Ozesmi and Bauer., 2002). For example, a Balsam Poplar tree and 

an Aspen Poplar tree class could be merged to a Poplar tree class. 

Classifying an image, as accurately as possible, is an objective of remote sensing 

projects. An accurately classified image allows for comparisons over time by observing 

how a pixel’s class assignment changes. Accordingly, patterns in the distribution of a 

class can be realized. Classifications are also useful in determining the areal coverage of a 

class within a scene by summing the area of the pixels assigned to a certain class.  

2.5.2.1 Support Vector Machine (SVM) 

SVM is a supervised classification method that attempts to find the boundary, 

called the hyperplane, between classes with the least error possible (Huang et al., 2002). 

Data points that contribute to the definition of the hyperplane are called support vectors 

and these are often the most difficult data points to classify. In remote sensing, this is 

accomplished by using training pixels that are close to the boundaries of a class in order 

to define that class. SVM is well suited to data that do not have a normal distribution and 

to reference data with a limited number of training pixels (Foody and Mathur, 2004 and 

2006 ). 

The caveat of using supervised and unsupervised classification methods is an 

assumption that a pixel only contains one tree species. In the case of medium to low-

spatial resolution imagery, this is not always the case. In order to reliably determine the 

tree species at a reclamation site and to conform to any reclamation guidelines, other 

methods of image classification, such as spectral unmixing, may need to be explored.  
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2.5.2.2 Spectral Unmixing 

Determining the proportions of spectral signatures that contribute to the spectral 

response of a pixel is often accomplished through unmixing algorithms, such as SMA 

(Adams et al.et al., 1993) and Multiple Endmember Spectral Mixture Analysis (MESMA; 

Roberts et al., 1998). These two unmixing methods derive the relative abundance of 

features within a pixel based on the linear combination of spectral returns from pure 

targets, called endmembers (Figure 2.2). 

 

Figure 2.2: Representation of the physical constituents and spectral profile of a 

pixel with three contributing endmembers (EM). 

SMA is a technique used to identify the proportion of a pixel that is occupied by a 

set of endmembers (Adams et al., 1993). It assumes that each pixel to be unmixed within 

the image contains either some proportion of the endmembers selected by a user and/or an 

unknown constituent (Lu and Weng, 2004).  

The SMA model is defined as follows: 

 

𝑅𝑖 = ∑ 𝑓𝑘𝑅𝑖𝑘 +  𝑒𝑖

𝑁

𝑘=1

 (2.2) 
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where 𝑅𝑖 is the reflectance of a spectral mixture for a given pixel in band i. It can 

be modelled as the sum of the reflectance Rik of the kth endmember in band i of N image 

endmembers. A weighting factor, 𝑓𝑘, represents the fraction of endmember k, and 𝑒𝑖 is the 

band residual error.  

The output from the unmixing approach is an image for each endmember that 

contains its abundances (fractions) for each pixel. The fractions that represent the 

endmembers can vary from an unconstrained model 

 −∞ < 𝑓 < ∞ (2.3) 

to a fully constrained model. 

 0 ≤ 𝑓 ≤ 1 (2.4) 

 

where 𝑓 is the fraction of an endmember. An unconstrained model allows for the 

sum of the fractions of endmembers that make up a pixel to represent more than 100 % of 

that pixel, while in a fully constrained model the fractions of endmembers that make up a 

pixel sum to 100 %. 

An assumption when using SMA is that all image endmembers are accounted for 

and that the spectral homogeneity of the endmembers does not change across the spatial 

extent of the image (Roberts et al., 1998). Problems arise when one or more of the 

endmembers are absent from a pixel or there is spectral variation within an endmember. 

The former can occur when utilizing a remotely sensed image with large ground sampling 

distances, such as the 30-m Landsat Operational Land Imager (OLI) or the 17-m CHRIS 

data. The latter can occur when selecting endmembers for discrete groups, such as a 

single-tree species. Individual trees can yield different spectral signatures even though 

they are of the same species. The different spectral signatures can be attributed to 
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differences in local environmental conditions, growing rate, topography and 

viewing/illumination geometries. Each of which will impact the interaction with 

incoming EMR determine the outgoing radiation in different ways. 

 An improvement has been made to the SMA algorithm through the development 

of Multiple Endmember Spectral Mixture Analysis (MESMA), which accounts for 

spectral differences within endmembers across the spatial extent of the image (Roberts et 

al., 1998). Instead of using one model for the entire image, MESMA allows for multiple 

models to be used that contain different numbers of endmembers. For example, in a three-

endmember model, one of the endmembers will consist of photometric shade, one 

endmember may consist of water and the third endmember may consist of vegetation. 

Within the water endmember, there will be sub-types (clear water, water with sediment, 

and water with algae) that are used to unmix the water endmember. And within the 

vegetation endmember the subtypes may be tree, grass, and shrub. Thus, a general outline 

is applied (shade, water, vegetation), but the endmembers within each category can vary. 

Using this approach, the spectral heterogeneity of the endmembers is accounted for. 

Multiple different models (combination of endmember sub-types) can be created to 

unmix the image, hence, the name MESMA. This method of spectral unmixing has been 

applied to mapping Chaparral in California (Roberts et al., 1998), shrubs and grasses in 

New Mexico (Thorp et al., 2013), and trees and shrubs in Ontario (Sonnentag et al., 

2007). However, its use in mapping boreal tree species is limited and, thus, further 

investigations are required (van der Sluijs, 2012).  

Utilizing MESMA for reclamation monitoring requires that spectral signatures for 

each tree species be acquired. However, due to the confusing nature of spectral signatures 
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between similar tree species (Price, 1994), the use of a hyperspectral sensor is beneficial 

in order to satisfactorily discriminate tree species that may be present within a pixel 

(Dennison and Roberts, 2003a; Roberts et al., 1998). This is accomplished by identifying 

subtle variations in the spectrum of tree species, which are masked when using a 

multispectral sensor with wider band widths.  

2.5.3 Accuracy Assessment 

Assessing the accuracy of classifications is an important step in the image 

classification chain. This can be accomplished through the use of an error or confusion 

matrix (Congalton, 1991a). In this step, pixels from the classified image are compared to 

known reference pixels. Accuracy measures are calculated including: overall accuracy, 

commission and omission errors, and kappa coefficient (Congalton, 1991b). These 

measures will be expanded on in Sections 3.4.4 and 3.5.4 

2.5.4 LiDAR 

LiDAR remote sensing systems are active systems that rely on emitted and, 

subsequently, reflected EMR in order to obtain height and in some cases, intensity data 

about a target (Dubayah and Drake, 2000). Intensity is the return strength of the LiDAR 

beam and is based, in part, on the reflectivity of a target. The information that LiDAR 

sensors acquire allows for the determination of the distance from the sensor to the target. 

LiDAR systems on-board an aircraft carry an Inertial Measurement Unit (IMU) and a 

Global Positioning System (GPS) in order to accurately measure the sensor’s location 

(Lim et al., 2003). The IMU is used to record airspeed, roll, pitch, and yaw, while the 

GPS is used to determine the latitude, longitude, and flying height of the aircraft. 
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Combining the IMU and GPS data with LiDAR measurements allow for the accurate 3-

dimensional location of a LiDAR data point (Figure 2.3). A LiDAR system samples the 

ground by using a laser beam pulsed onto a mirror to scan the ground from side to side. 

The emitted light pulses interact with the ground and the number of light pulses that are 

returned to the sensor over a given time period and over a given unit area are referred to 

as the point density of the LiDAR system (Wulder et al., 2008a). The point density is a 

function of the aircraft speed, elevation and instrument scan angle. 

 

Figure 2.3: LiDAR sensor set up and data acquisition. 

Two types of LiDAR systems can be employed, a large footprint waveform 

LiDAR or a small footprint discrete form LiDAR (Figure 2.4). Waveform LiDAR 

typically has a footprint between 15 m and 25 m and continuously records the returning 

laser (Mallet and Bretar, 2009). When the laser pulse interacts with structural components 

of the vegetation (leaves, branches, or gaps), a peak or trough is recorded on the 
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continuous pulse. This allows for a more complete picture of the structure of the 

vegetation, because the subtle changes as well as abrupt changes are recorded. Discrete 

form LiDAR, typically with a footprint size of 20 – 80 cm, only records the peaks of the 

returning light pulse (Evans et al., 2009). The light pulse emitted from the sensor interacts 

with the vegetation at least once, depending on the complexity of the vegetation canopy. 

This creates differing return times for the same light pulse. The number of returns that are 

captured can be useful in determining the structure of vegetation. The first return is useful 

in creating surface models that depict canopy distribution (Dubayah and Drake, 2000). 

Subsequent returns can show the internal structure of vegetation and can help reveal 

vegetation density and canopy fractional cover (Hopkinson and Chasmer, 2009). The last 

return is useful in creating Digital Terrain Models (DTM) and Digital Elevation Models 

(DEM) (Maune, 2007). 

 

Figure 2.4: Discrete and waveform LiDAR pulses in a forest. The high peaks are 

captured as discrete points and the peaks and troughs represent the intensity of the 

return waveform LiDAR pulse from the vegetation. 
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Processing of LiDAR data incurs a high computational cost as the number of data 

points is often in the millions. For this reason, specialized algorithms are used to create 

accurate LiDAR data products (Brandtberg et al., 2003; Kraus and Pfeifer, 2001). Two of 

the more commonly created products for forestry and environmental monitoring include 

canopy height and fractional cover. 

2.5.5 Canopy Fractional Cover 

Fractional cover is an important measure of forest structure that relates to tree 

photosynthetic productivity and health (Jennings et al., 1999). Assessing fractional cover 

at a forest stand scale can help to show trends in health that can be used alongside other 

reclamation parameters to provide a more complete understanding of an oil or gas site’s 

reclamation condition. Fractional cover, 𝐹𝑐, estimates are usually created by dividing the 

total number of LiDAR returns from the canopy above a specified height, 𝑅𝑐𝑎𝑛𝑜𝑝𝑦, by the 

total number of all LiDAR returns, 𝑅𝑡𝑜𝑡𝑎𝑙 (Hopkinson and Chasmer, 2009). This can be 

summarized as follows:  

 
𝐹𝑐 =

∑ 𝑅𝑐𝑎𝑛𝑜𝑝𝑦

∑ 𝑅𝑡𝑜𝑡𝑎𝑙

 . (2.5) 

  
 

2.5.6 Canopy Height 

 Height measurements of forest structure can occur at either the individual tree 

level or at the stand level and are an important variable for species classification studies 

and forest productivity models because different tree species can have different average 

heights (Anderson et al., 2008; Dalponte et al., 2008; Plourde et al., 2007; Popescu and 

Wynne., 2004). The direct measurement of height from LiDAR data occurs when a laser 
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pulse interacts with the tree canopy and returns to the LiDAR sensor. The height is 

derived by subtracting the ground elevation above a reference point, usually the ground 

surface (DEM), from the canopy height above a reference point (DSM), as follows: 

 
𝐻𝑐 = 𝐷𝑆𝑀 − 𝐷𝐸𝑀 . (2.6) 

 

 However, most LiDAR sensors do not acquire measurements with high enough 

point densities required to accurately measure the tree height and, subsequently, 

underestimate the true height of trees (Glenn et al., 2011; Zimble et al., 2003; Næsset and 

Økland, 2002; Popescu et al., 2002). This is due to the pulses interacting with the tree 

without hitting its apex (Figure 2.5).  

 

Figure 2.5: Interaction of LiDAR pulses and tree structure.  

Holmgren (2004) conducted a study in which the ability of medium sized footprint 

LiDAR systems in estimating forest height was investigated. Specifically tree heights at 
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the plot level for a boreal forest in southwestern Sweden was explored. Using a basal-

area-weighted model, the study was able to correlate LiDAR-derived mean tree heights to 

field- measured tree heights with a coefficient of determination, R2, of 0.995. Another 

study, Næsset and Økland (2002), used a similar method and were able to achieve an R2 

between 0.47 and 0.91 for plot sizes ranging from 100 m2 to 200 m2. The large difference 

in the R2
 was attributed to different site locations and field measurement techniques used 

in the comparison with the LiDAR-derived height measurements.  

In relation to reclamation monitoring, the tree height can be an important variable 

in attempting to distinguish tree species (Puttonen et al., 2010) and in assessing whether 

tree growth over time meets expectations.  

Remote-sensing-based information about forest structure can reveal information 

about the health of forests through direct and indirect measures and constitutes an 

important variable in forest productivity models (Wulder, 1998; Running et al., 1994). 

LiDAR remote sensing in particular is better able to provide structural information than 

passive optical remote sensing as it collects information in three dimensions. The 

information it provides has shown to be a good indicator of forest health (Solberg et al., 

2004; Lim et al., 2003). 

