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ABSTRACT

APPROXIMATIONS FOR SOME FUNCTIONS OF PRIMES

Fataneh Esteki

Department of Mathematics and Computer Science

University of Lethbridge

M. Sc. Thesis, 2012

Let

π(x) = # {p ≤ x; p prime} ,

θ(x) =
∑
p≤x

log p,

and

ψ(x) =
∑

pk≤x,k≥1

log p.

This thesis studies different methods in establishing estimates for π(x), θ(x), and

ψ(x). This is a summary of the main result of the thesis.

(i) A detailed exposition of a theorem of Rosser on the estimation of ψ(x) is given.

The theorem is written using parameters instead of the specific constants. So it conve-

niently will produce new estimates for ψ(x) whenever new improvements in the values

of the parameters occur.

As an example, our theorem, with current known values of parameters gives

0.98719x < ψ(x) < 1.012807x, for x ≥ e20.

(ii) Different techniques for establishing explicit upper and lower bounds for θ(x)

are studied. It is proved that

θ(x)− x <
1

36269.2
x, for x > 0.

(iii) The following sharp lower bounds for ψ(x)− θ(x) are established.

ψ(x)− θ(x) >
√
x, for 121 ≤ x ≤ e145.5,
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and

ψ(x)− θ(x) > 0.99997159
√
x, for x ≥ 121.

(iv) Several tables of upper and lower bounds for θ(x) based on different methods

are generated.

(v) Different methods for establishing inequalities of the form

ψ(x)− θ(x) < c1x
1/2 + c2x

1/3

are studied and specific numerical examples are generated. As an example it is shown

that

ψ(x)− θ(x) <
(
1 + 1.2998600240× 10−9

)
x1/2 + 1.0003x1/3, for x ≥ e100.

(vi) Different methods for finding upper and lower bounds for π(x) of the forms

x

log x− a
, a > 0,

and
x

log x

(
1 +

1!

log x
+

2!

log2 x
+ · · ·+ (`− 1)!

log`−1 x
+

c

log` x

)
, ` ∈ N, c > 0,

are considered.

Also specific numerical examples are generated. As a sample it is established that

for x ≥ 1011,

x

log x− 0.9999
< π(x) <

x

log x− 1.0456
,

x

log x

(
1 +

1

log x
+

1.9899

log2 x

)
< π(x) <

x

log x

(
1 +

1

log x
+

2.296

log2 x

)
.
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Chapter 1

Introduction

1.1 Chebyshev functions

One of the important achievements of the ninetieth century mathematics is the proof

of the Prime Number Theorem. This theorem gives the asymptotic density of prime

numbers among integers. More precisely, let

π(x) = # {p ≤ x, p prime} .

Then the Prime Number Theorem asserts that

lim
x→∞

(log x)π(x)

x
= 1.

The notation f ∼ g means

lim
x→∞

f(x)

g(x)
= 1.

Using this notation the Prime Number Theorem can be written as

π(x) ∼ x

log x
,

as x→∞.

The Prime Number Theorem was originally conjectured in 1791 by Gauss and later

on, in 1798, independently by Legendre. Gauss looked at the list of primes less than

3, 000, 000 and observed that π(x) can be approximated very closely by the function
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li(x), which is defined by

li(x) =

∫ x

0

dt

log t
= lim

η→0+

(∫ 1−η

0

+

∫ x

1+η

)
dt

log t
.

By integration by parts on the integral defining li(x) one can show that the above

integral is asymptotically equivalent to x/log x. Legendre in his textbook in number

theory asserted that π(x) can be approximated by

x

log x− 1.08366
.

Hence Gauss and Legendre’s observations announce the Prime Number Theorem. See

[1] for more historical information.

The first attempt for proving the Prime Number Theorem was done by Chebyshev

in 1848. Among other results, he established that if the ratio (log x)π(x)/x tends to

a limit as x approaches to infinity then that limit must be one. Moreover he showed

(see [11, p. 15]) that for all sufficiently large values of x,

(0.921 · · · ) x

log x
≤ π(x) ≤ (1.105 · · · ) x

log x
. (1.1)

For proving the above assertions Chebyshev introduced two new functions θ and ψ.

These two functions played an important role in the development of the prime number

theory. They can be defined as

θ(x) =
∑
p≤x

log p,

and

ψ(x) =
∑

pn≤x,n≥1

log p.

Chebyshev observed that proving any of

θ(x) ∼ x or ψ(x) ∼ x,

as x → ∞, would imply the Prime Number Theorem. However he was not able to

establish either of the above asymptotics.

2



A revolutionary idea for proving the Prime Number Theorem was introduced by

Riemann in 1859. In his approach he used Euler’s identity

∞∑
n=1

n−s =
∏

p

(
1 + p−s + p−2s + · · ·

)
=
∏

p

(1− p−s)−1,

where the products run over all primes p . Riemann studied the above identity where

s is a complex variable. He considered

ζ(s) =
∞∑

n=1

n−s,

for Re(s) > 1 and verified that ζ(s) has an analytic continuation to the whole complex

plane with the exception of a simple pole with residue 1 at s = 1. Moreover he proved

that ζ(s) satisfies the functional equation

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s),

where Γ(s) =
∫∞

0
xs−1e−xdx (see [11, Chapter III]). By using this equation one can

show that ζ(s) vanishes at all the negative even integers. These zeros are called the

trivial zeros of the zeta function. Riemann observed that all other zeros of ζ(s) are

situated in the critical strip 0 ≤ Re(s) ≤ 1 (see [11, p. 58]). We denote these “so

called” non-trivial zeros by ρ = β + iγ where 0 ≤ β ≤ 1 and γ ∈ R.

Riemann observed that the distribution of the non-trivial zeros of ζ(s) had an

important role in the proof of the Prime Number Theorem and designed a program for

the proof of the Prime Number Theorem based on certain properties of the zeros of

the Riemann zeta function. However he failed to deduce the Prime Number Theorem.

More precisely, he suggested that to prove the Prime Number Theorem it was sufficient

to prove that ζ(s) does not vanish on the line Re(s) = 1. Moreover, he went one step

further and conjectured that all non-trivial zeros of ζ(s) lie on the line Re(s) = 1/2.

This is the celebrated Riemann Hypothesis and it has been remained unsolved up to

this day.

The Prime Number Theorem was finally proven in 1896 by Hadamard and inde-

pendently by de La Vallée Poussin, following Riemann’s suggested program.
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Despite the fact that the Prime Number Theorem determines the asymptotic be-

havior of π(x), it does not give explicit upper and lower bounds for (log x)π(x)/x. In

many applications we need to have such explicit bounds.

As an example Chebyshev established upper and lower bound for π(x) given in (1.1).

This enabled him to prove Bertrand’s postulate which states that for x sufficiently large,

there is a prime between x and 2x.

To prove this, it suffices to show that for large x

π(2x)− π(x) ≥ 1.

Using (1.1), for x sufficiently large, we obtain

π(2x)− π(x) ≥ 0.921
2x

log 2x
− 1.106

x

log x
.

For x sufficiently large, the above can be written as

π(2x)− π(x) ≥ 1.842x

log x+ 1/3 log x
− 1.106x

log x
.

Since (3/4)(1.842)− 1.106 > 0 Bertrand’s postulate follows.

This thesis studies different methods in establishing explicit estimates for π(x),

θ(x), and ψ(x).

1.2 Relations between ψ(x), θ(x), and π(x)

In order to study the counting function π(x), we use Chebyshev functions ψ(x) and

θ(x) since they are easier to deal with in comparison to π(x). We also introduce another

function

T (x) =
∑
n≤x

log n = log([x]!),

where [x] denotes the greatest integer function. The following lemma [16, p. 104] gives

the basic relations between ψ(x) , θ(x), T (x), and π(x).

Lemma 1.1. Let x > 0. We have

ψ(x) =
∑

pn≤x,n≥1

log p =
∑
p≤x

[
log x

log p

]
log p, (1.2)
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T (x) = log([x]!) =
∑
n≥1

ψ
(x
n

)
=
∑

k,n≥1

θ

((x
n

)1/k
)
, (1.3)

ψ(x)−
√
x log x ≤ θ(x) ≤ ψ(x), (1.4)

and, for every ε > 0,

θ(x)

log x
≤ π(x) ≤ θ(x)

(1− ε) log x
+ x1−ε. (1.5)

Proof. We start by proving (1.2). Using definitions of ψ(x) and θ(x) we see that

ψ(x) =
∑
n≥1

θ(x1/n) =
∑
n≥1

∑
p≤x1/n

log p =
∑

pn≤x,n≥1

log p.

Since the summand is zero when n > log x/ log p, we have

ψ(x) =
∑
p≤x

[
log x

log p

]
log p.

Next we prove (1.3). To do this we require to show that, for every x ≥ 1,

[x]! =
∏
p≤x

pαp , where αp =
∞∑

k=1

[
x

pk

]
. (1.6)

To establish (1.6) it suffices to show that

log([x]!) = log

(∏
p≤x

pαp

)
=
∑
p≤n

(
∞∑

k=1

[
n

pk

])
log p,

where n = [x]. We have

log([x]!) = log(
∏
d≤n

d) =
∑
d≤n

log d =
∑
d≤n

∑
pk|d

log p =
∑
pk≤n

log p
∑

d≤n,pk|d

1

=
∑
p≤n

(
∞∑

k=1

[
n

pk

])
log p.

From which we deduce (1.6).
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It follows from (1.6) that

log([x]!) =
∑
p≤x

αp log p =
∑
p≤x

∞∑
k=1

[
x

pk

]
log p

=
∑
p≤x

∞∑
k=1

∑
n≤ x

pk

1

 log p =
∑

k,n≥1

∑
p≤( x

n)
1/k

log p. (1.7)

On the other hand∑
n≥1

ψ
(x
n

)
=
∑
n≤x

ψ
(x
n

)
=
∑
n≤x

∑
pk≤ x

n
,k≥1

log p =
∑

k,n≥1

∑
p≤( x

n)
1/k

log p. (1.8)

Moreover, following the definition of θ, we find that∑
k,n≥1

θ

((x
n

)1/k
)

=
∑

k,n≥1

∑
p≤( x

n)
1/k

log p. (1.9)

The proof of (1.3) is immediate by putting together (1.7), (1.8), and (1.9).

We verify (1.4) by noting that

ψ(x)− θ(x) =
∑
n≥2

θ(x1/n) =
∑
n≥2

∑
pn≤x

log p.

It follows that ψ(x)− θ(x) ≥ 0. Moreover we have∑
n≥2

∑
pn≤x

log p ≤
∑

p≤
√

x

∑
2≤n≤ log x

log p

log p

≤
∑

p≤
√

x

(
log x

log p

)
log p =

∑
p≤
√

x

1

 log x

≤
√
x log x.

This implies

ψ(x)−
√
x log x ≤ θ(x).

We now prove the left-hand side of (1.5). We have

θ(x) =
∑
p≤x

log p ≤ log x
∑
p≤x

1 = (log x)π(x).
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For the right-hand side of (1.5) we observe that

θ(x) ≥
∑

x1−ε≤p≤x

log p ≥ log(x1−ε)
∑

x1−ε≤p≤x

1 = (1− ε)(log x)(π(x)− π(x1−ε)).

This together with the trivial bound π(x1−ε) ≤ x1−ε achieve the proof.

The relations between ψ(x), θ(x), and π(x) in Lemma 1.1 suggest that by establish-

ing an upper (or lower) bound for any of these functions we will be able to deduce an

upper (or lower) bound for the other functions. This leads us to the following lemma.

Lemma 1.2. Suppose that f(x) and g(x) are two distinct functions in the set{
(log x)π(x)

x
,
θ(x)

x
,
ψ(x)

x

}
.

If b ≤ f(x) ≤ a when x is large enough then, for ε > 0, we have

b− ε ≤ g(x) ≤ a+ ε,

for large values of x.

Proof. We consider the case f(x) = π(x), and g(x) = θ(x), the proofs for other cases

are similar.

Assume that π(x) ≤ ax/ log x, when x ≥ x0. From this, by the left-hand side of

(1.5) we see that θ(x) ≤ ax when x ≥ x0.

We next assume that bx/ log x ≤ π(x) when x ≥ x0. We combine this, with the

right-hand side of (1.5) to obtain

x(1− ε′)

(
b− log x

xε′

)
≤ θ(x),

for ε′ > 0. Since log x/xε′ decreases to zero, for large x we have

x(1− ε′) (b− ε′′) ≤ θ(x).

This completes the proof.
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1.3 Explicit bounds for π(x), θ(x), and ψ(x)

It is not difficult to find numerical upper and lower bounds for π(x) and the Chebyshev

functions. We next establish a numerical lower bound for π(x). The main argument is

due to Nair [15, p. 126].

Lemma 1.3. For x ≥ 4,

0.173
x

log x
≤ π(x).

Proof. We let dn = lcm1≤m≤n{m}, where lcm denotes the least common multiple, and

I =

∫ 1

0

xn(1− x)ndx.

Since

(1− x)n =
n∑

r=0

(−1)r

(
n

r

)
xr,

we have

I =

∫ 1

0

n∑
r=0

(−1)r

(
n

r

)
xn+rdx =

n∑
r=0

(−1)r

(
n

r

)
1

n+ r + 1
. (1.10)

Since x ∈ [0, 1] we have x(1− x) ≤ 1/4. Therefore

I ≤ 1

4n
. (1.11)

Observe that every denominator in (1.10) is not greater than 2n+ 1, therefore Id2n+1

is a positive integer. So together with (1.11) we find that

4n ≤ d2n+1. (1.12)

Let α ∈ N such that pα is the exact power of p which divides d2n+1. Thus pα ≤ 2n+ 1.

This leads to

d2n+1 ≤
∏

p≤2n+1

p
log(2n+1)

log p . (1.13)

We combine (1.12) and (1.13) and take the logarithm to obtain

n log 4 ≤ log d2n+1 ≤
∑

p≤2n+1

log(2n+ 1)

log p
log p = log(2n+ 1)π(2n+ 1).

8



It follows that
2n log 2

log(2n+ 1)
≤ π(2n+ 1). (1.14)

Observe that

(2n− 2) log 2

log 2n
<

(2n− 2) log 2

log(2n− 1)
≤ π(2n− 1) ≤ π(2n).

Therefore
(2n− 2) log 2

log 2n
≤ π(2n). (1.15)

Putting together (1.14), and (1.15) gives that for every natural number N ≥ 2,

(N − 2) log 2

logN
≤ π(N). (1.16)

In order to obtain a lower bound for π(x) for x ∈ R, we proceed as follows. We combine

(1.16) with the facts that [x] ≤ x, and x− 1 ≤ [x] to deduce

(x− 3) log 2

log x
≤ ([x]− 2) log 2

log[x]
≤ π([x]) ≤ π(x).

Thus
(x− 3) log 2

log x
≤ π(x).

We conclude by checking that, for x ≥ 4, we have

x

log x

((
1− 3

4

)
log 2

)
≤ (x− 3) log 2

log x
.

The left-hand side of the above inequality gives the desired constant 0.173.

Next we present a lemma which gives an upper bound for ψ(x) (see [16, p. 118]).

The following argument is due to Mertens.

Lemma 1.4. If x > 1 then

ψ(x) < 2x.

Proof. By (1.3), we may write

log([x]!) =
∑
n≥1

ψ
(x
n

)
.

9



From this we find that

log([x]!)− 2 log(
[x
2

]
!) =

∑
n≥1

ψ(x/n)− 2
∑
n≥1

ψ(x/2n).

Hence

log([x]!)− 2 log(
[x
2

]
!) =

∑
n≥1

(−1)n+1ψ
(x
n

)
.

Since ψ(x) is an increasing function, from the last identity we have

ψ(x)− ψ(x/2) < log([x]!)− 2 log(
[x
2

]
!). (1.17)

Let x > 14. We define the integer N such that 2(N − 1) < x ≤ 2N . We observe that

log([x]!)− 2 log(
[x
2

]
!) < log((2N)!)− 2 log((N − 1)!) = log

(
(2N)!

((N − 1)!)2

)
. (1.18)

By induction we find that

(2N)!

((N − 1)!)2
< e2(N−1), for N ≥ 8.

Thus

log

(
(2N)!

((N − 1)!)2

)
< 2(N − 1). (1.19)

Putting together (1.17), (1.18), and (1.19) gives

ψ(x)− ψ(x/2) < x. (1.20)

Observe that

ψ(x) =
∑
n≥0

[
ψ
( x

2n

)
− ψ

( x

2n+1

)]
.

This combined with (1.20) give

ψ(x) ≤ x
∑
n≥0

1

2n
= 2x, for x > 14.

We check that the inequality also holds for 1 < x ≤ 14. This completes the proof.

Having established relations between π(x), ψ(x), and θ(x) in Lemma 1.1, a lower

bound for π(x) in Lemma 1.3 and an upper bound for ψ(x) in Lemma 1.4, we can

deduce the following theorem.
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Theorem 1.5. (i) For x > 1 we have

θ(x) ≤ ψ(x) < 2x.

(ii) For x ≥ e40 we have

π(x) < 2.956
x

log x
.

(iii) For x ≥ e10 we have

0.017x ≤ θ(x) ≤ ψ(x).

Proof. We begin with the upper bound for θ(x). Lemma 1.4 combined with (1.4) yields

θ(x) < 2x, for x > 1. Using this upper bound for the right-hand side of (1.5) gives

π(x) ≤ x

log x

(
2

1− ε
+

log x

xε

)
. (1.21)

Let ε = 1/10. Since (log x)/x1/10 decreases for x > e10, then (1.21) gives

π(x) < 2.956
x

log x
, for x ≥ e40.

Next we put together Lemma 1.3 and the right-hand side of (1.5) to derive

x(1− ε)

(
0.173− log x

xε

)
≤ θ(x).

With ε = 9/10 the last inequality is transformed into

0.017x ≤ θ(x), for x ≥ e10.

From this, by (1.4), we deduce

0.017x ≤ ψ(x), for x ≥ e10.

The above theorem establishes explicit upper and lower bounds for the Chebyshev

functions and π(x), however these bounds are rather poor and with more work one

can replace them with more precise bounds. Our main goal in this thesis is to develop

techniques which enable us to derive sharp explicit bounds for ψ(x), θ(x), and π(x).
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1.4 Statement of the results

Although the Prime Number Theorem states that ψ(x) is asymptotic to x, it does not

give any information about the size of the error term ψ(x) − x. We are interested in

finding the size of this error term. This is done in Theorem 2.4 of Chapter 2 which

gives an exposition of Rosser’s method [17] for finding an explicit error term in the

Prime Number Theorem.

To explain our theorem we introduce the following notations.

Let N(T ) be the number of non-trivial zeros ρ = β+iγ of ζ(s) such that 0 < γ ≤ T .

Let A be the height that the Riemann Hypothesis has been verified. In other words if

ζ(β + iγ) = 0 for 0 ≤ γ ≤ A then β = 1/2.

We assume there exists r > 0 such that for γ > A we have

β < 1− 1

r log γ
.

We define

F (T ) =
T

2π
log

T

2π
− T

2π
+

7

8
,

R(T ) = d1 log T + d2 log log T + d3,

and assume that

|N(T )− F (T )| < R(T ),

for T ≥ 2 and reals d1, d2, and d3. Moreover suppose that F (A) ≤ N(A). Also we

define c1, · · · , c6 as

c1 = r(logA)2,

c2 = r logA,

c3 = R(A),

c4 =
1

2π
+

d1

A log A
2π

+
d2

A(logA)(log A
2π

)
,

c5 =
1

log(A/2π)
,

12



and

c6 = log(A/2π).

In Chapter 2 we give a detailed proof of the following theorem.

Theorem 2.4. Let m ∈ N and a > 0 such that

log a <
c1m

2

m+ c5
.

Suppose that ∑
ρ

1

|γ|m+1
≤ k,

δ = 2

a−1/2k +
c3

Am+1a1/c2
+

c4(1 +mc6)(
1− (m+c5) log a

c1m2

)
m2Ama1/c2

1/(m+1)

,

and

ε =
δ

2

((
(1 + δ)m+1 + 1

2

)m

+m

)
.

If 1 +mδa < a we have

x(1− ε)− log 2π < ψ(x) < x(1 + ε)− 1

2
log
(
1− 1/x2

)
,

for x ≥ a.

This theorem is essentially Theorem 21 of [17], however it is stated using parameters

instead of the specific constants. So it conveniently will produce new estimates for

ψ(x) whenever new improvements in the values of the parameters occur. The above

theorem plays a fundamental role in effective estimations of the functions of primes

such as Chebyshev functions and π(x). By employing this theorem, one can generate

tables to provide bounds for ψ(x) in various ranges.

We say some words on the proof of Theorem 2.4. Riemann’s explicit formula repre-

sents the error term in the Prime Number Theorem as a sum over the non-trivial zeros

of the Riemann zeta function. More precisely, we have

ψ(x) = x−
∑

ρ

xρ

ρ
− log 2π − 1

2
log(1− x−2),

13



(see [5, p. 60]). So

φ(x) = ψ(x)− x+ log 2π +
1

2
log
(
1− x−2

)
= −

∑
ρ

xρ

ρ

measures the error term in the Prime Number Theorem.

In order to bound φ(x) we require to estimate
∑

ρ x
ρ/ρ. This is not most convenient

since the sum is not absolutely convergent. To resolve this difficulty we introduce

Km(x, h) =

∫ h

0

dy1

∫ h

0

dy2 · · ·
∫ h

0

φ (x+ y1 + y2 + · · ·+ ym) dym,

where m ∈ N and h > 0. Next we will bound ψ(x) in terms of Km(x, h). We have

x(1− ε1)− log 2π − 1

2
log
(
1− x−2

)
≤ ψ(x) ≤ x(1 + ε2)− log 2π − 1

2
log
(
1− x−2

)
,

where

ε1 =
Km(x,−xδ)
(−x)m+1δm

+
mδ

2
, ε2 =

Km(x, xδ)

xm+1δm
+
mδ

2
,

and 0 < δ < (x− 1)/xm.

We note ψ(x) can be related to the non-trivial zeros of ζ(s). More precisely we

have ∫ x

1

ψ(u)du =
x2

2
−
∑

ρ

xρ+1

ρ(ρ+ 1)
− x

ζ ′(0)

ζ(0)
+
ζ ′(−1)

ζ(−1)
−

∞∑
r=1

x1−2r

2r(2r − 1)
,

(see [11, p. 73]). This allows us to derive an expression for Km(x, h) in terms of the

zeros of ζ(s). We have

Km(x, h) =
∑

ρ

1

ρ(ρ+ 1) · · · (ρ+m)

(
m∑

j=0

(−1)j+m+1

(
m

j

)
(x+ jh)ρ+m

)
.

