2001

Isolation and identification of genes expressed during diapause in horn fly, Haematobia irritans (L.)

Kalischuk-Tymensen, Lisa

Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2001

http://hdl.handle.net/10133/133

Downloaded from University of Lethbridge Research Repository, OPUS
ISOLATION AND IDENTIFICATION OF GENES EXPRESSED DURING
DIAPAUSE IN HORN FLY, HAEMATOMIA IRITANS (L.).

by

Lisa Kalischuk-Tymensen
B. Sc., University of Alberta 1992

Thesis Submitted to the School of Graduate Studies at the University of Lethbridge
in Partial Fulfilment of the Requirements for the Degree of
MASTER OF SCIENCE

LETHBRIDGE, ALBERTA
JUNE 2001

©Lisa Kalischuk-Tymensen 2001
ABSTRACT

There is a discrepancy in the current literature concerning the stage of development in which horn flies arrest during pupal diapause. A study was therefore conducted to describe the morphologies of horn fly pupae and its central nervous system (CNS) throughout nondiapause pupal development and diapause. Morphologies of diapausing pupae and CNS indicated that developmental arrest occurred early in pupal development during the interval between head eversion and pupal-adult apolysis. Morphological descriptions are necessary for defining comparable tissues between nondiapausing insects and diapausing insects. These tissues can then be used for molecular differential analysis to determine genes specific to either diapause or nondiapause. One such differential analysis technique, subtractive hybridization, was used to isolate putative diapause up-regulated genes from the horn fly. Seven different cDNAs were cloned and partially sequenced. Comparisons of the cDNA sequences with known DNA and protein sequences indicated homology with transferrin, cytochrome oxidase I, Kunitz family serine protease inhibitor, tyrosine hydroxylase (TH), and carboxylesterase. Two cDNAs did not have homology to entries in DNA and protein databases. Northern blot analyses were used to study expression of each gene by probing total RNA extracted from whole pupae throughout nondiapause pupal development and diapause. Expression of TH was also determined in total RNA extracted from CNS tissue of nondiapausing and diapausing pupae. Cytochrome oxidase was equally expressed in nondiapause and diapause destined pupae, and therefore not considered to be a diapause up-regulated gene. Expression patterns differed slightly for each of the
remaining clones; however, expression tended to be highest in diapause destined pupae during pupation compared to nondiapausing pupae. These genes and their products are involved in many aspects of insect physiology including metamorphosis, melanization and sclerotization of the puparium and cellular defense. The possible functions of these genes and products are discussed in the context of the diapause process.
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Drs. Tim Lysyk, Brent Selinger, Kevin Smith and Jim Thomas for their guidance throughout my program. I would also like to thank the following people at the Agriculture and Agri-Food Canada Research Center, Lethbridge for their support in the various aspects of my research: Richard Lancaster, Blain Weisser, Dr. Danica Baines, Paul Coghlin, Dr. Ale Perotti, Dr. Larry Kawchuk, Frank Kulcsar, John Hachey, Dr. John Armstrong, Dr. Andre Laroche, Dr. Dennis Gaudet, Michele Frick, Therese Despins, Dr. Debbie Fujimoto, Lauri Lintott, Kimberly Irving, Dr. Bernie Benkel, Jon Davoren and Scott Richmond. I would also like to thank my sisters Andrea and Melanie, and my friends Jenny Gusse, Dr. Doug Inglis and Dr. Stewart Rood. Most of all, I am indebted to my partner, Wilco Tymensen.
TABLE OF CONTENTS

APPROVAL ... ii
ABSTRACT .. iii
ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS ... vi
LIST OF TABLES ... ix
LIST OF FIGURES .. x
LIST OF ABBREVIATIONS .. xii
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. REVIEW OF LITERATURE 3
 2.1 Diapause .. 3
 2.1.1 Induction ... 3
 2.1.2 Hormonal regulation ... 5
 2.1.3 Physiological, morphological and behavioral changes during diapause. ... 7
 2.1.4 Maintenance and termination 9
 2.1.5 Regulation of diapause at the molecular level 9
 2.2 Horn fly development ... 10
 2.2.1 Metamorphosis .. 10
 2.2.2 Diapause induction ... 12
 2.2.3 Termination ... 13
 2.3 Method of differential analysis 14

CHAPTER 3. MATERIALS AND METHODS 16
3.1 Horn fly rearing ... 16
3.2 Diapausing and nondiapausing pupae 16
3.3 Pupal morphology during nondiapause development 17
3.4 CNS morphology during nondiapause development 17
3.5 Morphology of diapausing pupae and CNS 18
3.6 Morphology of pupae and CNS during long-term storage 18
3.7 Isolation of diapause up-regulated cDNA from horn fly 18
 3.7.1 RNA purification from pupae. 19
 3.7.2 RNA purification from CNS. 20
 3.7.3 Subtraction library construction 20
 3.7.4 Full-length cDNA library from diapausng pupae. 20
 3.7.5 Screening for diapause up-regulated cDNAs 20
 3.7.6 Excision of phagemids and sequencing of cDNAs 21
 3.7.7 Northern blotting .. 22
CHAPTER 4. RESULTS .. 24
 4.1 Morphological characteristics of horn fly pupae during development 24
 4.2 Morphological characteristics of horn fly central nervous system during pupal development ... 28
 4.3 Morphological characteristics of horn fly pupae and CNS during diapause .. 31
 4.4 Identification and expression of putative diapause up-regulated cDNAs from horn fly pupal cDNA library. 33
 4.4.1 HiDI ... 33
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Characteristics of horn fly during pupal development</td>
<td>26</td>
</tr>
<tr>
<td>2. Characteristics of horn fly CNS during pupal development</td>
<td>30</td>
</tr>
<tr>
<td>3. Homology search results for diapause up-regulated cDNAs.</td>
<td>34</td>
</tr>
<tr>
<td>4. Top 20 BLAST hits for Drosophila melanogaster CG11486 gene product [alt 1] (GenBank accession number AE003477) and top 20 PROPSEARCH hits for HiD9.</td>
<td>61</td>
</tr>
<tr>
<td>5. Summary of temporal expression of putative diapause up-regulated genes</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Morphological changes of horn fly pupae during nondiapause development at 25°C</td>
<td>25</td>
</tr>
<tr>
<td>2.</td>
<td>Frontal view of horn fly pupal head showing antennae</td>
<td>27</td>
</tr>
<tr>
<td>3.</td>
<td>Morphological changes of pupal horn fly central nervous system during nondiapause development at 25°C</td>
<td>29</td>
</tr>
<tr>
<td>4.</td>
<td>Developmental arrest during pupal diapause of the horn fly</td>
<td>32</td>
</tr>
<tr>
<td>5.</td>
<td>Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD1</td>
<td>35</td>
</tr>
<tr>
<td>6.</td>
<td>BLAST alignment of amino acid sequences from HiD1 and Sec-independent protein translocase TATA/E-like protein 1 from Aquifex aeolicus (GenBank accession number O66478)</td>
<td>36</td>
</tr>
<tr>
<td>7.</td>
<td>Northern blot analysis of HiD 1, 3, 4, 5, 6 and 10 expression in H. irritans pupae reared at nondiapause (N0) and diapause (D0) inducing temperatures</td>
<td>38</td>
</tr>
<tr>
<td>8.</td>
<td>Northern blot analysis of HiD1 expression in H. irritans pupae reared at nondiapause (N) and diapause (D) inducing temperatures</td>
<td>39</td>
</tr>
<tr>
<td>9.</td>
<td>Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD3</td>
<td>41</td>
</tr>
<tr>
<td>10.</td>
<td>BLAST alignment of nucleotide and amino acid sequences from HiD3 and flesh fly transferrin (GenBank accession number D28940)</td>
<td>42</td>
</tr>
<tr>
<td>11.</td>
<td>Northern blot analysis of HiD3 expression in H. irritans pupae reared at nondiapause (N) and diapause (D) inducing temperatures</td>
<td>43</td>
</tr>
<tr>
<td>12.</td>
<td>Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD4</td>
<td>44</td>
</tr>
<tr>
<td>13.</td>
<td>BLAST alignment of nucleotide and amino acid sequences from HiD4 and Chrysomya albiceps cytochrome oxidase subunit 1 gene (GenBank accession number AF083657)</td>
<td>45</td>
</tr>
<tr>
<td>14.</td>
<td>Northern blot analysis of HiD4 expression in H. irritans pupae reared at nondiapause (N) and diapause (D) inducing temperatures</td>
<td>47</td>
</tr>
</tbody>
</table>
15. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD5. ... 48

16. BLAST alignment and CLUSTAL W multiple sequence alignment of HiD5 and amino acid sequences with highest degree of homology. 49

17. Northern blot analysis of HiD5 expression in H. irritans pupae reared at nondiapause (N) and diapause (D) inducing temperatures. 51

18. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD6. ... 52

19. BLAST alignment of amino acid sequences from HiD6 and Drosophila melanogaster tyrosine hydroxylase (GenBank accession number U14395). ... 53

20. Northern blot analysis of HiD6 expression in H. irritans pupae reared at nondiapause (N) and diapause (D) inducing temperatures. 55

21. Northern blot analysis of HiD6 expression in whole body and CNS of horn flies reared at nondiapause (N) and diapause (D) inducing temperatures. ... 56

22. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD9. ... 57

23. BLAST alignment of nucleotide sequence from HiD9 and Drosophila melanogaster ALA-E6 repeat region (GenBank accession number X57624). ... 58

24. BLAST alignment HiD 9 and Drosophila melanogaster CG11486 gene product [alt 1] (GenBank accession number AE003477). 59

25. Northern blot analysis of HiD9 expression in H. irritans pupae reared at nondiapause (N) and diapause (D) inducing temperatures. 62

26. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD10. ... 63

27. BLAST alignment of amino acid sequences from HiD10 and Drosophila pseudoobscura carboxylesterase-5A (GenBank accession number AF016135) and Heliothis virescens juvenile hormone esterase precursor (GenBank accession number J04955). .. 65

28. Northern blot analysis of HiD10 expression in H. irritans pupae reared at nondiapause (N) and diapause (D) inducing temperatures. 66
LIST OF ABBREVIATIONS

BPTI – bovine pancreatic trypsin inhibitor
cDNA – copy DNA
CNS – central nervous system
DA – dopamine
DDC – dopamine decarboxylase
DH – diapause hormone
DNA – deoxyribonucleic acid
EMBL – European molecular biology laboratory
G3PDH – glyceraldehyde 3-phosphate dehydrogenase
HPLC – high performance liquid chromatography
JH – juvenile hormone
mRNA – messenger RNA
MOPS – 3-[N-Morpholino]propanesulfonic acid
NCBI – National center for biotechnology information
PTTH – prothoracicotropic hormone
RNA – ribonucleic acid
SDS – sodium dodecyl sulfate
SSC – sodium chloride sodium citrate
TH – tyrosine hydroxylase
CHAPTER 1
INTRODUCTION

The horn fly, *Haematobia irritans* (L.) is an economically significant dipteran pest of rangeland cattle. Survival and reproduction of both sexes are dependent upon blood meals obtained from cattle. Irritation and stress associated with blood feeding result in reduced weight gain of cattle leading to major economic losses.

Adult flies emerge in the spring and live exclusively on cattle; females leave only to lay eggs on freshly deposited manure. The eggs hatch, larvae feed on the manure and develop through three instars, pupate, undergo metamorphosis and emerge as adults. Several overlapping generations of flies are produced over the spring and summer. These reproductive life cycles continue until cooler fall temperatures are encountered. At this point, beginning usually in August or September and ending in October in Alberta, pupae enter a developmental arrest known as diapause (Lysyk and Moon, 2001). Pupae overwinter in a state of diapause under the manure pat, and adults emerge the following spring to start the next generation of flies. Diapause is an adaptation that ensures insect survival during periods of seasonal adversity, such as the winter.

Like all developmental processes, diapause is characterized by a unique pattern of protein and gene expression (Flannagan et al., 1998). During diapause, there is both a decrease in protein synthesis, and the expression of a number of unique proteins in the brain of the flesh fly, *Sarcophaga crassipalpis* Macquart.
A number of unique proteins have also been noted in the gut of diapausing gypsy moth, *Lymantria dispar* L. (Lee and Denlinger, 1996). Protein work has not proven particularly informative, as few of these proteins have been identified or assigned a function. A molecular approach has also been used for the identification of gene expression differences in diapausing insects. Several diapause up-regulated and down-regulated genes from *S. cruzipalpis* have been cloned, sequenced, and identified (Flannagan et al., 1998). Studies of the genes regulating diapause are more informative than studies of proteins, but relatively few have been undertaken.

There are a number of molecular techniques for isolating differentially regulated genes from two populations, such as diapausing and nondiapausing insects. Success of these techniques is dependent on having comparable tissues from each population. It is therefore important to morphologically define the stage of developmental arrest when analyzing gene expression differences between diapausing and nondiapausing insects.

The objectives of this study were to 1) morphologically define the stage of pupal-adult metamorphosis in which developmental arrest associated with diapause occurs in the horn fly, 2) identify up-regulated genes from diapause destined horn fly pupae, and 3) determine temporal and spatial patterns of up-regulated gene expression during diapause with the overall result of increasing knowledge about the genetics and molecular biology of the horn fly.
CHAPTER 2
REVIEW OF LITERATURE

2.1 Diapause.

2.1.1 Induction. Diapause is an adaptation that ensures insect survival during periods of seasonal environmental adversity such as winter and drought. Insects respond to cues in advance of impending seasonal adversity. Photoperiod is considered the primary cue for the induction of diapause, followed by temperature. Other less common cues include food supply, density (crowding), and moisture (rainfall). Diapause may be induced by extremely variable regimes of photoperiod and/or temperature, depending on the insect species (reviewed by Tauber et al. 1986).

The sensitive period is the time where insects perceive these cues and stores the information for later translation into diapause induction. There is a large variability in the timing of the sensitive period and diapause. In some insects, both sensitive period and diapause may occur during the same developmental stage, and in other insects, the sensitive period may occur well ahead of the stage entering diapause. In some insects, photoperiod and temperature do not induce diapause in the insect itself, but affect its progeny. For example, in the blowfly, Calliphora vicina Robineau-Desvoidy, short days in the maternal generation result in larval diapause of progeny (Vinogradova, 1974; Saunders et al., 1986).

