Regional Impacts of BSE in Alberta

MacLachlan, Ian

Downloaded from University of Lethbridge Research Repository, OPUS
Regional Impacts of BSE in Alberta

Ian MacLachlan and Ivan Townshend,
Department of Geography, University of Lethbridge, Lethbridge, Alberta, T1K 3M4.
E-Mail: maclachlan@uleth.ca

The Global Rural; Rural Change, Connections, and Scale
THE SIXTH QUADRENNIAL CONFERENCE OF BRITISH, CANADIAN, AND AMERICAN RURAL GEOGRAPHERS.

July 17, 2007
Structure of Talk

• Global rural: Zoonosis!
• Beef Production is Important in Rural Alberta
• Alberta’s BSE Crisis in Context
• Half full or half empty?
 – We dodged a bullet!
 – Perfect Storm
• Regional Impact of BSE Crisis
Global Rural

- Globalization
- Climate change
- Emerging and re-emerging animal diseases and zoonoses
- Potential for unprecedented worldwide impact
The Countryside is Vulnerable...
Animal Disease: A Resurgent Threat

• Rural Canada has a vested interest in global aspects of animal health and trade in animals & products
 – High profile zoonotic trade barriers
 – Draconian control measures

• Confusing for consumers
 – FMD: Spring 2001(UK)
 – BSE: May 2003-2007: 10 cases
 – Avian Influenza: Fall 2003
Source: OIE: World Organisation for Animal Health
http://www.oie.int/eng/info/en_esbcarte.htm
Beef Cattle

Note: Each census farm is classified according to the NAICS commodity or commodity group that accounts for 50% or more of total receipts.
Source: Statistics Canada 2006 Census of Agriculture
Pasture: Canada’s dominant farm land use: 29.9% of area

<table>
<thead>
<tr>
<th>Province</th>
<th>Total farm area</th>
<th>Tame pasture</th>
<th>Natural pasture</th>
<th>Pasture as pct. of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newfoundland</td>
<td>100,271</td>
<td>6,251</td>
<td>17,524</td>
<td>23.7</td>
</tr>
<tr>
<td>Prince Edward I.</td>
<td>646,137</td>
<td>29,192</td>
<td>31,786</td>
<td>9.4</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>1,005,833</td>
<td>56,520</td>
<td>81,215</td>
<td>13.7</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>958,899</td>
<td>44,998</td>
<td>66,436</td>
<td>11.6</td>
</tr>
<tr>
<td>Quebec</td>
<td>8,443,656</td>
<td>451,810</td>
<td>459,382</td>
<td>10.8</td>
</tr>
<tr>
<td>Ontario</td>
<td>13,507,357</td>
<td>773,650</td>
<td>1,314,335</td>
<td>15.5</td>
</tr>
<tr>
<td>Manitoba</td>
<td>18,784,407</td>
<td>947,585</td>
<td>3,905,189</td>
<td>25.8</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>64,903,830</td>
<td>3,473,646</td>
<td>12,668,456</td>
<td>24.9</td>
</tr>
<tr>
<td>Alberta</td>
<td>52,058,898</td>
<td>5,512,654</td>
<td>16,503,920</td>
<td>42.3</td>
</tr>
<tr>
<td>British Columbia</td>
<td>6,392,909</td>
<td>575,864</td>
<td>2,983,929</td>
<td>55.7</td>
</tr>
<tr>
<td>Canada</td>
<td>166,802,197</td>
<td>11,872,170</td>
<td>38,032,172</td>
<td>29.9</td>
</tr>
</tbody>
</table>

Source: Statistics Canada 2001 Census of Agriculture
Export Orientation

- Canada produces < 2% of world’s beef supply
- But Canada is 3rd largest beef exporter
 - (Brazil, Australia, Canada, Argentina, New Zealand, India, Uruguay, U.S., EU25, Mexico)
- >30% of cattle and 35% of beef production was exported in 2002
- U.S. dominates:
 - >80% of beef
 - 100% of live cattle
Trade Impact of BSE, May 20, 2003

World exports of canadian cattle and beef

millions of CAN$
Beef Consumption and the National Cattle Herd, 1960-2005

Source: Agriculture and Agri-Food Canada Livestock Market Review and Statistics Canada, Cansim II, Series label: D263233.
Alberta dodged a bullet!

