Peregoodoff, Robert James

2001

Resource website for applied Math 30
RESOURCE WEBSITE FOR APPLIED MATH 30

ROBERT JAMES PEREGOODOFF

B.Ed., University of Lethbridge, 1991

A Project
Submitted to the Faculty of Education
of the University of Lethbridge
in Partial Fulfillment of the
Requirements for the Degree

MASTER OF EDUCATION

LETHBRIDGE, ALBERTA
October, 2001
Abstract

To complete the requirements of a one-course project of the Masters of Education degree at the University of Lethbridge, I have chosen to design and build a website for the recently implemented Applied Math 30 program. The major objective of the Applied Math 30 website is to be a supplemental resource for students to utilize while they are part of a formal classroom setting. This website has not been designed as a replacement tool for students who wish to take this course via distance learning. A second objective is to develop a framework in which others may utilise and build upon for both this Applied Math 30 course, as well as other math programs throughout the province of Alberta. The website as it currently stands will be given to Alberta Learning so that it may be distributed to teachers and other educators to build upon or to use with their students.
Acknowledgments

Thanks must be given to the following people for their assistance during the creation of this project: Dennis Burton for his comments and suggestion as well as his willingness to ensure our computers were always working; Elaine Jacklynn for her comments and suggestions as well as her valuable input into the “Kayaking the Clayquout Sound” assignment; Phil Mcrae for his comments and suggestions as well as introducing me to the Hot Potatoes program which so greatly added to the usefulness of the website; My Applied Math 30 students from the Fall of 2000 and the Spring of 2001 for their evaluation and criticisms of the site. Looking into their faces each day was my inspiration to produce this site; Dr. Brian Titley and Dr. Craig Loewen for their valuable feedback, criticisms, suggestions and patience during the development of this website.
TABLE OF CONTENTS

Abstract .. iii

Acknowledgments ... iv

Table of Contents .. v

Introduction .. 1

Objectives ... 1

Website Development Process .. 1

 Recognition .. 1

 Analysis ... 2

 Teleconferencing ... 2

 Videoconferencing .. 2

 Design ... 3

 Refinement .. 3

 Implementation ... 3

 Training ... 3

 Maintenance ... 4

 Retirement .. 4

Programs Used ... 4

Evaluation ... 5

 Technical and Visual Aspects .. 5

 Content ... 7

Appendices ... 9

 A: Website Map .. 9

 B: Hard Copy of Website .. 10

 C: CD-ROM of Website ... Back Cover
Introduction

To complete the requirements of a one-course project of the Masters of Education degree at the university of Lethbridge, I have chosen to design and build a website for the recently implemented Applied Math 30 program. This document represents an overview and summary of the process that was undertaken in this development. It in no way represents an exhaustive research of the existing literature with regard to education and the internet. A study of this nature would represent a body of work representing a distinct project on its own.

Objectives

The major objective of the Applied Math 30 website is to be a supplemental resource for students to utilise while they are part of a formal classroom setting. This website has not been designed as a replacement tool for students who wish to take this course via distance learning.

A second objective is to develop a framework in which others may utilise and build upon for both this Applied Math 30 course, as well as other math programs both in Lethbridge Collegiate Institute and throughout the province. The website as it currently stands will be given to Alberta Learning so that it may be distributed to teachers and other educators to build upon, tear apart, or just use with their students.

Website Development Process

In setting out to establish this website, I decided that it would be best to follow the life cycle of the development of any technical cycle. As this website will need to exist within the technical computer world of a large cycle, it would have to adhere to processes of the implementation of new technologies.

Recognition

The first step in this process was to recognize that there existed a gap between the
communications of students who are taking short-term or extended leaves of absence from their studies. So often during the school year, students leave for band trips, athletic tournaments, family vacations, tours arranged by the Travel Club or even illness. It is accepted truth that student presence in the classroom is crucial in the education of students learning in a school-based environment (as opposed to a true “virtual school” such as St. Gabriel Cyber School (www.stgabe.com) based in Red Deer. If they must be absent due to circumstances beyond their control, I believe that it is incumbent upon the education system to facilitate a minimal disruption in their learning. The seed for the development of this website was the desire to maintain communication with students during these absences.