2.6 Summary 

Understanding the history of reclamation and how it is applied to anthropogenic 

disturbances today, helps to guide monitoring efforts that deal with the long-term effects 

of a disturbance. A successful reclamation plan is the end goal of a cumulative 

environmental monitoring program, but how the reclamation plan is carried out varies 

depending on local customs and requirements. Nevertheless, the general steps, such as 
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assessing a reclamation site, performing the reclamation and finally monitoring the 

reclamation, are universal. Because Alberta is a province rich in natural resources, 

reclamation activities within the province are geared towards the natural resource 

extraction industry, specifically oil and gas. 

Remote sensing is uniquely positioned to be of benefit to the reclamation industry 

as it is able to provide large-area coverage in a short time period and has the ability to 

revisit a site over and over again. The literature regarding remote sensing applications for 

environmental monitoring is vast and its outcomes can be utilized for reclamation 

monitoring. The processing steps required to produce meaningful information from the 

remotely sensed data are well documented, but have not been readily applied to 

reclamation monitoring in Alberta’s oil and gas sector. Applying techniques like MESMA 

and SVM to tree species classification will assist reclamation efforts by documenting the 

occurrence of particular tree species and will help reclamation managers in determining 

the corrective course of action if necessary. 
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Chapter 3  

Methods 

3.1 Introduction 

This chapter will provide the methods by which species mapping can be 

accomplished in the Cold Lake area in support of reclamation monitoring. Hyperspectral 

remote sensing will be assessed alone and in conjunction with LiDAR remote sensing to 

meet this objective. 

3.2 Study area 

The study area is located west of Cold Lake, Alberta in the Cold Lake – Beaver 

River Basin (Figure 3.1). The area lies within the Boreal Forest Natural Region and is 

characterized by upland forests with wetlands in lower elevation areas. Elevation ranges 

from 500 m – 700 m above sea level with the topography generally flat with a slight 

undulation. The surficial geology is composed of glacial derived lacustrine and glacial till 

on top of cretaceous shale bedrock. The soils in the region are comprised of Luvisolic 

soils in forested areas and Gleysolic soils in wetland areas (Natural Regions Committee, 

2006). The climate is humid continental, averaging approximately 322 mm per year of 

precipitation (Environment Canada, 2013). 

The distribution of tree species within the area follows topographical, 

environmental, and anthropogenic controls, such as drainage areas, soil conditions, and 

reclamation areas. Mixed forests of Trembling Aspen (Populus tremuloides Michx.), 

Balsam Poplar (Populus balsamifera L.), and White Spruce (Picea glauca (Moench) 

Voss) comprised the upland forested areas, while Black Spruce (Picea mariana (Mill.) 
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BSP) and Tamarack (Larix laricina (Du Roi) K. Koch) populate the low-lying wetland 

areas. Jack Pine (Pinus banksiana Lamb.) and Lodge Pole Pine (Pinus contorta Loudon) 

can also be found, which are common in well-drained sandy soils (Natural Regions 

Committee, 2006).  

The study area sits on top of the Cold Lake oil sands and as a result, ongoing oil 

and gas operations (well pads, pipeline right-of-ways, lease roads) are within the study 

area boundaries. 

 

Figure 3.1: Cold Lake study site. Geographic center coordinates of the test site are 

54°38'8.86" N, -110°31'35.186" W. 

3.2.1 Test Plot Selection 

The selection of test plots was directed by the location of certified reclaimed well-

sites within the Cold Lake area. Two test plots were set up for each reclaimed well-site, 

one on the well-site and one at a minimum of 60 m (reference site) away from the well-
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site boundary. An average well-site is approximately 100 m x100 m and has compacted 

gravel as a base (Figure 3.2).  

      

Figure 3.2: Example of an average well-site with a small facility (in red) to the left 

of the wellhead (in black). A representation of the well-site is to the left of the 

image with an example of a well-site plot (bottom black square) and reference plot 

(top black square) (not to scale).  

A 60-m distance was chosen so that the reference sites were at least one pixel 

away from the edge of well-sites when viewed using CHRIS satellite imagery. The 

Alberta Vegetation Inventory (AVI; AESRD, 2012a) and well reclamation certification 

dates were used to ensure that different forest structures and reclamation ages were 

sampled. 

3.2.2 Field Sampling Method 

The field protocol adopted for this study is based on guidelines established by 

Canada’s National Forest Inventory (CFS, 2008). Test plots of 20 m x-20 m were 

established, and the geographic corners and centers of the plots were surveyed using a 

handheld GPS device. The vegetation characteristics for both over-storey and under-

storey were recorded (Figure 3.3). When the test plot was located in a mature tree stand, a 
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10-m x 10-m subplot was established for tree characterization. Tree height, Diameter at 

Breast Height (DBH), and species were recorded for every tree within the subplot and the 

number of trees (density) within the plot was tallied. For young regenerating tree (below 

1.3-m), mostly located in reclaimed well-sites, a 7-m x 7-m subplot was established 

whereby the tree structure was characterised using the same methods as for the 10-m x 

10-m plot. A total of 24 certified reclaimed well-sites and 24 reference sites were 

characterized during the field campaign. However, only 32 sites in total were within the 

CHRIS image and airborne LiDAR data coverage. The original intent was to use airborne 

imagery covering all 48 sites. However, due to image delivery delays, the CHRIS data 

were used exclusively and only covered 32 sites. Field data were acquired in order to 

create accurate training and validation samples for the remote sensing applications like 

spectral unmixing and image classification techniques used in this study. 

  

Figure 3.3: Land-cover, species, and structural characteristics of a reclaimed well-

site (left) and reference site (right). The well and reference sites are dominated by 

Trembling Aspen with a Balsam Poplar mix with the reference site having 

considerable undergrowth. 

Hemispherical photographs were taken at all sample sites following the Validation 

of Land European Remote sensing Instruments (VALERI) Protocol (VALERI, 2014) in 

order to determine canopy fractional cover at each site. For forested areas, two sets of 13 
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images were collected with the lens facing downward and upward to characterize the 

understorey and overstorey, respectively (Garrigues et al., 2002). The images were spread 

around the field site as demonstrated in Figure 3.4. 

 

Figure 3.4: Hemispherical photograph locations acquired in a 20-m plot using the 

VALERI protocol. Images were captured in a North/South and East/West 

orientation. 

The hemispherical photographs were processed using the CAN-EYE software 

(INRA, 2013), following guidelines established in the user manual (Weiss and Baret, 

2010). Photographs were initially masked when operators or field equipment were visible 

in the image. Training pixels were used to grow regions that corresponded to vegetation, 

non-vegetation, and sky (or soil), which were then visually assessed to ensure they fell 

into the correct class (Figure 3.5). 
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Figure 3.5: Hemispherical photograph (left) and classified image using the CAN-

EYE software (right); black corresponds to tree, white to sky or soil (depending 

on the orientation of the image), and grey is mixed. 

The gap fraction was calculated within a solid angle defined by the viewing zenith 

and azimuth angle intervals for each image. The gap fractions around the nadir direction 

derived from the 13 processed images were then averaged for the entire plot.  

The fractional cover, fCover, was calculated as follows: 

 
𝑓𝐶𝑜𝑣𝑒𝑟 =  1 −  𝑃(0) , (3.1) 

 

where P(0) is the gap fraction at nadir. In the case of canopy-cover estimations, 

the gap fraction for a given viewing zenith and azimuth angle is the probability that a 

beam of light will penetrate the canopy without interaction with vegetation elements 

(leaves, branches). It is calculated using a Poisson model as follows: 
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𝑃(𝜃) = (

−𝐺(𝜃,𝛼)𝑃𝐴𝐼𝑒𝑓𝑓

𝑐𝑜𝑠𝜃
) , (3.2) 

  

where P(θ) is the gap fraction at the viewing zenith angle θ. In this case, the zenith 

angle varies between nadir (0°) and the edge of the processed hemispherical image (57°). 

G(θ,α) is the leaf angle projection and θ and α are the average leaf angle and zenith angle 

respectively. PAIeff is the effective plant area index (Cook et al., 2009). The CAN-EYE 

software uses the 0-10 zenith angle interval to calculate fCover (Weiss and Baret., 2010). 

A simple triangulation using an inclinometer and measuring tape was used to 

estimate the height of each tree above approximately 2-m (above the height of an 

extended hand). Below 2-m, the height was measured using a tape measure, whereby one 

end was held against the ground and the other measured to the tallest woody part of the 

tree. The species composition within each plot was determined by counting the number of 

trees per species within the plot boundaries. 

3.3 Remotely Sensed Data 

Remote sensing data, including airborne and satellite hyperspectral imagery as 

well as airborne LiDAR, were captured for this study and used to identify tree species 

distribution. Techniques used to derive information from the LiDAR and hyperspectral 

data will be discussed including the steps required to process the data into a useable form 

prior to information extraction.  
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3.3.1 Ancillary Data 

Airborne hyperspectral imagery was captured at the same time as the LiDAR data 

using the Airborne Imaging Spectrometer for Applications (AISA) sensor. However due 

to late delivery, the hyperspectral data were only used for visual assessment in this study. 

Data preprocessing, georeferencing and atmospheric correction, were performed on the 

data by the data provider, Centre for Applied Remote Sensing, Modelling, and Simulation 

(CARMS)/University of Victoria. LiDAR data captured in 2006 and licensed through 

Airborne Imaging1 by AESRD was used to investigate and highlight structural differences 

between 2006 and 2012. The LiDAR processing method discussed in the next section was 

applied for both 2006 and 2012 LiDAR data. 

3.3.2 Airborne LiDAR Data 

Airborne LiDAR data were captured on August 11th and 12th, 2012 over Cold 

Lake, Alberta at an altitude of 1500 m above ground. An area of approximately 270 km2 

was imaged with a relative horizontal accuracy of 15 cm. The average point density of the 

LiDAR data was approximately 2.27 pts/m2. The data were delivered in tiles from 

CARMS/University of Victoria with geometric corrections and outlier reduction 

procedures already applied. Thus, no preprocessing was performed on the LiDAR tiles. 

From the captured LiDAR data, a bare earth model, a canopy height model, and a canopy 

fractional cover model were created.  

                                                           
1Airborne Imaging Inc. <http://airborneimaginginc.com/> 
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3.3.2.1 Bare Earth Model 

A bare earth model was created from the processed LiDAR point cloud data using 

the FUSION/LDV software (McGaughey, 2007). The ground-filter tool, an algorithm 

developed by Kraus and Pfeifer (1998), was used to estimate the bare earth by means of a 

linear prediction.  

 
𝑃𝑖 = {

1
1

1+(𝑎(𝑣𝑖−𝑔)𝑏)
0

 

𝑣𝑖 ≤ 𝑔
𝑔 <  𝑣𝑖 ≤ 𝑔 + 𝑤 

𝑔 + 2 < 𝑣𝑖

, (3.2) 

 

where 𝑃𝑖 is the weight to be applied, 𝑣𝑖  are the residuals from the terrain and 

vegetation points, g is a shift value that applies a weighting to a point in order to pull it to 

a surface, w is a threshold value that determines whether a point will have an influence on 

the surface, and a and b determine the steepness of the weighting function.  

It first creates a surface that is between the last recorded point and the first 

recorded point. Applying user defined parameters, the algorithm iteratively computes a 

new surface by applying weights to the data points that pull the surface down if it is 

above a certain height and raise the surface if it is below a certain height.  

Default values of 1.0 and 4.0 were used for the a and b parameters. The 

implementation of the algorithm within FUSION has default parameters that have been 

shown to work well for most surfaces (McGaughey, 2007). However, for this study the g 

parameter and the w parameter were changed to -0.1 and 0.5 respectively (numbers are 

unitless). These values were determined empirically in order to produce a surface that 

matched the 2006 LiDAR data.  

The 2006 bare earth LiDAR data were assumed to be correct as the data were 

provided, already processed, by AESRD. The algorithm was iterated for 5 turns and a 3 x 
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3 smoothing filter was applied on each run to produce the final bare earth model. The 

model was then transformed to a raster with 2-m spacing, because the average point 

density was 1.6 pts/m2. 

3.3.2.2 Canopy Height Model (CHM) 

The CHM was created by subtracting the bare earth elevation points from the first 

return of the raw LiDAR point cloud, normalizing the canopy heights to a common 

baseline. This allows the model to report vegetation heights as if they were measured on 

the ground instead of reporting them in metres above sea level. For this experiment, a 17-

m pixel was used rather than the 34 m pixel of the Canopy Surface (CS) and CHRIS 

datasets in order to better capture the maximum vegetation height present on the ground. 

A similar approach was used by Næsset (1997) to determine tree stand heights in 

Norwegian forests using grid sizes of 15 m – 30 m. A 17-m pixel was used, because it can 

easily be resampled to 34-m in order to be integrated with the CHRIS and CS datasets. 

