2009

(Z)-2,2,2-Trichloro-N2-cyanoacetamidine

Baker, A. Elizabeth

Wiley-Blackwell Publishing, Inc

http://hdl.handle.net/10133/3792

Downloaded from University of Lethbridge Research Repository, OPUS
(Z)-2,2,2-Trichloro-N²-cyanoacetamidine

A. Elizabeth Baker and René T. Boéré*

Department of Chemistry and Biochemistry, The University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
Correspondence e-mail: boere@uleth.ca

Received 1 August 2009; accepted 5 August 2009

The title compound, C₃H₂Cl₃N₃, crystallizes as the Z isomer with respect to the C=N bond. The –C(NH₂) amidines; see Allen (2002). For the crystal structures of N′(4-amino-3-furanzanyl)-2,2,2-trichloro-N-methoxyacetamidine, (V), see: George & Gilardi (1989). For background to the syntheses of the title compound and (II)–(V) are defined in the related literature.

Related literature

For literature related to characterization, see: Huffman & Schaefer (1963). For comparable structures of N'-cyanoamidines; see Allen (2002). For the crystal structures of N²-cyano-3-[2-diaminomethyleneamino]-4-thiazolylmethythio]-propionamidinemonohydrate, (II) and 3-[2-[amino(methylamino)methyleneamino]-4-thiazolylmethythio]-N²-cyano-propionamide, (III), see Ishida et al. (1989). For the crystal structure of (E)-1,2-bis(1-amino-1-(cyanoimino)-2-methylprop-2-yl)diazene-1,2- dioxide, (IV), see: Tretyakov et al. (2006). For the sole other acyclic trichloromethyl amidine with a reported crystal structure, N-(4-amino-3-furanzanyl)-2,2,2-trichloro-N-methoxymethylamide, (V), see: George & Gilardi (1986). For background to the ΔCN parameter, see: Boéré, et al. (1998).

Refinement

The title compound, C₃H₂Cl₃N₃, crystallizes as the Z isomer with respect to the C=N bond. The –C(NH₂) amidines; see Allen (2002). For the crystal structures of N′(4-amino-3-furanzanyl)-2,2,2-trichloro-N-methoxyacetamidine, (V), see: George & Gilardi (1989). For background to the syntheses of the title compound and (II)–(V) are defined in the related literature.

Related literature

For literature related to characterization, see: Huffman & Schaefer (1963). For comparable structures of N'-cyanoamidines; see Allen (2002). For the crystal structures of N²-cyano-3-[2-diaminomethyleneamino]-4-thiazolylmethythio]-propionamidinemonohydrate, (II) and 3-[2-[amino(methylamino)methyleneamino]-4-thiazolylmethythio]-N²-cyano-propionamide, (III), see Ishida et al. (1989). For the crystal structure of (E)-1,2-bis(1-amino-1-(cyanoimino)-2-methylprop-2-yl)diazene-1,2- dioxide, (IV), see: Tretyakov et al. (2006). For the sole other acyclic trichloromethyl amidine with a reported crystal structure, N-(4-amino-3-furanzanyl)-2,2,2-trichloro-N-methoxymethylamide, (V), see: George & Gilardi (1986). For background to the ΔCN parameter, see: Boéré, et al. (1998).

Refinement

The title compound, C₃H₂Cl₃N₃, crystallizes as the Z isomer with respect to the C=N bond. The –C(NH₂) amidines; see Allen (2002). For the crystal structures of N′(4-amino-3-furanzanyl)-2,2,2-trichloro-N-methoxyacetamidine, (V), see: George & Gilardi (1989). For background to the syntheses of the title compound and (II)–(V) are defined in the related literature.