The events leading to diapause induction include perception of stimuli (photoperiod and temperature), measurement of stimuli length (photoperiod,
scotoperiod, thermoperiod, or cryoperiod), storage of the information, and finally translation into a hormonal regulatory signal (Saunders, 1982). The physiological mechanism for the measurement of stimuli length is the "clock". The "counter" is the mechanism for accumulating and storing the information throughout the sensitive period. A variety of models have been developed to explain the clock and counter mechanism. Vaz Nunes and Saunders (1999) reviewed these models.

The most recent model is the double circadian oscillator model (Vaz Nunes, 1998a, Vaz Nunes, 1998b). In this model, the clock mechanism is based on two circadian oscillators that measure stimuli length. During the sensitive period, the values from these oscillators are integrated into an "induction sum". Diapause is induced if the induction sum accumulated during the sensitive period is higher than a certain induction threshold. The threshold number is also termed the "required day number". This is the number of days under diapause-inducing conditions required to induce diapause in 50% of the insects (Saunders, 1981).

As representations of the regulatory mechanism, these models cannot describe what is happening on a biological level. It has been suggested that the circadian system may be the biological mechanism regulating diapause induction (Bunning, 1936; Pittendrigh, 1972; Lewis and Saunders, 1987). Circadian rhythms are governed by oscillators (or clocks) that function autonomously, but can be entrained by environmental cues such as photoperiod and temperature. Young (1998) and Dunlap (1998) offer reviews of the circadian system.

To date, only a single investigator has studied the regulation of diapause by the circadian system (Saunders et al., 1989; Saunders, 1990). *Period (per)* is one of
the core genes comprising the circadian oscillator. In *Drosophila melanogaster* Meigen, ovarian diapause is elicited in response to photoperiod. Flies with mutations of the *per* locus were capable of discriminating photoperiod length, and inducing diapause. It was concluded that mutations in *per* do not affect photoperiodic time measurement (Saunders et al., 1989; Saunders, 1990). The authors point out that although *per* is not causally involved in diapause induction of *D. melanogaster*, other genes in the circadian system besides *per* may be involved. Subsequent advances have been made in the molecular characterization of the circadian system, which may offer a new approach for the investigation of the clock and counter.

2.1.2 Hormonal regulation. Photoperiod and temperature are translated into hormonal signals that regulate diapause. Ecdysone and juvenile hormone (JH) are considered the primary hormonal regulators of diapause (reviewed by Tauber et al., 1986). Ecdysones function during molting, pupation, metamorphosis and gametogenesis (reviewed by Mordue et al., 1980). The synthesis of ecdysone occurs in the prothoracic gland and is under the control of a neurohormone, prothoracicotropic hormone (PTTH). JH functions during morphogenesis (embryogenesis, larval moulting, metamorphosis, polymorphism) and reproductive development (vitellogenin synthesis and ovarian development) (reviewed by Mordue et al., 1980). The site of JH synthesis is the corpus allatum.

JH and ecdysone work together during development (reviewed by Mordue et al., 1980). Ecdysone signals the progression of development (i.e. moulting and pupation) and JH determines the developmental program (i.e. larva or adult). JH as
its name implies maintains juvenile characteristics and modulates differentiation of the pupal and adult tissues in a complex fashion (Nijhout, 1994).

Depending on insect species and developmental state, diapause is induced and maintained by the presence or absence of either ecdysone or juvenile hormone (reviewed by Tauber et al., 1986). In general, diapause occurs when the hormonal status that normally characterizes that developmental stage is maintained. Diapause in the larval stage commonly, but not necessarily, involves the maintenance of high levels of JH, which maintain juvenile (larval) characteristics. Diapause in the pupal stage is often, but not necessarily, characterized by the lack of ecdysone. During the pupal stage, ecdysone must be present for adult development to begin. If ecdysone is absent, as it is in diapause, the insect remains in the pupal stage.

In some Lepidopteran insects, there are other hormones that regulate embryonic diapause. Diapause hormone (DH) is the only specific hormone known to elicit a diapause response in Bombyx mori L. (Ikeda et al., 1993). Several other hormones that share a similar structure with DH also induce diapause in these insects.

Recently, attention has focused on the role of neurotransmitters in diapause induction. In vertebrates, the biogenic amines dopamine, serotonin, and melatonin, are involved in the anticipation and adaptation to seasonal change (Reiter, 1991) resulting in hibernation and reproductive cessation (Weekley and Harlow, 1987; Nurnberger, 1995; Popova et al., 1993). Biogenic amines may also be involved in diapause induction and maintenance in insects. Distribution of dopamine in the brain of the European corn borer, Ostrinia nubilalis H äbner, is suggestive of involvement
in an endogenous time measuring system and/or diapause induction or termination (Houk and Beck, 1977). During diapause induction, serotonin may inhibit neurosecretory activity in the brain of Pieris brassicae (L.) (Puiroux et al., 1990). In addition, dopamine levels in haemolymph are significantly higher in P. brassicae pupae throughout diapause compared to continuously developing pupae (Isabel et al., 2001). Most recently, it was shown that dopamine is a factor for the induction of embryonic diapause in B. mori (Noguchi and Hayakawa, 2001). Dopamine content in the haemolymph and brain-subesophageal ganglia of B. mori increases in response to diapause inducing temperatures (Noguchi and Hayakawa, 2001). Increased dopamine in the maternal generation stimulates expression of diapause hormone and ultimately results in the production of diapausing eggs.

Involvement of specific amines in diapause varies between insect species. In diapause induction of the drosophilid fly, Chymomyza costata (Zetterstedt), serotonin is not involved and it remains unclear whether dopamine is involved (Kostal et al., 1999).

2.1.3 Physiological, morphological, and behavioral changes during diapause. Diapause induction ultimately results in physiological, morphological, and behavioural changes, that allow survival for extended periods of time in adverse environments. Some of the changes such as developmental and/or reproductive arrest, decreased metabolic rate, and resistance to environmental extremes (heat, cold, desiccation) are common to diapausing insects, while others such as diapause colour are species specific (reviewed by Tauber et al., 1986).
Diapause is characterized by arrested development and reproduction. In this way, diapause is an adaptation that serves to coordinate the insect’s life cycle with seasonal environmental change. Arrest occurs at a specific stage of the insect’s life cycle, these can be the embryonic (egg), larval, pupal, or adult stage. The specific stage of development in which diapause occurs is species specific.

Developmental arrest extends to the cellular level. The stage of cell cycle arrest is also species specific. In \textit{B. mori}, cells are arrested at the G2 phase of the mitotic cell cycle (Nakagaki et al., 1991), whereas cells in brains of \textit{S. crassipalpis}, are arrested at the G0/G1 phase (Tammariello and Denlinger, 1998a).

Diapausing insects may undergo physiological and morphological adaptations that serve to provide physiological protection from freezing, desiccation or predators (reviewed by Tauber et al., 1986). Some insects form cryoprotectants such as glycerol or sugars, to lower freezing temperature and prevent tissue damage during freezing. In some insects, the cuticle and puparium may be modified. The puparium of the diapausing \textit{S. crassipalpis} is lined with twice as much hydrocarbon as the nondiapause puparium (Yoder et al., 1992). The cuticle of the diapausing adult bean bug, \textit{Riptortus clavatus} (Thunberg), is stiffer and contains more lipids (Morita et al., 1999). These modifications to the puparium and cuticle are likely associated with the ability to withstand desiccation during prolonged periods. Increased melanization of the cuticle of diapausing adult insects has been well documented for a number of species. Typically, overwintering colouration is an adaptation to camouflage these insects from predators.
2.1.4 **Maintenance and termination.** Diapause is terminated only after certain physiological processes (diapause development) have occurred. The persistence of the diapause state, even if conditions favorable for development are present, prevents premature termination of dormancy. In some insects, diapause termination may occur through a fast inductive process termed tachytelic termination (Hodek, 1982, 1983). In this type of termination, photoperiod and temperature serve as terminating stimuli. Termination may also occur through a gradual spontaneous process, termed horotelic termination (Hodek, 1982, 1983).

Throughout the process of diapause development, sensitivity to diapause maintaining stimuli decreases (reviewed by Tauber et al., 1986). There is also a decrease in the intensity of diapause (increase in the readiness to resume development). Changes in the intensity of diapause may occur, without simultaneous changes in characteristics such as cold hardiness. For example, diapause may be terminated, however an insect may still maintain the same glycerol content normally associated with diapause. Thus, physiological features cannot be used to study diapause development. Molecular techniques may therefore prove useful in the study of diapause development.

2.1.5 **Regulation of diapause at the molecular level.** During diapause, the resulting developmental arrest is not controlled by the simple down-regulation of gene expression and protein synthesis. Instead, diapause is a developmental process that is characterized by a unique pattern of gene and protein expression (Flannagan et al., 1998).
During diapause, there is both an overall decrease in protein synthesis and the synthesis of several unique proteins in the brain of *S. crassipalpis* (Joplin et al., 1990). In the gut of *L. dispar*, several proteins are up-regulated prior to and during early diapause (Lee and Denlinger, 1996). Unfortunately, these protein studies are not particularly informative as few of these proteins have been identified or been assigned a function.

Studies of gene expression are somewhat more informative. During diapause, several up-regulated and down-regulated cDNAs were identified from the brain of *S. crassipalpis* (Flannagan et al., 1998). One of the down-regulated genes was identified as a cell cycle regulator, proliferating cell nuclear antigen (Flannagan et al., 1998; Tammariello and Denlinger, 1998b). Another up-regulated gene was identified by a small heat shock protein transcript (Flannagan et al., 1998; Yocum et al., 1998). Although expression studies of differentially regulated genes are more informative (i.e. often provide sequence identities), they are uncommon.

2.2 Horn fly development.

Developmental times for the immature stages of horn flies are temperature dependent, tending to decrease with increasing temperatures. The developmental time on nondiapausing flies from egg to emergence of the adult is 41.6 days at 15° C and decreases to 8.4 days at 35° C (Lysyk, 1992a). The pupal stage requires about 50% of the total immature developmental period.

2.2.1 Metamorphosis.

During metamorphosis most adult tissues are formed in one of two ways. Adult structures such as eyes, antennae, and wings form from imaginal discs (Demerec, 1950). These discs are present in the embryo and
larva and remain undifferentiated until metamorphosis. The restructuring of larval tissues forms other structures such as the gut and central nervous system (CNS). Ecdysone induces simultaneous cell proliferation and programmed cell death during the restructuring of the central nervous systems of D. melanogaster (Awad and Truman, 1997) and Sarcophaga peregrina Robineau-Desvoidy (Fujii et al., 1999).

Metamorphosis in horn fly pupae has been described and categorized into 10 stages according to morphological features (Thomas, 1985). The first stage is pupariation in which the outer protective coat is formed. During the last instar, a larva contracts to become barrel shaped followed by tanning of the outside of the newly secreted cuticle. Stage 2, the pre-pupal stage, represents the interval between pupariation and larval-pupal apolysis. Stage 3 is the larval-pupal apolysis in which the larval hypodermis becomes separated from the wall of the puparium. This stage lasts from 9 to 18 hours after pupariation for horn flies undergoing metamorphosis at 23°C. Stage 4, the cryptocephalic pupal stage, represents the interval between larval-pupal apolysis and larval-pupal ecdysis. Stage 5 is the larval-pupal ecdysis, which is distinguished by head evagination. This stage is very short, and occurs during the interval from 24 to 26 hours after pupariation. Stage 6, the phanerocephalic pupal stage, represents the interval between larval- pupal ecdysis and pupal-adult apolysis. This stage lasts from 26 to 40 hours after pupariation. During stage 7, pupal-adult apolysis, the imaginal hypodermis separates from the pupal cuticle. This stage lasts from 40 to 65 hours after pupariation. Stage 8, the early pharate adult stage, lasts from 65 to 120 hours after pupariation. Stage 9 is the red-eyed pharate adult stage, and is distinguished by the red pigmentation of the pupae’s eyes. This stage occurs
from 120-140 hours after pupariation. Stage 10 is the late pharate adult stage, and occurs from 140 hour after pupariation until eclosion, which occurs at approximately 160 hours after pupariation.

The specific stage of metamorphosis in which horn flies remain developmentally arrested throughout diapause is unclear. Horn flies are said to diapause either as yellow-eyed pharate adults (Depner, as cited in Kunz and Miller, 1985) or as red-eyed pharate adults (Thomas, 1985; Thomas and Kunz, 1986).

2.2.2 Diapause induction. The horn fly survives the winter by diapausing in the pupal stage. As temperature and photoperiod decline in the fall, an increasing proportion of pupae enter diapause. Depner (1961, 1962) carried out the initial studies on the factors governing diapause induction in the horn fly. It was suggested that a decreasing maternal photoperiod 'predisposes' the eggs to ultimately enter diapause during the pupal stage. Furthermore, the temperature that these predisposed larvae are exposed to determines the proportion that enters diapause. Field studies by Wright (1970) and later by Thomas et al. (1987) claimed agreement with Depner (1961, 1962). In these field studies, the effects of temperature and photoperiod were confounding, making it impossible to assess the individual contribution of each effect on diapause.

More recent laboratory studies indicated diapause induction was not influenced by maternal photoperiod (Lysyk, 1992b), length of photoperiod, or number of photoperiodic cycles experienced by larvae (Lysyk and Moon, 1994). Low temperatures experienced by larvae induced diapause (Lysyk, 1992b, Lysyk and Moon, 1994). The horn fly larval environment is manure, which is unlikely to
permit light penetration. Seasonal changes in photoperiod are likely negligible, hence the reliance on temperature to indicate the impending winter (Lysyk and Moon, 1994).

Horn fly pupae respond to temperature induction during a sensitive period corresponding to a physiological age of 0.10 to 0.82, where newly laid eggs are given the value 0, mean pupation occurs at 0.45 and mean eclosion occurs at an age of 1. In terms of active development, the period 0.10 to 0.82 is between the first-instar larval moult to just slightly before the first adult ecloses (Lysyk and Moon, 1994). Diapause induction is related to the number of days required for development during the sensitive period. Cooler temperatures result in longer developmental times, which increases the incidence of diapause. Temperatures below 15°C induce 100% diapause (Lysyk and Moon, 1994).

2.2.3 Termination. Termination of diapause in the horn fly is hastened by exposure to either high temperatures or chilling (Lysyk, 1999). Horn flies eclose within 6-8 days after exposure to 30°C. Chilling also terminates diapause, which is the more probable process under (natural) outdoor conditions. Diapauing horn fly pupae stored at -5, 0.5, 5, and 10°C terminate diapause after 98, 84, 42, and 56 days respectively (Lysyk, 1999). Diapause termination is assumed to occur at some point throughout the winter. After diapause termination, insects are assumed to enter quiescence for the remainder of the winter, until environmental conditions are suitable for development (Taubet al., 1986).
2.3 Method of differential analysis.