Next by employing the properties of the zeros of ζ(s), we shall bound Km(x, h) by

K =
∑

ρ

xβ−1/|γ|m+1.

Finally we will prove that

ε1, ε2 <
δ

2

((
(1 + δ)m+1 + 1

2

)m

+m

)
,

14



provided that we have

K ≤ (δ/2)m+1.

This will complete the proof of the theorem.

In Chapter 3 we derive upper and lower bounds for θ(x).

Upper bounds for θ(x) can be obtained by means of the lower bound for ψ(x)−θ(x)
together with an estimation table for ψ(x). More precisely, we proceed by considering

intervals (0, eb1 ], [eb1 , eb2 ], and [eb2 ,∞), where b1 and b2 are fixed positive constants,

and do the following.

• We numerically check that

θ(x) < x, for x ∈ (0, eb1 ].

• When x ∈ [eb1 , eb2 ], we estimate θ(x) by means of a lower bound for ψ(x)− θ(x).
We give here some of the known inequalities for ψ(x)−θ(x) that can be employed

to obtain such lower bounds.

ψ(x)− θ(x) ≥ ψ(x1/2) + θ(x1/3),

ψ(x)− θ(x) ≥ ψ(x1/2) + ψ(x1/3) + ψ(x1/5)− ψ(x6),

and

ψ(x)− θ(x) ≥ ψ(x1/2) + ψ(x1/3) + ψ(x1/5)− θ(x1/6)− ψ(x1/30).

• Finally when x ∈ [eb2 ,∞), we bound θ(x) by using the trivial inequality θ(x) ≤
ψ(x).

We then consider the maximum of the upper bounds for θ(x) derived over the intervals

(0, eb1 ], [eb1 , eb2 ], [eb2 ,∞) as the upper bound of θ(x) for x > 0.

To explain our results more specifically, let

A−(b)x < ψ(x) < A+(b)x, for x ≥ eb.

In other words A+(b) and A−(b) are upper and lower bounds for ψ(x)/x on the interval

[eb,∞).
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The following theorem shows that how one can improve a given upper bound for

θ(x).

Theorem 3.12. Let b1 and b2 be positive constants such that 0 < b1 ≤ 27.4 and

b1 < b2. Let

c1 = max
x∈[eb1 ,eb2 ]

{
A+(b1)−

A−(b1/2)

x1/2
− A−(b1/3)

x2/3
− A−(b1/5)

x4/5
+

c̃0
x5/6

+
A+(b1/30)

x29/30

}
,

where c̃0 is an upper bound for θ(x)/x when x > 0. Then

θ(x) < c0x, for x > 0,

where c0 = max{c1, A+(b2)}.

The above will allow us to establish an upper bound for θ(x) valid for all x > 0

which surpasses [7, Proposition 5.1].

Example 3.13. θ(x) < (1 + 2.7571593586× 10−5)x, for x > 0.

We point out that in the process of establishing upper bounds for θ(x), we need

lower bounds for ψ(x)− θ(x). It is known that

ψ(x)− θ(x) >
√
x, 121 ≤ x ≤ 1016 ' e36.8,

(see [18, p. 73]). In Chapter 3, we will extend the above range significantly to obtain

Theorem 3.25. ψ(x)− θ(x) >
√
x, 121 ≤ x ≤ e145.5.

We next employ upper bounds for ψ(x) − θ(x) to generate several lower bounds

tables for θ(x) over different ranges.

Finally, in Chapter 3, we present some techniques which allow us to derive inequal-

ities in the form

ψ(x)− θ(x) < c2x
1/2 + c3x

1/3,

for c2, c3 > 0. We will prove the following theorem.

Theorem 3.32. Suppose that for x ≥ eb there is a positive constant ε such that

ε > A+(b/2)− 1 > 0 and

eb ≥
(

4A+(b/5)

5 (A+(b/2)− 1− ε)

) 10
3

.
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We let

h(x) =
(
A+(b/2)− 1− ε

)
x1/6 + A+(b/3) + A+(b/5)x−2/15.

Then

ψ(x)− θ(x) < (1 + ε)x1/2 + h(eb)x1/3, for x ≥ eb.

In Chapter 4 we demonstrate some techniques which give sharp estimates for π(x)

over different ranges. Note that by the Prime Number Theorem with the remainder

we have

π(x) = li(x) +O(xe−c
√

log x),

for some constant c. It follows from [13, p. 55] that if 2 ≤ x < 1014 then π(x) < li(x).

Therefore we will be able to establish upper bounds for π(x) for x ≤ 1014 by establishing

upper bounds for li(x). For example we prove the following inequality.

Corollary 4.5. π(x) < x
log x

(
1 + 1.2762

log x

)
, for 51022 ≤ x ≤ 1014.

Next we assume that we have positive constants β and ηk and a natural number k

such that

|θ(x)− x| < ηk
x

logk x
, for x ≥ β.

We let x0 ≥ β, and introduce

J(x, ηk) = π(x0)−
θ(x0)

log x0

+
x

log x
+ ηk

x

logk+1 x
+

∫ x

x0

(
1

log2 y
+

ηk

logk+2 y

)
dy,

We shall verify

J(x,−ηk) < π(x) < J(x, ηk),

for k ≥ 1 and x ≥ x0. This enables us to estimate π(x) by employing J(x,±ηk).

Here we give a sample of our results on estimation of π(x).

In Chapter 4, we prove that for x ≥ x0, there exist positive numbers d1, d2, and d3

such that

π(x) <
x

log x

(
1 +

d1

log x

)
,

π(x) <
x

log x

(
1 +

1

log x
+

d2

log2 x

)
,
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π(x) <
x

log x

(
1 +

1

log x
+

2

log2 x
+

d3

log3 x

)
.

Admissible values for d1, d2, and d3 are given in Table 1.1.

Table 1.1:
x0 d1 d2 d3

1011 1.0902 2.296 7.9724

1012 1.0830 2.267 7.8510

1015 1.0640 2.208 7.5976

Also we will prove that for x ≥ 1011,

π(x) >
x

log x

(
1 +

0.9999

log x

)
,

π(x) >
x

log x

(
1 +

1

log x
+

1.9899

log2 x

)
,

and for x ≥ 1010,

π(x) >
x

log x

(
1 +

1

log x
+

2

log2 x
+

5.2199

log3 x

)
.

We also establish another form of bounds for π(x). As a sample of our results we

will show that

x

log x− 0.9989
< π(x) <

x

log x− 1.0520
, for x ≥ 1010.
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Chapter 2

Bounds for ψ(x)

2.1 Elementary estimates of ψ(x)

Around 1850 Chebyshev introduced the function ψ(x) and obtained numerical bounds

for it. More precisely he proved that for every ε > 0 and sufficiently large x,

(ν − ε)x ≤ ψ(x) ≤ (
6

5
+ ε)νx,

where

ν = log

(
21/231/351/5

301/30

)
= 0.92129 · · · . (2.1)

Note that (6/5)ν = 1.105 · · · . Over the years many authors attempted to improve the

Chebyshev estimate and also make the above estimation effective. For example Erdős

[8] proved that
ψ(x)

x
< log 4 = 1.38629 · · · , for x > 0.

This bound has been improved later by Grimson and Hanson [9] who obtained

ψ(x)

x
< log 3 = 1.09861 · · · , for x > 0.

Another improvement was given by Deshouillers [6]. He verified that

ψ(x)

x
< 1.07715, for x > 0,
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and

0.92129 <
ψ(x)

x
, for x ≥ 59.

All the above estimates are obtained by elementary means and without employing the

analytic properties of the Riemann zeta function. Later in this chapter we study the

analytic estimates of ψ(x), however before doing this we give an explicit version of

Chebyshev’s theorem as given by Landau in [14, Vol. 1, p.88].

Recall that by Lemma (1.3) we have

T (x) =
∑
n≤x

log n =
∞∑

n=1

ψ
(x
n

)
. (2.2)

Using this we verify the following.

Lemma 2.1. Let x > 0 and

α(x) = T (x)− T
(x

2

)
− T

(x
3

)
− T

(x
5

)
+ T

( x
30

)
.

Then

νx− 5(log x+ 1) ≤ α(x) ≤ νx+ 5(log x+ 1). (2.3)

Proof. By partial summation formula [11, Theorem A, p.10] we have

T (x) =
∑
n≤x

log n = [x] log x−
∫ x

1

[t]

t
dt,

where [x] is the greatest integer less than or equal to x. Writing [x] = x−{x}, we have

T (x) = (x− {x}) log x−
∫ x

1

t− {t}
t

dt.

By splitting the integral at x = 2 we find that

T (x) = x log x− x+ U(x), (2.4)

where

U(x) =

∫ x

2

{t}
t
dt− {x} log x− log 2 + 2.
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By using the fact that 0 ≤ {x} < 1 we observe that

|U(x)| ≤ log x+ 1. (2.5)

We combine (2.4) and (2.5) to obtain

|T (x)− x log x+ x| ≤ log x+ 1.

From the definition of α(x) and the above inequality we have∣∣∣α(x)− x log x+
x

2
log

x

2
+
x

3
log

x

3
+
x

5
log

x

5
− x

30
log

x

30
+ x− x

2
− x

3
− x

5
+

x

30

∣∣∣
≤ log x+ 1 + log

x

2
+ 1 + log

x

3
+ 1 + log

x

5
+ 1 + log

x

30
+ 1 = 5(log x+ 1).

Recognizing ∣∣∣∣α(x)− x log

(
21/231/351/5

301/30

)∣∣∣∣ ,
in the left-hand side of the last inequality implies the proof.

In the next lemma we establish upper and lower bound for ψ(x) in terms of α(x).

Lemma 2.2. For x ≥ 2 we have

α(x) < ψ(x) < ψ
(x

6

)
+ α(x). (2.6)

Proof. Using (2.2) we find that

α(x) =
∞∑

n=1

ψ
(x
n

)
−

∞∑
n=1

ψ
( x

2n

)
−

∞∑
n=1

ψ
( x

3n

)
−

∞∑
n=1

ψ
( x

5n

)
+

∞∑
n=1

ψ
( x

30n

)
= ψ(x)− ψ

(x
6

)
+ ψ

(x
7

)
− ψ

( x
10

)
+ ψ

( x
11

)
− ψ

( x
12

)
+ ψ

( x
13

)
−ψ

( x
15

)
+ ψ

( x
17

)
− ψ

( x
18

)
+ ψ

( x
19

)
− ψ

( x
20

)
+ ψ

( x
23

)
−ψ

( x
24

)
+ ψ

( x
29

)
− ψ

( x
30

)
+ · · · .

We claim that

α(x) =
∞∑

n=1

Anψ
(x
n

)
, (2.7)
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where

An =


1 if gcd(n, 30) = 1,

−1 if gcd(n, 30) has at least two distinct prime divisors,

0 otherwise.

In order to verify this, we split integers in types:

(1) gcd(n, 30) = 1 which gives An = 1− 0− 0− 0 + 0 = 1.

(2) Only one of 2, 3 and 5 divides n. This gives An = 1− 1− 0− 0 + 0 = 0.

(3) Only two of 2, 3 and 5 divides n. Hence we have An = 1− 1− 1− 0 + 0 = −1.

(4) 30 | n which gives An = 1− 1− 1− 1 + 1 = −1.

We now let c0 = 1 < c1 < c2 < · · · be the sequence of all integers n such that

An 6= 0. We observe that Acn = (−1)n. Therefore (2.7) can be written as follows.

α(x) =
∞∑

n=1

(−1)nψ

(
x

cn

)
.

It follows that

ψ(x)− ψ
(x

6

)
= ψ

(
x

c0

)
− ψ

(
x

c1

)
< α(x) < ψ

(
x

c0

)
= ψ(x),

from which the proof follows.

Theorem 2.3. For x ≥ 2 we have

νx− 5(log x+ 1) < ψ(x) <
6

5
νx+ (3 log x+ 5) (log x+ 1) , (2.8)

where ν being given by (2.1).

Proof. We begin with the right-hand side of (2.8). We combine (2.3) and (2.6) to

deduce

ψ(x)− ψ
(x

6

)
< νx+ 5(log x+ 1).

Hence for all n ∈ N

ψ
( x

6n

)
− ψ

( x

6n+1

)
≤ ν

x

6n
+ 5

(
log

x

6n
+ 1
)

≤ ν
x

6n
+ 5 (log x+ 1) .
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Summing on n = 0, 1, · · · , [log x/ log 6], the sum on the left-hand side gives a telescop-

ing series and we obtain

ψ(x) =

[ log x
log 6 ]∑
n=0

(
ψ
( x

6n

)
− ψ

( x

6n+1

))

≤ νx

[ log x
log 6 ]∑
n=0

1

6n
+ 5

([
log x

log 6

]
+ 1

)
(log x+ 1)

<
6

5
νx+

(
5

log 6
log x+ 5

)
(log x+ 1) .

We obtain the announced upper bound for ψ(x) by noting that 5/ log 6 < 3.

Now (2.3) combined with (2.6) gives the left-hand side of (2.8). This completes the

proof.

Note that a careful reading of the above proof allows us to tighten the upper bound

to

1.2νx+ 2.791 log2 x+ 7.791 log x+ 5.

2.2 Analytic estimates of ψ(x)

As we saw in the previous section, the elementary method of Chebyshev will establish

the explicit inequality

(ν − ε)x ≤ ψ(x) ≤ (
6

5
ν + ε)x,

for ε > 0 and large values of x. From the Prime Number Theorem we know that

(1− ε)x < ψ(x) < (1 + ε)x,

for large values of x. To establish the latter type inequality one needs to find explicit

estimates for ψ(x) − x, the so called the error term of the Prime Number Theorem.

Rosser [17] was the first who considered this problem. Rosser used numerical verifi-

cation of the Riemann hypothesis together with an explicit zero-free region in study

of the error term and developed an analytical method which allowed him to derive

explicit estimates for functions involving primes. Rosser’s estimates were more precise
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than the ones which have been established by elementry methods. His results were

later improved by Rosser and Schoenfeld [18], [19] and Schoenfeld [20].

Among many other results, Rosser and Schoenfeld [18] proved that ψ(x)/x takes

its maximum at x = 113. More precisely

ψ(x) < 1.03883x, for x > 0.

Explicit upper and lower bounds for ψ(x) can be obtained by means of Theorem

21 of [17]. In this chapter we will give a detailed proof of this theorem. We start by

setting up our notations.

We define

φ(x) = ψ(x)− x+ log 2π +
1

2
log
(
1− 1/x2

)
.

φ(x) can be considered as the error term in the Prime Number Theorem. In Theorem

2.4, we give an upper and lower bounds for this error term.

Let m be a positive integer and x and h be positive reals. For x > 1 and x+mh > 1,

we define the multiple integral

Km(x, h) =

∫ h

0

dy1

∫ h

0

dy2 · · ·
∫ h

0

φ (x+ y1 + y2 + · · ·+ ym) dym,

and

fm,n,a(x, h, z) =
Km(x, h)

hn
+

1

2
nha − zha−1. (2.9)

Since for h > 0, yi ∈ [0, h], and so we have x+y1+· · ·+ym > x. Thus φ(x+y1+· · ·+
ym) exists provided that x > 1. Also for h < 0, yi ∈ [h, 0] we have x+ y1 + · · ·+ ym >

x +mh. Hence φ(x +mh) exists provided that x +mh > 1. So the above definitions

are well defined.

Next we review some facts about the zeros of the Riemann zeta function. It is

known that ζ(s) has zeros at all negative even numbers (see [11, p. 49]). This zeros

are called the “trivial zeros” of ζ(s).

It is known that all the other zeros of ζ(s) are in the strip 0 < Re(s) < 1 (see [11,

p. 58]). We denote the non-trivial zeros of ζ(s) by ρ = β + iγ, where 0 < β < 1 and

γ ∈ R.

Let N(T ) be the number of non-trivial zeros of ζ(s) such that 0 < γ ≤ T .
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Suppose that A > 0 is such that

for 0 < γ ≤ A we have β =
1

2
. (2.10)

Also assume that r > 0 is such that for γ > A we have

β < 1− 1

r log γ
. (2.11)

We define

F (T ) =
T

2π
log

T

2π
− T

2π
+

7

8
,

and

R(T ) = d1 log T + d2 log log T + d3,

and assume that

|N(T )− F (T )| < R(T ), (2.12)

for T ≥ 2 and real numbers d1, d2, and d3. Moreover suppose that F (A) ≤ N(A). We

also define c1, · · · , c6 as follows.

c1 = r(logA)2, (2.13)

c2 = r logA, (2.14)

c3 = R(A), (2.15)

c4 =
1

2π
+

d1

A log A
2π

+
d2

A(logA)(log A
2π

)
, (2.16)

c5 =
1

log(A/2π)
, (2.17)

and

c6 = log(A/2π). (2.18)

We will prove the following theorem.

Theorem 2.4. Let m ∈ N and a > 0 such that

log a <
c1m

2

m+ c5
.
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Suppose that ∑
ρ

1

|γ|m+1
≤ k,

δ = 2

a−1/2k +
c3

Am+1a1/c2
+

c4(1 +mc6)(
1− (m+c5) log a

c1m2

)
m2Ama1/c2

1/(m+1)

,

and

ε =
δ

2

((
(1 + δ)m+1 + 1

2

)m

+m

)
.

If 1 +mδa < a we have

x(1− ε)− log 2π < ψ(x) < x(1 + ε)− 1

2
log
(
1− 1/x2

)
, (2.19)

for x ≥ a.

Before presenting the proof of this theorem, we give an overview of the three main

steps of the argument.

Step 1: We first find a lower and upper bound for the error term of the Prime Number

Theorem ψ(x) − x, in terms of Km(x, h). This is done in Proposition 2.11 by the

following inequalities.

−
(
Km(x,−xδ)
(−x)m+1δm

+
mδ

2

)
x− log 2π − 1

2
log

(
1− 1

x2

)
≤ ψ(x)− x,

and

ψ(x)− x ≤
(
Km(x, xδ)

xm+1δm
+
mδ

2

)
x− log 2π − 1

2
log

(
1− 1

x2

)
,

where 0 < δ < (x− 1)/xm.

Step 2: In the next step we will establish the following explicit bound for Km(x, h),

|Km(x,±xδ)| < xm+1
(
(1 + δ)m+1 + 1

)m
K,

where

K =
∑

ρ

xβ−1

|γ|m+1
.

Combining this with Proposition 2.11, in Proposition 2.15 we will derive lower and

upper bounds for ψ(x) in terms of the sum K.
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Step 3: Next we bound K by splitting the sum between the zeros on the left of the

1/2-line and those on the left of the zero-free region:

K ≤ x
−1
2

∑
ρ

1

|γ|m+1
+
∑
A<γ

f(γ),

where

f(γ) =
x

−1
r log γ

γm+1
.

This is done in Lemma 2.16 by means of (2.11) and properties of the zeros of the

zeta function. To find an effective upper bound for K it suffices to explicitly bound∑
A<γ f(γ). This has been done in Lemma 2.17 by applying partial summation formula

on
∑

A<γ f(γ). This lemma gives an upper bound for
∑

A<γ f(γ). It is shown that

∑
A<γ

f(γ) <
c3

Am+1x1/c2
+ c4

∫ ∞

A

f(y) log
y

2π
dy.

Finally Lemma 2.18 furnishes an explicit upper bound for
∫∞

A
f(y) log(y/2π)dy. Com-

bining all these will establish the desired upper bound for K.

In the next three sections we will describe in details each step.

2.2.1 Comparing ψ(x)− x with its average

In this section we compare ψ(x) − x to its average Km(x, h). Proposition 2.11 is the

main result of this section and is obtained by using Lemma 2.7 and 2.9 . These two

lemmas give upper and lower bounds for φ(x) depending on “m-average” Km(x, h).

For proving them we need Lemma 2.5 and 2.6. Lemma 2.5 establishes a recurrence

relation for fm,n,a.

Lemma 2.5. We have∫ h

0

fm,n,a (x, h, y1 + y2 + · · ·+ yn) dyn = fm,n−1,a+1 (x, h, y1 + y2 + · · ·+ yn−1) .
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Proof. We use (2.9) to compute the integral∫ h

0

fm,n,a (x, h, y1 + y2 + · · ·+ yn) dyn

=

∫ h

0

(
Km(x, h)

hn
+

1

2
nha − (y1 + y2 + · · ·+ yn)ha−1

)
dyn

=
Km(x, h)

hn−1
+ (

n− 1

2
)ha+1 − (y1 + · · ·+ yn−1)h

a

= fm,n−1,a+1 (x, h, y1 + y2 + · · ·+ yn−1) .

Lemma 2.6. We have

Km(x, h) =

∫ h

0

dy1

∫ h

0

dy2 · · ·
∫ h

0

fm,n,a (x, h, y1 + y2 + · · ·+ yn) dyn. (2.20)

Proof. We prove this lemma by induction on n.

For n = 1 we use (2.9) and compute the right-hand side of (2.20) to get∫ h

0

fm,1,a(x, h, y)dy =
Km(x, h)h

h
+

1

2
ha.h− ha−1h

2

2
= Km(x, h).

We assume

Km(x, h) =

∫ h

0

dy1

∫ h

0

dy2 · · ·
∫ h

0

fm,n,a (x, h, y1 + y2 + · · ·+ yn) dyn,

and together with Lemma 2.5 we obtain∫ h

0

· · ·
∫ h

0

(∫ h

0

fm,n+1,a (x, h, y1 + · · ·+ yn+1) dyn+1

)
dy1 · · · dyn

=

∫ h

0

· · ·
∫ h

0

fm,n,a+1 (x, h, y1 + · · ·+ yn) dy1 · · · dyn = Km(x, h).

We now define

fm(x, h, z) = fm,m,1(x, h, z) =
Km(x, h)

hm
+
mh

2
− z.
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Lemma 2.7. If h > 0 then there exists z ∈ [0,mh] such that

φ(x+ z) ≤ fm(x, h, z). (2.21)

Proof. Assume to the contrary that, for all z ∈ [0,mh], we have

φ(x+ z) > fm(x, h, z).

Then∫ h

0

· · ·
∫ h

0

φ (x+ y1 + y2 + · · ·+ ym) dy1dy2 · · · dym

>

∫ h

0

· · ·
∫ h

0

fm (x, h, y1 + · · ·+ ym) dy1dy2 · · · dym.

We recognize Km(x, h) in the left-hand side of the above inequality. However by

Lemma 2.6 the right-hand side of it equals Km(x, h). This is a contradiction.

Remark 2.8. Formula (2.21) states that there exists z1 ∈ [0,mh] such that

φ(x+ z1) + z1 ≤ ξ1,

where

ξ1 =
1

hm

∫ h

0

· · ·
∫ h

0

(φ (x+ y1 + y2 + · · ·+ ym) + (y1 + y2 + · · ·+ ym)) dy1dy2 · · · dym.