Related literature

For literature related to characterization, see: Huffman & Schaefer (1963). For comparable structures of N'-cyanoamidines; see Allen (2002). For the crystal structures of N²-cyano-3-[2-diaminomethyleneamino]-4-thiazolylmethythio]-propionamidinemonohydrate, (II) and 3-[2-[amino(methylamino)methyleneamino]-4-thiazolylmethythio]-N²-cyano-propionamide, (III), see Ishida et al. (1989). For the crystal structure of (E)-1,2-bis(1-amino-1-(cyanoimino)-2-methylprop-2-yl)diazene-1,2- dioxide, (IV), see: Tretyakov et al. (2006). For the sole other acyclic trichloromethyl amidine with a reported crystal structure, N-(4-amino-3-furanzanyl)-2,2,2-trichloro-N-methoxymethylamide, (V), see: George & Gilardi (1986). For background to the ΔCN parameter, see: Boéré, et al. (1998).
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2341).

References

S1. Comment

The structure of the title compound, (I), is shown in Fig. 1. Molecular dimensions are available in the archived CIF. Structure (I) crystallizes as the Z isomer with respect to the imino bond (Fig. 1). The structure is essentially planar except for the CCl₃ group (r.m.s. mean deviation for the C≡N group is 0.016 Å), while Cl2 is almost perpendicular to this plane; thus Cl1 deviates by 0.65 and Cl3 by 0.84 Å from the plane. The parameter $\Delta_{CN} = d(C\equiv N) - d(C-N)$ has been found to range between 0 and 0.178 Å for many amidines for which the structures are known (Boeré et al., 1998). For (I), $\Delta_{CN} = 0.008$ Å, which is very small for a monomeric amidine with such unsymmetrical substitution. The N2–C3–N3 angle is almost linear, at 172.16 (13)$^\circ$. There is a network of N—H···N hydrogen bonds (Table 1) linking centrosymmetric pairs of molecules into planar ribbons along the b axis (Fig. 2). Short contacts of 3.203 (1) Å between Cl2 (the upward- and downward-facing chlorine atoms) and N2 (imino nitrogen) link these layers into a 3-D network in the crystal structure. Finally, there are 3.4132 (5) Å short contacts between Cl1 and Cl2 bridging molecules. It is likely that this strong intermolecular hydrogen bonding is responsible for the small value of Δ_{CN}.

Of nine N′-cyanoamidines in the literature, six are E (refcodes HANBAA, ILIPAU, JATLIZ, TAHHOA, TESQAK, WAXXUO; Allen, 2002) and two are Z (refcodes JATMAS, NERKAX; Allen, 2002) with respect to the imino bond; for the last, VOVPUR (Allen, 2002), the isomer is not specified. The most relevant for comparison with (I) are N2-cyano-3-[2-diaminomethyleneamino]-4-thiazolylmethylthio]propionimidemonohydrate, (II), 3-{2-[amino(methylamino)methyleneamino]-4-thiazolylmethylthio]-N2-cyanopropionamidine, (III) (Ishida et al., 1989) and (E)-1,2-bis(1-amino-1-(cyanoiminio)-2-methylprop-2-yl)diazene-1,2- dioxide, (IV) (Tretyakov et al., 2006), which all bear the NH₂ group in addition to the nitrile on N′. Each of these structures shares the high degree of planarity of the –C(NH₂)≡NCN group (r.m.s. deviations for (II) - (IV) are 0.008, 0.025 and 0.069 Å, respectively.) Of these three examples, (II) is E while (III) and (IV) are both Z; note that (II) and (III) differ only in methylation at a very remote amino group. There is only one acyclic trichloromethyl amidine with a crystal structure reported in the literature, viz. N-(4-amino-3-furanzanyl)-2,2,2-trichloro-N'-methoxyacetamidine, (V) (George & Gilardi, 1986) and this is the Z isomer. The structure of (IV), which is arguably the most similar structure, electronically and chemically, to (I) also shows a very similar pattern of hydrogen bonding where centrosymetrical dimers are linked in ribbons within the crystal structure by additional hydrogen bonds. Key geometrical parameters for structures (I) - (V) are compared in Table 2, which includes values for Δ_{CN}, all of which fall within the known range. However, (II) and (III) are highly unusual in having the wrong sign for this parameter. That is, the imino bond is actually longer than the amino. We are not aware of other instances of this occurrence; the locations of the NH₂ hydrogen atoms in both structures were corroborated by expected hydrogen bonding. It is likely that this powerful hydrogen bonding is responsible for the inversion in expected bond distances, perhaps augmented by the strong electron-withdrawing cyano substituent on N′.