A variety of molecular techniques can be used to identify unique DNA sequences between two highly related DNA populations such as diapausing and non-diapausing horn fly pupae. These techniques include differential display, gene chip micro-array analysis, and suppression subtractive hybridization.

Differential display randomly amplifies cDNA fragments from a subpopulation of mRNAs from each population, and compares these fragments on sequencing gels (Liang and Pardee, 1992). Fragments expressed at different levels are isolated and sequenced. Enough subpopulations are amplified to represent all mRNAs. In gene chip micro-array analysis, DNA fragments corresponding to all genes of an organism are arrayed onto a solid support. Expression of all genes from the populations can be determined by hybridizing the arrayed fragments with labeled mRNA from each population. Although the most informative of the techniques, application of gene chip micro-array analysis is limited by expense and availability of equipment. In addition, application is usually limited to organisms whose genomes have been sequenced. Suppression subtractive hybridization eliminates cDNA fragments common to both populations, leaving only the unique cDNA fragments (Diatchenko et al., 1996; Gurskaya et al., 1996). This technique also normalizes the cDNAs within the target, resulting in the enrichment of rare messages.

Another differential technique, elimination hybridization, has been used to screen for the expression of diapause-specific genes in the brains of *S. crassipalpis* (Flannagan et al., 1998). A cDNA library was constructed from the brains of
diapausing *S. crassipalpis* pupae and screened with probes for nondiapausing brain RNA. Clones failing to hybridize with nondiapause probes were selected as putative diapause up-regulated genes. This resulted in the isolation of 19 cDNAs, of which 4 were diapause up-regulated, 7 were diapause down-regulated and 8 were expressed equally during nondiapause and diapause. The up-regulated cDNAs coded for proteins that shared homology with those involved in stress response and DNA repair, while the down-regulated cDNAs coded for proteins that shared homology with those involved in cell cycle repair.
CHAPTER 3
MATERIALS AND METHODS

3.1 Horn fly rearing.
Horn flies used in all experiments were obtained from a colony maintained on cattle housed at 25°C and a photoperiod of 16L:8D using methods described previously (Lysyk, 1991). Eggs were collected by placing adults in stoppered 500 mL Erlenmeyer flasks held at 30°C in total darkness for 30 - 60 min. For colony maintenance, immatures were reared at 25°C in fresh manure collected from alfalfa hay fed cattle. Pupae were extracted using floatation. The colony had been started with wild flies collected at Lethbridge Research Center in 1989 and was supplemented with wild flies in 1990 and 1991.

3.2 Diapausing and nondiapausing pupae.
Diapausing and nondiapausing horn flies were produced using standard methods (Lysyk and Moon, 1994). Eggs were placed on filter paper on top of fresh cattle manure and incubated at 25°C with a photoperiod of 16L:8D for 2 days. Diapausing pupae were produced by transferring the newly hatched immatures to 15°C and a photoperiod of 16L:8D for 30 - 40 d (Lysyk, 1992b; Lysyk and Moon, 1994). Nondiapausing insects were produced by rearing immatures at 25°C and a photoperiod of 16L:8D. All pupae were collected on the day of pupation (day 0). Nondiapausing pupae were held at 25°C, and collected daily (i.e. day 0, 1, 2, 3, 4 and 5). Diapausing pupae were held at 15°C and collected at assumed equivalent developmental times to nondiapausing pupae. Development is temperature
dependent such that one day at 25°C is the equivalent developmental time (for nondiapausing pupae) to 3 days at 15°C. Therefore, diapausing pupae were held at 15°C and collected every 3rd day (i.e. 0, 3, 6, 9, 12 and 15). Pupae were used immediately or stored at -80°C until required.

3.3 Pupal morphology during nondiapause development.

Morphology of horn fly pupae was determined daily during pupal-adult metamorphosis. Pupae could not be removed intact from the puparium on the day of pupation (day 0). Horn fly pupae were removed from their puparia 1, 2, 3, 4 and 5 days after pupation and photographed. Fixation in 70% ethanol for 24-48h was necessary for intact removal of pupae 1, 2 and 3 days after pupation. Observations of unfixed tissues were consistent with those of fixed tissues. A minimum of 10 insects were dissected and examined for each day. The pupae were viewed at 125X magnification and digitally photographed using a Nikon (Melville, NY) SMZ-10A microscope with a Pixera (Los Gatos, CA) VCS attachment and Pixera Studio Version 1.2 software for a Power Macintosh 7200/90 computer.

3.4 CNS morphology during nondiapause development.

Morphology of the horn fly pupal CNS was determined daily during pupal-adult metamorphosis. The CNS was dissected from pupae on the day of pupation (day 0) and 1, 2, 3 and 4 days after pupation. Fixation in 70% ethanol, for 24-48h was necessary for intact removal of the day 4 CNS. Observations of unfixed tissues were consistent with those of fixed tissues. A minimum of 10 CNSs were dissected and examined for each day. CNSs were viewed with transmitted lighting and the
day4 CNS was also viewed with incident lighting to show red pigment. CNSs were viewed at 250X magnification and digitally photographed as described in section 3.3.

3.5 Morphology of diapausing pupae and CNS.

Morphology of horn fly pupae and CNS tissues were determined for day 15 diapausing pupae. More than 60 diapausing (day 15) pupae were dissected from their puparium and examined for developmental stage. Fixation in 70% ethanol, for 24-48h was necessary for intact removal of diapausing pupae. Observations of unfixed tissues were consistent with those of fixed tissues. More than 60 brains from diapausing insects were dissected and examined. Pupae and CNSs were viewed and digitally photographed as described in section 3.3.

3.6 Morphology of pupae and CNS during long-term storage.

Day 15 diapausing pupae were stored at 5°C for 3 months. Pupae and CNS tissues were dissected every two weeks during the 3 months of storage. The developmental stage of pupae and CNS tissues were determined and recorded.

3.7 Isolation of diapause up-regulated cDNA from horn fly.

This study focused on comparing differences in gene expression between diapausing and nondiapausing horn flies. This was accomplished by extracting and purifying poly A(+) RNA from diapausing and nondiapausing horn flies and reverse transcribing the poly A(+) RNA to cDNA. Suppression subtractive hybridization was used to generate a diapause up-regulated cDNA library. Theoretically, this technique should eliminate cDNA fragments common to nondiapausing and diapausing populations, leaving only diapause up-regulated cDNAs. The first step in this technique was to digest the cDNA with a restriction enzyme which resulted in a
library consisting of small, partial cDNA fragments. A cDNA library was also constructed from diapausing horn flies that contained full length, non-fragmented cDNAs that represented transcripts from all cDNAs from diapausing pupae. The small fragments from the subtracted diapause up-regulated cDNAs were used as probes to screen the full-length diapause cDNA library. This resulted in the isolation of putative diapause up-regulated cDNAs. These cDNAs were sequenced and identified by comparing homologies to existing sequence databases. Northern blotting was used to determine relative abundance of the cDNAs in total RNA extracted from pupae throughout nondiapausing development and diapause. For one of the cDNAs, Northern blotting was used to determine relative abundance of the cDNA in total RNA extracted from CNS of nondiapausing and diapausing pupae. Throughout this study, standard recombinant DNA techniques were used (Sambrook et al., 1989).

3.7.1 RNA purification from pupae. RNA was extracted from nondiapausing and diapausing horn fly pupae. Whole pupae were homogenized in TRIZol reagent (50 mg pupae/mL reagent) (Life Technologies, Burlington, ON) and total RNA purified according to the manufacturer’s protocol. Total RNA was dissolved in nuclease-free water and stored at -80°C until required. Poly A(+) RNA was isolated from total RNA using either the Quickprep Micro mRNA Purification Kit (Pharmacia Biotech, Baie d’Urfe, PQ) or the PolyATtract mRNA Isolation System (Promega Corp. Madison, WI). RNA was quantified by UV spectrophotometry.
3.7.2 **RNA purification from CNS.** RNA was extracted from CNS tissues dissected from nondiapausing and diapausing horn fly pupae. CNS tissues were homogenized in TRizol reagent (30 CNSs/mL reagent) and total RNA purified. Total RNA was dissolved in nuclease-free water and stored at -80°C until required. For Northern Blotting, RNA extracted from the CNS of 30 pupae is required for an equivalent G3PDH (internal control) signal to RNA extracted from approximately 3 whole pupae.

3.7.3 **Subtraction library construction.** The PCR-Select cDNA Subtraction Kit (Clontech, Palo Alto, CA) was used to perform suppression subtractive hybridization, and generate a subtraction library containing diapause up-regulated cDNA fragments. Poly A(+) RNA purified from diapausing horn flies was used as the tester, and poly A(+) RNA purified from nondiapausing flies was used as the driver.

3.7.4 **Full-length cDNA library from diapausing pupae.** A phage library containing full-length cDNAs from diapausing pupae was constructed with the ZAP-cDNA Gigapack III Gold Cloning Kit (Stratagene, La Jolla, CA) according to the manufacturer's protocol.

3.7.5 **Screening for diapause up-regulated cDNA's.** Plaques containing full-length cDNA were blotted onto Hybond-N+ nylon membrane (Amersham International, Buckingham, England). Blots were denatured in a solution containing 1.5 M NaCl and 0.5 M NaOH for 2 min, neutralized in a solution containing 1.5 M NaCl and 0.5 M Tris-HCl (pH 8.0) for 5 minutes and then rinsed in a solution containing 0.1 M Tris-HCl (pH 7.5) and 2X SSC. DNA was bound to the membranes
by UV fixation. The subtraction library was labeled with the Gene Images random primer labeling kit (Amersham) and used as a probe to screen for plaques containing up-regulated genes. Blots were hybridized with labeled probe overnight at 60°C. Unbound probe was removed by a low stringency wash (0.1% SDS, 1X SSC, 60°C, 15 min) and a high stringency wash (0.1% SDS, 0.5X SSC, 60°C, 15 min). Positive clones were detected using the CDP-Star detection kit (Amersham). The membranes were wrapped in saran wrap and exposed to X-Omat AR film (Eastman Kodak Co., Rochester, NY) for approximately 4 hours.

3.7.6 Excision of phagemids and sequencing of cDNAs. Bluescript phagemids containing putative diapause up-regulated cDNAs were excised from positive ZAP phage clones. Bluescript plasmid DNA was extracted using the Wizard™ mini-preps DNA purification system (Promega Corp.). Nucleotide sequencing of the cDNAs was performed using the cycle sequencing method with an ABI PRISM™ Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer Corporation, Mississauga, ON). Sequencing reactions were primed with the T3 primer (5’-AATTAACCCTCACTAAAGGG-3’) in order to determine the nucleotide sequence of the 5’ end of the cDNAs. Labeled reactions were resolved using an Applied Biosystems Model 373A DNA sequencing system (Perkin-Elmer Corporation). DNA and predicted protein sequences were analyzed using MacDNASIS DNA software (Hitachi Software Engineering Co., Ltd., San Bruno, CA). BLAST (Altschul et al., 1990) sequence analysis programs were used to compare sequences of putative diapause up-regulated sequences with sequence data from the GenBank, EMBL, and Berkeley Drosophila Genome Project databases. The
BLASTN function was used to compare the nucleotide sequences to a nucleotide sequence database. The BLASTX function was used to compare the nucleotide sequence translated in all six reading frames to a protein sequence database. For sequences with no known sequence homology, the PROPSEARCH (Hobohm and Sander, 1995) program found at the EMBL website was used for further analysis. This program ignores the sequence of the amino acids and instead compares properties of the amino acid sequence (i.e. hydrophobicity) to properties of 58 protein families. This program is useful for determining functional and/or structural homologues where sequence alignment has failed, as sequence homology is not always the most effective means of inferring protein function. Failure to find homology at the amino acid level may not mean that the proteins have dissimilar functions.

3.7.7 Northern blotting. Northern blotting (Sambrook et al., 1989) was used to confirm that the isolated genes were preferentially expressed during diapause (Flannagan et al., 1998). Total RNA was electrophoresed on a 0.22 M formaldehyde denaturing gel, using MOPS running buffer that also contained 0.22 M formaldehyde. RNA was blotted onto Hybond-N+ nylon membrane (Amersham) by upward capillary action using 20X SSC as a transfer medium. RNA was bound to the membrane by UV irradiation. The sense strand of the diapause up-regulated genes was amplified by one-directional PCR, using only T3 primer. The sense strand was labeled with the Gene Images random prime labeling kit (Amersham) to form labeled anti-sense DNA probes. Blots were hybridized with labeled probe overnight at 60°C. Unbound probe was removed by a low stringency wash (0.1% SDS, 1X...
SSC, 60°C, 15 min.) and a high stringency wash (0.1% SDS, 0.1X SSC, 60°C, 15 min.). The CDP-Star detection kit (Amersham) was used to detect probes binding to RNA extracted from diapausing and nondiapausing pupae. The membranes were wrapped in saran wrap and exposed to film overnight. Equal loading of the gel was ensured by quantifying RNA by UV spectrophotometry, staining the blotted RNA with 0.03% methylene blue in 0.3M sodium acetate pH 5.2, and probing the blot with a homologous G3PDH probe kindly provided by Dr. Felix Guerrero, USDA-ARS, Kerrville, TX. RNA was sized using 0.24–9.5 Kb RNA molecular size markers (Life Technologies).