- Drought
- Cattle on feed on May 1, 2003 was only 762,000
- Volume of COFD was only 45% of the peak 1.49 million on feed four years earlier on December 1, 1999.
- Cattle can stay outside on pasture
- It rained
- Deep pockets in Edmonton & Ottawa
Cattle on Feed

Source: Lessons Learned from the Canadian Drought Years 2001 and 2002
Synthesis Report for Agriculture and Agri-Food Canada by E. Wheaton (2005)
Finally, it rained
The Perfect Storm I

- Additive & compounding events that amplify impacts (droughts, floods, hoppers)
- If you remove one or more risk events...
- “major risk event” might collapse...
- “resulting in near normal impact”
- (Bruce Viney, Risk Management Specialist, Alberta Agriculture and Food, 2006)
The Perfect Storm II

• Northern Plains Drought 2000-2001
 – Forage exported south, reducing Alberta’s stocks
 – Price of hay increased
 – U.S. feed freight subsidy encourages Canadian feed exports

• 9/11 attacks
 – Reduced consumer demand in U.S.
 – Alberta calf prices drop 25%

• Drought 2002
 – Hay and feed are scarce and dear in Alberta
 – Producers in weakened financial position
 – (Yet Alberta’s cattle inventory declined from 2001-2003)

• BSE border closures
 – Cattle prices tank
 – Compensation to producers: $2.5 billion
Long-run Effects of BSE on the structure & distribution of the provincial cattle herd

- Census of Agriculture 2001, 2006
- May 16th
- Exploratory: H_1, H_0
- “an unusually obstinate attempt to think clearly” (Bertrand Russell)
• Suppression problem

• Nation
 – Province
 • Census Agricultural Region
 – Census Division
 » Consolidated Census Subdivision
 » ~ county + embedded municipalities
Alberta’s Cattle Herd Structure, 2006

<table>
<thead>
<tr>
<th>Bovine type (i=1-8)</th>
<th>Head count</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1 Beef cows</td>
<td>2,035,841</td>
<td>32.0</td>
</tr>
<tr>
<td>B_2 Dairy cows</td>
<td>78,875</td>
<td>1.2</td>
</tr>
<tr>
<td>B_3 Calves</td>
<td>2,050,773</td>
<td>32.2</td>
</tr>
<tr>
<td>B_4 Dairy heifers</td>
<td>37,803</td>
<td>0.6</td>
</tr>
<tr>
<td>B_5 Beef rep heifers</td>
<td>275,683</td>
<td>4.3</td>
</tr>
<tr>
<td>B_6 Slaughter heifers</td>
<td>805,829</td>
<td>12.7</td>
</tr>
<tr>
<td>B_7 Steers</td>
<td>974,559</td>
<td>15.3</td>
</tr>
<tr>
<td>B_8 Bulls</td>
<td>109,753</td>
<td>1.7</td>
</tr>
<tr>
<td>B_T Total cattle & calves</td>
<td>6,369,116</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Notation: Bovines and time

\[B_i, b_i, B_T, b_T \]

\[t, \quad t' \]

\[t = 2001, \quad t' = 2006 \]
Notation: Incremental change

\[\Delta B_{i}^{t,t'} = B_{i}^{t} - B_{i}^{t'} \]

\[\Delta b_{i}^{t,t'} = b_{i}^{t} - b_{i}^{t'} \]
More Notation: Herd size change

\[R_{i}^{t,t'} = \frac{B_{i}^{t} - B_{i}^{t'}}{B_{i}^{t}} = \frac{\Delta B_{i}^{t,t'}}{B_{i}^{t}} \]

\[r_{i}^{t,t'} = \frac{b_{i}^{t} - b_{i}^{t'}}{b_{i}^{t}} = \frac{\Delta b_{i}^{t,t'}}{b_{i}^{t}} \]
Shift and Share Analysis of Alberta’s Cattle Herd