S2. Experimental

General Procedures: Reagent grade methanol was dried by distillation with Mg and catalytic I₂. Sodium methoxide was transferred to the flask within a glove box under nitrogen.

Preparation of methyl trichloroacetimidate: 50 ml of dried methanol and 21.66 g (150 mmol) of trichloroacetonitrile were added to 0.50 g (10 mmol) of sodium methoxide. After stirring for 48 h at room temperature, the solution was saturated with CO₂(ñ) to eliminate remaining sodium methoxide. Methanol was then distilled off at 335–7 K, whereafter the liquid methyl trichloroacetimidate was distilled at 415 K at a reduced pressure. Yield 19.59 g (110 mmol, 74%).

Preparation of 2,2,2-trichloro-N'-cyano-acetamidine: 0.42 g (10 mmol) of cyanamide was dissolved in 5 ml of anhydrous methanol. With stirring, 1.76 g (10 mmol) of methyl trichloroacetimidate was added dropwise. An ice bath may be required to maintain temperature during addition of methyl trichloroacetimidate. The solution was stirred for 3 h at RT. Methanol was removed by rotary evaporation followed by high vacuum. The solid residue was dissolved in a minimum volume (3.5 ml) of hot CH₃CN, cooled to room temperature, and placed within the 238 K freezer. The colourless crystals produced were filtered and vacuum dried yielding 0.121 g (0.649 mmol, 6.51% yield), mp 433–7 K (Huffman & Schaefer, 1963).

S3. Refinement

Both H atoms were located in a difference Fourier map. They were refined using a riding model and Uₜₘ(H) was set equal to 1.2Uₑq(N1). The highest residual peak has a fraction of the electron density of a single H atom and is located 0.76 Å from Cl1.

Figure 1

A view of (I), plotted with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
Figure 2
The network of hydrogen bonds (dashed lines) linking centrosymmetric pairs of molecules into planar ribbons along the b axis. Symmetry equivalents are -x, 1 + y, -z; 2 - x, -y, -x and 2 - x, 1 - y, -x. These ribbons lie parallel to the (207) Miller planes.

(Z)-2,2,2-Trichloro-N²-cyanoacetamidine

Crystal data
C₃H₂Cl₃N₃
Mr = 186.43
Monoclinic, P₂₁/n
Hall symbol: -P 2yn
a = 5.5388 (4) Å
b = 6.6127 (4) Å
c = 18.4727 (12) Å
β = 95.122 (1)°
V = 673.89 (8) Å³
Z = 4
F(000) = 368
Dₐ = 1.838 Mg m⁻³
Melting point: 441 K
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 4497 reflections
θ = 2.2–27.6°
µ = 1.26 mm⁻¹
T = 173 K
Block, colourless
0.41 × 0.27 × 0.21 mm

Data collection
Bruker APEXII CCD area-detector diffractometer
Radiation source: Molybdenum
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
T_min = 0.616, T_max = 0.770

7459 measured reflections
1552 independent reflections
1479 reflections with I > 2σ(I)

R(int) = 0.017
θ_max = 27.5°, θ_min = 2.2°
h = -7→7
k = -8→8
l = -24→23
Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.019$
$wR(F^2) = 0.050$
$S = 1.06$
1552 reflections
83 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H-atom parameters constrained