Northern blotting was also used to compare temporal patterns of expression for each clone. Expression was examined for day 0, 1, 2, 3, 4 and 5 nondiapausing pupae and day 0, 3, 6, 9, 12 and 15 diapausing pupae. Spatial patterns of expression were compared for a single clone, HiD6, using Northern blotting. Expression of HiD6 was determined for RNA extracted from the whole body and CNS of day 0 and 2 nondiapausing pupae and day 0 and 15 diapausing pupae.
CHAPTER 4

RESULTS

4.1. Morphological characteristics of horn fly pupae during nondiapause development.

Horn fly pupae were removed from their puparium and photographed daily during the pupal-adult metamorphosis (Fig. 1). The stages and characteristics of horn fly pupae during development are summarized in Table 1. Within 24 hours of pupation (day 0), before head eversion, it is difficult to remove the insect intact from the puparium, therefore the puparium is shown in Figure 1A. During stage 1 (Fig. 1B), 24-48 hours after pupation, head eversion has occurred. The pupa is yellow in color. Body tagmatization has occurred, as separate head, thorax and abdomen are discernible. Adult structures including the wings and eyes are visible. During stage 2 (Fig. 1C), 48-72 hours after pupation, both the body and eyes are yellow, and respiratory horns are clearly visible. Antennae are visible from a frontal view (Fig. 2). During stage 3 (Fig. 1D), 72-96 hours after pupation, the body and eyes are yellow, and there is noticeable abdominal segmentation. Antennae appear enlarged, as a frontal view is not required for visibility. During stage 4 (Fig. 1E), 96-120 hours after pupation, the compound eyes are pigmented and appear red, and the rest of the body is yellow. During stage 5 (Fig. 1F), 120-144 hours after pupation, sclerotization and melanization of the cuticle are obvious, and tanning of the bristles on the thorax and abdomen is evident. The adult fly emerges on day 6-7.
Figure 1. Morphological changes of horn fly pupae during nondiapause development at 25°C. (A) Puparium on the day of puparation (day 0). (B-F) Pupae removed from puparium. (B) 1 day after puparation. Arrows indicate divisions between head, thorax, and abdomen. (C) 2 days after puparation. (D) 3 days after puparation. (E) 4 days after puparation. (F) 5 days after puparation. Eyes (e), wing (w), respiratory horns (rh), antennae (an).
<table>
<thead>
<tr>
<th>Stage</th>
<th>Age</th>
<th>Body color</th>
<th>Abdominal Segmentation</th>
<th>Wings</th>
<th>Eye color</th>
<th>Respiratory horns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24-48 h</td>
<td>yellow</td>
<td>visible</td>
<td>yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48-72 h</td>
<td>yellow</td>
<td>visible</td>
<td>yellow</td>
<td>visible</td>
<td>visible</td>
</tr>
<tr>
<td>3</td>
<td>72-96 h</td>
<td>yellow</td>
<td>visible</td>
<td>yellow</td>
<td>visible</td>
<td>enlarged</td>
</tr>
<tr>
<td>4</td>
<td>96-120 h</td>
<td>yellow</td>
<td>visible</td>
<td>red</td>
<td>visible</td>
<td>enlarged</td>
</tr>
<tr>
<td>5</td>
<td>120-144 h</td>
<td>darkened</td>
<td>visible</td>
<td>red</td>
<td></td>
<td>enlarged</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of horn fly during pupal development.
Figure 2. Frontal view of horn fly pupal head showing antennae (ar). (A) Antennae are visible in nondiapause pupa 2 days after pupation. (B) Diapause pupa 15 days after pupation showing a lack of visible antennal development.
4.2 Morphological characteristics of horn fly central nervous system during pupal development.

The horn fly CNS was dissected and photographed daily during the pupal-adult metamorphosis (Fig. 3). The stages and characteristics of the horn fly CNS during pupal development are summarized in Table 2. During stage 0, less than 24 hours after pupation, the optic lobes and antennal discs are visible (Fig. 3A). The subesophageal, thoracic, and abdominal ganglia are fused to form a single ventral ganglion. During stage 1, 24-48 hours after pupation, the optic lobes have separated slightly and eye discs are noticeable (Fig. 3B). The subesophageal, thoracic, and abdominal ganglia have differentiated. During stage 2, 48-72 hours after pupation, eye discs are enlarged (Fig. 3C). During stage 3, 72-96 hours after pupation, eye discs have continued to enlarge and ommatidia are visible in the eye disc (Fig. 3D). Cornea lenses and hairs are visible. The subesophageal and thoracic ganglia have separated, and are connected by the cephalothoracic cord (not shown). This separation makes it difficult to keep the thoracic ganglia attached to the brain/optic lobes during dissection, thus the thoracic ganglia is not shown for stages 3 and 4 (Fig. 3D-F). During stage 4, 96-120 hours after pupation, the eye discs have differentiated to form part of the head hypodermis, and are shown attached in Figure 3E and 3F.
Figure 3. Morphological changes of pupal horn fly central nervous system during nondiapause development at 25°C. (A) Day of pupation (day 0). (B) 1 day after pupation. (C) 2 days after pupation. (D) 3 days after pupation. (E) 4 days after pupation. (F) 4 days after pupation, incident lighting to show red eyes. Antennal disc (and), optic lobe (ol), ventral ganglion (vg), brain (br), eye disc (ed), subesophageal ganglion (seg), thoracic ganglion (tg), abdominal ganglion (ag).
Table 2. Characteristics of horn fly CNS during pupal development.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Age</th>
<th>Optic lobe</th>
<th>antennal disc</th>
<th>eye corneal lense</th>
<th>eye ommatidia</th>
<th>ganglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><24h</td>
<td>visible</td>
<td>visible</td>
<td>fused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24-48h</td>
<td>split</td>
<td>visible</td>
<td></td>
<td>differentiation of segments</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48-72h</td>
<td>split</td>
<td>enlarged</td>
<td></td>
<td>differentiation of segments</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>72-96h</td>
<td>split</td>
<td>enlarged visible visible</td>
<td>visible</td>
<td>differentiation from thoracic ganglion</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>96-120h</td>
<td>split</td>
<td>attached to epidermis</td>
<td></td>
<td>differentiation from thoracic ganglion</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Morphological characteristics of horn fly pupae and central nervous system during diapause.

Diapausing pupae are characteristically yellow in color, and are indistinguishable from day 1 nondiapausing pupae (Fig. 4). Antennae (Fig. 2) and respiratory horns are not visible, indicating that diapause pupae are not as developed as day 2 nondiapausing pupae. In the CNS of diapausing pupae (Fig. 4), eye discs are similar in size to those of day 1 nondiapausing pupae and smaller than eye discs of day 2 non-diapausing pupae.

Diapausing pupae remained similar in appearance to day 1 nondiapausing pupae during 16 weeks of storage at 5°C. The body and eyes remained yellow, and antennae were not visible throughout storage. In the CNS, eye discs remained similar in size to eye discs of day 1 nondiapausing pupae throughout storage.
Figure 4. Developmental arrest during pupal diapause of the horn fly. Diapausing pupae were held at 15°C for 16 days prior to dissection. (A) Diapausing pupa removed from puparium. (B) Day 2 nondiapausing pupa removed from puparium. (C) Central nervous system of diapausing pupa. (D) Central nervous system of day 2 nondiapausing pupa.
4.4 Identification and expression of putative diapause up-regulated cDNAs from horn fly pupal cDNA library.

Subtracted diapause up-regulated cDNA fragments were used as probes to screen a diapausing pupal cDNA library. Screening of 15000 plaques resulted in approximately 1500 plaques (10%) that hybridized with the diapausing pupal cDNA library. Twenty-five of these plaques were picked as putative up-regulated clones. Nine of these plaques (designated as HiD1, 2, 3, 4, 5, 6, 7, 9, 10) were excised into pBluescript, cloned and sequenced. Clones HiD2 and HiD6 had identical sequences, as did clones HiD4 and HiD7, thus clones 4 and 6 were selected for further study. Sequence identities and sizes are summarized in Table 3.

Northern blot analysis was used to determine transcript expression of each clone at pupation (day 0) in whole body total RNA from nondiapause and diapause destined pupae and throughout pupal-adult metamorphosis and early diapause.

4.4.1 HiD1. A 405 nucleotide fragment was sequenced for HiD1 (Fig. 5). The deduced open reading frame represents 135 amino acids. Clone HiD1 does not show significant DNA or protein homology to entries from GenBank, EMBL, or Berkeley Drosophila Genome Project databases. The closest amino acid homology is to Sec-independent protein translocase TATA/E-like protein 1 from the thermophilic chemotrophic bacterium Aquifex aeolicus, GenBank accession number O66478 (Deckert et al., 1998) (Fig. 6). The sequence homology comparison is considered insignificant as only a small section of HiD1 has homology with A. aeolicus. For a stretch of 41 amino acids, 34% (14/41) are identical and 49% (20/41) are either identical and/or functionally similar. The properties of HiD1 deduced amino acid
<table>
<thead>
<tr>
<th>cDNA clone</th>
<th>cDNA insert size (bp)</th>
<th>Query sequence to cDNAsequence</th>
<th>GenBank entries with highest homology</th>
<th>% homology to cDNA sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiD1</td>
<td>650</td>
<td>Sec-independent protein translocase TATA/E-like protein Aquifex aeloicus Accession no. O66478</td>
<td>DNA-No significant homology Protein-No significant homology</td>
<td>DNA-No significant homology Protein-No significant homology</td>
</tr>
<tr>
<td>HiD3</td>
<td>1900</td>
<td>transferrin Sarcophaga peregrina Accession no. D28940</td>
<td>DNA- 82% (475/577 nucleotides) Protein- 89% (187/208 amino acids)</td>
<td>DNA- 82% (475/577 nucleotides) Protein- 89% (187/208 amino acids)</td>
</tr>
<tr>
<td>HiD4</td>
<td>1700</td>
<td>cytochrome c oxidase Chrysomya albiceps Accession no. AF083657</td>
<td>DNA- 90% (572/629 nucleotides) Protein- 90% (189/210 amino acids)</td>
<td>DNA- 90% (572/629 nucleotides) Protein- 90% (189/210 amino acids)</td>
</tr>
<tr>
<td>HiD5</td>
<td>500</td>
<td>Kunitz inhibitor-like protein 2 Drosophila virilis</td>
<td>DNA-No significant homology Protein- 47% (32/67 amino acids)</td>
<td>DNA-No significant homology Protein- 47% (32/67 amino acids)</td>
</tr>
<tr>
<td>HiD6</td>
<td>1750</td>
<td>Accession no. AJ249251 tyrosine hydroxylase Drosophila melanogaster Accession no. U14395</td>
<td>DNA- 85% (126/148 nucleotides) Protein- 91% (184/201 amino acids)</td>
<td>DNA- 85% (126/148 nucleotides) Protein- 91% (184/201 amino acids)</td>
</tr>
<tr>
<td>HiD9</td>
<td>635</td>
<td>ALA-E6 repeat region Drosophila melanogaster Accession no. X57624 CG11486 gene product Drosophila melanogaster Accession no. AE003477</td>
<td>DNA-65% (470 nucleotides) Protein-63% (139/218 amino acids)</td>
<td>DNA-65% (470 nucleotides) Protein-63% (139/218 amino acids)</td>
</tr>
<tr>
<td>HiD10</td>
<td>700</td>
<td>carboxylesterase-5A Drosophila pseudoobscura Accession no. AF016135</td>
<td>DNA-No significant homology Protein- 42% (87/206 amino acids)</td>
<td>DNA-No significant homology Protein- 42% (87/206 amino acids)</td>
</tr>
</tbody>
</table>
Figure 5. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD1.

Val Thr Thr Asp Gin Ala Met Ile Lys Asn Val Asp Glu Val Val Thr Thr Val
5'GTA ACC ACT GAC GAA GCC ATG ATC AAT GAT GTA GAA GTC GTG ACA ACA GTT
Val Thr Thr Asp Gin Ala Met Ile Lys Asn Val Asp Glu Val Val Thr Thr Val
63
AAG CCC ATG GCC AAG GAT GTT CAT GAA GTG GTG GTA CCA GTT CAT GAG GTC ACT
Lys Pro Met Ala Lys Asp Val Thr Glu Val Val Pro Val His Glu Thr Val
117
CCT GGG GTC CAT AAT ACC GTG ACT GAG AAA ACC GAA GAC GTT CCA GCT CAT GCC GTT
Pro Val Val Lys Asp Ser Val Glu Gly Ser Ala Val Pro Asp Met Lys Pro Lys
171
GTG GTA GCC GAG ACA ATG ACC AAA GAA GTC CCA GTT CAT GGA ACT CAT AAA GAA GTC
Val Asp Gin Thr Thr Lys Gin Val Asp Thr Val Gin Glu Gin Thr Valley Val Val
126
CTC GTA GAA GCC CTT ACC AAA GAA ACC GTG ACT GAG AAA ACC GAA GAC GTT CCA GCT CAT GCC GTT
Pro Pro Thr Thr Lys Thr Thr Gin Thr Thr Gin Thr Gin Gin Thr Gin Thr Gin Thr
180
CTC GTA AAC ACC GAA TAC ATA GAA GTC CCA GCT CAT GGA ACT CAT AAA GAA GTC
Pro Pro Thr Thr
234
GCC GCA GAG ACA ATG ACC AAA GAA GTC CCA GTT CAT GGA ACT CAT AAA GAA GTC
Val Asp Gin Thr Thr Lys Gin Thr Thr Gin Thr Gin Gin Thr Gin Thr Gin Thr
288
CTC GTA CAA GAA GCC CTT ACC AAA GAA ACC GTG ACT GAG AAA ACC GAA GAC GTT CCA GCT CAT GCC GTT
Pro Pro Thr Thr
342
CTC GTA AAC ACC GAA TAC ATA GAA GTC CCA GCT CAT GGA ACT CAT AAA GAA GTC
Pro Pro Thr Thr
396
5'
Figure 6. BLAST alignment (Altschul et al., 1990) of amino acid sequences from HiD1 and Sec-independent protein translocase TATA/E-like protein 1 from *Aquifex aeolicus* (GenBank accession number O66478). Functionally similar amino acids are indicated by "++".
sequence were analyzed using PROPSEARCH (Hobohm and Sander, 1995) in an attempt to determine functional or structural homologues. The deduced amino acid sequence of HiD1 shows no significant property homology to the 58 protein families in the database. The closest protein family homologies (all below 19% reliability) include 40S ribosomal protein S20 from D. melanogaster, class II heat shock protein from D. melanogaster, and cuticle protein 4 from the giant cockroach, Blaberus cranifer Burm.

At pupation (day 0), expression of HiD1 was higher in diapause destined pupae compared to nondiapause pupae (Fig. 7). Throughout development (Fig. 8), expression was highest at pupation (day 0) in both nondiapause and diapause destined pupae. Expression was not detectable in diapausing pupae after pupation (days 1-15). Expression was not detectable in nondiapausing pupae on day 1-3 and increased slightly on day 4 and 5.
Figure 7. Northern blot analysis of day 0 nondiapause (N0) and diapause destined (D0) pupal RNA probed with HiD1, 3, 4, 5, 6, and 10. Each lane contains 20μg of total RNA isolated from whole body. HiD9 not included due to high background.
Figure 8. Expression of HiD1 in *H. irritans* pupae reared at nondiapause (N) and diapause (D) inducing temperatures. RNA was extracted from nondiapausing pupae 0, 1, 2, 3, 4 and 5 days after pupation and from diapausing pupae 0, 3, 6, 9, 12 and 15 days after pupation. Each lane contains 20μg of total RNA. M=molecular weight markers.
4.4.2 **HiD3.** A 624 nucleotide fragment was sequenced for HiD3 (Fig. 9). There is 82% (475/577) nucleotide homology to transferrin from *S. peregrina*, GenBank accession number D28940 (Kurama et al., 1995) (Fig. 10). The deduced open reading frame represents 208 amino acids. For this stretch of sequence, 90% (187/208) of amino acids are identical and 93% (193/208) of the amino acids are identical and/or functionally similar to *S. peregrina* transferrin.