This was accomplished by aggregating four 17-m pixels and averaging their cell values to 

create the new 34-m cell value. The resulting height values were stretched between 0 and 

1 using the minimum and maximum tree heights in the entire dataset. This was done in 

order to match the scale of the CHRIS dataset and the CS dataset. 

3.3.2.3 Canopy Surface (CS) 

The CS creates a surface from the height normalized LiDAR point cloud produced 

from the CHM. It was used to estimate the canopy closure of a surface that varies 

between 0 % and 100 %. The model calculates canopy closure by dividing the total 

number of LiDAR returns above a height threshold by the total number of returns in an 



 

50 

 

area. For this study, a height break of 1.3 m was used during processing in order to filter 

out returns related to low grasses and shrubs. A 34-m raster with was created in order to 

align the canopy closure map with the GSD of the CHRIS imagery. The canopymodel 

function in the FUSION/LDV software was used to create this product. 

3.3.3 Spaceborne Hyperspectral Data 

ESA’s experimental sensor, CHRIS, was used to collect hyperspectral data for this 

study. Image data capture coincided with field-data acquisition in order to have similar 

environmental conditions in both datasets. CHRIS image data were collected in mode 1 

on July 20th, 2012 at 15:36 UTC. The top left image coordinates are 54°38’52.86” N, 

110°35’56.92” W with the bottom right coordinates being 54°29’54.81” N, 

110°26’10.63” W (Figure 3.6). The specific CHRIS mode 1 sensor characteristics are 

listed in Table 3.1. 
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Figure 3.6: Extent of CHRIS imagery in the study area. 

Table 3.1: Mode 1 sensor characteristics for the CHRIS sensor onboard the PROBA 

satellite. 

Bands 62 

Spectral Range (nm) 410-1050 

Spectral Resolution (nm) 1.3 – 12.0 

Spatial Resolution (m) 34 

Temporal Resolution (days) 7 

Swath Width (km) 14 

View Angles 5 (-55°, -36°, 0°, 36°, 55°) 

Altitude (km) 598 

 

Due to time constraints and study scope goals, only the nadir (0°) viewing angle 

imagery was selected for further processing after noise removal. Images were processed 

using the ESA BEAM toolbox and developing platform (Brockmann-Consult, 2013). 
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3.3.3.1 Noise Removal 

The CHRIS image was first processed to remove vertical striping inherent in the 

CHRIS data (Figure 3.7). This was accomplished through a noise reduction tool in 

BEAM that identifies pixel dropout and vertical striping. The dropout pixels were 

corrected using a weighted average of neighbouring pixels, where the weighting factor is 

the inverse of the spectral Euclidean distance between the neighbor pixels and the pixel to 

be corrected. CHRIS is known to have striping issues present in the imagery (Gómez-

Chova et al., 2008). All five viewing angles were used in the noise reduction process as 

the multiple viewing angles allow the de-striping algorithm to better estimate the 

contribution of actual surface values to the overall image. Because each viewing angle 

captures a different image at a slightly different time, any striping present manifests as an 

artifact at the same pixel position and not as a feature on the ground. The algorithm 

identifies these artifacts as noise thereby removing them and de-striping the image 

(Brockmann-Consult, 2010). 
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Figure 3.7: CHRIS radiance RGB (bands 24, 7 and 12) imagery captured in mode 

1 over Cold Lake, Alberta. Major striping is noted by the white arrow. 

A probabilistic cloud mask was then applied to the de-striped image. The cloud-

screening tool was run with a target output of 20 clusters iterated 50 times. From the 

clustered image, one class was identified by the user as being cloud, and a cloud 

probability mask was then created for each pixel in the image. Additionally, a fully 

constrained linear unmixing was performed on the image that assigns each pixel a 

probability value that it is cloud. The probability and the fractional value were then 

multiplied on a pixel-by-pixel basis to form a cloud product. A threshold of 0.05 was 

applied to the cloud product to create a cloud mask that was used for subsequent 

processing. This means that any pixel with a cloud product value greater than or equal to 

5 % cloud would be removed. 

3.3.3.2 Atmospheric Correction 

Following the cloud mask, an atmospheric correction was applied to the image 

data using the default parameters in the CHRIS toolbox provided in BEAM. This 
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software uses the MODTRAN 4 radiative transfer code to perform the atmospheric 

correction assuming a constant Aerosol Optical Thickness (AOT) across the image. When 

using the default parameters present within BEAM, a look-up table (LUT) is used to 

approximate the AOT at 550-nm. A value of 0.0 was used as an input within BEAM, 

resulting in a look-up table AOT value of 0.05 (Guanter et al., 2005). The Columnar 

Water Vapour (CWV) retrieval uses a band-fitting technique around the atmospheric 

water absorption feature at 940-nm to estimate the CWV for each pixel. A value of 1.0 

g/cm2 was used to estimate the CWV (Guanter et al., 2006). 

Once the AOT and CWV are retrieved, a surface reflectance image was created 

using the values present in the LUT. Correction of adjacency effects and spectral 

polishing are completed on the image at this time as well. Adjacency correction is 

performed in order to reduce image blurring caused by scattering of photons by the 

atmosphere from adjacent or neighbouring pixels. Spectral polishing using a third-order 

polynomial transformation is applied to atmospherically corrected data to remove the 

residuals left behind from atmospheric correction as well as sensor artifacts present within 

the CHRIS instrument. For example, these artifacts can be caused by random noise 

effects due to changes in sensor temperatures (Gómez-Chova et al., 2008). Spectral 

polishing attempts to remove errors in the apparent reflectance data by smoothing out the 

spectral profile.  

After these corrections were performed using the BEAM software, it was noticed 

that reflectance values in the blue region were negative; subsequently, five spectral bands 

with negative values were removed from further processing.  
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3.3.3.3 Geometric Correction  

A geometric correction was applied to the CHRIS imagery using an image-to-

image registration technique. This is to ensure that locations identified in the CHRIS 

image are the same location identified during field work. The base image used was an 

airborne hyperspectral image with a 2-m GSD captured at the same time as the LiDAR 

data. Due to the fact that the AISA data were delivered geometrically corrected, it was 

decided to use it as the base image to correct the CHRIS data. Ground Control Points 

(GCP) were selected from the AISA data using bright targets such as well pads and 

facilities. The CHRIS image was registered to the AISA image using 52 ground control 

points spread across the image with a Root Mean Squared Error (RMSE) of 0.48 pixel or 

~17-m.  A first-order polynomial transformation was then applied to the CHRIS imagery 

in order to correct it. The result of the noise removal, atmospheric and geometric 

corrections are presented in Figure 3.8. 
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Figure 3.8: Processed CHRIS reflectance imagery (bands used, R:17 G:8 B:1). 

Note the cloud removal in the upper right of the image, highlighted by the white 

oval. 

3.3.3.4 LiDAR/Hyperspectral Fusion 

Because the CHRIS and LiDAR datasets cover different spatial extents, a polygon 

was created that encapsulated the extents of both to ensure that any area under 

investigation in this study would have both spectral and structural information. This 

polygon was then used to mask the CHRIS and LiDAR images before stacking them 

together to create a LiDAR/hyperspectral fused image. The resulting image was a 59-

band product at 34-m ground resolution. 

 The canopy cover and height products were appended onto the CHRIS image and 

assigned wavelengths of 1002-nm and 1003-nm, respectively. These values were chosen 
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to ensure that the LiDAR structural data would not break up the spectral profiles of the 

CHRIS imagery. 

3.3.4 Classification Hierarchy 

A classification hierarchy was employed for land-cover and tree-species mapping. 

The hierarchy was divided into the three levels, land cover, tree type, and tree species 

(Figure 3.9). The initial land-cover level was created in order to produce a mask of non-

forested areas so that subsequent classifications would only be conducted on the forested 

areas. This classification level was loosely based on the Earth Observation for Sustainable 

Development (EOSD) harmonized land-cover product (Wulder et al., 2008b), where 

guidelines for classes such as wetland and herb were used to distinguish land-cover types 

in the image. The un–masked forested areas, level 2, were split into coniferous, 

deciduous, or mixed tree type classes based on field and AVI polygon data. From the 

level 2 classes, six tree species classes were created for use in the SVM classification and 

MESMA procedure. 
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Figure 3.9: Classification hierarchy used. Level 1 is based on EOSD classes. 

Classification was initially performed using the classes defined in level 1 on 

CHRIS imagery data alone and a forest mask created for subsequent processing using the 

SVM classifier. Level 2 classifications were performed using SVM wherein the forestry 

masked data was classified into coniferous, deciduous, and mixed tree types for the 

CHRIS data alone and the CHRIS/LiDAR fused data. Coniferous, deciduous, and mixed 

tree masks were then created and applied to the data.  

Level 3 classifications were conducted using SVM and MESMA on tree-type 

masked data. Four species classes were used for the coniferous data, while two species 

classes for deciduous data and all six species classes were used for the mixed data. 

3.3.4.1 ROI Selection  

Regions of Interest (ROI) for classification levels 1 to 3 were created by selecting 

pixels based on the greatest level of detail required (tree species) and then up-scaled to 
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levels with lesser detail, such as tree-type and land cover. The selection of the pixels 

within the ROI’s was accomplished by using AVI polygons to help select land cover and 

was refined using the captured AISA imagery to capture homogeneous areas in the 

CHRIS imagery for the coniferous and deciduous classes and heterogeneous areas for the 

mixed class.  

AVI polygons with a reported species abundance equal to or greater than 80 % 

were used for the coniferous and deciduous classes, while polygons with less than 80 % 

were used for the mixed class. A threshold of 80 % of a certain tree species was deemed 

an acceptable accuracy and is the threshold used for determining an acceptable accuracy 

of photo interpretation used for AVI classification (AESRD, 2012a). AVI species 

abundances for polygons were determined by an aerial-photo interpreter, estimating 

species composition based on canopy closure (AESRD, 2005). In order to ensure that 

ROIs represented the tree canopies and not the ground cover, only AVI polygons with a 

canopy cover greater than 80 % were used to create the classes. Data gathered from field 

plots were also used to assist in the selection of pixels for the ROIs. Training pixels were 

defined by randomly selecting 70 % of the total ROI for each level. The remaining 30 % 

of the pixels were used for validation purposes. 

ROIs followed the labelling schema of L1_L2_L3, which correspond to the EOSD 

land-cover  thematic classes, tree-cover type and tree-species type, respectively. For 

example, F_D_Pb would equate to forest land-cover type, deciduous tree type and Balsam 

Poplar tree species. Lower levels of classification were aggregated to higher levels, 

depending on the level of classification being performed (e.g., for level 1 , 2, and 3 

processing, F_D_Pb would be classified as F, F_D and F_D_Pb, respectively). 



 

60 

 

3.4 SVM  

SVM was chosen for this study, because it has been shown to have superior 

accuracy when compared to unsupervised classification methods, does not require an 

assumption of data normality, and can use a small training dataset (Mountrakis et al., 

2011; Bartzen et al., 2010; Foody and Mathur., 2004). This classification approach was 

used in all levels of processing. For each classification level a grid search was employed 

using the ENMAP-Box image SVM software (Rabe et al., 2014) to find the optimal 

parameters with which to run the searches. A Gaussian radial basis function kernel was 

used to perform the classification.  

3.4.1 Level 1 Classification 

A minimum of 250 pixels were selected across the image to represent each class 

(Table 3.2 and Figure 3.10). The pixels were selected using criteria identified above 

(Section 3.3.4.1. ROI Selection). A mask was created that concealed anything not 

classified as forest from further classifications. 
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Figure 3.10: Distribution of Level 1 ROIs across the CHRIS image. A linear 2-% 

stretch has been applied (bands used: R:17 G:8 B:1.)  

Table 3.2: Land-cover classes and SVM training and validation pixels. 

EOSD Class Name Description 
Training 

Pixels 

Validation 

Pixels 

200 - Forests Coniferous, Deciduous, Mixed 1123 482 

80 - Wetland Marsh, Low shrub 179 78 

110 - Herb Grassland, Agricultural, Pasture 598 257 

20 – Water Lakes rivers, streams, ponds 857 368 

30 – Non-vegetated Land Gravel, Roads, Buildings 476 205 
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3.4.2 Level 2 Classification 

Tree-type classification was performed using the SVM classifier to separate the 

coniferous, deciduous, and mixed trees in the forest-masked CHRIS and CHRIS/LiDAR 

images. Following the ROI selection established in the previous section, 70 % of the total 

pixels were used for classification, with the remaining 30 % used for validation (Figure 

3.11 and Table 3.3). The same pixels for training and validation were used for the CHRIS 

and CHRIS/LiDAR data. After classifications were conducted, masks were created to 

conceal coniferous, deciduous, and mixed tree areas for performing species classifications 

on these individual areas separately. 
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Figure 3.11: Distribution of Level 2 ROIs across the forest-masked CHRIS image. 