Analysis

As the problem is essentially fostering the learning of the outcomes from the program of studies while away from the classroom, the solution lies in some mode of telecommunication. Various methods were analyzed, each with its own merits and drawbacks.

Teleconferencing. While beneficial in that the teacher and student are able to maintain a direct human interaction, this benefit is overwhelmed by the financial cost of taking over the phone for extended periods of time. While the private sector views this technology as integral to their operation, school systems do not share the luxury of extended resources. A second drawback to this technology is the potential for large time-zone differences between the locations for the teacher and the student. As this technology is based upon real-time communication, one or both parties would be tremendously inconvenienced in order to maintain contact.

Video conferencing. Same as above but with the financial implications multiplied at least tenfold.
Design

After deciding that an internet-based system was the most desirable, the next step was to design the actual layout of the site. While this may sound like a relatively simple process, it is actually the most important step. Because of the interconnected nature of a website, it is the rare designer that will jump into creating a full website with the first page, while not having a vision of what the entire site will entail. I referred to this overall vision as the skeleton of the finished product. It made no sense to fill in the veins and muscles of one particular section of the site until I was certain that there would be no major structural changes required. The ultimate design (Appendix 1) is based upon the structure of my own classroom, including my classroom rules, and homework and journal questions which other teachers may not find particularly useful.

Refinement

There has been very little in the way of refinement since I began with my original design. In consultation with both those who are technologically proficient and those who are less so, the comments were generally positive and no major deletions or additions were suggested. It is hope that other teachers within the Lethbridge Collegiate Institute (LCI) and the province through the Alberta Online Consortium will make the necessary additions and adjustments to make this a useful site for students across the province.

Implementation

The implementation of this website will not occur until the Spring of 2002 as several other teachers at LCI have agreed to contribute to particular unit sections prior to that time.

Training

Although I do not believe that there is a need for specialized training to utilise the website, I do recognize that it would be useful to include a section indicating the
procedures for navigating through the site and the Power Point tutorials.

Maintenance

While designing and developing this website has been a time consuming process, the maintenance of the website is also an onerous task, particularly for what is essentially a volunteer position within our traditional education system. There are currently no moneys within schools to pay for a person to maintain a website as occurs within virtual schools and the private sector. Currently there is no person designated as the maintenance webmaster at LCI; however if the website is utilized by the Alberta Online Consortium, such a position may become a reality.

Retirement

An accepted fact of today's' educational technology age is that nothing id forever. I believe that I must be realistic concerning the life span of this website. Another teacher or computer person may design a much better layout for this website, with better resources and more interactive pedagogical tools, thereby making this site redundant. For that matter, the whole Applied Math 30 curriculum may be changed at some point in the future, whereby a new curriculum would be written and an opportunity for another person to develop such a site.

Programs Used

The following software programs were all used to a lesser or greater extent in the development of this website:

1. Netscape Composer was used to compose, edit and publish individual webpages.
2. Microsoft FrontPage was also used to compose, edit and publish pages but was also integral in the website as a whole with regard to tracking links over the entire website.
3. Swish is an animation program used to create the logo of the main page.
4. Wingif is one of the graphic manipulation programs used.

5. Microsoft Photo Editor is also a graphic manipulation program used.

6. Wordpad was used to edit HTML codes at the specific program code level.

7. Mathtype was used to place mathematical symbols in various parts of the website.

8. The Word Art feature of Microsoft Word was used to create the various page-heading styles.

9. Microsoft Powerpoint was used to create the individual slides of the specific outcomes.

10. Hot Potatoes is an excellent program for generating multiple choice, true/false, and other evaluation instruments for both on- and off-line use.

The following websites were utilized and I thank the developers for such easy access to such valuable additions to my project:

1. http://sitelevel.whatUseek.com was the search engine for the website.