Observe that

1

hm

∫ h

0

· · ·
∫ h

0

(y1 + y2 + · · ·+ ym) dy1dy2 · · · dym =
m

hm

∫ h

0

· · ·
∫ h

0

y1dy1 · · · dym

=
mh

2
.

Lemma 2.9. If h < 0 then there exists z ∈ [mh, 0] such that

fm(x, h, z) ≤ φ(x+ z). (2.22)

Proof. Assume to the contrary that for all z ∈ [mh, 0] we have

φ(x+ z) < fm(x, h, z).
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Then ∫ 0

h

· · ·
∫ 0

h

φ (x+ y1 + y2 + · · ·+ ym) dy1dy2 · · · dym

<

∫ 0

h

· · ·
∫ 0

h

fm (x, h, y1 + · · ·+ ym) dy1dy2 · · · dym.

By definition the left-hand side of the above inequality is (−1)mKm(x, h). However

by Lemma 2.6 the right-hand side of that equals (−1)mKm(x, h). Thus we get a

contradiction.

Remark 2.10. Formula (2.22) states that there exists z2 ∈ [0,mh] such that

φ(x− z2)− z2 ≥ ξ2,

where

ξ2 =
1

hm

∫ h

0

· · ·
∫ h

0

(φ (x+ y1 + y2 + · · ·+ ym)− (y1 + y2 + · · ·+ ym)) dy1dy2 · · · dym.

We are now ready to give a bound for ψ(x)− x in terms of the Km’s.

Proposition 2.11. If 0 < δ < (x− 1)/xm,

ε1 =
Km(x,−xδ)
(−x)m+1δm

+
mδ

2
, and ε2 =

Km(x, xδ)

xm+1δm
+
mδ

2
, (2.23)

then

x(1− ε1)− log 2π − 1

2
log

(
1− 1

x2

)
≤ ψ(x) ≤ x(1 + ε2)− log 2π − 1

2
log

(
1− 1

x2

)
.

(2.24)

Proof. To prove the right-hand side of (2.24) we use the definitions of φ(x + z) and

fm(x, h, z). Lemma 2.7 yields that there exists z ∈ [0,mh] such that

ψ(x+ z)− (x+ z) + log 2π +
1

2
log

(
1− 1

(x+ z)2

)
≤ Km(x, h)

hm
+
mh

2
− z. (2.25)

For z ≥ 0, we have the inequalities

−1

2
log

(
1− 1

(x+ z)2

)
≤ −1

2
log

(
1− 1

x2

)
, (2.26)
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and ψ(x) ≤ ψ(x+ z). An application of this fact and (2.26) in (2.25) and replacing h

by xδ in (2.25) yield

ψ(x)− (x+ z) + log 2π +
1

2
log

(
1− 1

x2

)
≤ Km(x, xδ)

(xδ)m
+
mxδ

2
− z.

By simplifying the above inequality we get

ψ(x) ≤ x

(
1 +

Km(x, xδ)

xm+1δm
+
mδ

2

)
− log 2π − 1

2
log

(
1− 1

x2

)
.

This proves the inequality in the right-hand side of (2.24). For proving the inequality

in the left-hand side of (2.24), note that by Lemma 2.9 there exists z ∈ [mh, 0] such

that

ψ(x+ z)− (x+ z) + log 2π +
1

2
log

(
1− 1

(x+ z)2

)
≥ Km(x, h)

hm
+
mh

2
− z. (2.27)

Note that for z ≤ 0 we have

−1

2
log

(
1− 1

(x+ z)2

)
≥ −1

2
log

(
1− 1

x2

)
,

and ψ(x) ≥ ψ(x+ z). We replace h by −xδ in (2.27) to obtain

ψ(x)− (x+ z) + log 2π +
1

2
log

(
1− 1

x2

)
≥ Km(x,−xδ)

(−xδ)m
+
−mxδ

2
− z.

Simplifying the above inequality yields

x

(
1−

(
Km(x,−xδ)
(−x)m+1δm

+
mδ

2

))
− log 2π − 1

2
log

(
1− 1

x2

)
≤ ψ(x),

which is the desired result.

2.2.2 Relating ψ(x)− x and the zeros of the zeta function

In this section we find an explicit bound for Km(x, h) in terms of the zeros of the zeta

function. This is done by using Proposition 2.13 which provides an explicit formula.

Then Proposition 2.14 gives a bound for |Km(x,±xδ)| in terms ofK =
∑

ρ x
β−1/|γ|m+1.

The last result of this section is Proposition 2.15 which gives bounds for ψ(x) in terms

of δ.
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Proposition 2.12. We have∫ h

0

φ(x+ z)dz =
∑

ρ

1

ρ(ρ+ 1)

(
xρ+1 − (x+ h)ρ+1

)
. (2.28)

Proof. Using the definition of φ(x) we have

φ(x+ z) = ψ(x+ z)− (x+ z) + log 2π +
1

2
log

(
1− 1

(x+ z)2

)
.

We split φ(x + z) into two parts and calculate the integral from 0 to h of them

separately. By change of the variable we have∫ h

0

ψ(x+ z)dz =

∫ x+h

x

ψ(u)du =

∫ x+h

1

ψ(u)du−
∫ x

1

ψ(u)du. (2.29)

We now employ the classical explicit formula [11, page 73],∫ x

1

ψ(u)du =
x2

2
−
∑

ρ

xρ+1

ρ(ρ+ 1)
− x

ζ ′(0)

ζ(0)
+
ζ ′(−1)

ζ(−1)
−

∞∑
r=1

x1−2r

2r(2r − 1)
,

and apply it on the right-hand side of (2.29) to get∫ h

0

ψ(x+ z)dz =
h2

2
+ hx−

∑
ρ

(x+ h)ρ+1 − xρ+1

ρ(ρ+ 1)
− hζ

′(0)

ζ(0)
−

∞∑
r=1

(x+ h)1−2r − x1−2r

2r(2r − 1)
.

(2.30)

Next we consider∫ x+h

x

(
x+ z − log(2π)− 1

2
log

(
1− 1

(x+ z)2

))
dz.

By using the Taylor expansion

− log

(
1− 1

(x+ z)2

)
=

∞∑
r=1

1

r(x+ z)2r
,

it follows that ∫ h

0

(
x+ z − log(2π) +

1

2

∞∑
r=1

1

r(x+ z)2r

)
dz

= hx+
h2

2
− h log 2π − 1

2

∞∑
r=1

(x+ h)1−2r − x1−2r

r(2r − 1)
. (2.31)

32



From [14, page 317] we have
ζ ′(0)

ζ(0)
= log 2π.

Having this we now subtract (2.30) from (2.31) to obtain (2.28).

Proposition 2.13. We have

Km(x, h) =
∑

ρ

1

ρ(ρ+ 1) · · · (ρ+m)

(
m∑

j=0

(−1)j+m+1

(
m

j

)
(x+ jh)ρ+m

)
. (2.32)

Proof. The proof follows by induction on m.

By using the definition of Km(x, h) and Proposition 2.12 we find that

K1(x, h) =

∫ h

0

φ(x+ z)dz =
∑

ρ

1

ρ(ρ+ 1)

(
xρ+1 − (x+ h)ρ+1

)
=
∑

ρ

1

ρ(ρ+ 1)

(
1∑

j=0

(−1)j+2

(
1

j

)
(x+ jh)ρ+1

)
.

We now assume

Km(x, h) =
∑

ρ

1

ρ(ρ+ 1) · · · (ρ+m)

(
m∑

j=0

(−1)j+m+1

(
m

j

)
(x+ jh)ρ+m

)
. (2.33)

We need to prove that

Km+1(x, h) =
∑

ρ

1

ρ(ρ+ 1) · · · (ρ+m+ 1)

(
m+1∑
j=0

(−1)j+m+2

(
m+ 1

j

)
(x+ jh)ρ+m+1

)
.

By using the definition of Km+1(x, h) we have

Km+1(x, h) =

∫ h

0

(∫ h

0

· · ·
∫ h

0

φ (x+ y1 + · · ·+ ym+1) dy1 · · · dym

)
dym+1

=

∫ h

0

Km(x+ ym+1, h)dym+1.

Next we apply (2.33) on the above equality to obtain

Km+1(x, h) =

∫ h

0

∑
ρ

1

ρ · · · (ρ+m)

m∑
j=0

(
(−1)j+m+1

(
m

j

)
(x+ ym+1 + jh)ρ+m

)
dym+1.
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Interchanging the sum and the integral is legitimate since

∣∣∣∣∣∑
ρ

1

ρ · · · (ρ+m)

m∑
j=0

(
(−1)j+m+1

(
m

j

)
(x+ ym+1 + jh)ρ+m

)
dym+1

∣∣∣∣∣
=

∣∣∣∣∣∑
ρ

(x+ ym+1)
ρ+m

ρ · · · (ρ+m)

(
m∑

j=0

(
m

j

)(
1± jxδ

x+ ym+1

)ρ+m
)∣∣∣∣∣

≤
∑

ρ

(x+ h)m+1

|γ|m+1

(
m∑

j=0

(
m

j

)
(1 + jδ)m+1

)
,

noting that
∑

ρ 1/|γ|m+1 is convergent for m ≥ 1. Thus we obtain

Km+1(x, h) =
∑

ρ

1

ρ · · · (ρ+m)

m∑
j=0

(−1)j+m+1

(
m

j

)∫ h

0

(x+ ym+1 + jh)ρ+m dym+1.

It is now easy to compute the integral:∫ h

0

(x+ ym+1 + jh)ρ+m dym+1 =
(x+ jh+ h)ρ+m+1 − (x+ jh)ρ+m+1

ρ+m+ 1
.

Therefore the sum over j equals

m∑
j=0

(−1)j+m+1

(
m

j

)
(x+ (j + 1)h)ρ+m+1 − (x+ jh)ρ+m+1

ρ+m+ 1
.

The above can be rewritten as:

1

ρ+m+ 1

m∑
j=0

(−1)j+m+1

(
m

j

)
(x+ (j + 1)h)ρ+m+1

− 1

ρ+m+ 1

m∑
j=0

(−1)j+m+1

(
m

j

)
(x+ jh)ρ+m+1.

Changing the variable j to j − 1 in the first sum of the above formula gives

1

ρ+m+ 1

m+1∑
j=1

(−1)j+m

(
m

j − 1

)
(x+ jh)ρ+m+1

− 1

ρ+m+ 1

m∑
j=0

(−1)j+m+1

(
m

j

)
(x+ jh)ρ+m+1.
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The last expression can be transformed into

1

ρ+m+ 1

m∑
j=1

(−1)j+m(x+ jh)ρ+m+1

(
m+ 1

j

)
+

1

ρ+m+ 1

(
(−1)2m+1(x+ (m+ 1)h)ρ+m+1 − (−1)m+1xρ+m+1

)
, (2.34)

since (
m

j − 1

)
+

(
m

j

)
=

(
m+ 1

j

)
, for 1 ≤ j ≤ m.

To complete the proof we observe that (2.34) can be rewritten as

1

(ρ+m+ 1)

(
m+1∑
j=0

(−1)j+m+2

(
m+ 1

j

)
(x+ jh)ρ+m+1

)
.

This leads to

Km+1(x, h) =
∑

ρ

1

ρ(ρ+ 1) · · · (ρ+m+ 1)

(
m+1∑
j=0

(−1)j+m+2

(
m+ 1

j

)
(x+ jh)ρ+m+1

)
.

Proposition 2.14. If δ ≥ 0 then

|Km(x,±xδ)| < xm+1
(
(1 + δ)m+1 + 1

)m
K, (2.35)

where

K =
∑

ρ

xβ−1

|γ|m+1
.

Proof. Replacing h by ±xδ in Proposition 2.13 yields

Km(x,±xδ) =
∑

ρ

xρ+m

ρ(ρ+ 1) · · · (ρ+m)

(
m∑

j=0

(−1)j+m+1

(
m

j

)
(1± jδ)ρ+m

)
.

From |xρ+m| = xβ+m and |ρ| =
√
β2 + γ2 ≥ |γ|, we find that∣∣∣∣ xρ+m

ρ(ρ+ 1) · · · (ρ+m)

∣∣∣∣ < xβ+m

|γ|m+1 <
xm+1

|γ|m+1 . (2.36)
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Therefore by using the fact that (1 + jδ) < (1 + δ)j for δ > 0 one can deduce∣∣∣∣∣
m∑

j=0

(−1)j+m+1

(
m

j

)
(1± jδ)ρ+m

∣∣∣∣∣ <
m∑

j=0

(
m

j

)(
(1 + δ)j

)m+1

=
m∑

j=0

(
m

j

)(
(1 + δ)m+1

)j
=
(
(1 + δ)m+1 + 1

)m
.

Thus ∣∣∣∣∣
m∑

j=0

(−1)j+m+1

(
m

j

)
(1 + jδ)ρ+m

∣∣∣∣∣ ≤ ((1 + δ)m+1 + 1
)m

. (2.37)

The proof follows by putting together (2.32), (2.36), and (2.37).

Proposition 2.15. If δ ≥ 2K1/(m+1) and

ε =
δ

2

((
(1 + δ)m+1 + 1

2

)m

+m

)
,

then

ε1 < ε, ε2 < ε, (2.38)

where ε1 and ε2 are defined in (2.23).

Proof. It follows from Proposition 2.14 that

|ε1|, |ε2| ≤
((1 + δ)m+1 + 1)

m
K

δm
+
mδ

2
.

(2.39)

Since δ ≥ 2K1/(m+1) we have K < δm+1

2m+1 . Applying this upper bound for K, (2.39) is

transformed into

ε1, ε2 <
((1 + δ)m+1 + 1)

m
δm+1

δm2m+1
+
mδ

2
=
δ

2

((
(1 + δ)m+1 + 1

2

)m

+m

)
,

from which the proof follows.
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2.2.3 Explicit bounds for the sums over the zeros of the zeta

function

In this section we will derive an upper bound for K by finding an upper bound for∑
A<γ f(γ) where

f(γ) = x−1/r log γ/γm+1.

Lemma 2.16. We have

K ≤ x
−1
2

∑
ρ

1

|γ|m+1
+
∑
A<γ

f(γ). (2.40)

Proof. For β ≤ 1/2 we have xβ−1 ≤ x−1/2. Hence∑
β≤ 1

2

xβ−1

|γ|m+1
≤
∑
β≤ 1

2

x−1/2

|γ|m+1
≤ x−1/2

∑
ρ

1

|γ|m+1
. (2.41)

If β > 1/2 it follows from (2.10), that |γ| > A. We now use (2.11) to deduce

xβ−1 < x
−1

r log γ .

From this, by the fact that both β + iγ and β − iγ are zeros of ζ(s), we find that

∑
β> 1

2

xβ−1

|γ|m+1
= 2

∑
β> 1

2
,γ>0

xβ−1

|γ|m+1
≤ 2

∑
β> 1

2
,γ>A

x
−1

r log γ

γm+1
. (2.42)

Since β + iγ and 1− β + iγ = β′ + iγ are zeros of ζ(s), we observe that

2
∑

β> 1
2
,γ>A

x
−1

r log γ

γm+1
=

∑
β> 1

2
,γ>A

x
−1

r log γ

γm+1
+

∑
β> 1

2
,γ>A

x
−1

r log γ

γm+1

=
∑

β> 1
2
,γ>A

x
−1

r log γ

γm+1
+

∑
β′< 1

2
,γ>A

x
−1

r log γ

γm+1
≤
∑
γ>A

x
−1

r log γ

γm+1
.

Hence (2.42) can be transformed into

∑
β> 1

2

xβ−1

|γ|m+1
≤
∑
γ>A

x
−1

r log γ

γm+1
. (2.43)

The proof is now complete by adding (2.41) to (2.43).
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Next we find an upper bound for
∑

A<γ f(γ). In order to do this we use the partial

summation formula for
∑

A<γ f(γ). We also make use of the upper bound for N(y)

given in (2.12).

Lemma 2.17. If log x ≤ c1(m+ 1) we have∑
A<γ

f(γ) <
c3

Am+1x1/c2
+ c4

∫ ∞

A

f(y) log
y

2π
dy,

where c1, c2, c3, and c4 are defined in (2.13), (2.14), (2.15), and (2.16).

Proof. By employing the partial summation formula, we see that∑
A<γ

f(γ) = −
∫ ∞

A

N(y)f ′(y)dy −N(A)f(A). (2.44)

We have

f ′(y) =
exp

(
− log x
r log y

)
ym+2

(
log x

r(log y)2
− (m+ 1)

)
. (2.45)

Since y > A and log x ≤ c1(m+ 1) = r(logA)2(m+ 1), we find that

log x

r(log y)2
− (m+ 1) ≤ log x

r(logA)2
− (m+ 1) < 0.

We combine this with (2.45) to deduce that −f ′(y) > 0. This enables us to use

N(y) ≤ F (y) +R(y) in (2.44). We obtain∑
A<γ

f(γ) < −
∫ ∞

A

(F (y) +R(y)) f ′(y)dy −N(A)f(A). (2.46)

We use integration by parts on the above integral to derive∫ ∞

A

(F (y) +R(y)) f ′(y)dy = − (F ′(A) +R′(A)) f(A)−
∫ ∞

A

(F ′(y) +R′(y)) f(y)dy.

From this and (2.46) we find that∑
A<γ

f(γ) <

∫ ∞

A

(F ′(y) +R′(y)) f(y)dy +R(A)f(A), (2.47)
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noting that F (A) ≤ N(A). Observe that

R(A)f(A) =
R(A)

Am+1x
1

r log A

=
c3

Am+1x
1
c2

, (2.48)

and F ′(y) = 1
2π

log(y/2π). This implies∫ ∞

A

F ′(y)f(y)dy =
1

2π

∫ ∞

A

f(y) log
y

2π
dy. (2.49)

Since A < y we have
1

y
<

log y
2π

A log A
2π

.

Therefore

R′(y) =
d1

y
+

d2

y log y
<

(
d1 log y

2π

A log A
2π

+
d2 log y

2π

A(logA)(log A
2π

)

)
= α log

y

2π
,

where

α =
d1

A log A
2π

+
d2

A(logA)(log A
2π

)
.

By using the latter result it follows that∫ ∞

A

R′(y)f(y)dy < α

∫ ∞

A

log
y

2π
f(y)dy. (2.50)

Putting together (2.47), (2.48), (2.49), and (2.50) completes the proof.

The next lemma provides an upper bound for
∫∞

A
f(y) log(y/2π)dy.

Lemma 2.18. If log x < c1m
2/(m+ c5), then∫ ∞

A

f(y) log
y

2π
dy <

1 + c6m(
1− (m+c5) log x

c1m2

)
m2Amx1/c2

,

where c1, c2, c5, c6 are defined in (2.13), (2.14), (2.17) and (2.18).

Proof. Let

I =

∫ ∞

A

f(y) log
y

2π
dy =

∫ ∞

A

1

ym+1
(log

y

2π
)exp

(
− log x

r log y

)
dy.
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Choosing u′ =
(
log y

2π

)
1

ym+1 and v = exp
(
− log x
r log y

)
yields

u =
−1

ymm2

(
1 +m log

y

2π

)
, v′ = exp

(
− log x

r log y

)
log x

ry(log y)2
.

Using integrating by parts we find that

I =

(
1 +m log A

2π

)
Amm2

exp

(
− log x

r logA

)
+

∫ ∞

A

exp

(
− log x

r log y

) (
1 +m log y

2π

)
log x

r(log y)2m2ym+1
dy

=

(
1 +m log A

2π

)
Amm2

exp

(
− log x

r logA

)
+

∫ ∞

A

exp
(
− log x
r log y

)
(log y

2π
)

ym+1

(
1

log y
2π

+m
)

log x

m2r(log y)2
dy

=

(
1 +m log A

2π

)
Amm2

exp

(
− log x

r logA

)
+

(
1

log y
2π

+m
)

log x

m2r(log y)2

∫ ∞

A

f(y) log
y

2π
dy.

Since A < y we have
1

log y
2π

+m

(log y)2
≤

1
log A

2π

+m

(logA)2
,

which gives

I <

(
1 +m log A

2π

)
Amm2

exp

(
− log x

r logA

)
+

(
1

log A
2π

+m
)

log x

m2r(logA)2

∫ ∞

A

f(y) log
y

2π
dy. (2.51)

Following the definition of I, from (2.51) we find that

I

1−

(
1

log A
2π

+m
)

log x

m2r(logA)2

 <

(
1 +m log A

2π

)
Amm2

exp

(
− log x

r logA

)
.

It follows that for

log x <
r(logA)2m2

m+ 1
log A

2π

=
c1m

2

m+ c5
,

that

I <

(
1 +m log A

2π

)
Amm2

.
exp

(
− log x
r log A

)
1−

„
1

log A
2π

+m

«
log x

m2r(log A)2

 .
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2.2.4 Proof of Theorem 2.4

In this section we give the proof of Theorem 2.4. By use of Proposition 2.11, Proposition

2.15, Lemma 2.16, Lemma 2.17 and Lemma 2.18 we deduce Theorem 2.4 which gives

explicit bounds for ψ(x).

Proof. We begin with proving the right-hand side of (2.19). Observe that by Proposi-

tion 2.11 we have

x(1− ε1)− log 2π − 1

2
log

(
1− 1

x2

)
≤ ψ(x) ≤ x(1 + ε2)− log 2π − 1

2
log

(
1− 1

x2

)
.

Noting that − log 2π < 0 it remains to verify that

ε2 < ε. (2.52)

It follows from (2.38) that

ε2 < ε =
δ

2

((
(1 + δ)m+1 + 1

2

)m

+m

)
,

provided that K ≤ (δ/2)m+1.

Recall that by Lemma 2.40 we have

K ≤ x
−1
2

∑
ρ

1

|γ|m+1
+
∑
A<γ

f(γ).

We combine this with Lemma 2.17 and Lemma 2.18 to deduce

K ≤ x
−1
2

∑
ρ

1

|γ|m+1
+

c3

Am+1x
1
c2

+
c4(1 +mc6)(

1− (m+c5 log x)
c1m2

)
m2Amx

1
c2

.

From this, by
∑

ρ 1/|γm+1| ≤ k, we find that

K ≤ x
−1
2 k +

c3

Am+1x
1
c2

+
c4(1 +mc6)(

1− (m+c5 log x)
c1m2

)
m2Amx

1
c2

.

Since x ≥ a we may infer

K ≤ a
−1
2 k +

c3

Am+1a
1
c2

+
c4(1 +mc6)(

1− (m+c5 log a)
c1m2

)
m2Ama

1
c2

.
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Thus

K ≤

2

2

a−1
2 k +

c3

Am+1a
1
c2

+
c4(1 +mc6)(

1− (m+c5 log a)
c1m2

)
m2Ama

1
c2

1/m+1


m+1

=

(
δ

2

)m+1

,

which achieves the proof.