Expression of HiD3 was higher in diapause destined pupae compared to nondiapause pupae at pupation (Fig. 7). Throughout non-diapause development, the highest expression of HiD3 was in nondiapausing pupae on days 3, 4 and 5 (Fig. 11). In diapause pupae, expression was reduced in day 0 and 3, and was not detectable after day 3.

4.4.3 **HiD4.** A 632 nucleotide fragment was sequenced for HiD4 (Fig. 12). There is 90% (572/629) nucleotide homology to cytochrome c oxidase from the fly, *Chrysomya albiceps* (Wiedemann), GenBank accession number AF083657 (Wells and Sperling, 1999) (Fig. 13). The deduced open reading frame represents 210 amino acids. For this stretch of sequence, 90% (188/210) of amino acids are identical and 97% (204/210) of amino acids are identical and/or functionally similar to *C. albiceps* cytochrome c oxidase. The next highest homologies are to several dipteran species including *Drosophila, Phaenicia,* and *Lucilia.* This sequence is not dipteran specific as significant homologies are also noted for mammalian species including rat, mouse, and bovine.
Figure 9. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD3.
Nucleotide sequence

HiD3 : 4 ttccgttatgagggcattattttggttaagaaaaactcccatattaaatccttaagagat 63
TRANSF: 382 ttccgttatgagggcattattttggttaagaaaaactcccatattaaatccttaagagat

HiD3 : 64 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 123
TRANSF: 442 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

HiD3 : 124 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 183
TRANSF: 502 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

HiD3 : 184 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 243
TRANSF: 562 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

HiD3 : 244 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 303
TRANSF: 622 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

HiD3 : 304 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 363
TRANSF: 682 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

HiD3 : 364 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 423
TRANSF: 741 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

HiD3 : 424 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 483
TRANSF: 802 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

HiD3 : 484 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 543
TRANSF: 862 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

HiD3 : 544 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct 603
TRANSF: 922 ttacottgcacaaaccctctgtgctacagatagctgcagctgttgctcccaaatct

Amino acid sequence HiD3

HiD3 : 1 AFRYEGI ILVKKNSIH SLRKDLPGAKSCHTGFGRNVGFKIPVTKLKNHRILKVSMDPELT 180
TRANSF: 108 AFRYEGI ILVKKNSIH SLRKDLPGAKSCHTGFGRNVGFKIPVTKLKNHRILKVSMDPELT

HiD3 : 181 ATERELKALSEFFSQSCLVGTYSPyPDTDRLLKKKYSNLCALCEKPEQCNYPDIOfSGyDG 360
TRANSF: 228 ATERELKALSEFFSQSCLVGTYSPyPDTDRLLKKKYSNLCALCEKPEQCNYPDIOfSGyDG

HiD3 : 361 AIRCLDKGKGEVAFTKVQYIKKYFGVPGTTAEGDPSNFX YLCEDGSRRPITGPACSWAQ 540
TRANSF: 428 AIRCLDKGKGEVAFTKVQFIKKYFGVPG TT AEGDPSNFX YLCEDGSRRPILGPACSWAQ

Figure 10. BLAST alignments (Altschul et al., 1990) of nucleotide and amino acid sequences from HiD3 and flesh fly transferrin (GenBank accession number D28940).

Functionally similar amino acids are indicated by “+”.

42
Figure 11. Expression of HiD3 in *H. irritans* pupae reared at nondiapause (N) and diapause (D) inducing temperatures. RNA was extracted from nondiapausing pupae 0, 1, 2, 3, 4 and 5 days after pupation and from diapausing pupae 0, 3, 6, 9, 12 and 15 days after pupation. Each lane contains 20μg of total RNA. M=molecular weight markers.
Figure 12. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD4. Stop codons are indicated by ***.

\[\begin{array}{cccccccc}
9 & 18 & 27 & 36 & 45 & 54 \\
S'& AAG & GAT & ATT & GGT & ATT & TTA & TAT \\
& & & & & & & TTT \\
& & & & & & & TCT \\
& & & & & & GCA & TCA \\
\end{array} \]

Lys Asp Ile Gly Thr Leu Tyr Phe Ile Phe Gly Ala *** Ser Gly Ile Ile Gly

\[\begin{array}{cccccccc}
63 & 72 & 81 & 90 & 99 & 108 \\
ACT & TCA & TTA & AGA & ATT & TTA & TAT \\
& & & & & & GGA & GCT \\
& & & & & & & CTT \\
& & & & & & GCA & CAT \\
\end{array} \]

Thr Ser Leu Arg Ile Leu Ile Arg Ala Glu Leu Gly His Pro Gly Ala Leu Ile

\[\begin{array}{cccccccc}
117 & 126 & 135 & 144 & 153 & 162 \\
GUT & CAT & GAT & CAA & ATT & TTA \\
& & & & & & ATT \\
& & & & & & GTT \\
& & & & & & CTT \\
\end{array} \]

Gly Asp Asp Gin He Leu Leu Ser Ile Leu Ile His Pro Ala Leu Ile Ile Ile

\[\begin{array}{cccccccc}
171 & 180 & 189 & 198 & 207 & 216 \\
TTC & TTT & AAT & GTT & AAT & TTA \\
& & & & & & TTT & TTA \\
& & & & & & TAT & ATT \\
\end{array} \]

Phe Phe Leu Tyr Asp Ile Tyr Thr Leu His Pro Gly Ala Leu Ile Ile Ile

\[\begin{array}{cccccccc}
225 & 234 & 243 & 252 & 261 & 270 \\
TCA & TTA & GTA & GAT & TTA & TTA \\
& & & & & & TTA \\
& & & & & & ATT \\
& & & & & & CTT \\
\end{array} \]

Val Leu Gly Ala Pro Ile Pro Arg Ile Asn Ala Ile Ser Phe

\[\begin{array}{cccccccc}
279 & 288 & 297 & 306 & 315 & 324 \\
GGA & GTA & TTA & CGT & CCT & CCT \\
& & & & & & GCA \\
& & & & & & TTT & ATT \\
\end{array} \]

Gly Ala Gln Ile Tyr Asn Thr Pro Pro Thr Ile Thr Gly Ala Arg

\[\begin{array}{cccccccc}
333 & 342 & 351 & 360 & 369 & 378 \\
GGG & GCT & CCA & GTA & ACA & GGA \\
& & & & & & TTA \\
& & & & & & TCT \\
& & & & & & GCC \\
\end{array} \]

Gly Ala Gly Thr Leu Ile Ser Val Pro Ser Ser Thr Ala Ala His

\[\begin{array}{cccccccc}
387 & 396 & 405 & 414 & 423 & 432 \\
GCA & GGT & GAT & TCA & ATA & TTA \\
& & & & & & ATT \\
& & & & & & CTT \\
\end{array} \]

Gly Gly Asp Pro Ala Gln Ile Thr Leu Leu Ser Leu Thr Ile Ser

\[\begin{array}{cccccccc}
441 & 450 & 459 & 468 & 477 & 486 \\
TCA & ATT & GTA & GAT & TAA & CTT \\
& & & & & & TTA \\
& & & & & & TTA \\
& & & & & & ACC \\
\end{array} \]

Ser Ile Thr Ala Leu Asn Thr Thr Ala Ala Ala Arg

\[\begin{array}{cccccccc}
495 & 504 & 513 & 522 & 531 & 540 \\
GGA & TCA & GTA & ACA & ACV & TGA \\
& & & & & & TCA \\
& & & & & & TCT \\
& & & & & & GCA \\
\end{array} \]

Gly Ile Thr Phe Arg Asp Ala Glu Leu Thr Val *** Val Ile Thr Ile

\[\begin{array}{cccccccc}
549 & 558 & 567 & 576 & 585 & 594 \\
ATA & TTA & CGT & TTA & TTA & GTA \\
& & & & & & TTA \\
& & & & & & TCA \\
\end{array} \]

Leu Leu Leu Leu Ser Leu Pro Val Leu Ala Gly Ala Ile Thr Leu Leu

\[\begin{array}{cccccccc}
603 & 612 & 621 & 630 \\
ACT & CAT & CGA & ATT & TTA \\
& & & & & & TTA \\
& & & & & & TCA \\
& & & & & & GCC \\
\end{array} \]

Thr Asp Arg Asn Ala Thr Ser Phe Phe Asp Phe

44
Nucleotide sequences

<table>
<thead>
<tr>
<th>HbD4</th>
<th>COI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiD4/7:4</td>
<td>gatattggtactttatattttatttttggagcttgatctggaatattggaacttcatta</td>
</tr>
<tr>
<td>COI</td>
<td>gatattggtactttatattttatttttggagcttgatctggaatattggaacttcatta</td>
</tr>
<tr>
<td>HiD4/7:11</td>
<td>agaatattggtactttatattttatttttggagcttgatctggaatattggaacttcatta</td>
</tr>
<tr>
<td>COI</td>
<td>gatattggtactttatattttatttttggagcttgatctggaatattggaacttcatta</td>
</tr>
<tr>
<td>HiD4/7:124</td>
<td>ttaatatgtaattgttacagctcatgcatttattataattttctttatagttatacctatt</td>
</tr>
<tr>
<td>COI</td>
<td>ttaatatgtaattgttacagctcatgcatttattataattttctttatagtaatacctatt</td>
</tr>
</tbody>
</table>

Amino acid sequences

<table>
<thead>
<tr>
<th>HbD4</th>
<th>COI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiD4/7:4</td>
<td>KDIGTLYFIFGA*SGIIGTSLRILIRAELGHPGALIGDDQIYNVIVTAHAFIIIFFIVIP</td>
</tr>
<tr>
<td>HiD4/7:11</td>
<td>KDIGTLYFIFGAWSGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFI+IFF+V+P</td>
</tr>
<tr>
<td>HiD4/7:181</td>
<td>IIIGGFGN*LVPLILGAPDIAFPR+NNISFLLPPALTLLLVSS+VEGAGTGTVYPPL</td>
</tr>
<tr>
<td>HiD4/7:361</td>
<td>SSNIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINR+T+TGITFDR+PLFVSWITA</td>
</tr>
<tr>
<td>HiD4/7:131</td>
<td>SSNIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINR+T+TGITFDR+PLFVSWITA</td>
</tr>
</tbody>
</table>

Figure 13. BLAST alignment (Altschul et al., 1990) of nucleotide and amino acid sequences from HbD4 and *Chrysomya albiceps* cytochrome oxidase subunit 1 gene (GenBank accession number AF083657). Functionally similar amino acids are indicated by “+”.
Expression of HiD4 was similar on day 0 for nondiapause and diapause destined pupae (Fig. 7). Throughout development of nondiapause pupae, expression of HiD4 was similar from day 0 to 3, and was up-regulated on days 4 and 5 (Fig. 14). In diapausing pupae, HiD4 was expressed at similar levels on day 0 and 3, and was slightly down-regulated from day 6 to 15.

4.4.4 HiD5. A 425 nucleotide fragment was sequenced for clone HiD5 (Fig. 15). The deduced open reading frame represents 120 amino acids, and there are two stop codons at the end of the open reading frame. There was no significant homology of the nucleotide sequence to entries in GenBank. The highest amino acid homology is to a Kunitz inhibitor like protein 2 from Drosophila virilis Sturtevant, GenBank accession number AJ249251 (unpublished) (Fig. 16). For this stretch of sequence 47% (32/67) of amino acids are identical and 55% (38/67) of amino acids are identical and/or functionally similar to D. virilis Kunitz inhibitor like protein 2. Clone HiD5 contains the consensus pattern observed for the bovine pancreatic trypsin inhibitor (BPTI) Kunitz family of serine protease inhibitors (PROSITE: Hofmann et al., 1999) and this is indicated by asterisks in Figure 16. The consensus pattern for this protein family is F-x(3)-GC-x(6)-[FY]-x(5)-C, where x is any amino acid, (8) is the number of amino acids, and [FY] is either of the amino acids F or Y. Homology of HiD5 is also noted for other proteins containing the consensus pattern including collagen chain precursor from human (GenBank accession number X52022), thrombospondin from Haemonchus contortus (GenBank accession number AF043121), and amyloid protein A4 from human (GenBank accession number X06989). A multiple sequence alignment program, CLUSTAL W (Thompson et al.,
Figure 14. Expression of HiD4 in *H. irritans* pupae reared at nondiapause (N) and diapause (D) inducing temperatures. RNA was extracted from nondiapausing pupae 0, 1, 2, 3, 4 and 5 days after pupation and from diapausing pupae 0, 3, 6, 9, 12 and 15 days after pupation. Each lane contains 20μg of total RNA. M=molecular weight markers.
Figure 15. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD5. Stop codons are indicated by ***.
A. BLAST alignment (Altschul et al., 1990) of amino acid sequences from HiD5 and Kunitz inhibitor like protein 2 from Drosophila virilis (GenBank accession number AJ249251).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HiD5:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 APAPQPRCGRGNRGQARR----GCRMATMMWITSSGCSTCSTGCGGNNRRCFTEKEAC 57</td>
</tr>
<tr>
<td></td>
<td>A +QP C G ++ G A</td>
</tr>
<tr>
<td></td>
<td>G WWYDT S SCY GCGGN NRFCTK C</td>
</tr>
<tr>
<td>Kunitz:</td>
<td>39 ADQPVCICGKGGHAEFTCVGRANMNYWYSTRGKLSTYCGGGNNRFCTELC 88</td>
</tr>
<tr>
<td>HiD5:</td>
<td>58 ESRGERR 64</td>
</tr>
<tr>
<td></td>
<td>+ +C B+</td>
</tr>
<tr>
<td></td>
<td>Kunitz:</td>
</tr>
</tbody>
</table>

B. CLUSTAL W (Thompson et al., 1994) multiple sequence alignment of HiD5, Kunitz inhibitor like protein 2 from Drosophila virilis (GenBank accession no. AJ249251), collagen chain precursor from human (GenBank accession no. X52022), thrombospondin from Haemonchus contortus (GenBank accession no. AF043121), and amyloid protein A4 from human (GenBank accession no. X06989).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HiD5</td>
<td>NAPAQPRCGRGNRGQARR----GCRMATMMWITSSGCSTCSTGCGGNNRRCFTECECERH</td>
</tr>
<tr>
<td></td>
<td>Kunitz</td>
</tr>
<tr>
<td></td>
<td>collagen</td>
</tr>
<tr>
<td></td>
<td>thrombo</td>
</tr>
<tr>
<td></td>
<td>amyloid</td>
</tr>
</tbody>
</table>

Figure 16. A. BLAST alignment (Altschul et al., 1990) and B. CLUSTAL W multiple sequence alignment (Thompson et al., 1994) of HiD5 and amino acid sequences with highest degree of homology. Functionally similar amino acids are indicated by “+”. * denotes the PROSITE (Hofmann et al., 1999) consensus pattern of the Kunitz family of serine protease inhibitors.
1994) was used to compare homology of HiDS to these proteins (Fig. 16).