2. http://Freedback.com was the cgi engine for the student information form.

3. http://www.shodor.org/interactive_dev/activities/spinner was the JavaScript for spinner.

Evaluation

As with projects of this type, there are always improvements that can be made and a website is never really finished. In order for a website to be relevant and applicable, there are always additions and deletions, modifications and updates that must occur. This section will attempt to evaluate this website in its current form, beginning with a critical evaluation survey based on the work of Kathleen Schrock (http://www.capecod.net/schrockguide).

Technical and Visual Aspects of the Web Page

1. Does the webpage take a longtime to load?
Using Netscape, there is very little load time on any of the pages. I have noticed that with MS Explorer (5.5) the title page that contains the Swish heading can take a significant amount of time to load. I am unsure as to the cause of this as I have seen other Swish applets work on this platform. As simple solution to this would be to remove this applet.

2. Do the pictures add to the page?

I purposely limited the graphics and images within the site to facilitate a fast load time but as the objective-specific tutorials are added, there would be a need to add images to facilitate the learning process.

3. Is the spelling correct on the page?

Yes, there are no spelling errors to my knowledge anywhere on the site.

4. Is there a date of last update?

No. This would be something that would have to be included so those students who visit the site repeatedly would know which sections have been changed.

5. Is there an image map (large clickable graphic with hyperlinks) on this page?

No. This common feature was left off the site intentionally as in my discussions with students, I learned that the less experienced students find image maps confusing and difficult to follow. If they are unsteady with their hand on the mouse, they can very easily move to pages in which they do not wish to be.

6. Is there a table on the page? If so, is it readable with your browser?

Tables are necessary for efficient layout of web pages and I feel that I have utilized tables effectively in the site. I have encountered no problems with the tables in any browser.

7. If you have graphics turned off, is there a text alternate to the images?

I think this is the most glaring mistake that I made when constructing this website.
By not adding a txt alternative to graphics, I have left the user with no information as to the contents of the link. At some point in the future, this error would have to be corrected.

8. On supporting pages, is there a link back to the home page?

This process is actually more difficult than it would seem at first glance. With a website of this size, a developer has to be careful to include a sufficient number of links for the user to be able to navigate with a minimal amount of frustration, while at the same time, not to overload the user with so many links that they become overwhelmed. I believe that by using the Yin-Yang symbol throughout the second-level links, it is easy for the user to always return to the homepage if he or she becomes lost. One oversight that was made was the lack of a return link for students that complete the survey. Another addition with regard to links would be to create another summary page for students to access the specific chapter pages without having to go through the course outline page each time.

9. Are the links clearly visible and explanatory?

I do believe that the general usage of links is efficient and effective. The students that evaluated the website all responded positively to this question.

10. Is there sound or video included in the page?

There is no multimedia included in this website. I felt that the addition of multimedia could have been overwhelming for the purposes of this project; however sound and video could be very effective additions to the site in order to increase student comprehension.

Content

1. Is the title page indicative of the content?

Yes, I am confident that there would be no mistaking the content of the site from
the title.

2. Is the information useful for your purposes?

 Currently this website is limited to usefulness for students except for the probabilities and statistics sections. Students have found the list of other websites that are included useful to their studies this year. As well students have found the homework and journal pages helpful when they have been working at home and have forgotten what assignments are due for the following day.

3. Would information somewhere else have been different?

 Currently there are no existing websites that are designed for this new curriculum so students have no means of comparison to answer this question.

4. Did the information lead you to other sources that were useful?

 With the current state of the site, links to other sites are its most useful aspect. Although there are many resources available for college and university students as well as elementary children, there are few sites geared towards grade 12 students. By including links to these sites, students are saved the time consuming task of randomly “surfing” to find appropriate pages.