• What is total shift?

\[tsb_i = \Delta b_i^{t,t'} - \left(R_{T,t'}^t \ast b_i^t \right) \]

• \(tsb_i \) measures total number of bovines that have shifted into or out of a region
• in a sense: observed-expected
• We should “expect” (naively), that \(b_i \) should grow as \(B_i \)
Shift and Share Analysis of Alberta’s Cattle Herd

- We can partition shift into components

\[tsb_i = ssb_i + rsb_i \]

- Total shift = structural shift + regional shift
Shift and Share Analysis of Alberta’s Cattle Herd

• Structural shift

\[s_{sb_i} = \left(R_{i,t}^{t,t'} - R_{T}^{t,t'} \right) \ast b_i^t \]

• The province is our arbitrary reference rate, \(R \)
• We scale the \(i-T \) difference in R by regional \(b_i \)
Shift and Share Analysis of Alberta’s Cattle Herd

• Regional shift

\[rsb_i = (r_{i,tt'} - R_{i,tt'}) \times b_i \]

• The \(r_i \) and \(R_i \) terms measure the difference between regional and national growth by bovine type.
• We scale the difference by \(b_i \)
Shift and Share Analysis of Alberta’s Cattle Herd

Fleshing out the model

\[\Delta b_{i,t}^{t',t'} = (R_T^{t,t'} \cdot b_i^t) + [(R_i^{t,t'} - R_T^{t,t'}) \cdot b_i^t] + [(r_i^{t,t'} - R_i^{t,t'}) \cdot b_i^t] \]

- By rearranging terms we arrive at the shift and share model expressed as three components:

\[\Delta b_i = pe_i + sse_i + rse_i \]

Bovine = provincial + structural + regional
Change effect shift effect shift effect
Shift and Share Analysis of Alberta’s Cattle Herd

What are the implications of herd structure for places?

• Let’s consider all cattle in the region
• Total *structural shift effect* \[\sum_{i}^{n} ssb_i > 0 \]
• A region with ‘favourable’ structure:
 – Has large numbers of bovine type that grew fast provincially 2001-2006
 – Has small numbers of bovine type that declined provincially 2001-2006
 • Growth could imply expectations of rising prices (replacement heifers)
 • Growth could simply imply lack of slaughter capacity (cows)
Shift and Share Analysis of Alberta’s Cattle Herd
What’s it all mean for regions?

• Total *regional shift effect*:

\[\sum_{i=1}^{n} rse_i > 0 \]

• A region with a favourable regional shift effect competes effectively with other regions:
 – *Weather conditions/irrigation water*
 – *Fixed capital investment/infrastructure*
 • *(production, processing, marketing)*
 – *Proximity to U.S. markets (north-south)*
Cattle Population in Alberta, 2001-2006

<table>
<thead>
<tr>
<th>Bovine type</th>
<th>Cattle population</th>
<th>Absolute Change</th>
<th>Percent Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Beef cows</td>
<td>2,035,841</td>
<td>2,099,288</td>
<td>-63,447</td>
</tr>
<tr>
<td>Dairy cows</td>
<td>78,875</td>
<td>84,044</td>
<td>-5,169</td>
</tr>
<tr>
<td>Calves</td>
<td>2,050,773</td>
<td>2,169,607</td>
<td>-118,834</td>
</tr>
<tr>
<td>Dairy heifers</td>
<td>37,803</td>
<td>38,485</td>
<td>-682</td>
</tr>
<tr>
<td>Beef rep heifers</td>
<td>275,683</td>
<td>359,291</td>
<td>-83,608</td>
</tr>
<tr>
<td>Slaughter heifers</td>
<td>805,829</td>
<td>761,553</td>
<td>44,276</td>
</tr>
<tr>
<td>Steers</td>
<td>974,559</td>
<td>991,554</td>
<td>-16,995</td>
</tr>
<tr>
<td>Bulls</td>
<td>109,753</td>
<td>111,379</td>
<td>-1,626</td>
</tr>
<tr>
<td>Total cattle & calves</td>
<td>6,369,116</td>
<td>6,615,201</td>
<td>-246,085</td>
</tr>
</tbody>
</table>