For the left-hand side of (2.19), having established Proposition 2.11, we require to

prove that

ε1 < ε, (2.53)

since − log (1− 1/x2) > 0. The proof of (2.53) is identical to the proof of (2.52).

We end this chapter by providing two examples based on specific numerical values

of parameters in Theorem 2.4. The following lemma which provides explicit upper

bounds for
∑

ρ 1/|γ|m+1 where m ≤ 3 will be used to determine values for k in our

examples.

Lemma 2.19. We have∑
ρ

1

γ2
< 0.0463,

∑
ρ

1

|γ|3
< 0.00167, and

∑
ρ

1

γ4
< 0.0000744.

Proof. See [17, Lemma 17, p. 225].

Example 2.20. We let A = 1467.47747, r = 17.72 (see [17, pp. 223-224]) and m = 2.

We see that

c1 = 942.04939, c2 = 129.20183, c3 = 3.46700,

c4 = 0.15917, c5 = 0.18337, and c6 = 5.45342.

Observe that c1m
2/m + c5 ' 1725.862. Thus we choose a = exp(20) so that a <

exp(1725.862). Following the definition of δ and ε we obtain δ = 0.01288 and ε =

0.0195832. Hence by using Theorem 2.4 we deduce

0.98041x < ψ(x) < 1.019584x, for x ≥ e20.
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Example 2.21. Let A = 29538618432.2361. Then Wedeniwski has shown that N(A) =

1011 and the Riemann Hypothesis is true up to height A. We let r = 5.70176 from [12],

and m = 2. We observe that

c1 = 3314.10330, c2 = 137.46352, c3 = 6.30081,

c4 = 0.15915, c5 = 0.04490, and c6 = 22.27108.

We find that c1m
2/m + c5 ' 6482.666. Hence we need to choose a < exp(6482.666).

We let a = exp(20). Following the definition of δ and ε we obtain δ = 0.00846 and

ε = 0.0128063. Hence by using Theorem 2.4 we deduce

0.98719x < ψ(x) < 1.012807x, for x ≥ e20.

By comparing the results of the above examples we conclude that improving the

values of A and r gives sharper results.

We can use Theorem 2.4 to generate tables of upper and lower bounds for ψ(x).

In this thesis Tables 5.1 and 5.2 give estimations for ψ(x). The values given in these

tables will be used throughout the thesis.

1http://www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html
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Chapter 3

Bounds for θ(x)

3.1 Introduction

In this section we assume that we have a table of upper and lower bounds for ψ(x).

Therefore the positive values A+(b) and A−(b) are given such that

A−(b)x < ψ(x) < A+(b)x, for x ≥ eb. (3.1)

The relation between θ(x) and ψ(x) given by

ψ(x) =
∞∑

k=1

θ(x1/k). (3.2)

plays a key role in our estimates. The above can be derived directly from the definition

of ψ(x) and θ(x).

From (3.2) we deduce the trivial bound

ψ(x) ≥ θ(x), for x > 0.

Using the Prime Number Theorem one can show the asymptotic behavior of θ(x)

by

θ(x) ∼ x, (3.3)

as x→∞. However (3.3) does not give any information about numerical estimates for

θ(x)/x. We here mention a result, due to Rosser and Schoenfeld [18, (5.4), page 77 ],

on the estimation of θ(x)/x by elementry methods.

44



Proposition 3.1. θ(x) < 1.11x for x > 0.

Proof. By direct computation one can show that

θ(x) < x for 0 < x ≤ 108. (3.4)

For larger values of x we proceed as follows. From Chapter 2, Theorem 2.3 we may

infer

θ(x) ≤ ψ(x) < 1.2νx+ (3 log x+ 5) (log x+ 1) for x ≥ 2,

where ν ' 0.92129 · · · is given in (2.1). Hence

θ(x) <

(
1.2ν +

s(x)

x

)
x,

where

s(x) = (3 log x+ 5) (log x+ 1).

We note that 1.2ν + s(x)/x is a decreasing function for x > 108. Moreover,

1.2ν + s(x)/x < 1.2ν + s(108)/108 < 1.11 for x > 108.

From this, and (3.4) we deduce that

θ(x) < 1.11x for x > 0.

It is possible to improve the above bound by elementary methods. For example

Hanson [10] has showed that

θ(x) < (log 3)x < 1.0987x, for x > 0.

This bound was improved again by Grimson and Hanson [9], who obtained

θ(x) < 1.0508x, for x > 0.

A breakthrough came in 1989 where Costa Pereira [4] by employing an elementary

method proved that

θ(x) <
532

531
x = 1.001884x for x > 0.
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In another front, as described in the previous chapter, Rosser [17] developed an

analytic method which allowed him to obtain sharp numerical estimates for ψ(x)/x

and therefore for functions involving primes such as θ(x)/x. Numerical upper and

lower bounds for θ(x)/x were improved later by Rosser and Schoenfeld [18], [19], and

Schoenfeld [20] by some refinements in their analytical method.

Table 3.1 summarizes the history of numerical upper bounds for θ(x)/x which are

deduced by analytical methods.

Table 3.1:
Authors c0

Rosser & Schoenfeld [18] 1 + 1.6240× 10−2

Rosser & Schoenfeld [19] 1 + 1.1020× 10−3

Schoenfeld [20] 1 + 8.1000× 10−5

Dusart[7] 1 + 2.7579× 10−5

θ(x) < c0x, for x > 0.

The goal of this chapter is to develop techniques which give sharper estimates for

θ(x)/x compare to those that we have in the literature.

We start by giving upper bound for θ(x)/x. By a recent result of Dusart [7, Propo-

sition 5.1, p. 4] we have

θ(x) < x, for 0 < x ≤ 8× 1011 ' e27.40. (3.5)

We combine (3.5) with the trivial bound θ(x) ≤ ψ(x) to obtain

θ(x) < A+(27.4)x, for x > 0.

This leads to the following proposition.

Proposition 3.2. θ(x) < (1 + 2.841× 10−5)x, for x > 0.

Thus we can assume that for c0 = 1 + 2.841× 10−5 we have

θ(x) < c0x for x > 0.
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In this chapter we present several methods to improve this upper bound for θ(x).

Next we consider the problem of finding a numerical lower bound for θ(x)/x. To

do this we consider the identity

ψ(x)− θ(x) =
∑
k≥2

θ(x1/k).

From the above equation we can derive several forms of upper bounds for ψ(x)− θ(x),
and consequently we will be able to deduce tables for lower bounds of θ(x) in different

ranges. Table 3.2 provides the history of numerical lower bounds for θ(x)/x given by

analytical methods.

Table 3.2:
Authors B−(b) b

Rosser & Schoenfeld[18] 0.840000 4.70

Rosser & Schoenfeld[18] 0.980000 8.93

Rosser & Schoenfeld [19] 0.998684 14.10

Schoenfeld [20] 0.998697 13.97

Dusart [7] 0.999900 25.00

θ(x) > B−(b)x, for x ≥ eb.

3.2 Upper bounds for θ(x) for x > 0

The following inequalities play important roles in establishing bounds for θ(x).

• Dusart [7, Proposition 5.1]

θ(x) < x, for 0 < x ≤ 8× 1011 ' e27.40. (3.6)

• Rosser-Schoenfeld [18, Theorem 24]

x1/2 < ψ(x)− θ(x), for 121 ≤ x ≤ 1016 ' e36.8. (3.7)
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• Rosser-Schoenfeld [18, Theorem 19]

x− 2x1/2 < θ(x), for 0 < x ≤ 1420.9 and 1423 ≤ x ≤ 108. (3.8)

The main goal of this section is studying methods for providing sharp upper bounds

for θ(x)/x. We point out that a lower bound for ψ(x) − θ(x) will result in an upper

bound for θ(x) provided that we have estimates for ψ(x) in different ranges. Using this

fact we present the following theorem.

Theorem 3.3. Let b1 and b2 be positive constants such that b1 ≤ 27.4 and b1 < b2. Let

c1 = A+(b1)−
A−( b1

2
)

eb2/2
,

and

c0 = max{c1, A+(b2)}.

Then

θ(x) < c0x, for x > 0.

Proof. • Let 0 < x < eb1 . By (3.6), we have θ(x) < x.

• We let x ∈ [eb1 , eb2 ]. From (3.2) we deduce that

ψ(x1/2) =
∑
k≥1

θ(x1/2k). (3.9)

Therefore

ψ(x)− θ(x) =
∞∑

k=2

θ(x1/k) =
∑
k≥1

θ(x1/2k) +
∑
k≥1

θ(x1/2k+1). (3.10)

The previous identity implies that

ψ(x1/2) ≤ ψ(x)− θ(x). (3.11)

From (3.11) and (3.1) we obtain, for x ∈ [eb1 , eb2 ],

θ(x) ≤ ψ(x)− ψ(x1/2) <

(
A+(b1)−

A−( b1
2
)

e
b2
2

)
x. (3.12)
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• Let x ≥ eb2 . By using the trivial inequality θ(x) ≤ ψ(x) we have

θ(x) < A+(b2)x. (3.13)

We combine (3.6), (3.12), and (3.13) to obtain

θ(x) < max

{
1, A+(b1)−

A−( b1
2
)

e
b2
2

, A+(b2)

}
x, for x > 0.

Since A+(b) > 1 for b > 0 we have

θ(x) < max

{
A+(b1)−

A−( b1
2
)

e
b2
2

, A+(b2)

}
x, for x > 0.

From which the proof follows.

Example 3.4. Let b1 = 27.4, and b2 = 28. Then by Tables 5.1 and 5.2 we have

A+(b1) = 1 + 2.841× 10−5, A−(
b1
2

) = 0.9988024, and A+(b2) = 1 + 2.224× 10−5.

Hence by Theorem 3.3 we have

c0 = c1 = 1 + 2.7579467120× 10−5.

We observe that in proving Theorem 3.3 we can use relation (3.7) in place of (3.11).

This leads us to the following theorem.

Theorem 3.5. Let b1 and b2 be positive constants such that b1 ≤ 27.4 and b1 < b2 ≤
36.8. Let

c1 = A+(b1)−
1

eb2/2
,

and

c0 = max{c1, A+(b2)}.

Then

θ(x) < c0x, for x > 0.
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Example 3.6. Let b1 = 27.4, and b2 = 28. Then by employing Theorem 3.5 and Tables

5.1 and 5.2 we see that

c0 = c1 = 1 + 2.7578471281× 10−5.

Next we describe an improvement of Theorem 3.3. The main idea in the next

theorem is that in the middle range [eb1 , eb2 ] we use more precise lower bound for

ψ(x)− θ(x) than the one used in the previous theorem. This idea is inspired from [7,

Proposition 3.1].

Theorem 3.7. Let b1 and b2 be positive constants such that b1 ≤ 27.4 and b1 < b2 ≤
55.26. Let

c1 = max
x∈[eb1 ,eb2 ]

{
A+(b1)− A−(b1/2)x−1/2 − x−2/3 + 2x−5/6

}
.

Then for x > 0 we have

θ(x) < c0x,

where c0 = max{c1, A+(b2)}.

Proof. We let eb1 ≤ x ≤ eb2 . By using (3.9) and (3.10) we have

ψ(x1/2) + θ(x1/3) ≤ ψ(x)− θ(x).

The above gives

θ(x) ≤ ψ(x)− ψ(x1/2)− θ(x1/3). (3.14)

For the lower bound of θ(x1/3) we use (3.8) provided that 14233 ≤ x ≤ 1024. Note that

log 1024 ' 55.26. From this, by (3.1) we see that (3.14) can be transformed into

θ(x) < A+(b1)x− A−(b1/2)x1/2 − x1/3 + 2x1/6. (3.15)

Putting together (3.6), (3.13), and (3.15) achieves the proof.

Example 3.8. Let b1 = 27.4 and b2 = 28. Then by Tables 5.1 and 5.2 we have

A+(b1) = 1 + 2.841× 10−5, A−(b1/2) = 0.9988024, and A+(b2) = 1 + 2.224× 10−5.

Hence by Theorem 3.7 we have

c0 = c1 = 1 + 2.7571794847× 10−5.
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A comparison of results of Examples 3.4, 3.6, and 3.8 shows that we obtain improved

result using Theorem 3.7.

We next present a lemma which gives a lower bound for ψ(x)− θ(x) in terms of ψ

function. This result is due to Costa Pereira [3, p. 211].

Lemma 3.9. For x > 0 we have

θ(x) ≤ ψ(x)− ψ(x1/2)− ψ(x1/3)− ψ(x1/5) + ψ(x1/6). (3.16)

Proof. We substitute (3.9) in (3.2) to obtain

ψ(x) = θ(x) + ψ(x1/2) +
∑
n≥1

θ(x1/2n+1), (3.17)

or equivalently

ψ(x)− θ(x) = ψ(x1/2) +
∑
n≥1

θ(x1/6n−3) +
∑
n≥1

θ(x1/6n−1) +
∑
n≥1

θ(x1/6n+1). (3.18)

Now (3.2) implies that

ψ(x1/3) =
∑
n≥1

θ(x1/3n) =
∑
n≥1

θ(x1/6n−3) +
∑
n≥1

θ(x1/6n),

or equivalently

ψ(x1/3)−
∑
n≥1

θ(x1/6n) =
∑
n≥1

θ(x1/6n−3).

We employ the above identity in (3.18) to obtain

ψ(x)−θ(x) = ψ(x1/2)+ψ(x1/3)−
∑
n≥1

θ(x1/6n)+
∑
n≥1

θ(x1/6n−1)+
∑
n≥1

θ(x1/6n+1). (3.19)

Observe that∑
n≥1

θ(x1/6n−1) +
∑
n≥1

θ(x1/6n+1) ≥
∑
n≥1

θ(x1/10n−5) +
∑
n≥1

θ(x1/10n) = ψ(x1/5), (3.20)

and

ψ(x1/6) =
∑
n≥1

θ(x1/6n). (3.21)

(3.19) combined with (3.20) and (3.21) implies the result.
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Replacing (3.12) with (3.16) in Theorem 3.3 enables us to establish the following

theorem.

Theorem 3.10. Let b1 and b2 be positive constants such that 0 < b1 ≤ 27.4 and b1 < b2.

Let

c1 = max
x∈[eb1 ,eb2 ]

{
A+(b1)−

A−(b1/2)

x1/2
− A−(b1/3)

x2/3
− A−(b1/5)

x4/5
+
A+(b1/6)

x5/6

}
.

Then

θ(x) < c0x, for x > 0,

where c0 = max{c1, A+(b2)}.

Example 3.11. Let b1 = 27.4 and b2 = 28. Then from Tables 5.1 and 5.2 we have

A+(b1) = 1 + 2.841× 10−5, A−(b1/2) = 0.9988024, A−(b1/3) = 0.99343,

A−(b1/5) = 0.96764, A+(b1/6) = 1.03883, and A+(b2) = 1 + 2.224× 10−5.

It follows from Theorem 3.10 that

c0 = c1 = 1 + 2.7571594613× 10−5.

We see that there is a slight improvement in the result of Theorem 3.10 compared

to the result of Theorem 3.7.

We now establish a theorem which theoretically will provide a better upper bound

for θ(x)/x for x > 0, compared to the previous results. The reason is that in the middle

range eb1 ≤ x ≤ eb2 , we are using a better upper bound for θ(x), namely

θ(x) ≤ ψ(x)− ψ(x1/2)− ψ(x1/3)− ψ(x1/5) + θ(x1/6) + ψ(x1/30), (3.22)

(see [2, p. 110]). This upper bound is sharper than (3.16) since

ψ(x1/6) ≥ θ(x1/6) + ψ(x1/30).

We point out that for an upper bound for θ(x1/6) in (3.22) we can use

θ(x1/6) < c̃0x
1/6, for x > 0,

where c̃0 is an upper bound for θ(x)/x, when x > 0. We have the following theorem.
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Theorem 3.12. Let b1 and b2 be positive constants such that 0 < b1 ≤ 27.4 and b1 < b2.

Let

c1 = max
x∈[eb1 ,eb2 ]

{
A+(b1)−

A−(b1/2)

x1/2
− A−(b1/3)

x2/3
− A−(b1/5)

x4/5
+

c̃0
x5/6

+
A+(b1/30)

x29/30

}
,

where c̃0 is an upper bound for θ(x)/x when x > 0. Then

θ(x) < c0x, for x > 0,

where c0 = max{c1, A+(b2)}.

Example 3.13. Let b1 = 27.4 and b2 = 28. Then by Tables 5.1 and 5.2 we obtain

A+(b1) = 1 + 2.841× 10−5, A−(b1/2) = 0.9988024, A−(b1/3) = 0.9934300,

A−(b1/5) = 0.9676400, A+(b1/30) = 1.03883, and A+(b2) = 1 + 2.2244× 10−5.

From Example 3.11 we take

c̃0 = 1 + 2.7571594613× 10−5.

Thus by employing Theorem 3.12 we obtain

c0 = c1 = 1 + 2.7571593586× 10−5.

Comparison of the results of previous examples in this section shows, as expected,

that Theorem 3.12 gives the best upper bound for θ(x) in the range x > 0.

By having one extra condition we can rewrite Theorem 3.12 as follows.

Theorem 3.14. Let b1 and b2 be positive constants such that 0 < b1 ≤ 27.4 and b1 < b2.

If b2/6 ≤ 27.4 then let

c1 = max
x∈[eb1 ,eb2 ]

{
A+(b1)−

A−(b1/2)

x1/2
− A−(b1/3)

x2/3
− A−(b1/5)

x4/5
+

1

x5/6
+
A+(b1/30)

x29/30

}
.

Then

θ(x) < c0x, for x > 0,

where c0 = max{c1, A+(b2)}.
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Example 3.15. Let b1 = 27.4 and b2 = 28. Then by Tables 5.1 and 5.2 we obtain

A+(b1) = 1 + 2.841× 10−5, A−(b1/2) = 0.9988024, A−(b1/3) = 0.9934300,

A−(b1/5) = 0.9676400, A+(b1/30) = 1.03883, and A+(b2) = 1 + 2.2244× 10−5.

Thus by using Theorem 3.14 we obtain

c0 = c1 = 1 + 2.7571593584× 10−5.

This result has a slight improvement compare to the result of Example 3.13.

We now turn our attention to an unpublished result of Costa Pereire1 which states

θ(x) < x, for 0 < x < 1016 ' e36.8.

This result together with Theorem 3.12 yield the following example.

Example 3.16. Let b1 = 36.8 and b2 = 37. From Tables 5.1 and 5.2 we have

A+(b1) = 1 + 1.301× 10−9, A−(b1/2) = 1− 2.841× 10−5, A−(b1/3) = 0.9988024,

A−(b1/5) = 0.99770, A+(b1/30) = 1.03883, and A+(b2) = 1 + 4.348× 10−7.

From Example 3.13 we have c̃0 = 1 + 2.7571593586× 10−5, therefore by Theorem 3.12

we have c1 = 0.99999999205 and

c0 = 1 + 4.348× 10−7.

The last example suggests that extending the range of the inequality from (0, e27.4]

to (0, e36.8] significantly improves the upper bound for the function θ(x)/x.

3.3 Upper bounds for θ(x) for x ≥ eb

Recall that (3.6) states

θ(x) < x, for 0 < x ≤ 8× 1011 ' e27.4.

1http://mat.fc.ul.pt/ind/ncpereira/
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Therefore it would make sense to consider upper bounds for θ(x) on [eb,∞) only for

b ≥ 27.4.

Since the sharpest upper bound for θ(x) in the previous section comes from Theorem

3.12 we use the same argument with means of Tables 5.1 and 5.2 to deduce Table 5.3

which establishes the inequalities

θ(x) < B+(b)x, for x > eb, (3.23)

for different values of b.

Our Table 5.3 gives more precise estimates for upper bound of θ(x)/x compared to

the recent results of Dusart [7].

3.4 The inequality ψ(x)− θ(x) > d0

√
x

In this section we are intersted in finding a lower bound for ψ(x)− θ(x) in the form of

a constant multiple of
√
x. Recall that by (3.7) we have

ψ(x)− θ(x) >
√
x, for 121 ≤ x ≤ 1016 ' e36.8.

For x > e36.8, we use (3.11) which states

ψ(x)− θ(x) ≥ ψ(x1/2).

From this inequality, (3.1), and Table 5.1 we can derive, for x ≥ e36.8, that

ψ(x)− θ(x) > A−(36.8/2)
√
x = 0.9988024

√
x.

The above with (3.7) give the following.

ψ(x)− θ(x) > 0.9988024
√
x, for x ≥ 121.

We shall improve this lower bound for ψ(x)− θ(x) in the next theorem, by employing

a better estimate in place of (3.11).

Theorem 3.17. Let 0 < b1 ≤ 36.8 and let b1 < b2 ≤ 55.26. Let

d0 = min

{
min

[eb1 ,eb2 ]

{
A−(b1/2) +

1

x1/6
− 2

x1/3

}
, A−(b2/2)

}
.

Then

ψ(x)− θ(x) > d0

√
x, for x ≥ 121.
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Proof. • Let 121 ≤ x ≤ eb1 . By (3.7), we have ψ(x)− θ(x) >
√
x.

• We let eb1 < x < eb2 . From (3.17) we can infer

ψ(x)− θ(x) ≥ ψ(
√
x) + θ(x1/3). (3.24)

For the lower bound of θ(x1/3) we use (3.8) provided that 14233 ≤ x ≤ 1024,

noting that log 1024 ' 55.26. For the lower bound of ψ(
√
x) we use (3.1). Hence,

for eb1 < x < eb2 , (3.24) is transformed into

ψ(x)− θ(x) > A−(b1/2)x1/2 + x1/3 − 2x1/6.

This implies

ψ(x)− θ(x) > min
[eb1 ,eb2 ]

(
A−(b1/2) +

1

x1/6
− 2

x1/3

)
x1/2. (3.25)

• Let x > eb2 . Using (3.1) and (3.24) we find that

ψ(x)− θ(x) ≥ ψ(
√
x) > A−(b2/2)x1/2. (3.26)

Putting together (3.7), (3.25), and (3.26) achieves the proof.

Example 3.18. Let b1 = 36.8. We divide the interval [e36.8, e55.26] into the subintervals,

I1 = [e36.8, e40], I2 = [e40, e44], I3 = [e44, e49], I4 = [e49, e54], and I5 = [e54, e55.26].

We calculate
{
A−(b1/2) + 1

eb2/6 − 2
eb1/3

}
for each of Ii = [eb1 , eb2 ] with i = 1, 2, 3, 4, 5

separately. It follows that

min[e36.8,e55.26]

{
A−(b1/2) +

1

x1/6
− 2

x1/3

}
= 1 + 4.949× 10−6.