At pupation (day 0), expression of HiDS was higher in diapause-destined pupae compared to nondiapause pupae (Fig. 7). Throughout development, expression was highest at pupation (day 0) in both nondiapause and diapause destined pupae (Fig. 17). Expression was not detectable after pupation in either diapausing or nondiapausing pupae.

4.4.5 HiD6. A 605 nucleotide fragment was sequenced for clone HiD6 (Fig. 18). Two sections of this sequence have high homology with D. melanogaster tyrosine hydroxylase (TH), GenBank accession number U14395 (Birman et al., 1994) (Fig. 19). A 266 nucleotide section (from nucleotide 10 to 275) and 148 nucleotide section (from nucleotide 335 to 482) have 80% (213/266) and 85% (126/148) homology to D. melanogaster TH. The deduced open reading frame represents 201 amino acids. In this stretch of sequence, 91% (184/201) of amino acids are identical and 97% (197/201) of amino acids are identical and/or functionally similar to D. melanogaster TH (Fig. 19). In D. melanogaster, two isoforms of tyrosine hydroxylase are produced through alternate splicing of a single copy gene (Birman et al., 1994). One isoform is associated with the nervous system and the other with non-nervous tissue such as the epidermis, which secretes the cuticle. The isoform corresponding to clone HiD6 cannot be determined from the partial sequence. As both isoforms are highly homologous, suppression subtractive hybridization is unlikely to distinguish between them, and will enrich for increased expression of total TH. Relative expression of TH
Figure 17. Expression of HiD5 in *H. irritans* pupae reared at nondiapause (N) and diapause (D) inducing temperatures. RNA was extracted from nondiapausing pupae 0, 1, 2, 3, 4 and 5 days after pupation and from diapausing pupae 0, 3, 6, 9, 12 and 15 days after pupation. Each lane contains 20μg of total RNA. M=molecular weight markers.
Figure 18. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD6.

<table>
<thead>
<tr>
<th>Nucleotide</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>5' TGG GCT TGG TGG GCT TGG TGG GCT TGG GCT TGG GCT</td>
<td>Leu Ala Ser Leu Ala Phe Arg Ile Phe Glu Ser Thr Glu Tyr Val Arg His Val</td>
</tr>
<tr>
<td>63</td>
<td>TCA CCC TCC CAC ACT CCA GAA GCT GAT TGC ATT CAT GAA TGG TTG GTG CAT</td>
</tr>
<tr>
<td>117</td>
<td>AAC CTT TGG TGG GCT GCT CAC ACT CCA GAA TGG ATT GCT</td>
</tr>
<tr>
<td>171</td>
<td>GCC TCA TGG GCT GCT GCT GAT GAA TTC GAT GAA TGG TAT GGT CAC ACT</td>
</tr>
<tr>
<td>225</td>
<td>TCC ACC GCT TCC GCT TCC GCT GCT GCT GCT GCT GCT GCT</td>
</tr>
<tr>
<td>333</td>
<td>GAA CAT GCT CCC TCC GAA CCC CCC TCC ACC CCC GCT GTT CAC CCC GCT</td>
</tr>
<tr>
<td>441</td>
<td>TTC GCT GCT TGC GTA TGC ACC ATC GCT GCT CCC TCC GAA GCT GCT TGC AAT CCC</td>
</tr>
<tr>
<td>549</td>
<td>CAT ACT GAG GAT GTA AAA ATT CGG GAC ACA GAT GAA AAA TGG GAT ACC CTT TTG</td>
</tr>
<tr>
<td>603</td>
<td>GCT CCT TCC TA 3'</td>
</tr>
</tbody>
</table>

52
Nucleotide sequence: Identical = 213/266 (80%)

HiD6: 10 ttggctttccgtatcttccagagcaccaatatgtgcgtcatgtgaactcacccttccac 69

DTH: 1021 ttggccttccgcatcttccagagcacccagtatgtgcgccacgttaactcaccataccac 1080

HiD6: 70 actccagaacctgattgcattcatgaattgttgggtcatatgcctttgttgtctgatccc 129

DTH: 1141 actatgtgcctctctctcagctgctggctcgctgggtgcctccgacgaagaa 169

HiD6: 130 actccagaacctgattgcattcatgaattgttgggtcatatgcctttgttgtctgatccc 129

DTH: 1141 actatgtgcctctctctcagctgctggctcgctgggtgcctccgacgaagaa 169

Identical = 126/148 (85%)

HiD6: 335 cctttcgcccttcagccgtcttctcttaccttaaatcttcgtacggtatcaaaac 394

DTH: 1346 cctttcgcccttcagccgtcttctcttaccttaaatcttcgtacggtatcaaaac 1405

HiD6: 395 cctttcgcccttcagccgtcttctcttaccttaaatcttcgtacggtatcaaaac 454

DTH: 1406 cctttcgcccttcagccgtcttctcttaccttaaatcttcgtacggtatcaaaac 1465

Amino acid sequence

HiD6 : 2 LASLAFRIFQSTQYVRHVNSPFHTPEPDCIHELLGHMPLLSDPSFAQFSQEIGLASLGAS 181

DTH : 379 LASLAFRIFQSTQYVRHVNSPFHTPEPDCIHELLGHMPLLSDPSFAQFSQEIGLASLGAS 438

HiD6 : 182 DDEIEKLSTVYWFTVEFGLCKEHGDVKAYGAGLLSAyGELLHAISDKCEHRPFEPASTAV 361

DTH : 439 DEEIEKLSTVYWFTVEFGLCKEHGDVKAYGAGLLSAyGELLHAISDKCEHRPFEPASTAV 498

HiD6 : 362 QPYQDQEYQPIYYVAESFDDAKDKFRRWVSTMSRPFEVRFNPHTERVXILDTVEKLDTLL 541

DTH : 499 QPYQDQEYQPIYYVAESFDDAKDKFRRWVSTMSRPFEVRFNPHTERVEVLDSVVDKLTV 558

HiD6 : 542 HQMNTEILHLTNAINHRPF 604

DTH : 559 HQMNTEILHLTNAINHRPF 579

Figure 19. BLAST alignments (Altschul et al., 1990) of sequences from HiD6 and Drosophila melanogaster tyrosine hydroxylase (GenBank accession number U14395). Functionally similar amino acids are indicated by "*".
in the whole insect body and CNS was assessed by Northern blotting analysis. Expression of HiD6 in whole body and CNS are presented separately.

Expression of HiD6 in whole body. At pupation (day 0), expression of HiD6 was higher in diapause destined pupae compared to nondiapause pupae (Fig. 7). Throughout development, expression was highest at pupation (day 0) in both nondiapause and diapause destined pupae (Fig. 20). Expression was not detectable after pupation in either diapausing or nondiapausing pupae.

Expression of HiD6 in CNS. Expression of HiD6 was similar in the CNS of diapausing and nondiapausing insects on day 0 and appears to decrease slightly in day 15 diapause CNS compared to day 2 nondiapause CNS (Fig. 21).

4.4.6 **HiD9.** A 634 nucleotide fragment was sequenced for clone HiD9 and the deduced open reading frame represents 210 amino acids (Fig. 22). Two sections of this sequence have significant nucleotide homology with *D. melanogaster* ALA-E6 repeat region, GenBank accession number X57624 (Magoulas and Hickey, 1992) (Fig. 23). A 224 nucleotide section (from nucleotide 25 to 233) and a 470 nucleotide section (from nucleotide 173 to 634) have 66% (148/224) and 65% (307/470) homology to *D. melanogaster* ALA-E6 repeat region. The deduced reading frame is 63% (139/218) identical and 78% (171/218) identical and/or functionally similar to *D. melanogaster* CGI11486 gene product [alt 1], GenBank accession number AE003477 (Adams et al., 2000) (Fig. 24).
Figure 20. Expression of HiD6 in *H. irritans* pupae reared at nondiapause (N) and diapause (D) inducing temperatures. RNA was extracted from nondiapausing pupae 0, 1, 2, 3, 4 and 5 days after pupation and from diapausing pupae 0, 3, 6, 9, 12 and 15 days after pupation. Each lane contains 20μg of total RNA. M=molecular weight markers.
Figure 21. Northern blot analysis of nondiapause (N) and diapausing (D) pupal RNA probed with HiD6. Total RNA extracted from approximately 3-5 pupae whole pupae (A) and CNS of 30 pupae (B) on day 0 and 2 for nondiapausing pupae and day 0 and 15 for diapausing pupae. M=molecular weight markers.
Figure 22. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiD9.
Figure 23. BLAST alignment (Altschul et al., 1990) of nucleotide sequence from HiD9 and Drosophila melanogaster ALA-E6 repeat region (GenBank accession number X57624)
Figure 24. BLAST alignment (Altschul et al., 1990) of HiD9 and *Drosophila melanogaster* CG11486 gene product [alt 1] (GenBank accession number AE003477). Functionally similar amino acids are indicated by "+".
The functions of ALA-E6 repeat region and CG11486 gene product are unknown. The top 20 BLAST results for CG11486 gene product are shown in Table 4. The closest sequence homology (highest score) is to *D. melanogaster* CG11486 gene product (GenBank accession number AAF47713). This protein is almost identical to CG11486 gene product and its function is also unknown. Most of the matches sharing sequence homology with HiD9 appear to be hypothetical proteins from a number of organisms. Properties of HiD9 were analyzed using PROPSEARCH (Hobohm and Sander, 1995) in an attempt to determine functional or structural homologues. The top 20 results for the PROPSEARCH analysis are shown in Table 4. Entries with a distance from 12.5 to 13.7 have greater than a 53% chance of belonging to the same protein family. Entries with a distance from 13.7 to 14.9 have greater than a 41% chance of belonging to the same protein family. The highest match is to DREG-5 from *D. melanogaster* (SwissProt ID reg5_drome). There is greater than a 53% chance that DREG-5 and HiD9 belong to the same protein family. Almost all of the other matches are transcription factors, including paired-box proteins and homeobox proteins.

Temporal expression patterns of clone HiD9 are hard to interpret due to extremely high background levels on Northern blots (Fig. 25).

4.4.7 HiD10. A 621 nucleotide fragment was sequenced for clone HiD10 (Fig. 26). Clone HiD10 does not have significant nucleotide homology to entries in GenBank, EMBL or Berkeley *Drosophila* genome database. The deduced open reading frame represents 206 amino acids. The highest amino acid homology is to carboxylesterase-5A from *D. pseudoobscura* Frolova, GenBank accession number
Table 4. Top 20 BLASTP results (Altschul et al., 1990) for *Drosophila melanogaster* CGI 1486 gene product [alt 1] (GenBank accession number AE003477) and Top 20 PROPSEARCH results (Hobohm and Sander, 1995) for HiD9.

Top 20 BLASTP results for *Drosophila melanogaster* CGI 1486 gene product [alt 1]

<table>
<thead>
<tr>
<th>SCORE</th>
<th>ACCESSION</th>
<th>PROTEIN DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3798</td>
<td>AAF7713</td>
<td>CGI 1486 gene product [alt 1] (Drosophila melanogaster)</td>
</tr>
<tr>
<td>2.872</td>
<td>P34653</td>
<td>HYPOTHETICAL 76.2 KDA PROTEIN ZIK6327 IN CHROMOSOME III</td>
</tr>
<tr>
<td>3.756</td>
<td>D8028221</td>
<td>putative [Mus musculus]</td>
</tr>
<tr>
<td>4.496</td>
<td>CAA18160</td>
<td>ORF YEL0125c [Saccharomyces cerevisiae]</td>
</tr>
<tr>
<td>5.369</td>
<td>CAB58166</td>
<td>hypothetical protein [Saccharomyces cerevisiae]</td>
</tr>
<tr>
<td>6.358</td>
<td>CAB11083</td>
<td>hypothetical protein [Saccharomyces cerevisiae]</td>
</tr>
<tr>
<td>7.144</td>
<td>AAH30051</td>
<td>Hsrlp [Saccharomyces cerevisiae, YN0295, Peptide, 1802 aa]</td>
</tr>
<tr>
<td>8.142</td>
<td>CAB88633</td>
<td>hypothetical protein [Neurospora crassa]</td>
</tr>
<tr>
<td>9.137</td>
<td>DAA66157</td>
<td>hypothetical protein [Saccharomyces cerevisiae]</td>
</tr>
<tr>
<td>10.134</td>
<td>CAB46684</td>
<td>hypothetical protein [Leishmania major]</td>
</tr>
<tr>
<td>11.128</td>
<td>CAA6194</td>
<td>hypothetical protein Yv0282 [Mycobacterium tuberculosis]</td>
</tr>
<tr>
<td>12.126</td>
<td>IJAA34474</td>
<td>hypothetical protein [Homo sapiens]</td>
</tr>
<tr>
<td>13.123</td>
<td>AAC21430</td>
<td>L8453.1 [Leishmania major]</td>
</tr>
<tr>
<td>14.120</td>
<td>V08X3</td>
<td>hypothetical protein X protein - equine herpesvirus 1 (strain A8-Mp)</td>
</tr>
<tr>
<td>15.116</td>
<td>AAQ18166</td>
<td>hypothetical protein [Drosophila melanogaster]</td>
</tr>
<tr>
<td>16.116</td>
<td>CAA63845</td>
<td>SOX3 protein [Mus musculus]</td>
</tr>
<tr>
<td>17.115</td>
<td>AAC48525</td>
<td>gastrin [Sus scrofa]</td>
</tr>
<tr>
<td>18.114</td>
<td>AAD39750</td>
<td>transcriptional activator SRCAP [Homo sapiens]</td>
</tr>
<tr>
<td>19.114</td>
<td>AAB3322</td>
<td>transcription factor HoxA13 [Mus musculus]</td>
</tr>
<tr>
<td>20.114</td>
<td>CAA86176</td>
<td>mal5, stab, ten: 1367, [Saccharomyces cerevisiae]</td>
</tr>
</tbody>
</table>