Source: Statistics Canada, 2006 Census of Agriculture, *Farm Data and Farm Operator Data*, catalogue no. 95-629-XWE.
• Viewed change against a backdrop of provincial decline

• Big gainers:
 – Vulcan
 – Kneehill
 – Peace

• Big losers:
 – Calgary/southwest
 – Ponoka
 – Lethbridge
• Highway 2 corridor
• (Canamex highway)
 – Edmonton
 – Red Deer
 – Calgary
 – Lethbridge
• Steers, distributed in proportion to feedlots
Cattle Population in Vulcan County, 2001-2006

<table>
<thead>
<tr>
<th>Bovine Type</th>
<th>Cattle Population</th>
<th>Absolute Change</th>
<th>Percent Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef cows</td>
<td>28,154</td>
<td>29,660</td>
<td>-1,506</td>
</tr>
<tr>
<td>Dairy cows</td>
<td>1,129</td>
<td>691</td>
<td>438</td>
</tr>
<tr>
<td>Calves</td>
<td>63,627</td>
<td>27,712</td>
<td>35,915</td>
</tr>
<tr>
<td>Dairy heifers</td>
<td>399</td>
<td>342</td>
<td>57</td>
</tr>
<tr>
<td>Beef replacement heifers</td>
<td>3,402</td>
<td>2,655</td>
<td>747</td>
</tr>
<tr>
<td>Slaughter heifers</td>
<td>30,430</td>
<td>9,600</td>
<td>20,830</td>
</tr>
<tr>
<td>Steers</td>
<td>43,332</td>
<td>6,610</td>
<td>36,722</td>
</tr>
<tr>
<td>Bulls</td>
<td>1,496</td>
<td>1,481</td>
<td>15</td>
</tr>
<tr>
<td>Total cattle & calves</td>
<td>171,969</td>
<td>78,751</td>
<td>93,218</td>
</tr>
</tbody>
</table>

Source: Statistics Canada, 2006 Census of Agriculture, *Farm Data and Farm Operator Data*, catalogue no. 95-629-XWE.
Shift-share Parameters for Vulcan County, 2001-2006