For b2 = 55.26 we have A−(b2/2) = 0.99997159, so it follows from Theorem 3.17

that d0 = 0.99997159. This result is comparable to Dusart’s [7, Proposition 3.1] who

obtained d0 = 0.9999.

The results of the above example establishes the following inequality that improves

a result of Rosser and Schoenfeld [18, Theorem 24, p.73].

Corollary 3.19. ψ(x)− θ(x) >
√
x, for 121 ≤ x ≤ e55.26.
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3.5 Lower bounds for θ(x) for x ≥ eb

In this section we establish some theorems which enable us to generate tables for lower

bounds of θ(x). Our approach for obtaining lower bounds for θ(x) is different from the

upper bounds, since for the upper bound of θ(x) we know that θ(x) < x over a large

interval, however an analogous inequality for the lower bound does not exist.

Lower bounds for θ(x) can be attained provided that we have upper bounds for

ψ(x)− θ(x). For an upper bound of ψ(x)− θ(x) we can employ the inequality

ψ(x)− θ(x) < 2ψ(x1/2). (3.27)

This can be obtained directly from (3.9) and (3.10). A more precise estimates

ψ(x)− θ(x) < ψ(x1/2) + ψ(x1/3) + ψ(x1/5),

due to Costa Pereira [3, p. 211], is given in Lemma 3.26. Also from Theorem 2 of [2,

p. 110] we have

ψ(x)− θ(x) < ψ(x1/2) + ψ(x1/3) + ψ(x1/5)− θ(x1/6) + θ(x1/7)− ψ(x1/30).

This a better upper bound for ψ(x)− θ(x) compared to (3.27) and (3.5). In addition

to these inequalities we need estimations of ψ(x) over different ranges.

Next we establish a result which gives a lower bound for θ(x).

Theorem 3.20. Let b > 2.694 and c0 be a positive constant satisfying θ(x)/x < c0 for

x > 0. Let

B−(b) = A−(b)−
c0

(
b

log 2
− 1
)

eb/2
.

Then we have

θ(x) > B−(b)x,

for x ≥ eb.

Proof. From (3.10) we have

ψ(x)− θ(x) =
∑
k≥2

θ(x1/k).
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Therefore

ψ(x)− θ(x) ≤
[ log x
log 2 ]∑
k=2

c0x
1/k ≤ c0

(
log x

log 2
− 1

)
x1/2.

We combine this with (3.1) to obtain

θ(x) >

(
A−(b)− c0

(
log x

log 2
− 1

)
x−1/2

)
x, (3.28)

for x ≥ eb. Note that (log x/log 2− 1)x−1/2 decreases if x ≥ e2.694.

Example 3.21. By using Theorem 3.20 and Tables 5.1 and 5.2 we generate Tables

5.4, 5.5, 5.6, with c0 = 1 + 2.7579 × 10−5 and Tables 5.7, 5.8 and 5.9 with c0 =

1 + 2.7571593586× 10−5.

Refining the method which is used in Theorem 3.20 enables us to states the follow-

ing.

Theorem 3.22. Let b > 0, k0 ≥ 3 be an integer, and c0 be a positive constant satisfying

θ(x)/x < c0 for x > 0. We let

B−(b, k0) = A−(b)−
∑

2≤k≤k0−1

min{A+(b/k), c0}eb/k−1 − c0e
b/k0−1

(
b

log 2
− k0 + 1

)
.

If

b ≥ 1

k0 − 1

(
k0 + (k0 − 1)2 log 2

)
, (3.29)

then

θ(x) > B−(b, k0)x, for x ≥ eb.

Proof. From (3.10) we have

ψ(x)− θ(x) =
∑

2≤k≤k0−1

θ(x1/k) +
∑
k≥k0

θ(x1/k).

It follows that

ψ(x)− θ(x) <
∑

2≤k≤k0−1

θ(x1/k) + c0x
1/k0

(
log x

log 2
− k0 + 1

)
.
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Therefore

θ(x) > ψ(x)−
∑

2≤k≤k0−1

θ(x1/k)− c0x
1/k0

(
log x

log 2
− k0 + 1

)
. (3.30)

Using the trivial bound θ(x1/k) ≤ ψ(x1/k) with (3.1) allows us to rewrite relation (3.30)

as follows.

θ(x) >

(
A−(b)−

∑
2≤k≤k0−1

min{A+(b/k), c0}x1/k−1 − c0x
1/k0−1

(
log x

log 2
− k0 + 1

))
x.

By (3.29), x1/k0−1
(

log x
log 2

− k0 + 1
)

decreases with x ≥ 1 and so the proof follows.

Example 3.23. Let k0 = 3. If b ≥ 2.887 then Theorem 3.22 implies that

θ(x) > B−(b, 3)x, for x ≥ eb, (3.31)

where

B−(b, 3) = A−(b)− min {A+(b/2), c0}
eb/2

−
c0

(
b

log 2
− 2
)

e2b/3
.

From (3.31), Tables 5.1 and 5.2, and c0 = 1+2.7571593586×10−5 from Example 3.13,

we generate Tables 5.10, 5.11 and 5.12.

Note that according to the values of Table 5.2, for x < e56 we have c0 < A+(b/2),

and for x ≥ e56 we have c0 < A+(b/2).

Example 3.24. Let k0 = 4. If b ≥ 3.413, by Theorem 3.22 we obtain

θ(x) > B−(b, 4)x, for x ≥ eb,

where

B−(b, 4) = A−(b)− min {A+(b/2), c0}
eb/2

− min{A+(b/3), c0}
e2b/3

−
c0

(
b

log 2
− 3
)

e3b/4
.

From Tables 5.1, 5.2, and c0 = 1 + 2.7571593586 × 10−5 from Example 3.13, we get

Tables 5.13, 5.14, and 5.15.

Note that we have c0 < A+(b/3) for x < e84 and c0 > A+(b/3) for x ≥ e84 (see

Table 5.2).
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We would like to point out that by considering k0 = 4 we obtain better results

comparing to the case k0 = 3 in Example 3.23.

The next theorem gives an improvement of a result of Rosser and Schoenfeld [18,

Theorem 24, p.73].

Theorem 3.25. ψ(x)− θ(x) >
√
x, for 121 ≤ x < e145.5.

Proof. We have already proved, Corollary 3.19, that

ψ(x)− θ(x) >
√
x, for 121 ≤ x < e55.26.

We start by breaking interval x > e55.2 into the following subintervals.

[e55.26, e60], [e60, e69.4], [e69.4, e70], [e70, e87.8], [e87.8, e103.6],

[e103.6, e122.6], [e122.6, e143.7], [e143.7, e145.4], [e145.4, and e145.5].

In each of the above intervals by means of relation (3.24) and Tables 5.13 and 5.14

which are our best results for the lower bounds of θ(x) so far, we verify that

ψ(x)− θ(x) >
√
x

to deduce the result.

We now establish the following lemma which plays a fundamental role in our next

method in finding lower bounds for θ(x).

Lemma 3.26. For x > 0 we have

ψ(x)− θ(x) < ψ(x1/2) + ψ(x1/3) + ψ(x1/5). (3.32)

Proof. By (3.19) we have

ψ(x)− θ(x) = ψ(x1/2) + ψ(x1/3)−
∑
n≥1

θ(x1/6n) +
∑
n≥1

θ(x1/6n−1) +
∑
n≥1

θ(x1/6n+1).

Since θ(x) is an increasing function we have

−
∑
n≥1

θ(x1/6n) +
∑
n≥1

θ(x1/6n+1) < 0.
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It follows that

ψ(x)− θ(x) ≤ ψ(x1/2) + ψ(x1/3) +
∑
n≥1

θ(x1/6n−1). (3.33)

By applying the fact that ∑
n≥1

θ(x1/6n−1) ≤
∑
n≥1

θ(x1/5n),

on (3.33), we deduce

ψ(x)− θ(x) ≤ ψ(x1/2) + ψ(x1/3) +
∑
n≥1

θ(x1/5n). (3.34)

Since

ψ(x1/5) =
∑
n≥1

θ(x1/5n),

we find that (3.34) can be transformed into

ψ(x)− θ(x) ≤ ψ(x1/2) + ψ(x1/3) + ψ(x1/5),

and the proof follows.

Observe that (3.32) can be rewritten as

θ(x) > ψ(x)− ψ(x1/2)− ψ(x1/3)− ψ(x1/5). (3.35)

We now replace (3.28) with (3.35) in Theorem 3.20 to derive the following.

Theorem 3.27. Let b > 0. Then

θ(x) > B−(b)x, for x ≥ eb,

where

B−(b) = A−(b)− A+(b/2)

eb/2
− A+(b/3)

e2b/3
− A+(b/5)

e4b/5
.

Example 3.28. By using Theorem 3.27 and Tables 5.1 and 5.2 we obtain Tables 5.16,

5.17 and 5.18. These tables provide our best results for the lower bounds. Moreover

our results for b ≤ 100 are sharper than Dusart [7, p. 15].
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We turn next to the Theorem 2 of Cook [2, p. 110] which states

θ(x) ≥ ψ(x)− ψ(x1/2)− ψ(x1/3)− ψ(x1/5) + θ(x1/6) + ψ(x1/30)− θ(x1/7), (3.36)

valid for x > 0.

We remark here to obtain more precise lower bound for θ(x)/x we can replace (3.28)

with (3.36) in Theorem 3.20. For lower bound of θ(x1/6) we can use Tables 5.16, 5.17,

and 5.18. For upper bound of θ(x1/7) we use the results of Table 5.3.

3.6 The inequality ψ(x)− θ(x) < c2x
1/2 + c3x

1/3

In this section we find upper bounds for ψ(x) − θ(x) in the form c2x
1/2 + c3x

1/3 with

c2, c3 > 0. This is done first by using upper bounds for θ(x) which is obtained in the

previous sections. In particular we make a use of relation (3.23). Once this is done we

verify Theorem 3.32 and Theorem 3.34 using the estimations for ψ(x). Table 3.3 gives

the history of numerical upper bounds for ψ(x)− θ(x) which are obtained by different

authors.

Table 3.3:
Authors c2 c3 α

Rosser & Schoenfeld [18] 1.02 3 0

Rosser & Schoenfeld [19] 1.001102 3 0

Schoenfeld [20] 1.001093 3 0

Costa Pereira [3] 1.001 1.1 e36.84

Costa Pereira [3] 1.001 1 e36

Dusart[7] 1.00007 1.78 0

ψ(x)− θ(x) < c2x
1/2 + c3x

1/3, for x > α.

Theorem 3.29. Let b ≥ 14.080, and let

f(x) = 1 +

(
log x

log 2
− 3

)
x−1/12.
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Assume that c0 be an upper bound for θ(x)/x when x > 0. Then

ψ(x)− θ(x) < B+(b/2)x1/2 + c0f(eb)x1/3, for x ≥ eb.

Proof. We write

[ log x
log 2 ]∑
k=3

θ(x1/k) < c0

[ log x
log 2 ]∑
k=3

x1/k < c0

(
x1/3 +

([
log x

log 2

]
− 3

)
x1/4

)
< c0

(
1 +

(
log x

log 2
− 3

)
x−1/12

)
x1/3.

Since f(x) is a decreasing function on x ≥ eb where b ≥ 14.080, we have

[ log x
log 2

]∑
k=3

θ(x1/k) < c0f(eb)x1/3. (3.37)

From (3.10) it follows that

ψ(x)− θ(x) = θ(x1/2) +
∑
k≥3

θ(x1/k). (3.38)

In the above identity we bound θ(x1/2) by using (3.23). To bound
∑

k≥3 θ(x
1/k) we

employ (3.37). The proof is now immediate.

In order to improve the upper bound for ψ(x) − θ(x) given in the above theorem

we divide
∑

k≥3 θ(x
1/k) into two sums and then estimates each of the sums separately.

This enables us to establish the following theorem.

Theorem 3.30. Let k0 be a positive integer ≥ 3, b > 0, and c0 satisfies θ(x)/x < c0

for x > 0. Let

g(b, k0) = min
{
A+(b/k), c0

} k0∑
k=3

eb( 1
k
− 1

3
) + c0

(
b

log 2
− k0

)
e

b( 1
k0+1

− 1
3
)
.

Assume there exists positive constant b0 such that g(b, k0) decreases for b ≥ b0. Then

we have

ψ(x)− θ(x) < B+(b/2)x1/2 + g(b, k0)x
1/3, for x ≥ eb.
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Proof. We have ∑
k≥3

θ(x1/k) =

k0∑
k=3

θ(x1/k) +

[ log x
log 2 ]∑

k=k0+1

θ(x1/k).

Using θ(x) ≤ ψ(x), we rewrite the last expression as follows.

∑
k≥3

θ(x1/k) ≤
k0∑

k=3

min
{
A+(b/k), c0

}
x1/k +

[ log x
log 2 ]∑

k=k0+1

c0x
1/k =(

min
{
A+(b/k), c0

} k0∑
k=3

x( 1
k
− 1

3
) + c0

(
log x

log 2
− k0

)
x

( 1
k0+1

− 1
3
)

)
x1/3.

From this and (3.38) the proof follows. Note that the coefficient of x1/3 in the above

inequality is a decreasing function on [eb,∞).

Example 3.31. Let k0 = 4. If b ≥ 10.28 then

g(b, 4) = min{A+(b/3), c0}+
min{A+(b/4), c0}

eb/2
+

c0
e2b/15

(
b

log 2
− 4

)
.

Therefore

ψ(x)− θ(x) < B+(b/2)x1/2 + g(b, 4)x1/3, for x ≥ eb.

Observe that with c0 = 1 + 2.7571593586 × 10−5 from Example 3.13, for b < 84 we

have c0 < A+(b/3) and for b < 112 we have c0 < A+(b/4). Using this information we

generate Tables 3.4 and 3.5.

The idea of the following theorem is inspired by Costa Pereire [3].

Theorem 3.32. Suppose that for x ≥ eb there is a positive constant ε such that

ε > A+(b/2)− 1 > 0 and

eb ≥
(

4A+(b/5)

5 (A+(b/2)− 1− ε)

) 10
3

.

We let

h(x) =
(
A+(b/2)− 1− ε

)
x1/6 + A+(b/3) + A+(b/5)x−2/15.

Then

ψ(x)− θ(x) < (1 + ε)x1/2 + h(eb)x1/3, for x ≥ eb.
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Table 3.4:
b g(b, 4) b g(b, 4) b g(b, 4)

18.45 2.9326 27.4 1.9205 39 1.2884

18.50 2.9259 28 1.8704 40 1.2594

18.70 2.8990 29 1.7920 41 1.2331

19.00 2.8589 30 1.7196 42 1.2094

19.50 2.7926 31 1.6529 43 1.1879

20 2.7271 32 1.5916 44 1.1685

21 2.5992 33 1.5355 45 1.1511

22 2.4764 34 1.4842 46 1.1354

23 2.3593 34.53 1.4588 47 1.1212

24 2.2484 35 1.4373 48 1.1085

25 2.1441 36 1.3946 49 1.0971

26 2.0463 37 1.3557 50 1.0868

27 1.9551 38 1.3204 55 1.0493

ψ(x)− θ(x) < x1/2 + g(b, 4)x1/3, for x ≥ eb.

Proof. Since, for x ≥ eb,

ψ(x1/2) < A+(b/2)x1/2, ψ(x1/3) < A+(b/3)x1/3, and ψ(x1/5) < A+(b/5)x1/5,

by (3.32) we infer that

ψ(x)− θ(x) < A+(b/2)x1/2 + A+(b/3)x1/3 + A+(b/5)x1/5.

The last inequality can be written as

ψ(x)− θ(x) < (1 + ε)x1/2 +
((
A+(b/2)− 1− ε

)
x1/6 + A+(b/3) + A+(b/5)x−2/15

)
x1/3.

(3.39)

Since A+(b/2)− 1− ε < 0 and

x ≥
(

4A+(b/5)

5 (A+(b/2)− 1− ε)

) 10
3

for x ≥ eb,
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Table 3.5:
b B+(b/2) g(b, 4)

60 1 + 9.2276182110× 10−6 1.0278

70 1 + 1.0397503550× 10−6 1.0087

75 1 + 4.2919385438× 10−7 1.0048

100 1 + 1.2998600240× 10−9 1.0003

120 1 + 3.9169369500× 10−11 1.0001

ψ(x)− θ(x) < B+(b/2)x1/2 + g(b, 4)x1/3, for x ≥ eb.

h(x) (the coefficient of x1/3 in (3.39)) decreases on x ≥ eb. Thus

ψ(x)− θ(x) < (1 + ε)x1/2 + h(eb)x1/3,

for x ≥ eb.

Example 3.33. Let b = 100. Using Table 5.2 we have

A+(b/2) = 1+1.301×10−9, A+(b/3) = 1+2.545×10−6, and A+(b/5) = 1+6.123×10−4.

Table 3.6 is generated by Theorem 3.32 and the above values.

Table 3.6:
ε h(e100)

5.9070× 10−8 0.0002

5.9000× 10−8 0.0014

5.0000× 10−8 0.1572

1.0000× 10−8 0.8500

1.5000× 10−9 1.0223

1.4000× 10−9 1.0223

1.3020× 10−9 1.0223

ψ(x)− θ(x) < (1 + ε)x1/2 + h(e100)x1/3, for x ≥ e100.
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By a similar argument we can establish an upper bound for ψ(x)−θ(x) over a finite

range.

Theorem 3.34. Assume that an interval I is the union of a finite collection of intervals

Ik = [mk, nk] and there are positive constants L+ and ε ≥ 0 such that A+
k (b/2) > 1+ ε.

If

mk ≥

(
4A+

k (b/5)

5
(
A+

k (b/2)− 1− ε
))10/3

,

and

L+ ≥ max
[mk,nk]

{(
A+

k (b/2)− 1− ε
)
n

1/6
k + A+

k (b/3) + A+
k (b/5)n

−2/15
k

}
,

then

ψ(x)− θ(x) < (1 + ε)x1/2 + L+x1/3 for x ∈ I.

Proof. Since

ψ(x1/2) < A+
k (b/2)x1/2, ψ(x1/3) < A+

k (b/3)x1/3, ψ(x1/5) < A+
k (b/5)x1/5 for x ∈ Ik,

from (3.32) it follows that

ψ(x)− θ(x) < A+
k (b/2)x1/2 + A+

k (b/3)x1/3 + A+
k (b/5)x1/5, for x ∈ Ik.

The last expression, for x ∈ Ik, can be rewritten as

ψ(x)− θ(x) < (1 + ε)x1/2 +
(
(A+

k (b/2)− 1− ε)x1/6 + A+
k (b/3) + A+

k (b/5)x−2/15
)
x1/3.

Note that the coefficient of x1/3 in the above expression increases if A+
k (b/2)−1−ε > 0

and

x ≥

(
4A+

k (b/5)

5
(
A+

k (b/2)− 1− ε
))10/3

for x ∈ Ik.

Thus

ψ(x)− θ(x) < (1 + ε)x1/2 + L+x1/3 for x ∈ I.

We finish this chapter with an example demonstrating the previous theorem.

Example 3.35. We divide [e100, e140] into four equal subintervals. By employing Table

5.2 and Theorem 3.34 with ε = 0 we obtain Table 3.7.
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Table 3.7:

Number mk nk A+
k (b/2) A+

k (b/3) A+
k (b/5) L+

1 e100 e110 1 + 1.3010× 10−9 1 + 2.5450× 10−6 1 + 6.123× 10−4 1.1193

2 e110 e120 1 + 1.4810× 10−10 1 + 6.7750× 10−7 1 + 2.706× 10−4 1.0718

3 e120 e130 1 + 3.9170× 10−11 1 + 1.1630× 10−7 1 + 1.183× 10−4 1.1007

4 e130 e140 1 + 3.9170× 10−11 1 + 3.0110× 10−8 1 + 5.121× 10−5 1.5328

ψ(x)− θ(x) < x1/2 + L+x1/3, for x ∈ [mk, nk].
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Chapter 4

Bounds for π(x)

4.1 Introduction

Let π(x) be the number of primes not exceeding x. Chebyshev was the first who

established the true order of π(x). As we described in Chapters 1 and 2, by using

elementary methods, he proved that for every ε > 0 and sufficiently large x we have

(ν − ε)
x

log x
≤ π(x) ≤ (

6

5
ν + ε)

x

log x
,

where ν ' 0.921292022934 is given in (2.1).

In order to approximate π(x) we can use estimates on ψ(x) and θ(x). Recall that

by (1.2) we have

ψ(x) =
∑

pn≤x,n≥1

log p =
∑
p≤x

[
log x

log p

]
log p. (4.1)

Using the trivial relation

[y] ≤ y < [y] + 1 ≤ 2[y], for y > 1,

we find that [
log x

log p

]
≤ log x

log p
≤
[
log x

log p

]
+ 1.

Therefore ∑
p≤x

[
log x

log p

]
log p ≤ log x

∑
p≤x

1 ≤
∑
p≤x

[
log x

log p

]
log p+

∑
p≤x

log p.
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Combining this with (4.1) and the trivial inequality θ(x) ≤ ψ(x) yields

ψ(x) ≤ π(x) log x ≤ ψ(x) + θ(x) ≤ 2ψ(x). (4.2)

Assuming that

A−(b)x < ψ(x) < A+(b)x and B−(b)x < θ(x) < B+(b)x for x ≥ eb,

(4.2) is transformed into

A−(b)
x

log x
< π(x) <

(
A+(b) +B+(b)

) x

log x
for x ≥ eb. (4.3)

The last expression gives upper and lower bounds for π(x) provided that we have

bounds for θ(x) and ψ(x). The bounds given by (4.3) are not sharp. Note that upper

bound given by (4.3) are always bigger than 2.

In this chapter we will devise methods that give sharper bounds for π(x). These es-

timates are established by using estimates for θ(x). The fundamental relation between

π(x) and θ(x) are given in the following lemma.

Lemma 4.1.

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)dt

t log2 t
.

Proof. Let

an =

{
1 if n is prime,

0 otherwise .

Following the definition of an we see that

π(x) =
∑
p≤x

1 =
∑

1<n≤x

an log n

log n
.

By applying the partial summation formula in the last sum and using definition of θ(x)

we obtain

π(x) =

∑
n≤x an log n

log x
+

∫ x

1

∑
t≤x at log t

t log2 t
dt

=
θ(x)

log x
+

∫ x

2

θ(t)dt

t log2 t
.

Using Lemma 4.1 we will be able to find upper and lower bounds for π(x). This is

done in Theorem 4.7 by means of estimates for θ(x). By this theorem in our hand we

will be able to derive upper and lower bounds for π(x) in a variety of forms.
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4.2 Upper bounds over finite ranges

Let

li(x) =

∫ x

0

dt

log t
.