5. Does the information contradict something you found elsewhere?

 I am confident that all of the information included is accurate. A valid criticism of the site might be the method of delivery; however this site is not meant to be an exclusive learning tool but an enhancement to include a variety of learning styles.
APPENDIX A:
Website Map
APPENDIX B:

Hard Copy of the Website

Due to the nature of the webpage, it is difficult to print and organize these pages in a logical sequence to replicate the on-line version. Those wishing to view the website in html format should point their browser to

http://lethsd.ab.ca/lei/staffwebpages/peregoodoff

The pages that include the Hot Potatoes online questions included here in no way reflect their actual online appearance. For reasons unknown to me, I am only able to print these pages in raw text format.
The use of this website is limited to students and staff of LCI. To carry on further, you will need the password, sorry. If you are interested in finding out more about this site, you may contact the webmaster.

Click here to enter
Welcome to the home of the new Applied Math 30 course. We hope that all who enter find it both useful, and a supplement to their classroom work.

This is the Home Page. If you would like to return to this page from anywhere within the site, simply click on the Yin Yang symbol.
Course Evaluation

1. Enter the course being evaluated:

2. Reason course was taken:
 - Required for Major
 - Required for Minor
 - Elective

Please rate each of the following on a 1-5 scale, where (1) is "Strongly Disagree," (2) is "Disagree," (3) is "No opinion/neutral," (4) is "Agree" and (5) is "Strongly Agree."

THE COURSE:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus accurately described course content and objectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments were reasonable and appropriate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course pace and difficulty were appropriate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams and quizzes reflected important course aspects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fellow students were academically prepared for the course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class size was not too large for the subject and format</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I would recommend this course to other students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Please list then describe any positive and/or negative factors about the course.

7. Do you have any suggestions for improving the course?

After answering all the questions, click the "submit" arrow below to complete the survey.
Introductions

Please take a few short minutes to complete this form so that your teacher can better understand you and what will help you in math class.
Student Demographics for Math 30 Applied

Your full name: ___
Your email address: (e.g.: you@aol.com) _______________________

Your phone number: __________________________
Address: ___
City/Town: ___
Prov.: __________ Postal Code: ___________________________

What mark did you receive in your last math class? [00]

Is there anything about yourself that I should know to help you be successful in math class?

Which post-secondary institution do you wish to attend? ☐ University ☐ College ☐ Technical School

Which method(s) of learning do you learn best with? ☐ lecture ☐ textbook ☐ computer ☐ friends/classmates

What are your future goals after graduation?

Thank you very much for completing this form, please send now or reset the form if you wish to make some changes. Use your browsers BACK button to return to this page, then click on to the home page

Get your form NOW! Feedback
FREE feedback form powered by Feedback.com

11/06/01 5:22 PM
Math 30 Applied - Course Outline*

The Program of Studies for Mathematics under the Western Canada Protocol was implemented at the grade ten level in September, 1998. This program features a marked change from the way Mathematics has been delivered in the province of Alberta. In the Applied Math Sequence, emphasis is placed on the applications of mathematics rather than on precise mathematical theory. The approaches used are primarily numerical and geometrical. Algebraic growth occurs as a result of solving the problems. This sequence is designed for those students who have experienced some difficulty in mathematics.

Major Topics

The following is a list of the topics that will be covered along with an indication of the approximate amount of time to be spent on each topic. Clicking on each topic will take you to the supplemental information on that topic, as well as review questions and websites to assist in your learning.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter(s)</th>
<th>Estimated number of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Probabilities</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2. Statistics</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3. Matrices and Pathways</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>4. Patterns and Fractals</td>
<td>5&6</td>
<td>18</td>
</tr>
<tr>
<td>5. Finance and Spreadsheets</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>6. Vectors</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>7. Design</td>
<td>Project Book</td>
<td>15</td>
</tr>
</tbody>
</table>

Text: Applied Mathematics 30 - Addison Wesley

You are responsible for your textbook. Textbooks are not to be written in. The text must be returned in good condition at the end of the semester. If you lose your text you will be expected to pay for it before a second one is issued. Cost of the text is $63.40.