$w = \frac{1}{[\sigma(F_o^2) + (0.0247P)^2 + 0.2765P]}$
where $P = (F_c^2 + 2F_o^2)/3$

$(\Delta/\sigma)_{\text{max}} = 0.001$
$\Delta \rho_{\text{max}} = 0.41 \text{ e Å}^{-3}$
$\Delta \rho_{\text{min}} = -0.27 \text{ e Å}^{-3}$
Extinction correction: SHELXTL (Sheldrick, 2008), $Fe^c = kFc[1+0.001xFc^2\lambda^3/(\sin(2\theta))]^{1/4}$
Extinction coefficient: 0.0231 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > \alpha(F^2)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq}/U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl1</td>
<td>0.23700 (5)</td>
<td>0.15285 (5)</td>
<td>0.181208 (18)</td>
<td>0.02983 (10)</td>
</tr>
<tr>
<td>Cl2</td>
<td>0.66794 (6)</td>
<td>0.37010 (5)</td>
<td>0.233709 (17)</td>
<td>0.02976 (10)</td>
</tr>
<tr>
<td>Cl3</td>
<td>0.33903 (6)</td>
<td>0.53919 (5)</td>
<td>0.119806 (17)</td>
<td>0.02989 (10)</td>
</tr>
<tr>
<td>C2</td>
<td>0.62444 (19)</td>
<td>0.20753 (17)</td>
<td>0.10178 (6)</td>
<td>0.0179 (2)</td>
</tr>
<tr>
<td>C3</td>
<td>0.7632 (2)</td>
<td>−0.09854 (17)</td>
<td>0.06561 (7)</td>
<td>0.0224 (2)</td>
</tr>
<tr>
<td>C1</td>
<td>0.4692 (2)</td>
<td>0.31232 (17)</td>
<td>0.15584 (6)</td>
<td>0.0196 (2)</td>
</tr>
<tr>
<td>N2</td>
<td>0.62859 (18)</td>
<td>0.01089 (15)</td>
<td>0.10646 (5)</td>
<td>0.0229 (2)</td>
</tr>
<tr>
<td>N1</td>
<td>0.74493 (18)</td>
<td>0.32334 (15)</td>
<td>0.05999 (6)</td>
<td>0.0230 (2)</td>
</tr>
<tr>
<td>H1A</td>
<td>0.8430</td>
<td>0.2689</td>
<td>0.0305</td>
<td>0.028*</td>
</tr>
<tr>
<td>H1B</td>
<td>0.7277</td>
<td>0.4555</td>
<td>0.0614</td>
<td>0.028*</td>
</tr>
<tr>
<td>N3</td>
<td>0.8680 (2)</td>
<td>−0.21297 (17)</td>
<td>0.03320 (6)</td>
<td>0.0298 (2)</td>
</tr>
</tbody>
</table>

Atomic displacement parameters (\AA^2)