Recall that Gauss conjectured, later proved by Hadamard and de la Vallée Poussin,

that a good approximation for π(x) can be given by li(x). The Prime Number Theorem

with the remainder states that

π(x) = li(x) +O(xe−c
√

log x), (4.4)

for some positive constant c. Integrating li(x) by parts gives

li(x) =
x

log x
+

1!x

log2 x
+ · · ·+ (n− 1)!x

logn x
+O

(
x

logn+1 x

)
, (4.5)

(see [11, page 65]). Hence we can expect to have

li(x) <
x

log x
+

1!x

log2 x
+ · · ·+ (`− 1)!x

log` x
+

cx

log`+1 x
, for x ≥ x0,

where c > 0 and ` is a natural number.

For the case ` = 1 we have the following.

Proposition 4.2. Suppose there exists positive constant c1 such that c1 > 1 and a

positive constant x0 such that x0 ≥ exp(2c1/(c1 − 1)) and

li(x0) <
x0

log x0

(
1 +

c1
log x0

)
.

Then for x ≥ x0 we have

li(x) <
x

log x

(
1 +

c1
log x

)
.

Proof. It suffices to show that

li′(x) <

(
x

log x
+

c1x

log2 x

)′
, for x ≥ x0.

Hence we need to show that
c1 − 1

log2 x
− 2c1

log3 x
> 0,

which is true provided that c1 > 1 and x > exp (2c1/(c1 − 1)).
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Example 4.3. Using Proposition 4.2 we choose c1 = 1.01 so that c1 be larger than 1.

This gives x > exp(202) ' 5.34× 1087. To extend the range of x we increase the value

of c1 to obtain Table 4.1.

Table 4.1:
x0 c1

51022 1.2762

1011 1.0902

1012 1.0817

1015 1.0637

li(x) <
x

log x

(
1 +

c1
log x

)
, for x ≥ x0.

Next we mention a lemma which connect π(x) and li(x) together.

Lemma 4.4. For 2 ≤ x < 1014 we have

π(x) < li(x).

Proof. See [13, p. 55].

By using Lemma 4.4, with the results of Example 4.3 we can establish upper bounds

for π(x) over finite ranges. For example we have the following.

Corollary 4.5. π(x) < x
log x

(
1 + 1.2762

log x

)
, for 51022 ≤ x ≤ 1014.

We finish this section by describing a relation, given in [17, Lemma 4] between the

inequality θ(x) < x and π(x) < li(x).

Lemma 4.6. If θ(x) < x for e2.4 ≤ x ≤ K, then π(x) < li(x) for e2.4 ≤ x ≤ K.

Proof. Since θ(x) < x for e2.4 ≤ x ≤ K, by Lemma 4.1 we have

π(x) <
x

log x
+

∫ x

e2.4

dt

log2 t
+

∫ e2.4

2

θ(t)dt

t log2 t
, for e2.4 ≤ x ≤ K. (4.6)
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Now by applying integration by parts on the first integral in (4.6) we have

π(x) < li(x) +
e2.4

2.4
− li(e2.4) +

∫ e2.4

2

θ(t)dt

t log2 t
.

Now the result follows since by numerical computation (see [17, Lemma 1]) we can

show that
e2.4

2.4
− li(e2.4) +

∫ e2.4

2

θ(t)dt

t log2 t
< 0.

4.3 Upper bounds for π(x)

The next result is our main tool in establishing bounds for π(x).

Theorem 4.7. Let k ∈ N and suppose that we have positive constants β and ηk such

that

|θ(x)− x| < ηk
x

logk x
for x ≥ β. (4.7)

Let

J(x, ηk) = π(x0)−
θ(x0)

log x0

+
x

log x
+ ηk

x

logk+1 x
+

∫ x

x0

(
1

log2 y
+

ηk

logk+2 y

)
dy,

where x0 ≥ β. Then

J(x,−ηk) < π(x) < J(x, ηk), (4.8)

for x ≥ x0.

Proof. By Lemma 4.1 we have

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)dt

t log2 t
. (4.9)

Since

π(x0)−
θ(x0)

log x0

=

∫ x0

2

θ(t)dt

t log2 t
,

relation (4.9) can be transformed into

π(x) = π(x0)−
θ(x0)

log x0

+
θ(x)

log x
+

∫ x

x0

θ(t)dt

t log2 t
.
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By means of the upper and lower bounds for θ(x) given in (4.7) we obtain

J(x,−ηk) < π(x) < J(x, ηk).

In order to bound π(x) from the above, it would be enough to find an upper bound

for J(x, ηk).

Let

T`,c(x) =
x

log x

(
1 +

1!

log x
+

2!

log2 x
+ · · ·+ (`− 1)!

log`−1 x
+

c

log` x

)
, (4.10)

` ∈ N and c > 0. Our strategy is to choose ` and c in such a way that

J(x, ηk) < T`,c(x), for x ≥ x0.

Let

G`,c,k(x) = T`,c(x)− J(x, ηk),

or equivalently

G`,c,k(x) =
x

log2 x
+

2!x

log3 x
+ · · ·+ (`− 1)!x

log` x
+

cx

log`+1 x

−R0 −
ηkx

logk+1 x
−
∫ x

x0

(
1

log2 y
+

ηk

logk+2 y

)
dy,

where

R0 = π(x0)−
θ(x0)

log x0

.

We are interested in finding `, c, k, x0, and x1 that satisfy G`,c,k(x) > 0 for x ≥ x1.

In order to achieve this goal, it would be enough to choose `, k ∈ N, and c, x0, x1 > 0

such that

G`,c,k(x1) > 0, (4.11)

and

G′`,c,k(x) =
c− `!

log`+1 x
− c(`+ 1)

log`+2 x
− ηk

logk+1 x
+

kηk

logk+2 x
> 0, for x ≥ x1. (4.12)

To discuss the possibility of existence of `, k ∈ N, and c, x0, x1 > 0 in such a way that

(4.11) and (4.12) hold we consider the relations which might hold between ` and k and

establish the following propositions.
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Proposition 4.8. Let c be a positive constant and `, k ∈ N.

(i) If ` > k then G`,c,k(x) is a decreasing function for large values of x.

(ii) If ` = k, and c > `! + η` = k! + ηk, then G`,c,`(x) is an increasing function for

large values of x.

(iii) If ` < k and c > `!, then G`,c,k(x) is an increasing function for large values of

x.

Proof. (i) We know by (4.12) that

G′`,c,k(x) =
c− `!

log`+1 x
− c(`+ 1)

log`+2 x
− ηk

logk+1 x
+

kηk

logk+2 x
. (4.13)

If ` > k then in the above expression the dominant term will be −ηk/ logk+1 x. Since

the coefficient of this term is negative the function G`,c,k(x) eventually will decrease

for large values of x.

(ii) We note that when ` = k then

G′`,c,`(x) =
c− `!− η`

log`+1 x
+
`η` − c`− c

log`+2 x
. (4.14)

Since the coefficient of dominant term in the above equation is c− `!− η`, the function

G`,c,`(x) eventually will increase for large values of x provided that c > `! + η`.

(iii) Since ` < k, from (4.13) we see that if c > `! then the dominant term

(c− `!)/log`+1 x has a positive coefficient. Thus if c > `! then G`,c,k(x) will increase

when x is large enough.

Proposition 4.9. Let c be a positive number and `, k ∈ N.

(i) If k = ` and c > `! + η` = k! + ηk then G`,c,`(x) is an increasing function for

x > exp

(
c`+ c− `η`

c− `!− η`

)
.

(ii) If k = `+ 1 and c > `! then G`,c,`+1(x) is an increasing function for

x > exp

(
c(`+ 1) + η`+1 +

√
(c(`+ 1)− η`+1)2 + 4η`+1`!

2(c− `!)

)
.

(iii) Let k = `+ 2, c > `!, and

x3 = exp

(
c(`+ 1) +

√
c2(`+ 1)2 + 3(c− `!)η`+2

3(c− `!)

)
.
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If there exists positive constant x2 such that

(c− `!) log3 x2 − c(`+ 1) log2 x2 − η`+2 log x2 + (`+ 2)η`+2 > 0,

then G`,c,`+2(x) is an increasing function for x > max{x2, x3}.

Proof. (i) First we consider the case that k = `. In this case by (4.14) we have

G′`,c,`(x) =
c− `!− η`

log`+1 x
+
`η` − c`− c

log`+2 x
.

Now if c > `! + η` and x > exp ((c`+ c− `η`)/(c− `!− η`)) then G′`,c,`(x) > 0, and (i)

follows.

(ii) Next for the case that k = `+ 1 we have

G′`,c,`+1(x) =
c− `!

log`+1 x
− c(`+ 1) + η`+1

log`+2 x
+

(`+ 1)η`+1

log`+3 x
. (4.15)

Simplifying the above expression gives G′`,c,`+1(x) > 0, provided that

(c− `!) log2 x− (c(`+ 1) + η`+1) log x+ (`+ 1)η`+1 > 0. (4.16)

Since c > `! and

x > exp

(
c(`+ 1) + η`+1 +

√
(c(`+ 1)− η`+1)2 + 4η`+1`!

2(c− `!)

)
,

then (4.16) is positive and (ii) follows.

(iii) If k = `+ 2 then

G′`,c,`+2(x) =
c− `!

log`+1 x
− c(`+ 1)

log`+2 x
− η`+2

log`+3 x
+

(`+ 2)η`+2

log`+4 x
.

From the above we find that G′`,c,`+2(x) > 0 provided that

(c− `!) log3 x− c(`+ 1) log2 x− η`+2 log x+ (`+ 2)η`+2 > 0. (4.17)

Now let

g(x) = (c− `!) log3 x− c(`+ 1) log2 x− η`+2 log x+ (`+ 2)η`+2.
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It follows that

g′(x) =
1

x

(
3(c− `!) log2 x− 2c(`+ 1) log x− η`+2

)
,

which is positive if

x > exp

(
c(`+ 1) +

√
c2(`+ 1)2 + 3(c− `!)η`+2

3(c− `!)

)

and c > `!. From this and the fact that g(x2) > 0, we conclude that (4.17) holds for

x > max{x2, x3} and the proof of (iii) follows.

With these two propositions in hand we can consider numerical choices for ` and k.

• Let ` = k = 1. In this case by (4.14) we have

G′1,c,1(x) =
c− 1− η1

log2 x
+
η1 − 2c

log3 x
.

Hence by using Proposition 4.9, part (i) if c > η1 +1, and x > exp((2c− η1)/(c−
η1 − 1)) then G1,c,1(x) is an increasing function.

Example 4.10. With η1 = 0.001 valid for x ≥ 908994923 [7, Theorem 5.2, p.

4] we can choose x0 = 1011 and c = 1.002, so that c > 1 + η1. This gives us

x > exp(2003) ' 7.8 × 10869. To extend the range of x we increase the value of

c. Using the same η1 we can establish Table 4.2.

Table 4.2:
α c1

1011 1.0920

1012 1.0868

1015 1.0648

π(x) <
x

log x

(
1 +

c1
log x

)
, for x ≥ α.
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• Let ` = 1 and k = 2. Hence by (4.15) we find that

G′1,c,2(x) =
c− 1

log2 x
− 2c+ η2

log3 x
+

2η2

log4 x
.

Now we employ Proposition 4.9, part (ii) to conclude that if c > 1 and

x > exp

(
2c+ η2 +

√
(2c− η2)2 + 8η2

2(c− 1)

)
,

then G1,c,2(x) will be an increasing function.

Example 4.11. By [7, Theorem 5.2, p. 4], we have for x ≥ 7713133853 that

η2 = 0.01. We choose x0 = 1011, and c = 1.001 noting that c must be larger than

one. This gives x > exp(2012) ' 6.4 × 10873. In order to extend the range of x

we increase the value of c to establish Table 4.3.

Table 4.3:
α c1

1011 1.0910

1012 1.0830

1015 1.0640

π(x) <
x

log x

(
1 +

c1
log x

)
, for x ≥ α

Comparing the results of Examples 4.10 and 4.11 shows that by using a bigger k

in definition of J(x, ηk) we will get an improved upper bound for π(x).

Remark 4.12. Using the fact that π(x) < li(x) for 2 ≤ x < 1014, from Lemma

4.4, with the result of Example 4.3 for x ≥ 1011 yield

π(x) <
x

log x

(
1 +

1.0902

log x

)
, for 1011 ≤ x ≤ 1014. (4.18)

We now let ` = 1, k = 2, and η2 = 0.01 from [7, Theorem 5.2, p. 2] to establish

the following.

π(x) <
x

log x

(
1 +

1.0690

log x

)
, for x ≥ 1014. (4.19)
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With comparing the relations (4.18), and (4.19) we find that

π(x) <
x

log x

(
1 +

1.0902

log x

)
, for x ≥ 1011.

This shows that li(x) can provide a better approximation for π(x) over 2 ≤ x <

1014, compared to J(x, ηk), since the above gives an improved result compared to

the result of Example 4.11 in the given range.

• Let ` = 2 and k = 2. It follows from (4.14) that

G′2,c,2(x) =
c− 2− η2

log3 x
+

2η2 − 3c

log4 x
.

Moreover part (i) of Proposition 4.9 shows that we can choose c > 2 + η2 and

x > exp ((3c− 2η2)/(c− 2− η2)) in order to have G′2,c,2(x) > 0.

Example 4.13. With η2 = 0.01 valid for x ≥ 7713133853 [7, Theorem 5.2, p. 4]

we choose x0 = 1011 and c = 2.02 so that c > 2 + η2. We obtain x > exp(604) '
2.1 × 10262. To obtain a larger range for x we increase the value of c. We get

Table 4.4.

Table 4.4:
α c1

1011 2.296

1012 2.267

1015 2.208

π(x) <
x

log x

(
1 +

1

log x
+

c1

log2 x

)
, for x ≥ α

• Next we consider the case that ` = 3 and k = 3. From (4.14) we find that

G′3,c,3(x) =
c− 3!− η3

log4 x
+

3η3 − 4c

log5 x
.
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Moreover Proposition 4.9, part (i), implies that if c > 3! + η3 then G3,c,3(x) is an

increasing function for

x > exp

(
4c− 3η3

c− 3!− η3

)
.

Example 4.14. For x ≥ 158822621 we have η3 = 0.78 [7, Theorem 5.2, p. 4].

Since c > 3! + η3 we can choose c = 6.79 . Hence x > exp(2482) ' 8.3× 101077.

To obtain the larger range for x we increase the value of c. This gives Table 4.5.

Table 4.5:
x0 = α c1

1011 7.9724

1012 7.8510

1015 7.5976

π(x) <
x

log x

(
1 +

1

log x
+

2

log2 x
+

c1

log3 x

)
, for x ≥ α

Here we note that for large x we can make c1 as close to 6 as we want. To do

this we need to find a smaller value for η3.

Proposition 4.15. For x ≥ exp(6000), we can choose η3 ≥ 0.016023.

Proof. Following the proof of Theorem 5.2 of [7] we should choose η3 such that

log3 x

√
8

π
X1/2exp(−X) ≤ η3, (4.20)

where X =
√

log x/R and R = 5.70176. Let Q(x) = log3 xX1/2exp(−X) or

equivalently

Q(x) =
log3 x(log x)1/4exp(−

√
log x/R)

R1/4
.

It follows that

Q′(x) =
exp(

√
− log x/R)(log x)9/4

R1/4x

(
13

4
− 1

2

√
log x

R

)
,
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which is negative when x ≥ exp(1373.6). Since the left-hand side of (4.20) is

a decreasing function for x ≥ exp(1373.6) we can establish η3 ≥ 0.016023 for

x ≥ exp(6000).

We now let ` = k = 3. By part (i) of Proposition 4.9 we choose c > 3!+0.016023

and x > exp (3440000) to obtain

π(x) <
x

log x

(
1 +

1

log x
+

2

log2 x
+

6.01603

log3 x

)
.

Remark 4.16. Here we describe how one can obtain an upper bound for π(x0) −
θ(x0)/ log x0, where x0 > 0. We proceed as follows.

By Lemma 4.1 we can infer

π(x0)−
θ(x0)

log x0

=

∫ x0

2

θ(t)

t log2 t
dt.

This implies

π(x0)−
θ(x0)

log x0

=

∫ ξ

2

θ(t)

t log2 t
dt+

∫ x0

ξ

θ(t)

t log2 t
dt,

where ξ is the largest number such that the inequality θ(x) < x holds. Assuming that

ξ ' eb, for some b > 0 and using the fact that

θ(x) < B+(b)x, for x > eb,

we obtain

π(x0)−
θ(x0)

log x0

≤
∫ ξ

2

dt

log2 t
+B+(b)

∫ x0

ξ

dt

log2 t
. (4.21)

The right-hand side of the last expression is computable. This gives us the upper bound

for π(x0)−θ(x0)/ log x0. This is useful especially when we are dealing with large values

of x.

We assume ξ ' e27.4. From (3.6) we know that θ(x) < x for x ∈ (0, ξ]. By Example

3.13 we have

θ(x) <
(
1 + 2.7571593586× 10−5

)
x, for x ≥ e27.4.

We let c0 = 1 + 2.7571593586× 10−5 and

κ1 =

∫ x0

2

dt

log2 t
+ c0

∫ x0

e27.4

dt

log2 t
.
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Then (4.21) is transformed into

π(x0)−
θ(x0)

log x0

≤ κ1.

We also, by direct computation, have

π(x0)−
θ(x0)

log x0

' κ2.

A sample of values of κ1 and κ2 for different x0 is given in Table 4.6.

Table 4.6:
x0 κ1 κ2

1012 1.416750519× 109 1.41674029× 109

1014 1.028414206× 1011 1.02838602× 1011

1015 8.916304196× 1011 8.9160595× 1011

π(x0)−
θ(x0)

log x0

≤ κ1 and π(x0)−
θ(x0)

log x0

' κ2

The next proposition leads to a new form of upper and lower bounds for π(x).

Proposition 4.17. (i) There exists ω1 > 0 such that

x

log x− 1 + (log x)−1
< π(x) <

x

log x− 1− ω1(log x)−1
,

when x is large enough.

(ii) We have

lim
x→∞

(
x

π(x)
− log x+ 1

)
= 0.

Proof. Combining (4.4) and (4.5) gives

π(x) =
x

log x
+

1!x

log2 x
+

2!x

log3 x
+ · · ·+ (`− 1)!x

log` x
+O

(
x

log`+1 x

)
.
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This implies that there exist ω1 > 0 and δ1 > 0 such that for x > δ1 we have

π(x) ≤ x

log x
+

x

log2 x
+

ω1x

log3 x
=

x

log x

(
1 +

1 + ω1/log x

log x

)
. (4.22)

Observe that
x

log x

(
1 +

b

log x

)
<

x

log x− b
.

Using this, (4.22) can be transformed into

π(x) <
x

log x− 1− ω1(log x)−1
, (4.23)

for x > δ1. From (4.4), and (4.5) we also can infer there exist ω2 > 0 and δ2 > 0 such

that for x > δ2 we have

x

log x
+

x

log2 x
+

2x

log3 x
− ω2x

log4 x
≤ π(x). (4.24)

Using the fact that

x

log x− 1 + (log x)−1
<

x

log x
+

x

log2 x
+

2x

log3 x
− ω2x

log4 x
,

when x is large enough, allows us to deduce from (4.24).

x

log x− 1 + (log x)−1
< π(x), (4.25)

for large x. Relation (4.23) combined with (4.25) gives

x

log x− 1 + (log x)−1
< π(x) <

x

log x− 1− ω1(log x)−1
,

when x is large enough. This proves (i).

Taking the limit of both sides of the last expression and using squeeze theorem

complete the proof of (ii).

Here we point out one of the consequences of Proposition 4.17.

Proposition 4.18. For all a > 0, there exists a positive constant δ3 such that for

x > δ3 we have
x

log x− 1 + a
< π(x) <

x

log x− 1− a
.
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Proof. By Proposition 4.17, we have for all a > 0 there is a δ3 > 0 such that for x > δ3∣∣∣∣ x

π(x)
− log x+ 1

∣∣∣∣ < a.

This implies

−a < x

π(x)
− log x+ 1 < a.

Simplifying the above gives the assertion.

Now we are ready to present the following theorem which gives an upper bound for

π(x) in the form T (x, a) = x/(log x− a), where a is a positive constant.

Proposition 4.19. Let a be a positive constant and k ∈ N. Let

Va(x, k) = (a− 1) logk+2 x− a2 logk+1 x− ηk log3 x+

(kηk + 2aηk) log2 x− (a2ηk + 2akηk) log x+ kηka
2.

Suppose that there exists a positive constant x4 ≥ x0 such that J(x4, ηk) < T (x4, a) and

Va(x, k) > 0 for x > x4. Then

π(x) <
x

log x− a
,

for x ≥ x4.

Proof. By (4.8) we know that

π(x) < J(x, ηk).

Hence it suffices to show that

J(x, ηk) < T (x, a).

In order to do this we consider

Ga(x, k) = T (x, a)− J(x, ηk).

We see that G′a(x, k) = Va(x, k)/logk+2 x(log x− a)2. Since G′a(x, k) > 0 for x ≥ x4 and

J(x4, ηk) < T (x4, a), we infer that

J(x, ηk) < T (x, a)

for x ≥ x4.
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Here we consider some special cases for k.

• Let k = 1. Hence

Va(x, 1) = (a− 1− η1) log3 x+ (−a2 + η1 + 2aη1) log2 x−
(a2η1 + 2aη1) log x+ η1a

2.

If a > 1 + η1 and

x > exp

(
a2 − η1 − 2aη1 +

√
(a2 − η1 − 2aη1)2 + 3(a− 1− η1)(a2η1 + 2aη1)

3(a− 1− η1)

)
,

then Va(x, 1) is an increasing function.

Example 4.20. With η1 = 0.001, valid for x ≥ 908994923, [7, Theorem 5.2,

p. 4], we choose x0 = 1010, and a = 1.002 so that a > 1 + η1. This gives

x > 66× 10290. We increase the values of a to obtain

π(x) <
x

log x− 1.0520
, for x ≥ 1010.

• Let k = 2. This implies

Va(x, 2) = (a− 1) log4 x− (a2 + η2) log3 x+

(2ηk + 2aη2) log2 x− (a2η2 + 4aη2) log x+ 2η2a
2.

We are now looking for the possibility of existence of a, d1 > 0 such that Va(x, 2)

increases for x > d1. We require to choose a > 1 and x > 0 such that

x > exp

(
3(a2 + η2) +

√
9(a2 + η2) + 24(2η2 + 2aη2)(a− 1)

12(a− 1)

)
,

and V ′
a(x, 2) > 0.

Example 4.21. For x ≥ 7713133853 we have η2 = 0.01 [7, Theorem 5.2, p. 4].

We choose x0 = 1011, and a = 1.001 so that a > 1. We obtain x > 56 × 10220.