A linear 2-% stretch was applied, resulting in the spectral variations within the 

forested areas becoming more pronounced (bands used: R:17 G:8 B:1).  

Table 3.3: Tree-type classes and number of SVM training validation pixels. 

Class Name Description 
Training 

Pixels 

Validation 

Pixels 

210 – Deciduous Coniferous tree species 908 390 

220 – Coniferous Deciduous tree species 794 341 

230 – Mixed Mixed tree species 234 103 

3.4.3 Level 3 Classification 

Species classification was performed for each tree-type masked image, for both 

data sets (Figure 3.12  Figure 3.13). This resulted in a total of six classifications being 

performed. Again a 70 % / 30 % split for training and validation pixels were used and the 
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same ROIs were applied for the CHRIS and the CHRIS/LiDAR data (Table 3.4 andTable 

3.5).  

 

Figure 3.12: Distribution of Level 3 ROIs across the deciduous-masked CHRIS 

image. A linear 2-% image enhancement has been applied, resulting in the spectral 

variations within the forested areas becoming more pronounced (bands used: R:17 

G:8 B:1). 

Table 3.4: Deciduous species classes and number of SVM training validation 

pixels. 

Class Name Description 
Training 

Pixels 

Validation 

Pixels 

211 – Aspen Populus tremuloides 254 109 

212 – Poplar Populus balsamifera 28 13 
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Figure 3.13: Distribution of Level 3 ROIs across the coniferous-masked CHRIS 

image. A linear 2-% image enhancement was applied, resulting in the spectral 

variations within the forested areas becoming more pronounced (bands used, R:17 

G:8 B:1). 

Table 3.5: Coniferous species classes and number of SVM training validation 

pixels. 

Class Name Description 
Training 

Pixels 

Validation 

Pixels 

213 – Tamarack Larix laricina 32 14 

214 – Jack Pine Pinus banksiana 29 13 

215 – Black Spruce Picea mariana 38 17 

216 – White Spruce Picea glauca 77 33 

3.4.4 Accuracy Assessment 

Classification accuracy was assessed using 30 % of the total number of ROI pixels 

in each class. The pixels used in the accuracy assessment were not included to train the 
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classifiers. The producer’s and user’s accuracies were assessed through the confusion 

matrix and give an indication that the probability of a land-cover type on the ground is 

correctly identified in a pixel and that a land-cover type in the classified imagery actually 

exists on the ground, respectively. Both of these accuracy measures give an indication 

with respect to the accuracy of individual classes, whereas the overall accuracy reports 

the accuracy of the image as a whole and can be written as follows: 

 
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  

𝑋𝑖𝑗

∑ 𝑥𝑗
∗ 100  (3.4) 

 

 
𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  

𝑋𝑖𝑗

∑ 𝑥𝑖
∗ 100 , (3.5) 

 and 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  

𝐷

𝑁
∗ 100 , (3.6) 

 

where 𝑋𝑖𝑗 is the number of correctly classified pixels in column i and row j of a 

class within an error matrix, 𝑥𝑖is the number of correctly classified pixels in column i, and 

𝑋𝑗 is the number of correctly classified pixels in row j, D is the total number of correct 

pixels within each class, and N is the total number of pixels in the confusion matrix.  

The Kappa coefficient is used to determine if the overall accuracy is significantly 

different than using a random classification. Because the Kappa coefficient is the overall 

accuracy against chance, comparisons can be made against other classification methods to 

determine if the overall accuracy assessment from one confusion matrix is statistically 

different from another one (Foody, 1992).  

Using the hierarchical classification approach, the species classified images from 

the coniferous, deciduous, and mixed classifications were merged together to create a 
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final species classified image. Validation was then performed on the final classified 

image. 

A pairwise comparison of the classified images was accomplished using 

McNemar’s test with a continuity correction (Foody, 2006 and 2004). This test is used 

when the same sets of training and validation samples are used in thematic map 

generation. Because the samples are not independent of one another, the use of the 

standard Z-test is not appropriate (Cohen, 1968). McNemar’s test is a non parametric and 

can be described as follows: 

 
𝑍 =

𝑓12 − 𝑓21 

√𝑓12 + 𝑓21

 , (3.7) 

 

where 𝑓12 is the frequency of correctly classified pixels in both classifications and 

𝑓21 is the frequency of incorrectly classified pixels in both classifications. These numbers 

are derived from the classification images themselves and not the error matrices. 

A continuity correction is employed here due to the relatively small sample sizes  

(< 30) used for validation as follows (Rozenstein and Karnieli., 2011; Foody, 2004): 

 
𝑍 =

|𝑓12 − 𝑓21| − 1 

√𝑓12 + 𝑓21

 . (3.8) 

 

3.5 MESMA 

The spectral profile of pixels present in remote sensing imagery is made up of a 

combination of different materials. In order to determine what materials and how much of 

a material is present within a given pixel, spectral unmixing methods like MESMA may 

be used.  
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MESMA was applied to spectrally unmix the CHRIS and CHRIS/LiDAR data 

based on the classification hierarchy established in the previous sections. In order to 

produce meaningful results from MESMA, the selection of spectra for the creation of a 

spectral library is an important step. Endmembers that are selected must be representative 

of the class to be unmixed.  

3.5.1 Spectral Library 

In order to select endmembers, MESMA requires a spectral library from the 

training data. For this study, the spectral library was created from the tree species ROIs 

delineated using the CHRIS image data. The Visualization and Image Processing for 

Environmental Research (VIPER) tools add-on in ENVI creates spectra for every pixel 

within an ROI to ensure that spectral diversity is captured rather than averaging the 

spectra over the entire ROI. From the spectral library, endmembers were selected from 

the total number of spectra of each class to represent the classes as described in the next 

section. 

3.5.2 Endmember Selection 

Different methods exist for endmember selection. The endmembers can either be 

selected through a semi-automated manner such as the Pixel Purity Index (PPI; Boardman 

et al., 1995), N-FINDR (Winter, 1999), Principal Component Analysis (PCA; Deng et al., 

2008), Vertex component analysis (Nascimento and Bioucas Dias, 2005) or through a 

manual process. The latter relies on user guidance to ensure that a pixel spectrum is 

representative of the material to be unmixed. For this study, the manual approach was 

selected and facilitated by the ENVI plug-in VIPER tools. Within these tools, the 
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following different metrics of endmember selection can be employed: Count-based 

Endmember Selection (CoB), Endmember Average Root Mean Square Error (EAR), and 

the Minimum Average Spectral Angle (MASA). The former is a measure that allows a 

user to determine how well the spectrum from a selected endmember models spectra 

within the same endmember class, and how well it models spectra outside of the class 

(Roberts et al., 2003). For this metric, two parameters are produced, an In-CoB and an 

Out-CoB. An endmember that is well suited to represent its spectral class will have a high 

In-CoB value and a low Out-CoB value. It models other spectra within the class well and 

does not model spectra outside of the class well.  

EAR is a measure of the average Root Mean Squared Error (RMSE) when a 

spectra is compared to all other spectra within its class (Dennison and Roberts, 2003b). A 

low EAR value for a spectrum means that it is a good fit when compared with all other 

spectra in its class and is a good candidate for endmember selection. MASA compares the 

spectral angle of a pixel to all other pixels in the class and is similar to EAR in that they 

both compare the fit of a spectrum to others within its class. A low spectral angle 

represents a good endmember (Dennison et al., 2004).  

Franke et al. (2009) suggested selecting unique representative endmembers each 

time MESMA is run. However, in order to compare whether the addition of LiDAR data 

has an impact on the spectral unmixing of forested areas, endmembers selected for the 

CHRIS imagery alone were also used for the CHRIS/LiDAR imagery. The endmembers 

were selected based on a high In-CoB and low Out-CoB value as well as low EAR and 

MASA values. 
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3.5.3 Level 3 Modelling 

A three-endmember model was used to separate tree species in the deciduous-

masked dataset, while a four-endmember model was used to unmix tree species in the 

coniferous and mixed datasets. An additional endmember model was added to the 

coniferous and mixed classes due to the larger number of tree species present within those 

classes compared to the deciduous ones.  

The deciduous class had two tree species to unmix, the coniferous class had four, 

and the mixed class had six. Creating an additional model allowed for another layer of 

distinction to be added to the unmixing procedure. Coniferous trees with similar growing 

environments (Black Spruce and Tamarack in wetter environments and White Spruce and 

Jack Pine in dryer environments) were grouped into their own model. In the three-

endmember model, one model consisted of upper canopy vegetation (tree species), one of 

understory (shrubs, grasses) and one of photometric shade. 

 In the four-endmember model, one model consisted of understory (shrubs, 

grasses) and another model consisted of photometric shade. The remaining two models 

consisted of two tree species each, one composed of Tamarack and Black Spruce tree 

species, while the other was composed of Jack Pine and White Spruce. The four tree 

species were separated from each other and then grouped into two separate models, since 

these tree species are typically found growing in the same environmental regimes. 

Tamarack and Black Spruce are located in low lying, wetter areas, while Jack Pine and 

White spruce are typically found in elevated, drier areas. All pixels were unmixed using a 

different combination of endmembers generating numerous three and four-endmember 

models. Three endmembers were selected for each species and six endmembers selected 
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for the understory. When multiple pixels had the same In-CoB value, the pixel with the 

lowest EAR value was selected. An example of the endmembers selected is provided in 

Figure 3.14. 

 

 

Figure 3.14: CHRIS endmember spectra for tree species showing the spectra used 

in the models. 

MESMA was run using minimum and maximum endmember fractions of -0.10 

and +1.10, respectively, a maximum shade fraction of 0.80, and a maximum allowable 

RMSE of 1.0. The values selected were empirically determined to yield optimum results.  
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A total of 36 models were created to unmix each pixel within the deciduous-

masked image, while 72 models were created to unmix each pixel within the coniferous-

masked image. The larger number of models used to unmix the coniferous image is 

because there are four tree species that need to be represented. A total of 126 models were 

created to unmix each pixel within the mixed masked image. Again, the increase in the 

number of models required to unmix an image is due to the number of endmembers used, 

i.e., six tree species.  

An unmixing model was created for each unique combination of endmembers in 

each spectral library. Figure 3.15 demonstrates how 36 models can be created in a three-

endmember unmixing procedure (one of the endmembers is shade and included in every 

model). Each of the tree-species endmembers on the left side of the figure is matched to 

the understory endmembers in a one-to-many relationship. The procedure is repeated for 

each tree-species endmember. Accordingly, Balsam Poplar (Pb) 1 is matched to 

Understorey (Un) 1-6, Pb 2 is matched to Un 1-6, and Pb 3 is matched to Un1 1-6. The 

procedure is the same for Aspen Poplar (Aw) 1-3. 
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Figure 3.15: Example of one endmember (Pb 1) creating 6 models by matching 

with each of the understory (Un #) endmembers. By combining each endmember 

on the left side of the figure with each endmember on the right side of the figure, 

36 unmixing models are created.  

Shade normalization was performed on the fractional images produced by 

MESMA. This procedure effectively removes the shade component from abundance 

estimates for each pixel. A classification of an image is accomplished by assigning a class 

to a range of models produced by MESMA. For example, in the three-endmember models 

used to unmix deciduous tree pixels, 18 out of the 36 models identified Aspen as the 

dominant spectra. Thus, any pixel that was assigned a model number between 1 and 18 

can be classified as Aspen. 

3.5.4 Accuracy Assessment 

Accuracy was assessed using validation pixels created from the original ROIs to 

derive a confusion matrix. Like the SVM, accuracy assessments, user’s and producer’s 

accuracies as well as the kappa coefficient were derived. Since the same training and 

validation data sets used to create the classified maps for the CHRIS and CHRIS/LiDAR 
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products, a pairwise classification was facilitated through McNemar’s test (Section 3.4.4). 

Again the continuity correction was applied due to the low sample size. This test does not 

determine whether one classification is better than the other. However, it reveals whether 

the classifications are different from one another.  

3.6 Summary 

This chapter presented the methods used to map tree species in an area dominated 

by oil and gas operations and reclamation activities in the Cold Lake area, Alberta. 