<table>
<thead>
<tr>
<th></th>
<th>U_{11}</th>
<th>U_{22}</th>
<th>U_{33}</th>
<th>U_{12}</th>
<th>U_{13}</th>
<th>U_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl1</td>
<td>0.02508 (16)</td>
<td>0.02924 (17)</td>
<td>0.03733 (18)</td>
<td>−0.00196 (11)</td>
<td>0.01472 (13)</td>
<td>0.00338 (12)</td>
</tr>
<tr>
<td>Cl2</td>
<td>0.03001 (17)</td>
<td>0.03173 (17)</td>
<td>0.02701 (16)</td>
<td>0.00592 (12)</td>
<td>−0.00034 (12)</td>
<td>−0.01080 (12)</td>
</tr>
<tr>
<td>Cl3</td>
<td>0.03524 (18)</td>
<td>0.02289 (16)</td>
<td>0.03307 (17)</td>
<td>0.01263 (12)</td>
<td>0.01157 (13)</td>
<td>0.00600 (11)</td>
</tr>
<tr>
<td>C2</td>
<td>0.0173 (5)</td>
<td>0.0184 (5)</td>
<td>0.0181 (5)</td>
<td>0.0013 (4)</td>
<td>0.0022 (4)</td>
<td>−0.0011 (4)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0260 (6)</td>
<td>0.0158 (5)</td>
<td>0.0259 (6)</td>
<td>−0.0021 (4)</td>
<td>0.0060 (5)</td>
<td>0.0019 (4)</td>
</tr>
<tr>
<td>C1</td>
<td>0.0199 (5)</td>
<td>0.0175 (5)</td>
<td>0.0221 (5)</td>
<td>0.0025 (4)</td>
<td>0.0054 (4)</td>
<td>0.0012 (4)</td>
</tr>
<tr>
<td>N2</td>
<td>0.0269 (5)</td>
<td>0.0166 (5)</td>
<td>0.0264 (5)</td>
<td>0.0015 (4)</td>
<td>0.0096 (4)</td>
<td>0.0000 (4)</td>
</tr>
<tr>
<td>N1</td>
<td>0.0270 (5)</td>
<td>0.0168 (5)</td>
<td>0.0270 (5)</td>
<td>0.0010 (4)</td>
<td>0.0121 (4)</td>
<td>0.0001 (4)</td>
</tr>
</tbody>
</table>

Geometric parameters (Å, °)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl1—C1</td>
<td>1.7549 (12)</td>
<td></td>
</tr>
<tr>
<td>Cl2—C1</td>
<td>1.7733 (12)</td>
<td></td>
</tr>
<tr>
<td>Cl3—C1</td>
<td>1.7686 (12)</td>
<td></td>
</tr>
<tr>
<td>C2—N2</td>
<td>1.3032 (15)</td>
<td></td>
</tr>
<tr>
<td>C2—N1</td>
<td>1.3115 (15)</td>
<td></td>
</tr>
<tr>
<td>N2—C2—N1</td>
<td>127.94 (11)</td>
<td>106.31 (7)</td>
</tr>
<tr>
<td>N2—C2—C1</td>
<td>114.43 (10)</td>
<td>109.15 (6)</td>
</tr>
<tr>
<td>N1—C2—C1</td>
<td>117.52 (10)</td>
<td>108.98 (6)</td>
</tr>
<tr>
<td>N3—C3—N2</td>
<td>172.16 (13)</td>
<td>121.04 (10)</td>
</tr>
<tr>
<td>C2—C1—Cl1</td>
<td>111.47 (8)</td>
<td>120.0</td>
</tr>
<tr>
<td>C2—C1—Cl3</td>
<td>111.73 (8)</td>
<td>120.0</td>
</tr>
<tr>
<td>Cl1—C1—Cl3</td>
<td>109.12 (6)</td>
<td>120.0</td>
</tr>
<tr>
<td>N2—C2—C1—Cl1</td>
<td>-26.28 (12)</td>
<td>92.56 (10)</td>
</tr>
<tr>
<td>N1—C2—C1—Cl1</td>
<td>157.21 (9)</td>
<td>-83.95 (11)</td>
</tr>
<tr>
<td>N2—C2—C1—Cl3</td>
<td>-148.66 (9)</td>
<td>-0.9 (2)</td>
</tr>
<tr>
<td>N1—C2—C1—Cl3</td>
<td>34.83 (12)</td>
<td>-176.95 (10)</td>
</tr>
</tbody>
</table>

Hydrogen-bond geometry (Å, °)

<table>
<thead>
<tr>
<th>Bond</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1—H1A···N3i</td>
<td>0.88</td>
<td>2.10</td>
<td>2.9583 (15)</td>
<td>164</td>
</tr>
<tr>
<td>N1—H1B···N3ii</td>
<td>0.88</td>
<td>2.40</td>
<td>3.1893 (15)</td>
<td>150</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x+2, −y, −z; (ii) x, y+1, z.