Top 20 PROPSEARCH results for HiD9

<table>
<thead>
<tr>
<th>DIST.</th>
<th>SWISSPROT ID</th>
<th>PROTEIN DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13.19</td>
<td>reg5_drome</td>
<td>RHYTHMICALLY EXPRESSED GENE 5 PROTEIN (DREG-5)</td>
</tr>
<tr>
<td>2.13.63</td>
<td>vps10_drome</td>
<td>MATRIX PROTEIN VPS10</td>
</tr>
<tr>
<td>3.13.93</td>
<td>pax9_chick</td>
<td>PAIRED BOX PROTEIN PAX-9 (FRAGMENT)</td>
</tr>
<tr>
<td>4.13.94</td>
<td>vps10_mus</td>
<td>MATRIX PROTEIN VPS10 (VPS3)</td>
</tr>
<tr>
<td>5.13.97</td>
<td>paxa_human</td>
<td>PAIRED BOX PROTEIN PAX-8, ISOFORMS A/B/A</td>
</tr>
<tr>
<td>6.14.05</td>
<td>pax8_rat</td>
<td>PAIRED BOX PROTEIN PAX-8</td>
</tr>
<tr>
<td>7.14.06</td>
<td>ddx1_brine</td>
<td>HOMEOBOX PROTEIN DDLX-1</td>
</tr>
<tr>
<td>8.14.18</td>
<td>pax8_mouse</td>
<td>PAIRED BOX PROTEIN PAX-8</td>
</tr>
<tr>
<td>9.14.30</td>
<td>vhel_chick</td>
<td>PROBABLE HELICASE (ORF 2)</td>
</tr>
<tr>
<td>10.14.42</td>
<td>ddx1_mus</td>
<td>HOMEOBOX PROTEIN DDLX-1</td>
</tr>
<tr>
<td>11.14.45</td>
<td>pica_canfa</td>
<td>PAIRED BOX PROTEIN PAX-8, ISOFORM A/A</td>
</tr>
<tr>
<td>12.14.46</td>
<td>daxl_mus</td>
<td>DESMOGENE1 (DAX1) (FRAGMENT)</td>
</tr>
<tr>
<td>13.14.49</td>
<td>vtdc_cichl</td>
<td>HYPOTHETICAL 34.0 KD PROTEIN C17C9.12 IN CHROMOSOME I</td>
</tr>
<tr>
<td>14.14.53</td>
<td>vhel_plx</td>
<td>PUTATIVE HELICASE (ORF 2)</td>
</tr>
<tr>
<td>15.14.58</td>
<td>pex2_brine</td>
<td>PAIRED BOX PROTEIN PAXD7-B (PAX-2)</td>
</tr>
<tr>
<td>17.14.65</td>
<td>sox1_canfa</td>
<td>TRANSCRIPTION FACTOR SOX-1 (SOX-11)</td>
</tr>
<tr>
<td>18.14.71</td>
<td>cto1_brine</td>
<td>HOMEOBOX PROTEIN OX13 (Z0X3)</td>
</tr>
<tr>
<td>19.14.82</td>
<td>mov1_cand</td>
<td>CELL-TO-CELL MOVEMENT PROTEIN (MP) (3A PROTEIN)</td>
</tr>
<tr>
<td>20.14.87</td>
<td>gat1_canfa</td>
<td>GATA BINDING FACTOR-1B (TRANSCRIPTION FACTOR)</td>
</tr>
</tbody>
</table>
Figure 25. Expression of Hind9 in H. irritans pupae reared at nondiapause (N) and diapause (D) inducing temperatures. RNA was extracted from nondiapausing pupae 0, 1, 2, 3, 4 and 5 days after pupation and from diapausing pupae 0, 3, 6, 9, 12 and 15 days after pupation. Each lane contains 20μg of total RNA. M = molecular weight markers.
Figure 26. Partial nucleotide sequence and deduced amino acid sequence data from putative up-regulated cDNA clone HiDIO.
AF016135 (unpublished) (Fig. 27). In this stretch of sequence, 42% (87/206) of amino acids are identical and 59% (123/206) of amino acids are identical and/or functionally similar to *D. pseudoobscura* carboxylesterase-5A.

Homology of HiD10 and juvenile hormone esterase precursor from *Heliothis virescens* (F.) (GenBank accession number J04955) is considered insignificant as they share homology for only a very short segment of the sequences (Fig. 27). For a 44 amino acid stretch of sequence, 31% (14/44) of amino acids are identical and 56% (25/44) of amino acids are identical and/or functionally similar.

At pupation (day 0), expression of HiD10 was higher in diapause destined pupae compared to nondiapause pupae (Fig. 7). Expression increased throughout development in nondiapausing pupae, and remained at a constant low level in diapausing pupae (Fig 28).
HiDIO and *D. pseudoobscura* carboxylesterase-5A.

HiDIO:

```
LeRASLAIAGAVSMGVALAPPWATNRPQNAKLAEAGAVACNTMTGQIDKACLQVAAPK
LR + +AKA +5 SG AL+PM I A L V C N S +K CIK
```

Est5A:

```
LeEDFSLKACAAISFSNALQPVHQQLRGRAFELRIGYQDGQNYMNSVRLADKLESKFA
```

HiDIO:

```
ENVGQADLLTVVRPPTTGGVIESNPVTAIRGQAFSHPWAASYTTN
++V AVAS L + Y PPT FSP IES+P P AF++F II+5G PW +PM +VTT
```

Est5A:

```
SEIVSASSFSLVFSVTPFTFGPSAESQDAEAFITQHDIDIESKORFSQVMATTTTE
```

HiDIO:

```
DGPAWAVLLEINRSTQERFSLHMDNFLPAFNLFLHSLHNPFR+++DVAGLKLQIY
DG +MAA LL + +G E + ++FD M D AF LF ++ +DT++ Le V+
```

Est5A:

```
DGYPWALLLEQSGREELIVOLEQHMTMNTGAFYLLFRSMSQHTKDMGU5SKLQGVYL
```

HiDIO:

```
GKENFTVENYELQMTIVLNLQDV 410
```

Est5A:

```
GDRFSTVESIDVQHYMTDLFQNSV 426
```

HiDIO and *H. virescens* juvenile hormone esterase precursor.

HiDIO:

```
TTPGPVIESNPVAIRGQAFSHPWAASYTMM
TTF P++ESP + + PE +I G ++P D +T++
```

JN Est:

```
TTYLPVEVLQVTIIDDPEFLIAKGGNQPVFLIGHTSS 351
```

Figure 27. BLAST alignments (Altschul et al., 1990) of amino acid sequences from HiDIO and *Drosophila pseudoobscura* carboxylesterase-5A (GenBank accession number AF016135) and HiDIO and *Heliothis virescens* juvenile hormone esterase precursor (GenBank accession number J04955).
Figure 28. Expression of HiD10 in *H. irritans* pupae reared at nondiapause (N) and diapause (D) inducing temperatures. RNA was extracted from nondiapausing pupae 0, 1, 2, 3, 4 and 5 days after pupation and from diapausing pupae 0, 3, 6, 9, 12 and 15 days after pupation. Each lane contains 20μg of total RNA. M=molecular weight markers.
4.4.8 Summary of temporal expression patterns. A summary of temporal expression pattern of the putative diapause up-regulated genes is shown in Table 5. Expression of the putative diapause up-regulated genes tended to fall into two patterns. HiD4 showed a unique pattern of expression. This gene was expressed equally at pupation (day 0) in total RNA extracted from nondiapausing and diapause destined pupae. Expression increased before moulting (day 4 and 5) in nondiapausing pupae, and decreased throughout diapause.

The rest of the genes had slightly varied patterns of expression, but showed some basic trends. Highest expression occurred at pupation in diapause destined pupae. For HiD3, 5 and 6, that is transferrin, serine protease inhibitor and tyrosine hydroxylase, the difference in expression between nondiapause and diapause was very pronounced, whereas the difference is less evident for HiD1 and 10. Expression often increased in the last days of pupal development (closer to moul) in nondiapausing pupae. This was the case for HiD1, 3, 6 and 10.
Table 5. Summary of temporal expression of putative diapause up-regulated genes.

<table>
<thead>
<tr>
<th>Clone Identity</th>
<th>Expression during Nondiapause (day)</th>
<th>Expression during Diapause (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HiD1 none</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HiD3 transferrin</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HiD4 cytochrome c oxidase</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>HiD5 serine protease inhibitor</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HiD6 tyrosine hydroxylase</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HiD10 carboxylesterase</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

69
CHAPTER 5
DISCUSSION

5.1 Developmental arrest during diapause.

The stage of pupation in which diapause occurs in horn flies appears similar to that of two other flies, Sarcophaga argyrostoma (Robineau-Desvoidy) and S. bullata (Parker). Developmental arrest of S. argyrostoma and S. bullata occurs soon after head eversion, before the pupal-adult moult (apolysis), and in most instances, before any visible signs of antennal development (Fraenkel and Hsiao, 1968). During metamorphosis at 23°C, horn flies undergo head eversion (larval-pupal ecdisis) approximately 24 hr after pupation, and pupal-adult apolysis occurs during the period of 40 hr to 65 hr after pupation (Thomas, 1985). Morphology of diapausing horn flies indicates that development arrests between 24 hr to less than 48 hr after pupation. Thus like S. argyrostoma and S. bullata, horn flies diapause in the interval between head eversion and pupal-adult apolysis.

Put into perspective of Thomas's (1985) schematic representation of the stages of metamorphosis of horn fly pupae, horn flies diapause during the phanerocephalic pupal stage. This is consistent with the claim that diapausing horn fly pupae have yellow eyes (Depner, cited in Kunz and Miller, 1985) but not with the claim made by Thomas that horn flies diapause as red-eyed pharate adults (Thomas, 1985).

There are two peaks in ecdisone levels during pupal-adult metamorphosis of the Australian sheep blowfly, Lucilia cuprina (Weidemann) (Barritt and Birt, 1971), fruit fly, D. melanogaster (Handler, 1984) and stable fly, Stomoxys calcitrans (L.)
(O’Neill et al., 1977). The first peak occurs during the larval-pupal apolysis and is associated with pupation. The second peak occurs during the pupal-adult apolysis, and is associated with histogenesis of imaginal tissues during metamorphosis. Considering the possibility of similar patterns of ecdysone production in a broad range of flies, it may be reasonable to assume that there are two peaks of ecdysone in the horn fly, and the second peak occurs during pupal-adult apolysis. Significantly, developmental arrest in the horn fly may be speculated to occur before the second peak.

Both body and CNS appear to arrest at similar developmental stages, that is, prior to pupal-adult apolysis. It is unknown whether all tissues arrest simultaneously in the horn fly. During diapause induction of Chymomyza costata larvae, imaginal discs and CNS immediately slow development whereas body development slows after 3 days (Kostal et al., 2000).

The CNS of diapausing horn fly pupae remain developmentally arrested throughout prolonged storage at 5°C (Table 1). Similarly, brain cells of S. crassipalpis remain arrested at the G0/G1 phase of the cell cycle during diapause (Tammariello and Denlinger, 1998a). Developmental and cell cycle arrest of the CNS may be a good indicator of diapause status.

5.2 Isolation and identification of putative diapause up-regulated cDNAs from horn fly pupal cDNA library.

A subtracted library containing putative hornfly diapause up-regulated cDNAs hybridized with approximately 10% of diapausing pupal cDNAs. Although this number is likely high due to false positives, the percentage of diapause up-
regulated clones is similar to other percentages reported in the literature. In the brain of *S. crassipalpis*, four percent of expressed genes (Flannagan et al., 1998) and nine percent of expressed proteins (Joplin et al., 1990) are up-regulated during diapause. The percentage of false positives may vary from 5% to 95% for suppression subtractive hybridization (Diatchenko et al., 1996; Gurskaya et al., 1996; Clonetech PCR-Select cDNA subtraction kit user manual).

5.2.1 **HID 6: Tyrosine hydroxylase.**

Expression of TH in the whole body. Tyrosine hydroxylase (TH) catalyzes the first and rate-limiting step in dopamine (DA) synthesis. This enzyme catalyzes the hydroxylation of tyrosine to L-dopa (L-3, 4-dihydroxyphenylalanine), which is then converted to dopamine.

TH gene expression in whole bodies of horn fly pupae appears similar to the expression of dopa decarboxylase (DDC) in whole bodies the cabbage armyworm, *Mamestra brassicae* (L.). DDC is an enzyme in the dopamine biosynthetic pathway that catalyzes the transformation of L-dopa to dopamine. Diapause destined *M. brassicae* have significantly higher levels of dopamine compared to nondiapausing pupae (Noguchi and Hayakawa, 1997). This increase in dopamine is attributed to the expression of DDC. The mechanism by which haemolymph dopamine inhibits development of *M. brassicae* remains unknown (Noguchi and Hayakawa, 1997). TH was also measured in *M. brassicae*, and in contrast to the horn fly, TH expression may be similar between nondiapause and diapause destined *M. brassicae* pupae (Noguchi and Hayakawa, 1997).
Increased dopamine levels have also been noted in other developmentally arrested insects. Dopamine levels are higher in the whole body of diapause destined 2nd and 3rd instar larvae of the fly, *C. costata*, compared to continuously developing larvae (Kostal et al., 1998). Developmentally delayed, parasitized armyworm larvae, *Pseudalelia separata* Walker, have increased levels of dopamine in the integument, haemolymph and CNS (Noguchi and Hayakawa, 1997).

TH expression in the whole body is primarily associated with pupation (day 0) in both diapause and non-diapause destined horn fly pupae. The pattern of TH expression in horn flies is similar to the levels of dopamine in *M. brassicae*. The highest levels of dopamine occur during pupation, in both non-diapausing and diapause destined *M. brassicae*, but are significantly higher in diapause destined pupae (Noguchi and Hayakawa, 1997).

The cuticular pool contributes the majority of dopamine in whole insects (Kostal et al., 1998), and is not involved in diapause in the fly, *C. costata* (Kostal et al., 1999). Northern blots also indicate that whole body RNA contributes the majority of TH in the horn fly (Figure 21). Cuticular dopamine is a precursor for sclerotization and melanization (reviewed by Wright, 1987). Products derived from dopamine are incorporated into the cuticle where they cross-link proteins and chitin, resulting in a hardened and strengthened cuticle. Increased levels of TH expression during pupation of diapause-destined horn flies may ultimately result in increased sclerotization and melanization of the puparium.