Hyperspectral and LiDAR data were used separately and fused together to facilitate the 

tree-species composition mapping. A hierarchical approach was used to classify the tree 

species from broad land-cover classes to tree-type classes and finally tree species. A 

supervised classification method, SVM, and a spectral unmixing technique, MESMA, 

were used in this study. The results from the classification and unmixing were assessed 

using field data captured near the same time as image data acquisition and compared to 

areas in the imagery that were examined based on visual interpretation. The next chapter 

will present the results achieved followed by a discussion of the results.  
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Chapter 4  

Results 

4.1 Introduction 

The aim of this thesis was to facilitate tree discrimination at the species level in 

and around abandoned and reclaimed oil and gas well-sites in the Cold Lake area, Alberta 

using remote sensing technologies. Two objectives of this study were to assess the use of 

hyperspectral data alone and combined with LiDAR data to determine tree species and to 

evaluate spectral unmixing methods in pursuit of tree-species discrimination. The 

following paragraphs present the results obtained in an attempt to address the objectives.  

CHRIS data were processed to correct for atmospheric and sensor noise effects 

and then processed alone and in conjunction with airborne LiDAR data in order to 

investigate tree-species composition around Cold Lake, Alberta. The latter processing 

step involved the combination of the hyperspectral CHRIS data with the LiDAR data to 

create a fused CHRIS/LiDAR product. Two methods of cataloguing tree species were 

investigated: SVM classification and MESMA spectral unmixing. 

A three-tiered hierarchical approach was used to select areas for classification 

(Figure 3.9). The first level involved a separation of dominant land-cover types (Forest, 

Wetlands, Grass, Water and, Non-Vegetated). From this first level of classification, a 

mask was created over any areas not identified as forest. The second level used the forest 

mask in order to separate coniferous, deciduous, and mixed tree types. SVM classification 

was used for the first two levels of the classification hierarchy. The separated coniferous, 

deciduous, and mixed tree datasets were then used for the final level of classification in 

which SVM and MESMA were used to map tree species. 
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Evaluation of the SVM classification and MESMA specified classes was 

accomplished through the use of confusion matrices, whereby pixels in the classified 

images were compared to validation pixels specified through field validation and visual 

assessment. 

The results obtained using the methods above are presented in six sections. The 

first section describes the steps involved processing the CHRIS and LiDAR datasets from 

raw data to processed information. An analysis of data gathered during the field 

campaign, including a comparison of field measured parameters on and off well-sites is 

presented, followed by a comparison of the field gathered data to remotely interpreted 

data of the same well-sites. The next four sections show the results of the classification 

hierarchy, Levels 1, 2, and 3, and present a comparison of the SVM and MESMA 

classification methods used. 

4.2 Pre-Processing 

4.2.1 CHRIS 

The CHRIS hyperspectral data were pre-processed in order to remove noise 

present in the raw data. This was accomplished through the use of ESA’s BEAM toolbox 

(Brockmann-Consult, 2010) and involved the use of weighted averaging of neighbouring 

pixels to correct for pixel dropouts and utilizing all five look angles of the CHRIS data to 

correct for striping (Figure 4.1). 
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Figure 4.1: De-striped CHRIS imagery (bands used, R:17 G:8 B:1). See Figure 3.7 

for the raw CHRIS imagery. 

Atmospheric and geometric corrections were then applied to the noise corrected 

CHRIS data. The correction to surface reflectance was facilitated through an 

implementation of the MODTRAN 4 algorithm present in the BEAM toolbox. Geometric 

correction was accomplished using an image-to-image registration technique on 

geometrically rectified airborne hyperspectral data.  

After the CHRIS image correction was accomplished, bands with values that were 

identified as being too low (reflectance values below 0) or affected by residual errors 

were removed from processing or smoothed using the Empirical Flat Field Optimal 

Reflectance Transformation (EFFORT) tool present in ENVI 5.0, respectively (Figure 

4.2). 
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Figure 4.2: Forest pixel spectrum of atmospherically corrected CHRIS data before 

and after spectral polishing. Notice the peak in the spectrum of unpolished and the 

smoothness of the polished data at approximately 720 nm. 

4.2.2 LiDAR 

LiDAR data were delivered geometrically corrected from the data provider. The 

delivery format was in tiles, which were merged together. From the merged tiles, three 

LiDAR data products were created: a bare Earth surface model, a canopy surface dataset, 

and a canopy height model (Figure 4.3). All three LiDAR products were created using 

tools present in the FUSION/LDV software (McGaughey, 2007). 
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Figure 4.3: LiDAR products from data captured in August 2012 and cropped to 

the extent of the CHRIS imagery: A. Bare Earth DEM (masl), B. Canopy 

fractional cover, and C. Canopy Height. 

CHRIS data were merged with the canopy cover and canopy height datasets to 

create a unified CHRIS\LiDAR dataset. The LiDAR products were appended to the 
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processed CHRIS data. The resulting spectral profile showed the CHRIS reflectance 

values and the LiDAR product data values (canopy cover percentage and height) for each 

pixel (Figure 4.4). Analyses were conducted on this merged data product as well as the 

processed CHRIS data product.  

 

Figure 4.4: CHRIS spectra and LiDAR canopy height and canopy cover products 

appended to the end of the spectrum and stretched between 0 % and 100 %. 

4.3 Data Collection 

Data captured in the field from reclaimed well-sites and reference sites were 

compared in order to determine the progress of reclamation at the well-sites. All 48 plots 

(24 well-sites and 24 reference sites) were examined. However, only 32 plots (16 well-

sites and 16 reference sites) were within the footprints of the CHRIS and LiDAR datasets. 

Well abandonment dates and reclamation certification dates were provided by AESRD 

while dominant species, average DBH, average canopy height, and average canopy 
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fractional cover were determined for each site. The full table of information for each site 

can be found in Appendix 1.   

A large number of well-sites lack trees as evident by the data points with a value 

of 0 for DBH, canopy height, and canopy fractional cover. The average measurements as 

well as standard errors are presented in Figures 4.5 - 4.7. 

 

Figure 4.5: Average canopy height in m with standard error bars shown. Site 

RF10195902 had one very large tree within the site boundary which creates a 

large standard error. The average canopy height at the reclaimed sites is lower 

than the one at corresponding reference sites. Information in the figure is from 

ground measurements.  
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Figure 4.6: Average DBH in cm with standard error bars showing the deviation of 

DBH values within the study area. The average DBH at the reclaimed sites is 

lower than the average DBH at corresponding reference sites. 
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Figure 47: Average fractional cover with standard deviation bars showing the 

deviation of fractional cover values from the hemispherical photographs. The 

large deviation is due to clumping of trees within the study site and the tree 

species at that site.  

The average canopy height at the reclaimed sites are lower than the average 

canopy height at the corresponding reference sites. This is to be expected since the 

reclaimed plots that were measured were seeded to grass initially. The average DBH 

shows lower values for reclaimed sites compared to their corresponding reference sites. 

Again, this is to be expected as the trees in the reclaimed sites are younger than the older, 

larger trees in the reference sites. A large standard deviation at all sites (reclaimed and 

reference) is apparent in the calculated average fractional cover. This is due to the types 

of trees present at a site as well as their distribution within a site. Coniferous trees will 

have a narrow canopy when compared to deciduous trees and the distribution of both tree 

species within a site is not uniform. Hemispherical photographs taken in a clump of trees 

will have a higher fractional cover than a hemispherical photo taken in a clearing. 

0

10

20

30

40

50

60

70

80

90

100

F
ra

ct
io

n
al

 C
o

v
er

 (
%

)

Plot Number

Average Fractional Cover (%)



 

84 

 

4.4 Field Parameters as Estimated by Remote Sensing 

Similar parameters to those captured in the field were retrieved using the 

processed remote sensing data for each reclaimed well-site and reference site. Canopy 

height, fractional canopy cover, and species were extracted from the combined LiDAR 

and CHRIS data. For those sites outside of the CHRIS extent, only canopy height and 

canopy fractional cover were reported (Figure 4.8 and Figure 4.9). 

 

Figure 4.8: Average field canopy height compared to average LiDAR derived 

canopy height at a sample site. Each point represents a field measured location. A 

moderately strong relationship exists between field measured canopy height and 

LiDAR measured canopy height.  
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Figure 4.9: Average field fractional cover compared to average LiDAR derived 

fractional cover at a sample site. Each point represents a field measured location. 

A relatively strong relationship exists between field and LiDAR measured 

fractional cover. 

Comparing the field measured parameters to LiDAR measured parameters, it can 

be seen that canopy height showed a moderately strong relationship between the two data 

capture methods with an R2 value of 0.78, while the fractional indicates a stronger 

relationship with R2 value of 0.88. The well-sites that were lacking trees when measured 

in the field were found to have a very low if not 0-% fractional cover in the derived 

LiDAR product; 0 % means that the site was completely devoid of any tree canopies and 

the hemispherical images only captured the sky.  

A comparison of the species measured at each site using the different methods is 

presented in Table 4.1. Only two of the sites identified in the field as having no trees 

present were correctly identified by all remote sensing methods.  
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Table 4.1: Comparison of species by different measurement methods. 

Plots within 

CHRIS 

image extent 

Majority Field 

Measured Tree 

Species12 

Species 

From 

CHRIS 

SVM 

Species From 

CHRIS 

LiDAR SVM 

Species 

From 

CHRIS 

MESMA 

Species 

From 

CHRIS 

LiDAR 

MESMA 

F10027735 Pb Aw Aw Unknown Pj 

F10087962 No Trees Present Aw Aw Aw Aw 

F10088251 Aw Pb Pb Aw Pb 

F10088252 Pb Aw Aw Aw Aw 

F10135076 Pb Aw Aw Pj Sw 

F10191968 No Trees Present Aw Aw Aw Pj 

F20051406 Pb Aw Aw Pj Pb 

F20069598 No Trees Present Aw Aw Aw Unknown 

F20087929 Pb Aw Aw Lt Pj 

F20087960 No Trees Present Pb Sb Aw Sb 

F20088253 No Trees Present Unknown Unknown Unknown Unknown 

F20104481 No Trees Present Aw Aw Pb Aw 

F20105627 Pb Pb Pb Unknown Pb 

F20112558 No Trees Present Unknown Unknown Unknown Unknown 

F20367845 No Trees Present Aw Aw Unknown Aw 

F20368906 No Trees Present Aw Aw Unknown Aw 

RF10027735 Aw Pb Pb Aw Aw 

RF10087962 Aw Aw Aw Aw Aw 

RF10088251 Aw Aw Aw Aw Aw 

RF10088252 Aw Pb Pb Aw Lt 

RF10135076 Aw Pj Lt Aw Pb 

RF10191968 Lt Sw Sb Pj Sb 

RF20051406 Pb/Aw Aw Aw Pb Sw 

RF20069598 Aw Aw Aw Unknown Aw 

RF20087929 Pb Sw Sw Sw Sw 

RF20087960 Pb Aw Pb Aw Pj 

RF20088253 Aw Aw Pb Aw Pb 

RF20104481 Aw Aw Aw Pb Aw 

RF20105627 Pb Aw Aw Unknown Sw 

RF20112558 Aw Aw Aw Pb Pb 

RF20367845 Aw Aw Aw Aw Aw 

RF20368906 Aw Aw Pb Aw Aw 

Aspen Poplar (Aw), Balsam Poplar (Pb), White Spruce (Sw), Black Spruce (Sb), Jack Pine (Pj), Tamarack 

(Lt). 

1 Dominant tree species are identified using AVI methods (i.e., 80 % of total species). 
2 Most of the coniferous sites captured in the field campaign lie in the north end of the study site and outside 

of the imagery bounds. 
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4.5 Level 1 Results 

The first level of image classification involved separating broad land-cover classes 

adopted from the EOSD into more general classes to suit the needs of this study. A 

supervised SVM classification was performed on the CHRIS data alone. A minimum of 

250 pixels were selected for each land-cover class with 70 % of the pixels in a class used 

to train the classifier and the other 30 % used to validate the classification. Level 1 

classification land-cover maps are presented in Figure 4.10 and the confusion matrix is 

shown in Table 4.2. 

 

Figure 4.10: Land-cover map of Level 1 classification created from CHRIS data 

using the SVM classifier. 
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Table 4.2: CHRIS Level 1 SVM classification accuracies. 

  Reference (pixels) User’s 

Accuracy 

(%) 

Map Prediction 

(pixels) Forest Grass Water Non-Vegetated Wetland Total 

Unclassified 0 0 0 0 0 0 

 Forest 479 5 0 0 0 484 98.9 

Grass 2 235 0 4 5 246 95.5 

Water 0 0 368 0 0 368 100 

Non-Vegetated 0 0 0 201 0 201 100 

Wetland 1 17 0 0 73 91 80.0 

Total 482 257 368 205 78 1390   

Producer’s 

Accuracy (%)       

Overall  

Accuracy 

99.4 91.4 100 98.1 93.6   97.5 

Kappa       0.97 

 

 

Figure 4.11: Estimated areas of land cover from the results of Level 1 

classification. Area values are presented above data bars. 