Materials Required

In addition to a notebook or looseleaf paper you will need to provide the following for use during the semester:
ruler
• graph paper
• coil back notebook for communication assignments
• pencils - all work must be done in pencil
• graphing calculator – students should check with their teacher prior to purchasing a
graphing calculator.

Evaluation
Your final grade will be determined as follows:

1. 35% of final grade based on a comprehensive final exam.
2. 10% of final grade based on a comprehensive midterm exam.
3. 30% of final grade based on unit exams (there will be an exam at the end of each of the
 six units; all exams will count equally)
4. 10% based on communication/journal activities.
5. 5% based on quizzes and assignments.
6. 10% of final grade based on projects.

General Comments

1. Students are expected to attend classes regularly and punctually. Students should be in
 their desk with their books open when the bell rings.
2. Students are responsible for all work that they have missed if they are away for any
 reason.
3. If you know in advance that you will miss a class, you are expected to notify the teacher
 in advance and get the assignment so that the work is done when you return.
4. If you are absent on the day of a test, or when an assignment is due, you are expected
 to have your parents or guardian notify the teacher. Failure to do so could result in your
 receiving a mark of zero on that test or assignment. It is your responsibility to arrange to
 write any tests missed.
5. Homework is an integral part of this course. Assignments that are not completed during
 regular class time are to be completed at home. In addition, students should spend
 some time going over any new work introduced each day, as well as related topics.
 Generally, you should plan to spend about thirty minutes on homework each day.
6. Students who have difficulty keeping up with the material should contact their teacher
 and arrange for extra help outside of class time.
Links for the Applied Math 30 Program

(all links active as of June 12, 2001)

Return to outline page

Matrices

Matrix Algebra
Matrix Algebra (excellent)

Finance and Spreadsheets

MS Excel Tutorial
Mortgage Calculator
Mortgage Calculator
Financial Glossary

Unit Circle

Sinusodial Patterns

Vector Algebra
Vector Tutorial
Vector Tutorial (excellent)
Navigational Vectors
Graphing Vectors - Java Applet
Introduction to Vectors (excellent)

Fractals and Patterns

The Fractory - Julia Set
The Fractal Microscope
Paper-Folding Fractals (excellent)
Fractal Tutorials (excellent)
Conway's Game of Life (excellent)

Statistics

Binomial Distribution
Genetics Probability

Probabilities

Probabilities in Monopoly
Standard Deviation Tutorial
Probability Tutorial
Probability Tutorial
Probability Tutorial - Java Applets (excellent)
Conditional Probability
Calculator Policy

As mandated by Alberta Learning, all students enrolled in the Applied Math course must have one of the following approved calculators. Other calculators will NOT be allowed in the classroom.

Some questions on tests in Math 30 Applied require the use of a graphing calculator.

Alberta Education has approved the following calculators for use by students. Only these calculators may be used.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas Instruments</td>
<td>TI-82, TI-83, TI-83 plus, TI-86, TI-89, TI-92, TI-92 plus</td>
</tr>
<tr>
<td>Casio</td>
<td>CFX-9850GA plus (FX-9700, CFX-9800G, CFX-9850G are approved but no longer manufactured)</td>
</tr>
<tr>
<td>Sharp</td>
<td>EL-9600 (EL-9200, EL-9300 are approved but no longer manufactured)</td>
</tr>
</tbody>
</table>
Mathematics 30 (old program) and Mathematics 33 require the use of a scientific calculator or an approved graphing calculator.

Procedures

1. At the beginning of any mathematics or science diploma examination course, teachers must advise students of the types of calculators approved by Alberta Learning for use when writing diploma examinations in these courses.
2. Students must clear all programmable calculators, both graphing and scientific, that are brought into diploma examinations of all information that is stored in the programmable or parametric memory.
3. Students must not bring external devices (peripherals) to support calculators into any examination. Such devices include manuals, printed or electronic cards, printers, memory expansion chips or cards, external keyboards, CD-ROMs, libraries, or any annotations that outline operational procedures.
4. In preparation for calculator failure, students may bring extra batteries and/or approved calculators into the examination room.
5. During examinations, supervising teachers must ensure that
 - calculators operate in silent mode
 - students do not share calculators or information contained within them
 - calculator cases are not available to students
 - programmable calculator memories, including parametric memories, have been cleared
 - only graphing calculators on the current list approved by Alberta Learning are used

Calculator Criteria

The following criteria will be used to select acceptable calculators.