In order to extend the range we increase the values of a. We obtain

π(x) <
x

log x− 1.0456
, for x ≥ 1011.
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4.4 Lower bounds over finite ranges

First we state a lemma which plays an important role in finding lower bounds for π(x)

over finite ranges.

Lemma 4.22. We have∫ x

√
x

dt

log t
= li(x)− li(x1/2) < π(x), for 11 ≤ x ≤ 108. (4.26)

Proof. See [18, Theorem 16, p. 72].

By using Lemma 4.22, we will be able to verify the following theorem.

Theorem 4.23. We have

x

log x
(1 +

1

log x
) < π(x), for 188 ≤ x ≤ 108.

Proof. Using (4.26), it suffices to prove that

x

log x
(1 +

c

log x
) <

∫ x

√
x

dt

log t
,

where c = 1. We consider the difference between the two functions in the last expression

to get

Ic(x) =

∫ x

√
x

dt

log t
− x

log x
(1 +

c

log x
).

We see that

I ′c(x) =
1− c

log2 x
+

2c

log3 x
− 1√

x log x
.

Let c = 1. In this case I1(x) and I ′1(x) are positive for x ≥ 188. This leads to

x

log x
(1 +

1

log x
) < π(x), for 188 ≤ x ≤ 108,

as desired.
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4.5 Lower bounds for π(x)

Since by (4.8) we have

π(x) > J(x,−ηk),

in order to bound π(x) from below we require to find a lower bound for J(x,−ηk). Let

T`,c(x) be given by (4.10). We will look for ` ∈ N and c, x0 > 0, such that for x ≥ x0,

T`,c(x) < J(x,−ηk).

Let us denote

S`,c,k(x) = T`,c(x)− J(x,−ηk).

Simplifying the above expression gives

S`,c,k(x) =
x

log2 x
+

2!x

log3 x
+ · · ·+ (`− 1)!x

log` x
+

cx

log`+1 x

−R0 +
ηkx

logk+1 x
−
∫ x

x0

(
1

log2 y
− ηk

logk+2 y

)
dy,

where R0 = π(x0)− θ(x0)/ log x0. In order to make T`,c(x) a lower bound for J(x,−ηk)

we expect to find positive constant x0, x1, c and `, k ∈ N such that S`,c,k(x1) < 0 and

S ′`,c,k(x) =
c− `!

log`+1 x
− c(`+ 1)

log`+2 x
+

ηk

logk+1 x
− kηk

logk+2 x
< 0, for x ≥ x1. (4.27)

We now consider the following proposition.

Proposition 4.24. Let c be a positive constant and `, k ∈ N.

(i) If ` > k then S`,c,k(x) is an increasing function for large values of x.

(ii) If ` = k and c < `! − η` = k! − ηk then S`,c,`(x) is a decreasing function for

large values of x.

(iii) If ` < k and c < `! then S`,c,k(x) is a decreasing function for large values of x.

Proof. (i) We turn our attention to (4.27), which states

S ′`,c,k(x) =
c− `!

log`+1 x
− c(`+ 1)

log`+2 x
+

ηk

logk+1 x
− kηk

logk+2 x
.

If ` > k then the dominant term in the last expression would be ηk/ logk+1 x. The

coefficient of this term is positive. Hence the function S`,c,k(x) will increase when x is

large enough.
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(ii) By means of Relation (4.27) we find that

S ′`,c,`(x) =
c− `! + η`

log`+1 x
− `η` + c`+ c

log`+2 x
, (4.28)

provided that ` = k. In this case if we choose c < `!− ηl then the function S`,c,`(x) will

eventually decrease when x is large enough. This is true since the dominant terms will

be negative.

(iii) By (4.27), we find that the dominant term, which is (c− `!)/log`+1 x, has a

negative coefficient if c < `!. Therefore S`,c,k(x) will decrease for large x provided that

c < `!.

Proposition 4.25. Let c be a positive number and `, k ∈ N.

(i) If k = ` and c < `!− η` = k!− ηk then S`,c,`(x) is a decreasing function for

x > exp

(
c`+ c+ `ηl

c− `! + ηl

)
.

(ii) If k = `+ 1 and c < `! then S`,c,`+1(x) is a decreasing function for

x > exp

(
c(`+ 1)− η`+1 +

√
(c(`+ 1) + η`+1)2 + 4η`+1(`+ 1)(c− `!)

2(c− `!)

)
.

(iii) Let k = `+ 2, c < `!, and

x7 = exp

(
c(`+ 1) +

√
c2(`+ 1)2 − 3(c− `!)η`+2

3(c− `!)

)
.

If there exists a positive constant x6 such that x7 ≥ x6, and

(c− `!) log3 x6 − c(`+ 1) log2 x6 + η`+2 log x6 − (`+ 2)η`+2 < 0,

then S`,c,`+2(x) is a decreasing function for x > x7.

Proof. (i) For the case k = ` we have by (4.28)

S ′`,c,`(x) =
c− `! + η`

log`+1 x
− `η` + c`+ c

log`+2 x
. (4.29)

In this case S ′`,c,`(x) < 0 if c < `!− η` and x > exp ((c`+ c+ `η`)/(c− `! + η`)).
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(ii) We now consider the case that k = `+ 1. By (4.27) we find that

S ′`,c,`+1(x) =
c− `!

log`+1 x
+
η`+1 − c(`+ 1)

log`+2 x
− (`+ 1)η`+1

log`+3 x
. (4.30)

This gives S ′`,c,`+1(x) < 0 when

(c− `!) log2 x+ (η`+1 − c(`+ 1)) log x− (`+ 1)η`+1 < 0.

Now we choose c < `! and

x > exp

(
c(`+ 1)− η`+1 +

√
(c(`+ 1) + η`+1)2 + 4η`+1(`+ 1)(c− `!)

2(c− `!)

)
.

Hence S ′`,c,`+1(x) < 0 and (ii) follows.

(iii) We now consider the case k = `+ 2. We have by (4.27)

S ′`,c,`+2(x) =
c− `!

log`+1 x
− c(`+ 1)

log`+2 x
+

η`+2

log`+3 x
− (`+ 2)η`+2

log`+4 x
.

Therefore S ′`,c,`+2(x) < 0 if

w(x) = (c− `!) log3 x− c(`+ 1) log2 x+ η`+2 log x− (`+ 2)η`+2 < 0. (4.31)

We see that

w′(x) =
1

x

(
3(c− `!) log2 x− 2c(`+ 1) log x+ η`+2

)
.

The above expression is negative provided that

x > exp

(
c(`+ 1) +

√
c2(`+ 1)2 − 3(c− `!)η`+2

3(c− `!)

)
,

and c < `!. Thus by using the fact that w(x6) < 0, we find that (4.31) holds.

We proceed by considering different numerical choices for ` and k.

• Let ` = k = 1. We have by (4.29)

S ′1,c,1(x) =
c− 1 + η1

log2 x
− η1 + 2c

log3 x
.

We also have by Proposition 4.25 that if c < 1−η1 and x > exp (2c+ η1/c− 1 + η1)

then S1,c,1(x) is a decreasing function.
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Example 4.26. With η1 = 0.001 valid for x ≥ 908994923 [7, Theorem 5.2, p.

4], we choose x0 = 1010 and c = 0.9989 so that c < 1−η1. This gives the following

result.

π(x) >
x

log x

(
1 +

0.9989

log x

)
, for x ≥ 1010.

• Let k = 2 and ` = 1. In this case by (4.30), we see that

S ′1,c,2(x) =
c− 1

log2 x
+
η2 − 2c

log3 x
− 2η2

log4 x
.

Using part (ii) of Proposition 4.25 follows that if 1 > c and

x > exp
(
(2c− η2 +

√
(2c+ η2)2 + 8η2(c− 1))/2(c− 1)

)
,

then S1,c,2(x) is a decreasing function.

Example 4.27. With η2 = 0.01 valid for x ≥ 7713133853 [7, Theorem 5.2, p.

4], we choose x0 = 1011, and c = 0.9999 so that c < 1. Hence

π(x) >
x

log x

(
1 +

0.9999

log x

)
, for x ≥ 1011.

• Let k = ` = 2. By (4.29) we can infer

S ′2,c,2(x) =
c− 2 + η2

log3 x
− 2η2 + 3c

log4 x
.

If c < 2− η2 and x > exp ((3c+ 2η2)/(c− 2 + η2)) then S ′2,c,2(x) < 0.

Example 4.28. For x ≥ 7713133853 we have η2 = 0.01, [7, Theorem 5.2, p. 4].

We choose x0 = 1011, and c = 1.9899, so that c < 2− 0.01, to get

π(x) >
x

log x

(
1 +

1

log x
+

1.9899

log2 x

)
, for x ≥ 1011.

• We now consider the case that k = ` = 3. Using (4.29) we find that

S ′3,c,3(x) =
c− 6 + η3

log4 x
− 3η3 + 4c

log5 x
.

We have S ′3,c,3(x) < 0 if c < 6− η3 and x > exp ((4c+ 3η3)/(c− 6 + η3)).
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Example 4.29. With η3 = 0.78 valid for x ≥ 158822621 [7, Theorem 5.2, p. 4], we

choose x0 = 1010, and c = 5.2199 so that c < 5.22. Hence

π(x) >
x

log x

(
1 +

1

log x
+

2

log2 x
+

5.2199

log3 x

)
, for x ≥ 1010.

We next consider lower bounds for π(x) in the form T (x, a) = x/(log x− a), where

a is a positive number.

Proposition 4.30. Let a be positive and k ∈ N. We denote by

ha(x, k) = (a− 1) logk+2 x− a2 logk+1 x+ ηk log3 x−
(kηk + 2aηk) log2 x+ (a2ηk + 2akηk) log x− kηka

2.

Assume that there exist a positive constants x5 ≥ x0 such that T (x5, a) < J(x5,−ηk)

and ha(x, k) < 0 for x > x5. Then

x

log x− a
< π(x),

for x ≥ x5.

Proof. By (4.8), we know that

J(x,−ηk) < π(x).

Therefore we require to prove that

T (x, a) < J(x,−ηk).

In order to do this we consider

Sa(x, k) = T (x, a)− J(x,−ηk).

We see that S ′a(x, k) = ha(x, k)/logk+2 x(log x− a)2. Since S ′a(x, k) < 0 for x ≥ x5 and

T (x5, a) < J(x5,−ηk), we infer that

T (x, a) < J(x,−ηk),

for x ≥ x5.
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We now consider some specific choices for k.

• Let k = 1. This gives

ha(x, 1) = (a− 1 + η1) log3 x− (a2 + η1 + 2aη1) log2 x+ (a2η1 + 2aη1) log x− η1a
2.

In this case if a < 1− η1 and

x > exp

(
a2 + η1 + 2aη1 +

√
(a2 + η1 + 2aη1)2 − 3(a− 1 + η1)(a2η1 + 2aη1)

3(a− 1 + η1)

)
,

then ha(x, 1) is a decreasing function.

Example 4.31. With η1 = 0.001 valid for x ≥ 908994923 [7, Theorem 5.2, p.

4], we choose x0 = 1010, and a = 0.9989 so that a < 1 − η1. We obtain in this

case
x

log x− 0.9989
< π(x), for x ≥ 1010.

• Let k = 2. We see that

ha(x, 2) = (a− 1) log4 x+ (−a2 + η2) log3 x−
(2kη2 + 2aη2) log2 x+ (a2η2 + 4aη2) log x− 2η2a

2.

Here we consider those a, d2 > 0 such that ha(x, 2) decreases for x > d2. We

choose a < 1 and x > 0 such that

x > exp

(
3(a2 − η2) +

√
9(a2 − η2)2 + 24(2η2 + 2aη2)(a− 1)

12(a− 1)

)
,

and h′a(x, 2) < 0.

The following example shows that k = 2 provides a better estimates for π(x) in

the smaller range compare to the result of Example 4.31.

Example 4.32. By [7, Theorem 5.2, p. 4], for x ≥ 7713133853, we have η2 =

0.01. We choose x0 = 1011, and a = 0.9999 so that a < 1. We get

x

log x− 0.9999
< π(x), for x ≥ 1011.
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Chapter 5

Tables

In this chapter we present tables which provide lower and upper bounds for ψ(x)/x

and θ(x)/x over different ranges.

Table 5.1 gives upper and lower bounds for ψ(x)/x when x ≤ exp(20). We deduced

this table by means of Table II of [3, p. 220] and Table 6.3 of [7, p. 15].

Table 5.2 is taken from [7, p. 15].

Table 5.3 provides upper bounds for θ(x)/x when x ≥ eb, for different values of

b ≥ 27.4. To generate this table we used Theorem 3.12 which states

Theorem 3.12. Let b1 and b2 be positive constants such that 0 < b1 ≤ 27.4 and

b1 < b2. Let

c1 = max
x∈[eb1 ,eb2 ]

{
A+(b1)−

A−(b1/2)

x1/2
− A−(b1/3)

x2/3
− A−(b1/5)

x4/5
+

c̃0
x5/6

+
A+(b1/30)

x29/30

}
,

where c̃0 is an upper bound for θ(x)/x when x > 0. Then

θ(x) < c0x, for x > 0,

where c0 = max{c1, A+(b2)}.

The above will allow us to establish an upper bound for θ(x) valid for all x > 0.

Example 3.13. θ(x) < (1 + 2.7571593586× 10−5)x, for x > 0.
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We employed Theorem 3.20 to generate lower bounds for θ(x)/x for x ≥ eb and

b > 2.694.

Theorem 3.20. Let b > 2.694, x ≥ eb, and c0 be a positive constant satisfying

θ(x)/x < c0 for x > 0. Let

B−(b) = A−(b)−
c0

(
b

log 2
− 1
)

eb/2
.

Then we have

θ(x) > B−(b)x.

We considered c0 = 1 + 2.7579× 10−5 to generate Tables 5.4, 5.5 and 5.6.

We used a more precise c0 = 1 + 2.7571593586 × 10−5 to generate Tables 5.7, 5.8

and 5.9.

By comparing the results of these tables we observed that by employing an improved

c0 we can obtain improved results.

By refining the method used in Theorem 3.20 we proved the folowing theorem.

Theorem 3.22. Let b > 0, k0 be an integer ≥ 3, and c0 be a positive constant satisfying

θ(x)/x < c0 for x > 0. We let

B−(b, k0) = A−(b)−
∑

2≤k≤k0−1

min{A+(b/k), c0}eb/k−1 − c0e
b/k0−1

(
b

log 2
− k0 + 1

)
.

If

b ≥ 1

k0 − 1

(
k0 + (k0 − 1)2 log 2

)
,

then

θ(x) > B−(b, k0)x, for x ≥ eb.

We generated Tables 5.10, 5.11 and 5.12 using Theorem 3.22 with k0 = 3 and

observed that the results are improved compare to the previous tables.
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We next replaced k0 = 3 with k0 = 4 in Theorem 3.22 to obtain Tables 5.13, 5.14

and 5.15 and observed that by using a bigger k0 the results improved.

Our best results on the lower bound for θ(x)/x when x ≥ eb and b > 0 were obtained

in Tables 5.16, 5.17 and 5.18. We generated these tables by using the following theorem.

Theorem 3.27. Let b > 0 and x ≥ eb. Then

θ(x) > B−(b)x,

where

B−(b) = A−(b)− A+(b/2)

eb/2
− A+(b/3)

e2b/3
− A+(b/5)

e4b/5
.

We mention here that for b > 100 all the values of our tables for lower bounds of

θ(x) are equal to the values of Table 6.3. of [7, p. 15].

95



Table 5.1: A−(b)x < ψ(x) < A+(b)x, for x ≥ exp(b)

b A−(b) A+(b) b A−(b) A+(b)

3.14 0.86583 1.03883 9.25 0.99343 1.00458

3.72 0.90602 1.03883 9.38 0.99486 1.00458

4.08 0.92237 1.03883 9.88 0.99643 1.00458

4.62 0.94842 1.03883 10.10 0.99643 1.00297

4.74 0.94842 1.03591 10.38 0.99703 1.00297

5.31 0.94842 1.02728 10.39 0.99770 1.00297

5.43 0.96764 1.02728 10.68 0.99770 1.00291

5.69 0.96764 1.02117 11.00 0.99770 1.00237

5.83 0.97494 1.02117 11.01 0.99770 1.00182

6.16 0.97494 1.01802 11.02 0.99770 1.00157

6.35 0.97870 1.01802 11.16 0.99787 1.00157

6.50 0.97870 1.01386 11.17 0.99816 1.00157

6.53 0.97870 1.01364 11.40 0.99851 1.00157

7.27 0.98708 1.01364 11.48 0.99851 1.00153

7.40 0.98708 1.01196 11.54 0.99851 1.00144

7.43 0.98708 1.00990 11.96 0.99851 1.00121

7.89 0.98828 1.00990 12.08 0.99870 1.00121

7.97 0.98828 1.00744 12.35 0.99870 1.0011976

8.00 0.98828 1.00662 12.63 0.9988024 1.0011976

8.11 0.99002 1.00662 18.43 0.998807 1.001193

8.15 0.99227 1.00662 18.44 0.9988115 1.0011885

8.17 0.99237 1.00662 18.45 0.9988161 1.0011839

8.29 0.99237 1.00649 18.50 0.9988385 1.0011615

8.60 0.99330 1.00649 18.70 0.9989235 1.0010765

8.77 0.99330 1.00543 19.00 0.99903839 1.00096161

8.87 0.99330 1.00517 19.50 0.99919989 1.00080011

8.92 0.99343 1.00517 20 0.99938770 1.0006123



Table 5.2: |ψ(x)− x| < εx for x ≥ eb

b ε b ε

20 6.123× 10−4 100 2.903× 10−11

21 4.072× 10−4 200 2.838× 10−11

22 2.706× 10−4 300 2.772× 10−11

23 1.792× 10−4 - 400 2.706× 10−11

24 1.183× 10−4- 500 2.641× 10−11

25 7.789× 10−5 600 2.575× 10−11

26 5.121× 10−5 1000 2.315× 10−11

27 3.368× 10−5 1250 2.153× 10−11

27.4 2.841× 10−5 1500 1.991× 10−11

28 2.224× 10−5 2000 1.671× 10−11

29 1.451× 10−5 2200 1.544× 10−11

30 9.414× 10−6 2500 1.355× 10−11

31 6.099× 10−6 2800 1.169× 10−11

32 3.944× 10−6 3000 1.047× 10−11

33 2.545× 10−6 3200 9.267× 10−12

34 1.640× 10−6 3300 8.658× 10−12

34.53 1.293× 10−6 3400 8.083× 10−12

35 1.055× 10−6 3455 7.750× 10−12

36 6.775× 10−7 3500 7.488× 10−12

37 4.348× 10−7 3600 6.930× 10−12

38 2.793× 10−7 3700 6.351× 10−12

39 1.805× 10−7 3750 6.080× 10−12

40 1.163× 10−7 3800 5.821× 10−12

41 7.414× 10−8 3850 5.533× 10−12

42 4.723× 10−8 3900 5.259× 10−12

43 3.011× 10−8 3950 4.999× 10−12

44 1.932× 10−8 4000 4.751× 10−12

45 1.234× 10−8 4050 4.496× 10−12

46 7.839× 10−9 4100 4.231× 10−12

47 5.026× 10−9 4150 3.981× 10−12

48 3.190× 10−9 4200 3.746× 10−12

49 2.038× 10−9 4300 3.308× 10−12

50 1.301× 10−9 4400 2.844× 10−12

55 1.481× 10−10 4500 2.445× 10−12

60 3.917× 10−11 4700 1.774× 10−12

70 2.929× 10−11 5000 9.562× 10−13

75 2.920× 10−11 10000 6.341× 10−18



Table 5.3:
b A+(b)− 1 B+(b)− 1

27.4 2.841× 10−5 2.7571593586× 10−5

28 2.224× 10−5 2.1732219494× 10−5

29 1.451× 10−5 1.4202391092× 10−5

30 9.414× 10−6 9.2276182110× 10−6

31 6.099× 10−6 5.9860534540× 10−6

32 3.944× 10−6 3.8755452080× 10−6

33 2.545× 10−6 2.5035063110× 10−6

34 1.64× 10−6 1.6081751250× 10−6

34.53 1.293× 10−6 1.2678462010× 10−6

35 1.055× 10−6 1.0397503550× 10−6

36 6.775× 10−7 6.6825416415× 10−7

37 4.348× 10−7 4.2919385438× 10−7

38 2.793× 10−7 2.7590026736× 10−7

39 1.805× 10−7 1.7843819931× 10−7

40 1.163× 10−7 1.1504949810× 10−7

41 7.414× 10−8 7.3381515722× 10−8

42 4.723× 10−8 4.6770020626× 10−8

43 3.011× 10−8 2.9830984342× 10−8

44 1.932× 10−8 1.9150785460× 10−8

45 1.234× 10−8 1.2237360906× 10−8

46 7.839× 10−9 7.7767507227× 10−9

47 5.026× 10−9 4.9882427539× 10−9

48 3.190× 10−9 3.1671002529× 10−9

49 2.038× 10−9 2.0241103614× 10−9

50 1.301× 10−9 1.2998600240× 10−9

55 1.481× 10−10 1.4800642220× 10−10

60 3.917× 10−11 3.9169369500× 10−11

70 2.929× 10−11 2.9289948200× 10−11

θ(x) < B+(b)x, b ≥ 27.4, and c0 = 1 + 2.7571593586× 10−5



Table 5.4:
b 1− A−(b) 1−B−(b)

3.14 0.13417 0.6605518160

3.72 0.09398 0.6181170445

4.08 0.07763 0.5829609620

4.62 0.05158 0.5146714400

4.74 0.05158 0.5038872356

5.31 0.05158 0.4495323608

5.43 0.03236 0.4185993624

5.69 0.03236 0.3933218256

5.83 0.02506 0.3725668615

6.16 0.02506 0.3415901967

6.35 0.02130 0.3206005776

6.50 0.02130 0.3073652964

6.53 0.02130 0.3047595804

7.27 0.01292 0.2368833791

7.40 0.01292 0.2274258296

7.43 0.01292 0.2252864072

7.89 0.01172 0.1932948365

7.97 0.01172 0.1883211027

8.00 0.01172 0.1864845931

8.11 0.00998 0.1781432469

8.15 0.00773 0.1735440019

8.17 0.00763 0.1722795516

8.29 0.00763 0.1654340534

8.60 0.00670 0.1479142945

8.77 0.00670 0.1394637735

8.87 0.00670 0.1346991800

8.92 0.00657 0.1322429398

9.25 0.00657 0.1177948390

9.38 0.00514 0.1110881915

9.88 0.00357 0.0912436287

θ(x) > B−(b)x, and c0 = 1 + 2.7579× 10−5



Table 5.5:
b 1− A−(b) 1−B−(b)