The overall accuracy for level 1 classification is 97.5 % with a Kappa value of 

0.97.  The forest class with 94 km2 is the largest land-cover type by area, followed by 

grass with 14 km2. Reported class areal coverages are presented in Figure 4.11. The 

producer’s accuracies, the probability that a land-cover type is properly identified in an 
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image, are 99.4 % and 100 % for these classes, respectively, while the user’s accuracy, 

the probability that a land-cover type identified by a classifier actually exists on the 

ground, are 98.9% and 95.5% for these classes, respectively. 

4.6 Level 2 Results 

Supervised SVM classifications were performed on the CHRIS data alone and on 

the CHRIS/LiDAR dataset after applying the forest mask produced in level 1 

classification. A minimum of 700 pixels were used in the classification process with 70 % 

and 30 % of the pixels being used respectively to train and validate the classifier. Level 2 

land-cover maps and classification accuracies for CHRIS data alone are presented in 

Figure 4.12 and Table 4.3, while those accuracies for the combined CHRIS/LiDAR data 

are presented in Figure 4.13 and Table 4.4. 
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Figure 4.12: Forest-cover map of Level 2 classification created from CHRIS data 

using the SVM classifier. 

Table 4.3: CHRIS Level 2 SVM classification accuracies. 

  Reference (Pixels) 

User’s 

Accuracy 

(%) 

Map 

Prediction 

(Pixels) Coniferous Deciduous Mixed Total 

Unclassified 0 0 3 3 

 Coniferous 127 10 35 172 73.4 

Deciduous 11 102 29 143 71.8 

Mixed 15 7 36 58 62.0 

Total 153 119 103 375   

Producer’s 

Accuracy (%)     

Overall 

Accuracy 

83.0 85.7 34.9   70.7 

Kappa     0.55 
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Figure 4.13: Forest-cover map of Level 2 classification created from 

CHRIS/LiDAR data using the SVM classifier. 

 Table 4.4: CHRIS/LiDAR Level 2 SVM classification accuracies. 

  Reference (Pixels) 

User’s 

Accuracy 

(%) 

Map 

Prediction 

(Pixels) Coniferous Deciduous Mixed Total 

Unclassified 0 0 3 3 

 Coniferous 127 9 36 172 73.4 

Deciduous 7 105 17 129 81.4 

Mixed 19 5 47 71 66.2 

Total 153 119 103 375   

Producer’s 

Accuracy (%)     

Overall 

Accuracy 

83.0 88.0 45.6   74.4 

Kappa     0.61 
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Figure 4.14: Estimated areas of land cover from the results of Level 2 

classification. Area values are presented above data bars. 

The CHRIS/LiDAR dataset had a higher overall accuracy of 74.7 % compared to 

the CHRIS dataset alone at 70.7 %. Results from both classifications show that deciduous 

trees were the largest forest-cover type by area, followed by mixed trees (Figure 4.14). 

The producer’s accuracies for the CHRIS dataset for these classes were 85.7 % and 83.0 

%, respectively. These values are the same or lower than the accuracies achieved for the 

same classes in the CHRIS/LiDAR dataset with 88.0 % and 83.0 %, respectively. 

Producer’s accuracies of 34.9 % and 45.6 % for the CHRIS and CHRIS/LiDAR datasets, 

respectively, were achieved for the mixed class. The user’s accuracies for the CHRIS 

dataset for these classes were 71.8 % and 73.4 %, respectively. These values are the same 

or lower than the accuracies achieved for the same classes in the CHRIS/LiDAR dataset 

with 81.4 % and 73.4 %, respectively. User’s accuracies of 62.0% and 66.2% for the 

CHRIS and CHRIS/LiDAR datasets, respectively, were achieved for the mixed class. 
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 A pairwise comparison of the CHRIS and CHRIS/LiDAR classification maps 

using McNemar’s Test Z-statistics yielded a Z value of 2.77 (Table 4.5).  

Table 4.5: Comparison of the classifications derived from the CHRIS and 

CHRIS/LiDAR datasets in pixels. 

  

CHRIS 

  

Correct Incorrect Total 

C
H

R
IS

/L
iD

A
R

 

Correct 261 18 279 

Incorrect 4 92 96 

Total 265 110 

  

Comparing the CHRIS and CHRIS/LiDAR classification results, it was 

determined based on the Z-statistic (p < 0.05) that the difference between the two datasets 

is statistically significant.  

4.7 Level 3 Results 

The third-level classification attempted to separate tree species using SVM and 

MESMA. Masks were created from the CHRIS/LiDAR level 2 classification for each tree 

type, and the classification and unmixing procedures were performed on each masked 

dataset. Supervised SVM classifications were applied to each tree type for the CHRIS and 

CHRIS/LiDAR datasets. Unmixing models were created using MESMA on the masked 

CHRIS and CHRIS/LiDAR datasets as well for the SVM classifications. Again 70 % of 

the pixels were used to train and 30 % were used to validate the classifier. 

Level 3 SVM land-cover maps and classification accuracies for the CHRIS data 

alone are presented in Figure 4.15 and Table 4.6, respectively, while MESMA land-cover 

maps and classification accuracies for CHRIS data alone are presented in Figure 4.16 and 
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Table 4.7. The corresponding results for the CHRIS/LiDAR data are presented in Figure 

4.17 and Table 4.8 and Figure 4.18 and Table 4.9, respectively. 
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Figure 4.15: Species-cover map of Level 3 classification created from CHRIS data 

using the SVM classifier. 

Table 4.6: CHRIS Level 3 SVM classification accuracies. 

  Reference (Pixels)   

Black 

Spruce 

  

White 

Spruce 

  

Total 

User’s 

Accuracy 

(%) 

Map Prediction 

(Pixels) Aspen Poplar Tamarack 

Jack 

Pine 

Unclassified 1 0 1 0 0 0 2 

 Aspen 102 4 0 0 0 6 112 91.1 

Balsam Poplar 0 6 0 0 0 0 6 100.0 

Tamarack 4 0 6 2 0 2 14 42.9 

Jack Pine 0 0 1 4 0 0 5 80.0 

Black Spruce 0 0 0 0 6 1 7 85.7 

White Spruce 2 3 6 7 11 24 53 45.3 

Total 109 13 14 13 17 33 199   

Producer’s 

Accuracy (%)        

Overall  

Accuracy 

93.6 46.2 42.9 30.8 35.3 72.7   74.4 

Kappa        0.60 
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Figure 4.16: Species-cover map of Level 3 classification created from CHRIS data 

using MESMA unmixing. 

Table 4.7: CHRIS Level 3 MESMA classification accuracies. 

 Reference (Pixels)     User’s 

Accuracy 

(%) 

Map 

Prediction 

(Pixels) Aspen Poplar Tamarack 

Jack 

Pine 

Black 

Spruce 

White 

Spruce Total 

Unclassified 18 1 2 5 2 7 35 

 Aspen 61 3 0 0 0 3 67 91.0 

Balsam Poplar 26 6 0 0 0 1 33 18.2 

Tamarack 1 2 6 5 1 7 22 27.3 

Jack Pine 0 0 0 2 0 3 5 40.0 

Black Spruce 3 0 6 1 4 5 19 21.1 

White Spruce 0 1 0 0 10 7 18 38.9 

Total 109 13 14 13 17 33 199   

Producer’s 

Accuracy (%)        

Overall 

Accuracy 

56.0 46.2 42.9 15.4 23.5 21.2   43.2 

Kappa        0.27 
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Figure 4.17: Species-cover map of Level 3 classification created from 

CHRIS/LiDAR data using the SVM classifier. 

Table 4.8: CHRIS/LiDAR Level 3 SVM classification accuracies. 

  Reference (Pixels)       User 

Accuracy 

(%) 

Map Prediction 

(Pixels) 

Aspe

n Poplar Tamarack 

Jack 

Pine 

Black 

Spruce 

White 

Spruce Total 

Unclassified 1 0 1 0 0 0 2 

 Aspen 102 4 0 0 0 5 111 91.9 

Balsam Poplar 0 6 0 0 0 0 6 100.0 

Tamarack 6 0 9 2 0 1 18 50.0 

Jack Pine 0 0 1 10 1 0 12 83.3 

Black Spruce 0 2 3 1 14 2 22 63.6 

White Spruce 0 1 0 0 2 25 28 89.3 

Total 109 13 14 13 17 33 199  

Producer’s 

Accuracy (%)        

Overall 

Accuracy 

93.6 46.2 64.3 76.9 82.4 75.8 

 

83.4 

Kappa        0.75 
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Figure 4.18: Species-cover map of Level 3 classification created from 

CHRIS/LiDAR data using MESMA unmixing. 

Table 4.9: CHRIS/LiDAR Level 3 MESMA classification accuracies. 

 Reference (Pixels)     User 

Accuracy 

(%) 
Map Prediction 

(Pixels) Aspen Poplar Tamarack 

Jack 

Pine 

Black 

Spruce 

White 

Spruce Total 

Unclassified 13 4 1 0 0 1 19 

 Aspen 86 0 0 0 0 4 90 95.6 

Balsam Poplar 3 6 0 0 0 0 9 66.7 

Tamarack 4 0 12 1 1 8 26 46.2 

Jack Pine 0 0 1 2 2 0 5 40.0 

Black Spruce 2 2 0 4 8 7 23 34.8 

White Spruce 1 1 0 6 6 13 27 48.1 

Total 109 13 14 13 17 33 199   

Producer’s 

Accuracy (%)        

Overall 

Accuracy 

78.9 46.2 85.7 15.4 47.1 39.4 

 

63.8 

Kappa        0.49 
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4.8 Comparison of Classification Techniques 

For the CHRIS dataset alone, SVM had a higher overall accuracy of 74.4 %, 

whereas the overall accuracy for the MESMA classification was 43.2 %. In both 

classification methods, Aspen has a producer accuracy of 94.4 % and 56.0 % using SVM 

and MESMA, respectively. For the CHRIS/LiDAR dataset, SVM revealed a higher 

overall accuracy of 83.4 % compared to the overall accuracy of 63.8 % for the MESMA 

classification. In all classification methods, Aspen was identified as the largest tree 

species by area (Figure 4.19). 

 

Figure 4.19: Comparison of the estimated land cover for each tree species for each 

classification method. 

A pairwise comparison of the Z-statistics, calculated using McNemar’s continuity 

corrected test, between the CHRIS and CHRIS/LiDAR SVM and between the CHRIS and 
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CHRIS/LiDAR MESMA Kappa analysis yielded a Z value (p < 0.05) of 3.47 and 4.74, 

respectively (Table 4.10 and 4.11). 

Table 4.10: Comparison of the classifications derived from the Level 3 CHRIS 

and CHRIS/LiDAR datasets using SVM. 

  

CHRIS (SVM) 

  

Correct Incorrect Total 

C
H

R
IS

/L
iD

A
R

 

(S
V

M
) Correct 145 21 166 

Incorrect 3 30 33 

Total 148 51 

 
 

Table 4.11: Comparison of the classifications derived from the Level 3 CHRIS 

and CHRIS/LiDAR datasets using MESMA. 

  

CHRIS (MESMA) 

  

Correct Incorrect Total 

C
H

R
IS

/L
iD

A
R

 

(M
E

S
M

A
) Correct 71 56 127 

Incorrect 15 57 72 

Total 86 113 

  

In comparing the SVM and MESMA classification approaches applied to the two 

datasets, it was determined that there are significant differences between the 

classifications results of the two approaches. Thus, the classifications are statistically 

different from each other. 
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Chapter 5  

Discussion 

5.1 Introduction 

A comparison of MESMA and supervised SVM classification as a means to 

determine tree species around reclaimed well-sites is the topic of this thesis. A 

hierarchical approach was used to refine the classifications from broad land-cover classes 

down to tree species classes. The difference is that one is a general grouping of land-

cover types, while the other is classification of a tree species. 

5.2 Pre-Processing 

Processing of imagery is a necessity prior to image classification so that any 

atmospheric effects and sensor artifacts can be minimized or corrected. The aim of this is 

to correct the image such that it is as if the data were captured on the ground. This helps 

with classifications at a later date as the only changes to a pixel will be due to spectral 

changes of the target and not caused by atmospheric attenuation or sensor noise.  

De-striping of the CHRIS imagery was accomplished using ESA’s BEAM 

program. The imagery was corrected to surface reflectance using MODTRAN 4 present 

within BEAM. This produced satisfactory results when evaluated qualitatively. Following 

atmospheric correction, an abnormally high reflectance value (near 100 %) was present in 

a couple pixels within the scene. The image was normalized by applying a contrast 

enhancement, ignoring the anomalous pixel values. Because these anomalies were 

confined to non-vegetated areas, they were masked for any further processing in the level 
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1 classification. Upon closer inspection, the anomalies were situated on active well-sites 

and caused by specular reflection from the facility roofs. The negative reflectance values 

that were found in the blue region of the spectrum (410 – 472 nm) were caused by 

atmospheric scattering effects, especially Rayleigh Scattering, when calculating the path 

radiance that was used to correct the raw signal. An over estimation of the path radiance 

was used when subtracting from the signal resulting in negative reflectance values. 