Increased melanization of the cuticle of diapausing adult insects has been well documented for a number of species (reviewed by Tauber et al., 1986).
Typically, overwintering coloration is an adaptation to camouflage these insects from predators throughout diapause. Increased melanization of the horn fly puparium, which is already highly melanized, is not likely to provide increased protection from predators. During sclerotization, dopamine is incorporated into the cuticle, oxidized into quinone, and then cross-linked to protein and/or chitin (reviewed by Wright, 1987). Sclerotization results in strengthening and hardening of the cuticle. During diapause, increased dopamine could result in increased sclerotization and may ultimately result in increased strength that could provide extra protection from either parasitism or the environment. Parasitism of pupae by Spalangia wasps before the onset of cold weather is a significant mortality factor of diapausing horn fly pupae (Thomas and Kunz, 1986). To the best of my knowledge, there are no references of increased sclerotization of the cuticle or puparium during diapause. However, there are other changes associated with the puparium of diapausing S. crassipalpis. The puparium of diapausing S. crassipalpis has increased hydrocarbon (Yoder et al., 1992, 1995). The puparium of diapause and nondiapause horn flies should be compared for possible differences in structure and properties.

Expression of TH in the CNS. Dopamine is a candidate for the regulation of diapause induction by acting as a neurohormone in the insect nervous system (Houk and Beck, 1977). Dopamine modulates expression of diapause hormone in B. mori (Noguchi and Hayakawa, 2001). As well, dopamine levels in diapause-destined M. brassicaceae pupae may inhibit brain neurosecretion of PTTH, leading to diapause induction (Noguchi and Hayakawa, 1997).
In CNS tissues of nondiapause and diapause destined horn fly pupae (day 0), levels of TH expression are comparable. Nondiapause and diapause destined, C. costata larvae also produce similar levels of dopamine in the CNS during the sensitive period for induction (Kostal et al., 1999).

Comparable levels of TH expression in the CNS of nondiapause and diapause destined horn flies suggest that increased levels of dopamine are not involved in diapause induction. However, it must be noted that Northern blotting compares the level of TH transcripts and is therefore not necessarily indicative of dopamine content. Direct measurement of dopamine in the CNS (i.e. by HPLC) is necessary to determine if increased levels of dopamine are involved in diapause induction in the horn fly. It is also important to note that it may not be the total dopamine content of the CNS, but the dopamine activity at specific sites in the CNS that is important for diapause induction Kostal et al. (1999). Changes in dopamine at these sites may occur without requiring an increase in the overall content. These changes could be determined by in-situ hybridization studies.

During early diapause (day 15) there is a slight decrease in TH expression in the CNS of the horn fly (Fig. 20). Similarly, in the CNS of P. brassicae, dopamine levels are lower during the first days of diapause (Puiroux et al., 1990). Lower dopamine level may modulate neurosecretory cell activity by the reduction of stimulating activity (Puiroux et al., 1990). Decreased expression in diapausing horn fly pupae appears consistent with an overall decrease in brain activity during diapause.
In addition to its roles in melanization and sclerotization of the puparium and as a neurotransmitter, neuromodulator and neurohormone in the insect nervous system, dopamine participates in a number of physiological processes. Of particular importance to diapause may be the involvement of dopamine in defense and immune response. In *D. melanogaster*, dopamine functions in the defense response of melanotic and sclerotic encapsulation of parasites (Nappi, 1991). As a component of the insect’s defensive mechanism, HiD6 may in part provide protection against invading foreign organisms, including bacteria and parasitoids. This may be especially important during early fall when warm temperatures may allow the proliferation of bacterial and fungal pathogens, and movement of parasitic wasps.

5.2.2 HiD3: Transferrin. The expression of HiD3 is associated with pupation in both non-diapause and diapause destined pupae, but is significantly higher in diapause-destined pupae, suggesting that HiD3 may be involved in either pupation or diapause induction. Expression of a juvenile hormone-repressible transferrin-like protein has also been documented in fat body, haemolymph, and ovary of diapausing *Riptortus clavatus* (Hirai et al., 1998, 2000). The function of transferrin during diapause in *R. clavatus* remains unknown.

Transferrin is up-regulated during immune response and cellular defense. In *D. melanogaster*, transferrin is up-regulated during bacterial infection (Yoshiga et al., 1999) and in the mosquito *Aedes aegypti* (L.), transferrin is up-regulated, upon infection with bacteria (Yoshiga et al., 1997) and during encapsulation of filarial worms (Beerntsen et al., 1994). In the mosquito, transferrin may inhibit growth of invading organisms by sequestering iron (Yoshiga et al., 1997). HiD3 may be up-
regulated during diapause to provide protection against invading foreign organisms by sequestering iron from these organisms.

Transferrin may also be involved in melanization. Tyrosine hydroxylase (TH) is an iron dependent metalloenzyme (Hoeldtke and Kaufman, 1977; Haavik et al., 1991). Perhaps transferrin provides the iron required for TH. Transferrin and tyrosine hydroxylase may be part of the same pathway for melanization during pupation, immune response and cellular defense. The involvement of transferrin in melanization remains to be proved. However, if this in fact does happen, HiD3 may be up-regulated during diapause to provide increased ability to melanize invading organisms.

5.2.3 HiD5: Serine protease inhibitor. HiD5 does not have a high degree of protein homology with entries in GenBank, however, it contains a signature pattern specific for the Kunitz family of serine protease inhibitors. Serine protease inhibitors are grouped into families based on structural characteristics. The Kunitz family consists of low molecular weight serine protease inhibitors (PROSITE: Hofmann et al., 1999). The small size of HiD5 as indicated by Northern blot analysis is consistent with this transcript belonging to this family of proteins.

The expression of HiD5 is associated with pupation in both non-diapause and diapause destined pupae, but is significantly higher in diapause destined pupae. This suggests that HiD5 may be involved in either pupation or diapause induction. Several serine protease inhibitors were isolated from the desert locust Schistocerca gregaria (Forskal) (Vanden Broeck et al., 1998). These inhibitors are expressed in different
tissues and expression is dependent on developmental stage, implying multiple functions.

During cuticle sclerotization and melanization, serine proteases are involved in the proteolytic cleavage of prophenol oxidases (reviewed by Wright, 1987). A serine protease inhibitor found in haemolymph of *Sarcophaga* (Sugumaran et al., 1985) prevents melanization (in the presence of prophenol oxidase, serine protease, and catecholamine precursors). As overall gene expression is decreasing during diapause, the components of the cellular defense system (i.e. those involved in melanization) may already be present at induction, ready to launch an immune response. During diapause, HiD5 may function to keep the reaction in check, that is, to inhibit undesirable melanization in the presence of increased TH (increased dopamine).

Serine protease inhibitors are also involved in immune response and cellular defense. Several serine protease inhibitors were isolated from haemolymph of the greater wax moth, *Galleria mellonella* (L.), after inoculation with a fungal cell wall preparation (Frobius et al., 2000). One of these inhibitors exhibits homology to the Kunitz family. Protease inhibitors may be used to inhibit cell destruction or bacterial proteolytic enzymes. The serine protease inhibitor-like protein, HiD5, may be part of the insect's defense mechanism, and may be up-regulated during diapause to provide protection against invading foreign organisms in early fall, before the onset of cold temperatures.

HiD5 could also function to inhibit the differentiation and destruction of imaginal tissues during diapause. During metamorphosis, serine proteases are involved in the differentiation of imaginal disc (Ohtsuki et al., 1994) and tissue
restructuring (larval gut disintegration) in *S. peregrina* (Nakajima et al., 1997). A serine protease inhibitor prevents the differentiation of imaginal disc during metamorphosis of *S. peregrina* (Ohtsuki et al., 1994). During diapause, HiD5 may prevent differentiation and destruction of imaginal tissues by inhibiting serine proteases.

Another possibility is that HiD5 is a structural protein of the puparium that serves to protect against microbial invasion and dehydration. Amyloid fibrils play a protective role in the chorion of *B. mori* (Iconomidou et al., 2000) and the egg envelope of diapausing fish embryo, *Austrofundulus limnaeus* (Podrabsky et al., 2001). The egg envelope of *A. limnaeus* is composed of amyloid fibrils similar to those associated with human disease such as Alzheimer’s disease. Amyloid fibrils serve as a barrier against microbes and low molecular weight solutes, and are in part responsible for resistance to desiccation in fish. Amyloid proteins like those involved in Alzheimer’s disease contain a consensus sequence for serine protease inhibitor. HiD5 also shares protein homology with amyloid proteins.

5.2.4 HiD10: Carboxylesterase

The expression of HiD10 is associated with pupation in both nondiapause and diapause destined pupae, but is slightly higher in diapause destined pupae. Similarly, juvenile hormone (JH)-esterase and general carboxylesterase activities in the haemolymph of Colorado potato beetle, *Leptinotarsa decemlineata* Say, are highest in 4th instar larvae and during diapause induction (Kramer and DeKort, 1975).

HiD10 may be involved in either metamorphosis and/or diapause. One possible function of HiD10 may be the metabolism of juvenile hormone (JH) by
ester hydrolysis during metamorphosis or diapause. Low JH titers during pupal
metamorphosis regulate developmental programming to the adult. JH esterases
increase during metamorphosis, presumably to metabolize JH, ensuring proper adult
development. JH may also be involved in oxygen consumption during diapause.
Juvenile hormone activity cycles during pupal diapause of *S. crassipalpis*, and is
thought to drive cyclical oxygen consumption (Denlinger and Tanaka, 1989). JH-
esterase activity also cycles, and may function to partially regulate cyclical JH levels.
Note however, homology between JH esterase from *H. virescens* and HiD10 is
insignificant suggesting functions other than metabolism of JH.

A number of esterases have been identified in insects. HiD10 has the closest
homology to Est-5A. Besides the role in JH ester hydrolysis, the functions of these
esterases in development are largely unknown. Expression of specific esterases
varies depending on tissue and life stage. In *Drosophila mojavensis* Patterson and
Crow and *D. buzzatii* Patterson and Crow, expression of Est-4 limited to cuticle of
late larvae, and probably functions during pupation, whereas Est-5 is expressed in
haemolymph and fat body throughout all life stages (Zouros et al., 1982). Est-P
(similar in structure to Est-6) is expressed during late larval stage (Collet et al, 1990).
and Krasnow, 1996). This protein is notable because it is expressed in a circadian rhythm and is dependent on the *period* gene (see Chapter 2) for its rhythmic expression. It is thought that diapause is ultimately controlled by the circadian system. Note however, that HiD9 does not have significant sequence homology to Dreg-5 but has a greater than 53% chance of belonging to the same protein family. Property comparisons with other known protein families suggest HiD9 may also code for a transcription factor. As a potential transcription factor, HiD9 may have a regulatory function and therefore warrants further investigation.

5.2.6 **HiD1.** HiD1 appears to code for a novel protein as it has no significant sequence homology to known sequences (DNA or protein) or property homology to 58 protein families. This cDNA displays similar expression pattern to other HiD isolates, suggesting that it may be involved in multiple processes including diapause and pupation.

5.2.7 **HiD4: Cytochrome oxidase.** HiD4 is not a diapause up-regulated cDNA as expression on day 0 is similar for both nondiapausing and diapause destined pupae. Expression patterns suggest that the mitochondrial gene, cytochrome oxidase, may be an indicator of metabolic activity. Decreasing expression of HiD4 as diapause progressed may reflect the arrest of cellular function. Increased expression during days 4 and 5 in nondiapausing pupae may reflect increasing cellular function coinciding with moulting.

5.2.8 **G3PDH and the use of an internal standard for Northern blotting.**
Northern blot analysis is used for measuring and comparing the expression of specific mRNAs between tissues. There is a decrease in overall mRNA expression
throughout the diapause developmental process (Wigglesworth, 1972). Therefore accurate comparison of non-diapausing and diapausing mRNA requires the use of an internal standard. The internal standard is an mRNA expressed at equal levels in all samples and is used as a reference against which the mRNA of interest can be normalized. The use of an internal standard minimizes error due to loading or sample variation. For this study, the ideal internal standard is an mRNA whose expression is constant between non-diapause and diapause pupae, and is expressed equally throughout all stages of diapause development.

A commonly used internal standard is actin. During diapause, the expression of actin is down-regulated in the CNS of *L. dispar* (Lee et al., 1998). As well, *D. melanogaster* has several actin genes that are differentially expressed in different tissues, and throughout development (Fyrberg et al., 1983). Therefore actin may not be an appropriate internal standard for diapausing insects.

This study utilized glyceraldehyde-3-phosphate-dehydrogenase (G3PDH) as the internal standard. G3PDH is a key enzyme in glycolysis and is constitutively expressed in many tissues. Expression in *D. melanogaster* has been shown to vary in some tissues and developmental stages (Sun et al., 1988). Expression of G3PDH appears to decrease during diapause and is likely a reflection of decreased metabolism. G3PDH also increases during nondiapause development and is likely a reflection of increased energy requirements during moulting. As a consideration for future research, this study recommends the use of a marker not associated with metabolism.
CHAPTER 6
CONCLUSIONS

Suppression subtractive hybridization (Diatchenko et al., 1996; Gurskaya et al., 1996) is a useful technique for identifying differentially expressed cDNAs in diapause destined horn fly pupae. Success of this technique depends on having non-diapause and diapause tissues of comparable developmental stages. There are conflicts in the literature regarding the stage of developmental arrest of diapausing horn fly pupae, and the stage of developmental arrest is not immediately apparent. It therefore becomes necessary to define morphologically comparable stages of development.

Morphology of pupae and CNS indicate that developmental arrest of the horn fly occurs early in metamorphosis, in the interval between head eversion and pupal-adult apolysis. This study defines the morphology of diapausing horn fly pupae, which will allow for more accurate and meaningful comparisons of gene expression in future research.

The exact functions of proteins encoded by the diapause up-regulated genes remain undefined. Comparisons of homology suggest they may play a role in a number of processes including melanization and sclerotization of the puparium, metamorphosis, cellular defense and immune response. The insects collected for this study were simultaneously undergoing pupation, metamorphosis, and diapause induction. These up-regulated genes may be involved in either or all of these processes. Particularly intriguing is the potential involvement of tyrosine
hydroxylase, transferrin and serine-protease inhibitor in immune and cellular defense during diapause. These proteins may provide protection against invading foreign organisms during early diapause when warm fall temperatures are permissive for the growth of bacterial and fungal pathogens or parasitic insects. Synthesis of these proteins at diapause induction would also allow for the establishment of a defense mechanism prior to the arrest of gene expression. Further study is necessary to establish the role of these genes and their products during diapause.
REFERENCES

88