10.10 0.00357 0.084145362400

10.38 0.00297 0.075269754780

10.39 0.00230 0.074319146590

10.68 0.00230 0.066604726550

11.00 0.00230 0.058983634130

11.01 0.00230 0.058759590530

11.02 0.00230 0.058536371740

11.16 0.00213 0.055326439100

11.17 0.00184 0.054825277410

11.40 0.00149 0.049829570820

11.48 0.00149 0.048305193790

11.54 0.00149 0.047191654680

11.96 0.00149 0.040067380120

12.08 0.00130 0.038043123360

12.35 0.00130 0.034213605340

12.63 0.0011976 0.030542074070

18.43 0.001193 0.003640523620

18.44 0.0011885 0.003625245410

18.45 0.0011839 0.003609913830

18.50 0.0011615 0.003534548520

18.70 0.0010765 0.003248816700

19.00 0.00096161 0.002863737710

19.50 0.00080011 0.002323540430

20 0.00061230 0.001831498840

21 0.0004072 0.001186409267

22 0.0002706 0.000767310437

23 0.0001792 0.000495085148

24 0.0001183 0.000318758497

25 0.00007789 0.000204850797

26 0.00005121 0.000131476672

θ(x) > B−(b)x, and c0 = 1 + 2.7579× 10−5



Table 5.6:
b 1− A−(b) 1−B−(b)

27 0.00003368 0.000084342128000

27.4 0.00002841 0.000070536398900

28 0.00002224 0.000054167809140

29 0.00001451 0.000034602835080

30 0.000009414 0.000022042256450

31 0.000006099 0.000014026108490

32 0.000003944 0.000008914392758

33 0.000002545 0.000005658170956

34 0.00000164 0.000003587961957

34.53 0.000001293 0.000002811774684

35 0.000001055 0.000002272725711

36 6.775× 10−7 0.000001438060801

37 4.348× 10−7 9.094306345000× 10−7

38 2.793× 10−7 5.752613814000× 10−7

39 1.805× 10−7 3.649124512400× 10−7

40 1.163× 10−7 2.311255038300× 10−7

41 7.414× 10−8 1.455888276690× 10−7

42 4.723× 10−8 9.165986698400× 10−8

43 3.011× 10−8 5.772159828000× 10−8

44 1.932× 10−8 3.646972720000× 10−8

45 1.234× 10−8 2.298593136000× 10−8

46 7.839× 10−9 1.444413548000× 10−8

47 5.026× 10−9 9.122015082000× 10−9

48 3.19× 10−9 5.728823911000× 10−9

49 2.038× 10−9 3.610909344000× 10−9

50 1.301× 10−9 2.275054363000× 10−9

55 1.481× 10−10 2.362787808000× 10−10

60 3.917× 10−11 4.708318353000× 10−11

70 2.929× 10−11 2.935241522273× 10−11

75 2.92× 10−11 2.920549670115× 10−11

100 2.903× 10−11 2.903000002745× 10−11

θ(x) > B−(b)x, and c0 = 1 + 2.7579× 10−5



Table 5.7:
b 1− A−(b) 1−B−(b)

3.14 0.13417 0.6605518121

3.72 0.09398 0.6181170406

4.08 0.07763 0.5829609582

4.62 0.05158 0.5146714300

4.74 0.05158 0.5038872322

5.31 0.05158 0.4495323578

5.43 0.03236 0.4185993596

5.69 0.03236 0.3933218229

5.83 0.02506 0.3725668589

6.16 0.02506 0.3415901943

6.35 0.02130 0.3206005754

6.50 0.02130 0.3073652942

6.53 0.02130 0.3047595783

7.27 0.01292 0.2368833775

7.40 0.01292 0.2274258281

7.43 0.01292 0.2252864056

7.89 0.01172 0.1932948352

7.97 0.01172 0.1883211014

8.00 0.01172 0.1864845918

8.11 0.00998 0.1781432457

8.15 0.00773 0.1735440007

8.17 0.00763 0.1722795504

8.29 0.00763 0.1654340522

8.60 0.00670 0.1479142935

8.77 0.00670 0.1394637726

8.87 0.00670 0.1346991786

8.92 0.00657 0.1322429388

9.25 0.00657 0.1177948382

9.38 0.00514 0.1110881907

9.88 0.00357 0.0912436280

θ(x) > B−(b)x, and c0 = 1 + 2.7571593586× 10−5



Table 5.8:
b 1− A−(b) 1−B−(b)

10.10 0.00357 0.084145361800

10.38 0.00297 0.075269754240

10.39 0.00230 0.074319146050

10.68 0.00230 0.066604726070

11.00 0.00230 0.058983633710

11.01 0.00230 0.058759590110

11.02 0.00230 0.058536371330

11.16 0.00213 0.055326438710

11.17 0.00184 0.054825277100

11.40 0.00149 0.049829570460

11.48 0.00149 0.048305193500

11.54 0.00149 0.047191654340

11.96 0.00149 0.040067379840

12.08 0.00130 0.038043123090

12.35 0.00130 0.034213605100

12.63 0.0011976 0.030542073860

18.43 0.001193 0.003640523600

18.44 0.0011885 0.003625245390

18.45 0.0011839 0.003609913810

18.50 0.0011615 0.003534548500

18.70 0.0010765 0.003248816680

19.00 0.00096161 0.002863737700

19.50 0.00080011 0.002323540410

20 0.00061230 0.001831498826

21 0.0004072 0.001186409263

22 0.0002706 0.000767310434

23 0.0001792 0.000495085146

24 0.0001183 0.000318758495

25 0.00007789 0.000204850796

26 0.00005121 0.000131476671

θ(x) > B−(b)x, and c0 = 1 + 2.7571593586× 10−5



Table 5.9:
b 1− A−(b) 1−B−(b)

27 0.00003368 0.0000843421280000

27.4 0.00002841 0.0000705363985807

28 0.00002224 0.0000541678089016

29 0.00001451 0.0000346028349296

30 0.000009414 0.0000220422563541

31 0.000006099 0.0000140261084296

32 0.000003944 0.0000089143927203

33 0.000002545 0.0000056581709321

34 0.00000164 0.0000035879619422

34.53 0.000001293 0.0000028117746725

35 0.000001055 0.0000022727257010

36 6.775× 10−7 0.0000014380607949

37 4.348× 10−7 9.094306308963× 10−7

38 2.793× 10−7 5.752613791776× 10−7

39 1.805× 10−7 3.649124498671× 10−7

40 1.163× 10−7 2.311255029741× 10−7

41 7.414× 10−8 1.455888271392× 10−7

42 4.723× 10−8 9.165986665455× 10−8

43 3.011× 10−8 5.772159806553× 10−8

44 1.932× 10−8 3.646972706462× 10−8

45 1.234× 10−8 2.298593127459× 10−8

46 7.839× 10−9 1.444413542969× 10−8

47 5.026× 10−9 9.122015051276× 10−9

48 3.19× 10−9 5.728823891751× 10−9

49 2.038× 10−9 3.610909331823× 10−9

50 1.301× 10−9 2.275054354867× 10−9

55 1.481× 10−10 2.362787800737× 10−10

60 3.917× 10−11 4.708318346468× 10−11

70 2.929× 10−11 2.935241522227× 10−11

75 2.92× 10−11 2.920549670111× 10−11

100 2.903× 10−11 2.903000002745× 10−11

θ(x) > B−(b)x, and c0 = 1 + 2.7571593586× 10−5



Table 5.10:
b 1− A−(b) A+(b/2)− 1 1−B−(b, 3)

6.16 0.02506 0.03883 0.16793831

6.35 0.02130 0.03883 0.15245829

6.50 0.02130 0.03883 0.14377440

6.53 0.02130 0.03883 0.14209653

7.27 0.01292 0.03883 0.09812400

7.40 0.01292 0.03883 0.09293137

7.43 0.01292 0.03883 0.09177408

7.89 0.01172 0.03883 0.07462449

7.97 0.01172 0.03883 0.07217223

8.00 0.01172 0.03883 0.07127551

8.11 0.00998 0.03883 0.06635136

8.15 0.00773 0.03883 0.06298300

8.17 0.00763 0.03883 0.06233155

8.29 0.00763 0.03883 0.05912854

8.60 0.00670 0.03883 0.05071396

8.77 0.00670 0.03883 0.04705486

8.87 0.00670 0.03883 0.04503820

8.92 0.00657 0.03883 0.04393589

9.25 0.00657 0.03883 0.03808045

9.38 0.00514 0.03883 0.03459231

9.88 0.00357 0.03591 0.02624007

10.10 0.00357 0.03591 0.02375610

10.38 0.00297 0.03591 0.02037193

10.39 0.00230 0.03591 0.01960969

10.68 0.00230 0.02728 0.01713145

11.00 0.00230 0.02728 0.01479604

11.01 0.00230 0.02728 0.01472915

θ(x) > B−(b, 3)x for x ≥ eb with c0 = 1 + 2.7571593586× 10−5



Table 5.11:
b 1− A−(b) A+(b/2)− 1 1−B−(b, 3)

11.02 0.00230 0.02728 0.01466260

11.16 0.00213 0.02728 0.01359660

11.17 0.00184 0.02728 0.01324508

11.40 0.00149 0.02117 0.01156568

11.48 0.00149 0.02117 0.01113973

11.54 0.00149 0.02117 0.01083186

11.96 0.00149 0.02117 0.00893017

12.08 0.00130 0.02117 0.00827036

12.35 0.00130 0.01802 0.00731718

12.63 0.0011976 0.01802 0.00636170

18.43 0.001193 0.00517 0.00140136

18.44 0.0011885 0.00517 0.00139570

18.45 0.0011839 0.00517 0.00138996

18.50 0.0011615 0.00517 0.00136192

18.70 0.0010765 0.00458 0.00125586

19.00 0.00096161 0.00458 0.00111348

19.50 0.00080011 0.00458 0.00091522

20 0.00061230 0.00458 0.00069958

21 0.0004072 0.00297 0.00045744

22 0.0002706 0.00291 0.00029958

23 0.0001792 0.00153 0.00019595

24 0.0001183 0.00121 0.00012801

25 0.00007789 0.0011976 0.00008353

26 0.00005121 0.0011976 0.00005450

27 0.00003368 0.0011976 0.00003560

27.4 0.00002841 0.0011976 0.00002996

28 0.00002224 0.0011976 0.00002337

θ(x) > B−(b, 3)x for x ≥ eb with c0 = 1 + 2.7571593586× 10−5



Table 5.12:
b 1− A−(b) A+(b/2)− 1 1−B−(b, 3)

29 0.00001451 0.0011976 0.00001518

30 0.000009414 0.0011976 0.00000981

31 0.000006099 0.0011976 0.00000633

32 3.944× 10−6 0.0011976 4.079992× 10−6

33 2.545× 10−6 0.0011976 2.625702× 10−6

34 1.64× 10−6 0.0011976 1.687997× 10−6

34.53 1.293× 10−6 0.0011976 1.329472× 10−6

35 1.055× 10−6 0.0011976 1.083604× 10−6

36 6.775× 10−7 0.0011976 6.945780× 10−7

37 4.348× 10−7 0.0011839 4.450150× 10−7

38 2.793× 10−7 0.0010765 2.854187× 10−7

39 1.805× 10−7 0.00096161 1.841706× 10−7

40 1.163× 10−7 0.00080011 1.185048× 10−7

41 7.414× 10−8 0.0006123 7.546581× 10−8

42 4.723× 10−8 0.0006123 4.802811× 10−8

43 3.011× 10−8 0.0004072 3.059088× 10−8

44 1.932× 10−8 0.0004072 1.960998× 10−8

45 1.234× 10−8 0.0002706 1.251499× 10−8

46 7.839× 10−9 0.0002706 7.944666× 10−9

47 5.026× 10−9 0.0001792 5.089842× 10−9

48 3.19× 10−9 0.0001792 3.228592× 10−9

49 2.038× 10−9 0.0001183 2.061339× 10−9

50 1.301× 10−9 0.0001183 1.315120× 10−9

55 1.481× 10−10 0.00002841 1.492492× 10−10

60 3.917× 10−11 0.00001451 3.926394× 10−11

70 2.929× 10−11 0.000001293 2.9290631100000000× 10−11

75 2.92× 10−11 4.348.10−7 2.9200051775870000× 10−11

100 2.903× 10−11 2.038.10−9 2.9030000000192877× 10−11

θ(x) > B−(b, 3)x for x ≥ eb with c0 = 1 + 2.7571593586× 10−5



Table 5.13:
b 1− A−(b) A+(b/2)− 1 A+(b/3)− 1 1−B−(b, 4)

6.16 0.02506 0.03883 0.03883 0.13563550

6.35 0.02130 0.03883 0.03883 0.12169854

6.50 0.02130 0.03883 0.03883 0.11425836

6.53 0.02130 0.03883 0.03883 0.11283079

7.27 0.01292 0.03883 0.03883 0.07496668

7.40 0.01292 0.03883 0.03883 0.07080003

7.43 0.01292 0.03883 0.03883 0.06987640

7.89 0.01172 0.03883 0.03883 0.05614184

7.97 0.01172 0.03883 0.03883 0.05424841

8.00 0.01172 0.03883 0.03883 0.05355841

8.11 0.00998 0.03883 0.03883 0.04937870

8.15 0.00773 0.03883 0.03883 0.04627573

8.17 0.00763 0.03883 0.03883 0.04575591

8.29 0.00763 0.03883 0.03883 0.04332757

8.60 0.00670 0.03883 0.03883 0.03679340

8.77 0.00670 0.03883 0.03883 0.03409150

8.87 0.00670 0.03883 0.03883 0.03261366

8.92 0.00657 0.03883 0.03883 0.03177408

9.25 0.00657 0.03883 0.03883 0.02754352

9.38 0.00514 0.03883 0.03883 0.02464478

9.88 0.00357 0.03591 0.03883 0.01830895

10.10 0.00357 0.03591 0.03883 0.01659456

10.38 0.00297 0.03591 0.03883 0.01409502

10.39 0.00230 0.03591 0.03883 0.01336251

10.68 0.00230 0.02728 0.03883 0.01169377

11.00 0.00230 0.02728 0.03883 0.01014143

11.01 0.00230 0.02728 0.03883 0.01009728

θ(x) > B−(b, 4)x for x ≥ eb with c0 = 1 + 2.7571593586× 10−5



Table 5.14:
b 1− A−(b) A+(b/2)− 1 A+(b/3)− 1 1−B−(b, 4)

11.02 0.00230 0.02728 0.03883 0.01005337

11.16 0.00213 0.02728 0.03883 0.00929392

11.17 0.00184 0.02728 0.03883 0.00896357

11.40 0.00149 0.02117 0.03883 0.00774560

11.48 0.00149 0.02117 0.03883 0.00746915

11.54 0.00149 0.02117 0.03883 0.00726986

11.96 0.00149 0.02117 0.03883 0.00604905

12.08 0.00130 0.02117 0.03883 0.00556034

12.35 0.00130 0.01802 0.03883 0.00495807

12.63 0.0011976 0.01802 0.03883 0.00432124

18.43 0.001193 0.00517 0.02117 0.00131959

18.44 0.0011885 0.00517 0.02117 0.00131441

18.45 0.0011839 0.00517 0.02117 0.00130913

18.50 0.0011615 0.00517 0.01802 0.00128340

18.70 0.0010765 0.00458 0.01802 0.00118596

19.00 0.00096161 0.00458 0.01802 0.00105478

19.50 0.00080011 0.00458 0.01802 0.00087141

20 0.00061230 0.00458 0.01364 0.00066693

21 0.0004072 0.00297 0.01364 0.00043937

22 0.0002706 0.00291 0.01364 0.00028963

23 0.0001792 0.00153 0.00990 0.00019050

24 0.0001183 0.00121 0.00744 0.00012503

25 0.00007789 0.0011976 0.00649 0.00008191

26 0.00005121 0.0011976 0.00649 0.00005362

27 0.00003368 0.0011976 0.00517 0.00003513

27.4 0.00002841 0.0011976 0.00517 0.00002959

28 0.00002224 0.0011976 0.00458 0.00002311

29 0.00001451 0.0011976 0.00458 0.00001504

30 0.000009414 0.0011976 0.00458 0.00000973

31 0.000006099 0.0011976 0.00297 0.00000629

θ(x) > B−(b, 4)x for x ≥ eb with c0 = 1 + 2.7571593586× 10−5



Table 5.15:
b 1− A−(b) A+(b/2)− 1 A+(b/3)− 1 1−B−(b, 4)

32 3.944× 10−6 0.0011976 0.00297 4.058674× 10−6

33 2.545× 10−6 0.0011976 0.00291 2.614315× 10−6

34 1.64× 10−6 0.0011976 0.00157 1.681924× 10−6

34.53 1.293× 10−6 0.0011976 0.00153 1.325123× 10−6

35 1.055× 10−6 0.0011976 0.00144 1.080370× 10−6

36 6.775× 10−7 0.0011976 0.00121 6.928583× 10−7

37 4.348× 10−7 0.0011839 0.00121 4.441010× 10−7

38 2.793× 10−7 0.0010765 0.0011976 2.849343× 10−7

39 1.805× 10−7 0.00096161 0.0011976 1.839139× 10−7

40 1.163× 10−7 0.00080011 0.0011976 1.183689× 10−7

41 7.414× 10−8 0.0006123 0.0011976 7.539398× 10−8

42 4.723× 10−8 0.0006123 0.0011976 4.799016× 10−8

43 3.011× 10−8 0.0004072 0.0011976 3.057085× 10−8

44 1.932× 10−8 0.0004072 0.0011976 1.959942× 10−8

45 1.234× 10−8 0.0002706 0.0011976 1.250943× 10−8

46 7.839× 10−9 0.0002706 0.0011976 7.941735× 10−9

47 5.026× 10−9 0.0001792 0.0011976 5.0882992× 10−9

48 3.19× 10−9 0.0001792 0.0011976 3.2277801× 10−9

49 2.038× 10−9 0.0001183 0.0011976 2.0609120× 10−9

50 1.301× 10−9 0.0001183 0.0011976 1.3148960× 10−9

55 1.481× 10−10 0.00002841 0.0011976 1.4924023× 10−10

60 3.917× 10−11 0.00001451 0.00080011 3.9263590× 10−11

70 2.929× 10−11 0.000001293 0.0001792 2.9290630600000000× 10−11

75 2.92× 10−11 4.348× 10−7 0.0001183 2.9200051755810000× 10−11

100 2.903× 10−11 2.038× 10−9 0.000002545 2.9030000000192875× 10−11

θ(x) > B−(b, 4)x for x ≥ eb with c0 = 1 + 2.7571593586× 10−5



Table 5.16:
b 1− A−(b) 1−B−(b)

3.14 0.86583 0.5626112

3.72 0.09398 0.3956690

4.08 0.07763 0.3208603

4.62 0.05158 0.2282260

4.74 0.05158 0.2161899

5.31 0.05158 0.1695963

5.43 0.03236 0.1424471

5.69 0.03236 0.1271021

5.83 0.02506 0.1124738

6.16 0.02506 0.0974278

6.35 0.02130 0.0862456

6.50 0.02130 0.0809440

6.53 0.02130 0.0799384

7.27 0.01292 0.0515832

7.40 0.01292 0.0488752

7.43 0.01292 0.0482785

7.89 0.01172 0.0391046

7.97 0.01172 0.0379192

8.00 0.01172 0.0374884

8.11 0.00998 0.0342301

8.15 0.00773 0.0314511

8.17 0.00763 0.0310911

8.29 0.00763 0.0295911

8.60 0.00670 0.0252255

8.77 0.00670 0.0235808

8.87 0.00670 0.0226842

8.92 0.00657 0.0221243

9.25 0.00657 0.0195691

9.38 0.00514 0.0172545

9.88 0.00357 0.0127973

θ(x) > B−(b)x.



Table 5.17:
b 1− A−(b) 1−B−(b)

10.10 0.00357 0.0117680

10.38 0.00297 0.0100255

10.39 0.00230 0.0093178

10.68 0.00230 0.0082692

11.00 0.00230 0.0073337

11.01 0.00230 0.0073067

11.02 0.00230 0.0072804

11.16 0.00213 0.0067534

11.17 0.00184 0.0064389

11.40 0.00149 0.0055404

11.48 0.00149 0.0053724

11.54 0.00149 0.0052511

11.96 0.00149 0.0045030

12.08 0.00130 0.0041284

12.35 0.00130 0.0037475

12.63 0.0011976 0.0033107

18.43 0.001193 0.0012982

18.44 0.0011885 0.0012932

18.45 0.0011839 0.0012881

18.50 0.0011615 0.0012623

18.70 0.0010765 0.0011682

19.00 0.00096161 0.0010403

19.50 0.00080011 8.61147120× 10−4

20 0.00061230 6.59666455× 10−4

21 0.0004072 4.35713633× 10−4

22 0.0002706 2.87806650× 10−4

23 0.0001792 1.89577557× 10−4

24 0.0001183 1.24569772× 10−4

25 0.00007789 8.16814039× 10−5

26 0.00005121 5.35038530× 10−5

θ(x) > B−(b)x



Table 5.18:
b 1− A−(b) 1−B−(b)

27 0.00003368 3.50683372× 10−5

27.4 0.00002841 2.95458300× 10−5

28 0.00002224 2.30805718× 10−5

29 0.00001451 1.50190705× 10−5

30 0.000009414 9.72237782× 10−6

31 0.000006099 6.28583999× 10−6

32 0.000003944 4.05722264× 10−6

33 0.000002545 2.61362101× 10−6

34 0.00000164 1.68159396× 10−6

34.53 0.000001293 1.32491000× 10−6

35 0.000001055 1.08021440× 10−6

36 6.775× 10−7 6.92786332× 10−7

37 4.348× 10−7 4.44067934× 10−7

38 2.793× 10−7 2.84918855× 10−7

39 1.805× 10−7 1.83906681× 10−7

40 1.163× 10−7 1.18365442× 10−7

41 7.414× 10−8 7.53922725× 10−8

42 4.723× 10−8 4.79894152× 10−8

43 3.011× 10−8 3.05704494× 10−8

44 1.932× 10−8 1.95992434× 10−8

45 1.234× 10−8 1.25093295× 10−8

46 7.839× 10−9 7.94169478× 10−9

47 5.026× 10−9 5.08827735× 10−9

48 3.19× 10−9 3.22777082× 10−9

49 2.038× 10−9 2.06090658× 10−9

50 1.301× 10−9 1.31489294× 10−9

55 1.481× 10−10 1.49240144× 10−10

60 3.917× 10−11 3.92635820× 10−11

70 2.929× 10−11 2.929063052000000000× 10−11

75 2.92× 10−11 2.920005175577000000× 10−11

100 2.903× 10−11 2.903000000019287499× 10−11

θ(x) > B−(b)x
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