5.3 Field Parameters 

In this study, field parameters were compared to parameters derived from remote 

sensing with the aim of addressing individual well site reclamation. The parameters 

included canopy height, canopy fractional cover, and tree species. Nine of the 16 well 

sites with a reclamation certificate within the image extents did not have trees present 

and, thus, field data relevant to forest structure were not captured for those sites. 

However, the remaining seven sites were characterized and compared to reference sites 

nearby. 

The results of comparing the tree species at a well site to tree species measured by 

remote sensing indicated that using CHRIS data alone with the MESMA classifier was 

the best predictor of tree species. The correct tree species was identified in nine out of the 

16 sites. CHRIS with LiDAR and CHRIS alone using the SVM classifier correctly 

identified tree species half of the time while CHRIS/ LiDAR with MESMA identified tree 

species 6 out of the 16 times.  

One of the difficulties in comparing tree species between remote sensing and field 

methods in this study is the fact that only three of the field measured sites contained 

coniferous species. The other 13 sites were dominated by either Balsam Poplar or Aspen. 
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Due to the difficulty in separating these species, not only at a spectral level but also in the 

field, combining these two species into a single class would improve the results.  

One of the major challenges in using remote sensing to address reclamation goals 

in oil and gas well-sites is the size of the well site and the spatial resolution of the remote 

sensing data used to assess the well site. In this study, the imagery used had a spatial 

resolution of 34 m, which is a third of the size of a typical well pad (assuming 100 m). 

The number of spectral signatures contributing to the overall pixel spectral signature is 

too broad to reliably determine tree species at a particular well site. This is the mixed 

pixel issue identified in Section 2.5.2.2 and is a function of both the purity of 

endmembers selected to represent a class as well as the spectral purity of the pixel being 

unmixed. However, determining the broad tree types (coniferous or deciduous) using 

medium-spatial resolution imagery is feasible as a broader range of spectral signatures 

can be considered ‘pure’. 

5.4 Level 1 Classification 

Separating the broad land-cover types in the first level of classification is 

necessary in order to ensure that only pixels containing forested areas are included in the 

subsequent classification and unmixing procedures. The use of SVM in separating the 

land-cover types yielded excellent results with an overall accuracy of 97.5 %. 

The object of this level of classification was separating forest cover from the other 

land- cover classes. The accuracies obtained for this class were 99.4 % for producer’s 

accuracy and 98.9 % for user’s accuracy. The reason for the high accuracies across all 

land-cover types can be attributed to the broad groupings used and the fact that each 

grouping aimed to exploit large differences in the EM spectrum (i.e., forest compared to 
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water). However, there was confusion between the grass and wetland classes, where 18.7 

% of the wetland pixels were misclassified as grass and 6.6 % of the grass pixels were 

classified as wetland. This is due to the similar vegetation types present in grasslands and 

wetlands. Both land-cover types are typically covered by short bushes, such as willow, 

rather than trees. Although the understory differs between the two, these difference may 

not be sufficient to spectrally separate the two land-cover types at this time of year and, 

thus, confusion arises when trying to classify these types. While the results of this 

classification level are qualitatively good, the number of validation pixels could be 

increased, especially for wetland to provide more confidence in the classification results. 

Ideally, the sampling size should be about 10 times the number of bands in the image 

(Schott, 2007). However, due to the proportions of the land-cover types in the scene, this 

was not possible. This is more of a note on the accuracy of the classifier and has little 

bearing on this study, because all land-cover types other than forest were masked for 

subsequent processing. 

5.5 Level 2 Classification 

Because trees can be either coniferous or deciduous, this was the next logical level 

of classification. Due to the relatively large pixel size and mixture of tree canopies (i.e., 

deciduous and coniferous trees), a third mixed coniferous/deciduous class was also used 

for classification purposes. At this stage of the classification hierarchy, additional LiDAR 

data were used together with the hyperspectral data in order to investigate if there is an 

increase in accuracy with their inclusion. The SVM classification was again used at this 

level. The results indicate that the inclusion of the LiDAR dataset in the classification 

yielded better results than using the CHRIS data alone with overall accuracies of 74.4 % 
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and 70.7 %, respectively. These results are significantly different from each other at a 95-

% confidence level when using McNemar’s test with the continuity correction.  

The class with the lowest accuracies, both producer and user, was the mixed 

coniferous/deciduous class. For the CHRIS dataset alone, these accuracies are 34.9 % and 

62.0 %, respectively with higher accuracies of 45.6 % and 66.2 % for the CHRIS/LiDAR 

merged dataset, respectively. These low accuracies are expected for a mixed class, 

because the pixels being classified contain a portion of both coniferous and deciduous 

tree types. Accordingly, the dominant tree type is likely better represented by the 

classifier.  

While every effort was made to represent the mixed class with representative 

training samples, some of the dominant tree types may have been selected when creating 

the training class. Although the overall accuracy of the CHRIS/LiDAR merged dataset 

was higher than the CHRIS data alone, this may be attributed to the different canopy 

cover and canopy height present in the coniferous and deciduous classes. Conifers tend to 

have a cone shaped canopy, while deciduous trees produce a broader canopy (Hosie, 

1979). While the LiDAR data can be used to model the shape of a tree, given enough data 

points, this was not done for this thesis. This distinction can help a classifier determine a 

tree type in the presences of spectral\similarity between classes.  

While these results are promising, especially for the coniferous and deciduous 

classes, the mixed class had a great deal of confusion. Using a higher spatial resolution 

may have helped to better classify the tree types by using the canopy shape to further 

separate the classes. Shape could have been determined by using a valley approach, 

whereby tree crowns are treated similar to high-elevation topographic features and the 
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low-elevation features surrounding the former would be the lower leaves (Leckie et al., 

2003; Gougeon. 1995). However, this approach would not work well in a deciduous 

forest, where tree canopies are more spread out than cone shaped trees. Shape could have 

been included in the classification process as another variable used to differentiate tree 

type and potentially species. Imagery with a spatial resolution of less than 1 m would be 

ideal to distinguish shape, because tree crowns could be identified. Furthermore, the 

mixed class could have benefited from spectral unmixing to aid in the classification, 

because this class, by its nature, contains proportions of both coniferous and deciduous 

trees.  

5.6 Level 3 Classification 

The final level of classification involved separating the tree types into tree species 

using the CHRIS dataset alone and the CHRIS/LiDAR merged data. Classification was 

performed using the SVM classifier and MESMA unmixing on both datasets. In the case 

of the latter classification method, the model which best represented the pixel was used to 

classify the pixel. In comparing the SVM classification results, the CHRIS/LiDAR 

combination had a superior overall accuracy with 83.4 % compared to the CHRIS dataset 

alone with 74.4 %. For MESMA, the CHRIS/LiDAR combination again had a higher 

overall accuracy at 63.8 % compared to the CHRIS dataset alone at 43.2 %. A discussion 

of the different classification accuracies and reasoning behind them is discussed in the 

following sections. 
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5.6.1 SVM 

The most accurate tree-type classified in both datasets was the Aspen class with a 

producer’s accuracies of 94.4 % for CHRIS data alone and 93.6 % for CHRIS/LiDAR 

merged data. These high accuracies in the Aspen class can be attributed to the large 

proportion of training samples used in the classification. As a result, this class may be 

over represented and bias the overall accuracy assessment towards that of the Aspen class 

itself. The least accurate classification of tree species was Jack Pine with a producer’s 

accuracy of 35.3 % for CHRIS data alone and Poplar with a producer’s accuracy of 46.2 

% for CHRIS/LiDAR merged data. Significant increases in accuracies occurred for 

coniferous tree species by including LiDAR data in the classification process (Table 5.1). 

The largest increase was observed for Black Spruce with a difference of 47.1 %. These 

differences may be attributed to the height differences between Black Spruce and White 

Spruce (Hosie, 1979). Within the CHRIS classification, Black Spruce was most often 

confused with White Spruce. However, with the inclusion of the LiDAR structural 

parameters, these differences could be taken into considerations when classifying the 

image.  

Comparing the results of the classifications of SVM with CHRIS as opposed to 

CHRIS/LiDAR showed that the results are significantly different when using McNemar’s 

test with the continuity correction  
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Table 5.1: Comparison of SVM producer’s accuracies for conifer species. 

 Producers Accuracies 

Tree Type CHRIS CHRIS/LiDAR 

Tamarack 46.2 % 64.3 % 

Jack Pine 30.8 % 76.9 % 

Black Spruce 35.3 % 82.4 % 

White Spruce 72.7 % 75.8 % 

 

The moderate pixel size of 34 m resulted in mixed pixels containing spectra from 

both understory and other tree species. This mixing coupled with a low number of 

representative reference pixels may be painting an un-realistic picture of the true merit of 

the classification methods and accuracies. Although relatively high accuracies were 

obtained using the SVM classification, this classification method at this spatial resolution 

may be better suited for broad stand-level studies rather than small well-pad size studies. 

5.6.2 MESMA 

Similar to the SVM classification, Aspen was again the species most accurately 

classified with a producer’s accuracies of 56.0 % for CHRIS alone and 78.9 % for 

CHRIS/LiDAR when using MESMA. Again, this can be attributed to the large proportion 

of Aspen training samples used for the classification. The least accurate class for the 

CHRIS and CHRIS/LiDAR data was Jack Pine with a producer’s accuracy of 15.4 %. 

The same accuracies for both classifications is peculiar but not unexpected. Due to the 

small validation sample size of 13 pixels there is less of a chance for pixels to differ from 

the training sample. Within the CHRIS classification, Tamarack and Jack Pine classes 

were the most often confused with 38.5 % of the Jack Pine pixels being classified as 

Tamarack. Because these trees typically grow in different environmental regimes, Jack 

Pine in elevated, drier areas and Tamarack in lower, wetter areas (Hosie, 1979).This 
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result suggests that greater pixel separability and more pure Jack Pine endmembers are 

required to successfully classify the Jack Pine species. Another 38.5 % of the Jack Pine 

training pixels were determined to be unclassified. Within the CHRIS/LiDAR 

classification, White Spruce was most often confused with Tamarack with 46.1% of the 

Tamarack pixels being classified as White Spruce. This result is understandable as these 

tree species favour the same environmental regimes.  

The results of the McNemar’s tests on the CHRIS and CHRIS/LiDAR MESMA 

classified images indicate that the classifications are significantly different from one 

another. 

Due to the moderate pixel size, the chances of a pixel being spectrally pure are 

minute. This necessitates the need for a spectral unmixing procedure in order to determine 

what the contributing spectra of a pixel are. MESMA is able to determine the 

contributions of different spectra to the overall pixel spectrum. From these contributions, 

the spectrum that contributes the most is assigned to that pixel. This method works well 

on high-spatial resolution pixels where the number of contributing spectra is lower. 

However, at moderate spatial resolutions, this method creates confusion in classifying an 

image as there can be a large number of spectrally distinct features within the spatial 

distribution of a pixel. Logically grouping tree species based on their preference of 

growing areas can be more representative of what is happening on the ground. For 

example, Tamarack and Black Spruce are often found growing together in low lying 

wetland areas (Hosie, 1979). Creating a model with endmembers made up of these two 

tree species is a better representation of these low lying areas. The same can be said for 

species such as White Spruce and Jack Pine. Creating a spectral library from trees within 
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the study area using high quality spectral signatures from which to base the model on, 

would also aid in increasing the classification accuracies. 

A four end-member model, as opposed to a three-endmember model, was also run 

on the mixed and coniferous tree species in order to determine if the inclusion of another 

endmember into the MESMA modelling would increase the accuracies substantially. This 

was not found to be the case with an approximate 1-% decrease in overall accuracies from 

the three-endmember models to the four-endmember models. 

5.7 Hierarchical Approach 

The hierarchical approach used in this study is well suited to tree-species 

classification as it spatially constrains the data in order to decrease the complexity, in this 

case from broad land-cover to tree species. This method can be further improved upon 

leveraging tree growing preferences. Using the DEM created from the LiDAR data, a 

further spatial constraint can be applied based on drainage patterns. Using this elevation 

constraint, tree types and furthermore tree species could have been better differentiated by 

observing their preferred growing regimes. Low-lying drainage areas are more likely to 

attract coniferous species, such as Tamarack and Black spruce. Accordingly, confining 

tree species to these areas would have allowed for better classification.  