<table>
<thead>
<tr>
<th>Bovine type</th>
<th>2006-2001 Change</th>
<th>Provincial growth effect</th>
<th>Structural effect</th>
<th>Regional effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef cows</td>
<td>-1,506</td>
<td>-1,103</td>
<td>207</td>
<td>-609.6</td>
</tr>
<tr>
<td>Dairy cows</td>
<td>438</td>
<td>-26</td>
<td>-17</td>
<td>480.5</td>
</tr>
<tr>
<td>Calves</td>
<td>35,915</td>
<td>-1,031</td>
<td>-487</td>
<td>37,432.8</td>
</tr>
<tr>
<td>Dairy heifers</td>
<td>57</td>
<td>-13</td>
<td>7</td>
<td>63.1</td>
</tr>
<tr>
<td>Beef rep heifers</td>
<td>747</td>
<td>-99</td>
<td>-519</td>
<td>1,364.8</td>
</tr>
<tr>
<td>Slaughter heifers</td>
<td>20,830</td>
<td>-357</td>
<td>915</td>
<td>20,271.9</td>
</tr>
<tr>
<td>Steers</td>
<td>36,722</td>
<td>-246</td>
<td>133</td>
<td>36,835.3</td>
</tr>
<tr>
<td>Bulls</td>
<td>15</td>
<td>-55</td>
<td>33</td>
<td>36.6</td>
</tr>
<tr>
<td>Totals</td>
<td>93,218</td>
<td>-2,930</td>
<td>272</td>
<td>95,875.4</td>
</tr>
<tr>
<td>Region</td>
<td>Observed bovine change 2006-2001</td>
<td>Expected bovine change 2006-2001</td>
<td>Structural shift effect</td>
<td>Regional shift effect</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Agricultural Region 1</td>
<td>10,785</td>
<td>-21,140</td>
<td>-3,811</td>
<td>35,736</td>
</tr>
<tr>
<td>Warner County</td>
<td>8,829</td>
<td>-3,736</td>
<td>430</td>
<td>12,134</td>
</tr>
<tr>
<td>Lethbridge County</td>
<td>-56,853</td>
<td>-21,707</td>
<td>25,532</td>
<td>-60,678</td>
</tr>
<tr>
<td>Taber MD</td>
<td>-6,880</td>
<td>-5,875</td>
<td>4,317</td>
<td>-5,323</td>
</tr>
<tr>
<td>Newell County</td>
<td>-7,342</td>
<td>-9,942</td>
<td>2,433</td>
<td>166</td>
</tr>
<tr>
<td>Vulcan County</td>
<td>93,218</td>
<td>-2,930</td>
<td>272</td>
<td>95,875</td>
</tr>
<tr>
<td>Wheatland County</td>
<td>-2,651</td>
<td>-7,771</td>
<td>2,123</td>
<td>2,997</td>
</tr>
<tr>
<td>Starland County</td>
<td>2,514</td>
<td>-1,184</td>
<td>-372</td>
<td>4,070</td>
</tr>
<tr>
<td>Kneehill County</td>
<td>33,877</td>
<td>-3,428</td>
<td>-630</td>
<td>37,935</td>
</tr>
<tr>
<td>Agricultural Region 3</td>
<td>-140,826</td>
<td>-38,549</td>
<td>187</td>
<td>-102,465</td>
</tr>
<tr>
<td>Agricultural Region 4A</td>
<td>-25,104</td>
<td>-19,122</td>
<td>-3,258</td>
<td>-2,724</td>
</tr>
<tr>
<td>Agricultural Region 4B</td>
<td>9,575</td>
<td>-19,917</td>
<td>-4,050</td>
<td>33,542</td>
</tr>
<tr>
<td>Red Deer County</td>
<td>-26,054</td>
<td>-8,874</td>
<td>-324</td>
<td>-16,855</td>
</tr>
<tr>
<td>Lacombe County</td>
<td>-6,717</td>
<td>-5,347</td>
<td>-1,202</td>
<td>-168</td>
</tr>
<tr>
<td>Ponoka County</td>
<td>-74,638</td>
<td>-9,079</td>
<td>323</td>
<td>-65,882</td>
</tr>
<tr>
<td>Clearwater County</td>
<td>-14,887</td>
<td>-4,716</td>
<td>-1,831</td>
<td>-8,340</td>
</tr>
<tr>
<td>Census Division No. 11</td>
<td>-37,179</td>
<td>-15,743</td>
<td>-5,130</td>
<td>-16,306</td>
</tr>
<tr>
<td>Agricultural Region 6</td>
<td>-33,735</td>
<td>-32,432</td>
<td>-8,234</td>
<td>6,931</td>
</tr>
<tr>
<td>Agricultural Region 7</td>
<td>27,983</td>
<td>-14,594</td>
<td>-6,777</td>
<td>49,353</td>
</tr>
<tr>
<td>Alberta Total</td>
<td>-246,085</td>
<td>-246,085</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
• Herd structure favours the traditional ecumene, notably Lethbridge County
• Where there is negative structure effect it is absolutely small, northern and affects both gainers and losers.
• Regional effect is strong determinant of gainers
 – Peace
 – Vulcan
 – Kneehill

• And strong determinant of losers
 – Calgary/SW
 – Ponoka
 – Lethbridge
Conclusions

• Global threats to the countryside are manifest through epidemiological processes
• Impact of disease detection & regulation of food safety is uneven
• Multiple stressors (e.g. drought)
• Regional impacts vary widely
 – Herd structure seems to play minor role
 – Regional shift effect is large
 – Geography matters!