Minimum calculator properties required

1. Function graphing capabilities with display
 — includes displaying more than one function on the screen at a time, tracing a function
2. Standard scientific calculator operations
 — e.g., sine, cosine, tangent, inverse functions, logarithms, power (x^n)
3. Statistical functions in 1 and 2 variables
 — mean, median, mode, standard deviation, bivariate data, regression models
4. List capabilities
5. Matrix capabilities
 — scalar multiplication, addition, and subtraction

Unacceptable calculator properties during examinations

1. Built-in notes (definitions or explanations in alpha notation), e.g., libraries
2. Upgrades that include built-in notes
3. Remote communication ability

A list of approved calculators is provided on the last page of this policy to assist students and teachers in the selection of graphing calculators that conform to the requirements stated in the definition and to the stated criteria. The list will be updated annually.

Note: All the calculators listed below meet the "required properties". They do not have any "unacceptable properties" and so can be used on the mathematics and science diploma examinations. However, students and teachers should recognize that the different models of calculators listed have a range of capabilities, and the choice of which model to use or purchase will require personal or teacher analysis of the machines' capabilities and one's individual or school circumstances.
The Approved List of Calculators

<table>
<thead>
<tr>
<th>BRANDS</th>
<th>Casio</th>
<th>Sharp</th>
<th>Texas Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casio</td>
<td>Algebra FX 2.0</td>
<td>EL-9600C</td>
<td>TI-82*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TI-83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TI-83 Plus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TI-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TI-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TI-92 Plus</td>
</tr>
<tr>
<td>Sharp</td>
<td>EL-9600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EL-9200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EL-9300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The TI-82 calculator will remain on the approved list for the 2000–2001 and 2001–2002 school year and will then be deleted from the approved list. These calculators are not recommended for students entering high school mathematics who wish to use a calculator throughout their high school program.

The following calculators meet the graphing calculator criteria and are approved, but are no longer commercially manufactured.

<table>
<thead>
<tr>
<th>BRANDS</th>
<th>Casio</th>
<th>Sharp</th>
<th>Texas Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casio</td>
<td>FX-9700 series</td>
<td></td>
<td>TI-92</td>
</tr>
<tr>
<td></td>
<td>CFX-9800G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFX-9850G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFX-9850GA Plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharp</td>
<td>EL-9600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EL-9200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EL-9300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Instructions for clearing calculator memories are posted in the Alberta Learning web site:

http://ednet.edc.gov.ab.ca/studenteval/diplomaexams

For Further Information

If you have any questions or comments about this policy, please contact Phill Campbell, Assistant Director, Mathematics/Science Unit, Learner Assessment Branch, at 780-427-0010, e-mail: Phill.Campbell@gov.ab.ca, or Fax 780-422-4200. To call toll-free from outside of Edmonton, dial 310-0000.

see also Calculator Active Questions and Clearing Instructions
Welcome to my classroom. I hope that while it may not be exactly an enjoyable semester for all of you, at least it is interesting and that you have some measure of success. Here is a list of some of the things you need to know for my classroom.

The Golden Rule

This classroom will be one of equality, safety, mental stimulation and humor. This is not negotiable and infractions will be dealt with the seriousness warranted.

Other Rules of the road

Lates – knowing that things do occur, students are requested to quietly enter the classroom, sign-in on the pink sheet on top of the filing cabinet, and sit at their seats. More than 2 lates in one week will result in spending a lunch hour with me doing homework. More than 4 lates in two weeks will result in Friday prime time being assigned.