In any system that builds upon previous methods, there is a chance for error 

propagation from the first level to the last level. In the case of this study, the actual 

classification of tree species is predicated on correctly identifying land-cover types. For 

example, forests that are misclassified as another land-cover type are removed from any 

further classification. Conversely, land-covers that are misclassified as being forest 

contribute spectra that can reduce classification accuracies as they are significantly 
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different than training spectra. This can occur in transitional zones, such as when a forest 

ends and grassland begins. The inclusion of a mixed class attempted to account for any 

error propagation from level 2. Rather than declaring a tree to be either coniferous or 

deciduous, the mixed class allowed for some ambiguity to occur within the spectral 

profile of pixels within this class. This ambiguity can increase the classification error for 

tree species identified as being of the mixed class in level 2 when in reality their 

classification should be either coniferous or deciduous.  

 The area for which this study was conducted has a wide variation in land-cover 

types, which helps with the hierarchical constraints. A heavily treed area or an area with 

heavily mixed coniferous and deciduous trees may not benefit from this approach as there 

would an abundance of mixed pixels which would hamper further constrain mapping 

efforts. However, the results of this study highlight the merit of a hierarchical approach. 
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Chapter 6  

Conclusions 

Understanding what tree species are present and the distribution of those tree 

species in oil and gas well sites and surrounding areas is an important part of a cumulative 

reclamation plan. Utilizing remote sensing has the following two main benefits for 

reclamation management: a) The technology is able to cover large areas of land in a 

timely fashion and b) it allows for repeat measurements almost whenever a user desires.  

This thesis investigated the utility of combining two remote sensing datasets, 

hyperspectral satellite and airborne LiDAR imaging in order to classify tree species in 

and around abandoned well-sites in Cold Lake, Alberta. To facilitate the classification 

procedure, the following two methods of classifying tree species were investigated, SVM 

and MESMA. A hierarchical classification approach was used to spatially constrain the 

remote sensing data at different classification levels in order to reduce spectral confusion. 

The accuracy of the different classification approaches and the different remote sensing 

datasets was evaluated and compared. The methods used in this thesis demonstrate an 

approach for reclamation personnel when attempting to determine tree species in and 

around abandoned well-sites. 

This thesis answers the hypothesis of whether combining structural and spectral 

data over a forested reclamation site will yield classification results that are more accurate 

than spectral data alone. Indeed, the results of this study show that through the inclusion 

of structural data, an increase of 9 % for SVM and 22 % for MESMA in classification 

accuracy can be observed. These results were tested against spectral data alone and are 
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significantly different at a 95 % confidence level. Furthermore, while spectral unmixing 

methods can provide the estimated proportions of endmembers within each pixel, their 

use with medium spatial resolution images is not as good as compared to discrete 

classification methods.  

The results from the third and final level of classification using SVM and 

MESMA showed that a combined dataset of hyperspectral and LiDAR data achieved the 

best result distinguishing tree species. Results show that classifying a combined 

CHRIS/LiDAR dataset with SVM produced the most accurate tree species classification 

with 83.4 % compared to the CHRIS data alone (74.4 %). SVM was also superior to 

MESMA in the final level of classification. MESMA classification achieved overall 

accuracies of 64.3 % using CHRIS/LiDAR data and 44.2 % using CHRIS data alone. All 

classified datasets showed confusion between Black Spruce and White Spruce and Jack 

Pine and Tamarack. However, the addition of LiDAR data to the analysis improved the 

ability of the classifiers to identify these species. The most accurate tree species identified 

in all classifications was Aspen. This is to be expected as Aspen had a larger training and 

validation size and also due to the fact that the majority of tree species that were 

measured on the ground were Aspen.  

The combined dataset approach used in this thesis demonstrates that through the 

inclusion of structural data in the form of Canopy Height Models and Canopy Cover 

Models, tree-species classification accuracies can be increased. The approaches identified 

in this study can be improved upon through the use of higher spatial resolution imagery 

and through acquiring data at different time periods in order to build a temporal dataset. 

The increased spatial resolution will help in reducing mixed pixels that were a major 
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source of confusion in this study, and the use of a temporal dataset will further help in 

separating coniferous and deciduous tree species through leaf-off and leaf-on conditions. 

However, with an increase in spatial resolution the amount of area that can be covered by 

a single image diminishes. This can reduce the effectiveness of tree-species identification 

for reclamation monitoring over large areas. 

This study has demonstrated that using hyperspectral and LiDAR datasets to 

determine tree species in and around abandoned well-sites is feasible and indeed can be 

used to assess reclamation objectives. However, problems can arise when attempting to 

differentiate certain tree-species from one another. For example, Aspen and Balsam 

Poplar are extremely difficult to separate both spectrally and in the field. This is 

demonstrated in both CHRIS and CHRIS/LiDAR datasets when using SVM or MESMA. 

A more encompassing approach to reclamation management using tree-species 

classification may be to determine if there are significant differences in the types of trees 

(coniferous or deciduous) in a well-site compared to the trees around a well-site. This 

approach could act as a flag, whereby a more in depth field analysis should be conducted.  
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Appendix 1 

 

Site Plot
Number of 

Trees

Field 

Measured 

Fractional 

Cover (%)

Majority Field 

Measured Tree 

Species

LiDAR 

Measured 

Fractional 

Cover (%)

LiDAR 

Measured 

Height (m)

Species From 

CHRIS SVM

Species From 

CHIRS LiDAR 

SVM

Species From 

CHRIS 

MESMA

Species From 

CHRIS LiDAR 

MESMA

License 

Number
Surface Location

Well 

Construction 

Date

Reclamation 

Certification 

Date

Time Between 

Construction and 

Reclamation

Age of plot after 

reclamation to August 

2012

Reclamation 

Certification 

Number

F10025689 92 43.55 Pb 42.75 5.50 N/A N/A N/A N/A 25689 4-04-066-02-01 1964-03-03 1967-02-13 2 years 11 months 45 years 5 months 55-377

F10027735 32 0.74 Pb 8.67 1.67 Aw Aw Unknown Pj 27735 4-04-065-03-14 1965-02-20 1967-11-15 2 years 8 months 44 years 8 months 55-816

F10087962 0 0.00 No Trees Present 0.00 0.40 Aw Aw Aw Aw 87962 4-04-064-32-10 1981-02-07 1985-12-31 4 years 10 months 26 years 7 months

F10088251 9 20.04 Aw 2.75 1.25 Pb Pb Aw Pb 88251 4-04-064-28-15 1981-02-27 1985-12-31 4 years 10 months 26 years 7 months

F10088252 16 27.14 Pb 43.50 7.75 Aw Aw Aw Aw 88252 4-04-064-28-02 1981-03-01 1985-12-31 4 years 9 months 26 years 7 months

F10135076 34 0.28 Pb 5.60 2.60 Aw Aw Pj Sw 135076 4-04-064-24-14 1988-07-26 1993-02-11 4 years 6 months 19 years 5 months NER 93 0053

F10159571 57 9.70 Lt 13.20 3.20 N/A N/A N/A N/A 159571 4-04-066-14-04 1994-01-29 2007-01-26 12 years 11 months 5 years 6 months NE1-07-30660

F10176511 21 0.00 Sb 0.00 0.00 N/A N/A N/A N/A 176511 4-04-066-10-03 1996-02-13 1999-05-17 3 years 3 months 13 years 2 months NEB 99 2E017

F10181679 5 0.00 Lt 0.00 0.00 N/A N/A N/A N/A 181679 4-04-066-03-15 1996-02-09 2012-02-13 16 years 5 months

F10182632 6 8.07 Pj 4.33 1.67 N/A N/A N/A N/A 182632 4-04-066-10-11 1996-01-14 1999-05-17 3 years 4 months 13 years 2 months NEB 99 2E032

F10191968 0 0.00 No Trees Present 0.00 0.00 Aw Aw Aw Pj 191968 4-04-065-05-11 1997-03-05 1999-05-17 2 years 2 months 13 years 2 months NEB 99 2E040

F10195902 0 0.00 No Trees Present 0.00 0.00 N/A N/A N/A N/A 195902 4-04-066-27-13 1997-03-16 1999-05-17 2 years 2 months 13 years 2 months NEB 99 2E022

F10196012 0 0.00 No Trees Present 0.75 5.50 N/A N/A N/A N/A 196012 4-04-066-26-13 1997-03-21 1999-05-17 2 years 1 month 13 years 2 months NEB 99 2E033

F20051406 7 41.94 Pb 16.75 3.00 Aw Aw Pj Pb 51406 4-04-064-13-01 1974-10-26 1985-12-31 11 years 2 months 26 years 7 months

F20069598 0 0.00 No Trees Present 0.00 0.00 Aw Aw Aw Unknown 69598 4-04-064-20-13 1978-07-25 2009-01-23 30 years 5 months 3 years 6 months NE1-09-80307

F20087929 2 0.00 Pb 0.75 0.75 Aw Aw Lt Pj 87929 4-04-064-21-10 1981-01-30 2007-01-19 25 years 11 months 5 years 6 months NE1-07-02382

F20087960 0 47.49 No Trees Present 46.67 5.67 Pb Sb Aw Sb 87960 4-04-064-20-02 1981-01-23 1985-12-31 4 years 11 months 26 years 7 months

F20088253 0 0.00 No Trees Present 0.00 0.00 Unknown Unknown Unknown Unknown 88253 4-04-064-32-06 1981-02-15 1985-12-31 4 years 10 months 26 years 7 months

F20104481 0 0.00 No Trees Present 0.00 0.00 Aw Aw Pb Aw 104481 4-04-064-28-03 1984-02-05 1986-10-23 2 years 8 months 25 years 9 months NER 86 0062

F20105627 25 30.55 Pb 0.40 0.80 Pb Pb Unknown Pb 105627 4-04-064-28-07 1984-02-18 2008-10-14 24 years 7 months 3 years 9 months NE1-08-40100

F20112558 0 0.00 No Trees Present 3.75 1.75 Unknown Unknown Unknown Unknown 112558 4-04-064-31-10 1985-01-25 1986-10-23 1 year 8 months 25 years 9 months NER 86 0063

F20150494 0 0.00 No Trees Present 0.00 1.00 N/A N/A N/A N/A 150494 4-04-066-26-11 1992-01-07 2008-10-21 16 years 9 months 3 years 9 months NE1-08-10885

F20367845 0 0.00 No Trees Present 3.00 5.67 Aw Aw Unknown Aw 367845 4-04-064-31-08 2007-01-09 2011-03-22 4 years 2 months 1 year 4 months

F20368906 0 0.00 No Trees Present 0.00 0.00 Aw Aw Unknown Aw 368906 4-04-064-31-01 2007-02-03 2011-03-22 4 years 1 month 1 year 4 months

RF10025689 22 37.89 Sw 67.75 15.50 N/A N/A N/A N/A

RF10027735 21 61.63 Aw 70.60 18.40 Pb Pb Aw Aw

RF10087962 39 66.30 Aw 80.33 17.67 Aw Aw Aw Aw

RF10088251 27 53.00 Aw 67.50 16.50 Aw Aw Aw Aw

RF10088252 13 68.87 Aw 73.00 16.75 Pb Pb Aw Lt

RF10135076 23 66.87 Aw 83.50 18.50 Pj Lt Aw Pb

RF10159571 26 43.08 Sb 62.00 12.50 N/A N/A N/A N/A

RF10176511 38 34.25 Sb 72.00 13.67 N/A N/A N/A N/A

RF10181679 36 4.65 Lt 11.50 3.00 N/A N/A N/A N/A

RF10182632 12 28.62 Aw 26.75 12.75 N/A N/A N/A N/A

RF10191968 51 68.47 Lt 79.40 16.40 Sw Sb Pj Sb

RF10195902 20 72.42 Aw 64.67 23.00 N/A N/A N/A N/A

RF10196012 50 63.75 Aw 81.40 22.20 N/A N/A N/A N/A

RF20051406 24 71.12 Pb/Aw 75.25 18.25 Aw Aw Pb Sw

RF20069598 21 86.94 Aw 88.33 20.00 Aw Aw Unknown Aw

RF20087929 18 57.48 Pb 65.60 16.20 Sw Sw Sw Sw

RF20087960 5 61.41 Pb 72.25 25.00 Aw Pb Aw Pj

RF20088253 12 66.55 Aw 81.25 18.25 Aw Pb Aw Pb

RF20104481 20 82.41 Aw 82.00 19.67 Aw Aw Pb Aw

RF20105627 25 53.55 Pb 77.00 25.33 Aw Aw Unknown Sw

RF20112558 22 67.10 Aw 72.14 18.57 Aw Aw Pb Pb

RF20150494 37 25.31 Sw 53.33 10.67 N/A N/A N/A N/A

RF20367845 18 77.58 Aw 76.50 18.00 Aw Aw Aw Aw

RF20368906 12 56.05 Pb 82.50 17.75 Aw Aw Pb Aw

Reference Sites do not have any oil and gas activity associated with them.