Shake da' Brain – This is a weekly question that will be placed on the blackboard. This is not a mandatory exercise but rather a way for students to receive bonus marks. Each correct answer will give the students 1 percent on their report cards, to a maximum of 5 percent per report card. Students may only submit one answer per week.

Handing in work to be marked – At the front of the classroom on the desk, there is a bucket for each of the classes. All work to be marked must be placed in your box and have your name on it. Work with no name will not be marked.

Exams – During the writing of exams student desks must be arranged in traditional rows. All students will be expected to help in this process and also returning the desks to their original pattern. All exams must be written in pencil. Exams written in pen will have a 20% deduction automatically.

The Bear – Fred the teddy bear is there when you need it. Under no circumstances will any foolishness be tolerated in this regard. It must always be returned to the den at the end of class period.

Music – Music is important to me and during work times, music will be played. Students are encouraged to bring the music that they enjoy working to. Students are not allowed to touch the computer unless with permission from me. Individual students are allowed to listen to discman's except during lectures and other activities.

Cartoons – Additions to the wall of fame are welcome, as are stories!
Course Project

As recommended by Alberta Learning, each student will complete a course project. This project will be unique from semester to semester and will assist students in applying some of the concepts that have been learned during the course. It is expected that each student will spend roughly five hours on this project. This page will contain the details of the project as well as some websites that may be of assistance to those students requiring such.

To find out more information about this project, you may move to the Alberta Learning Website

Applied Math 30 Student Project February 2001
Applied Math 30 Student Project LCI Only Sample Solutions (MS Excel File)
Applied Mathematics 30

Kayaking the Clayquot Sound, Tofino BC – Student Project

Introduction

A Graduation Kayaking trip is being planned. The trip will be 4 days and 3 nights in length. Your parents have agreed to cover the cost of traveling to Clayquot Sound. You will need to budget $500 for supplies, cost of renting equipment, etc. Ignore any costs associated with traveling to and from Tofino, your departure city. Assume that this project will only cover costs and supplies needed from the point that you put into the water, till you take out of the water.

Student Task

1. Budget: Create a spreadsheet that will be used to determine the total cost of supplies as well as the quantity of supplies. You may use this list as a guide or you may go and find your own. You will need to research the cost of renting the kayaks for the period. You may use the Tofino Kayaking Company or find your own.

2. Based on the information provided from last year’s grad trip, construct 95% Confidence Intervals for the allowable weight for the kayak. Then, using your packing list and your own weight, determine what percent of students have a heavier kayak than yourself.

Graduation Sea Kayak Trip

July-August 2000

<table>
<thead>
<tr>
<th>Student's Name</th>
<th>Total Departure Weight (Kg's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob</td>
<td>242.8</td>
</tr>
<tr>
<td>Elaine</td>
<td>186</td>
</tr>
<tr>
<td>George</td>
<td>210.3</td>
</tr>
<tr>
<td>Colleen</td>
<td>193</td>
</tr>
<tr>
<td>Phil</td>
<td>215</td>
</tr>
<tr>
<td>Ahmed</td>
<td>238.4</td>
</tr>
<tr>
<td>Trahn</td>
<td>268</td>
</tr>
<tr>
<td>Ralph</td>
<td>186</td>
</tr>
<tr>
<td>Connie</td>
<td>203</td>
</tr>
<tr>
<td>Jane</td>
<td>199</td>
</tr>
</tbody>
</table>

3. Due to rental demands, your trip must take place on one of the following dates:

 - July 1 to July 4
 - July 8 to July 11
 - July 16 to July 19
 - August 4 to August 7

• Using tidal charts and the trip date you have decided upon, create a spreadsheet comparing the height of the tide as a function of time. Use this spreadsheet to determine a regression equation and graph for the time changes of the tide for the trip. Identify the variables as they relate to the
spreadsheet information. (Hint: use a total of 96 hours rather than 4 days of 24 hours for the spreadsheet)

- Does the graph show you anything that the spreadsheet does not? Explain.
- Discuss how the regression equation relates to the spreadsheet.
- Would the regression equation or the spreadsheet be more appropriate for presenting the information?
- Would the regression equation or the spreadsheet be more appropriate for determining the best possible start and end times for each day of kayaking?
- Identify the domain and range of this function in the given context.

- Use this information to determine the best possible start time for each day of kayaking so that you are paddling with the tide and not against it. You may use the following chart to assist you.

<table>
<thead>
<tr>
<th>Date</th>
<th>High Tide (time)</th>
<th>Low Tide (time)</th>
<th>Location</th>
<th>Best Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Use vectors to plot your course for each leg of the trip. Campsites are indicated on the map, these are the only possible campsites since you are traveling in a protected area. The tidal current and charts are included in this package.
5. Calculate the distance you will travel each day using the vector diagrams as well as your travel time. Assume an average travel time for your group of 5 km/h.

Project Report

Prepare a clear concise report in which you outline each of your findings. Discuss factors that influenced your choices.

Project Report

Your report should include most, if not all, of the following elements.

1. Title Page

- The exact title of the project
- The Mathematics course number
- The date of submission
- Your name(s) and your teacher’s name

1. Main Text

- A clear statement of the topic
- An accurate and detailed account of the processes used in the project, including any unique equipment, scientific procedure details, mathematical calculations, data, and graphs. If a group conducted the project, the roles of individual students should be documented.
3. **Summary Section**

- Project conclusions that summarize or bring together the ideas you have been investigating.
- A statement regarding the limitations of the project and a summary of possible further investigations that could be done as a result of this project.
- A brief summary of the mathematical knowledge encountered during the investigation and a statement of the areas of study from which it was drawn; e.g. statistics, trigonometry, vectors. An indication, if appropriate, should also be given of how computers or graphing calculators were used.

4. **Acknowledgements**

In this section, acknowledge the assistance provided by librarians, student partners, specialist information sources, family, teachers and other sources.

5. **References (if necessary)**

Any references actually consulted and found to be useful should be included and cited.

6. **Appendices (if necessary)**

Include necessary lengthy calculations, original computer programs (listing and output), raw data, or other essential resources. Title each appendix and number them consecutively.
Sea Kayak Needs

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Weight (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td>478.2</td>
<td>110.09</td>
</tr>
<tr>
<td>Kayak (single or double with seat)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paddle with drip rings</td>
<td>Included</td>
<td>2</td>
</tr>
<tr>
<td>Spray skirt (two if paddling a double)</td>
<td>Included</td>
<td>3</td>
</tr>
<tr>
<td>Collapsible spare paddle</td>
<td>Included</td>
<td>2</td>
</tr>
<tr>
<td>Sponge</td>
<td>Included</td>
<td>0.3</td>
</tr>
<tr>
<td>Waterproof storage bags</td>
<td>Included</td>
<td>3</td>
</tr>
<tr>
<td>Waterproof deck bag for storing essentials</td>
<td>Included</td>
<td>1</td>
</tr>
<tr>
<td>Personal Floatation Device (Coast Guard Approved!)</td>
<td>Included</td>
<td>2</td>
</tr>
</tbody>
</table>

Safety Essentials

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Weight (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunglasses</td>
<td>20</td>
<td>0.05</td>
</tr>
<tr>
<td>Water bottle or hydration system such as Camelbak, Ultimate</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>Nylon cord (50 feet) for tying up food from predators</td>
<td>3</td>
<td>0.25</td>
</tr>
<tr>
<td>Waterproof/windproof matches</td>
<td>2</td>
<td>0.005</td>
</tr>
<tr>
<td>Headlamp (extra bulb and batteries)</td>
<td>35</td>
<td>0.5</td>
</tr>
<tr>
<td>Pocket knife</td>
<td>10</td>
<td>0.15</td>
</tr>
<tr>
<td>Toilet paper</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Navigation charts</td>
<td>20</td>
<td>0.35</td>
</tr>
<tr>
<td>Compass</td>
<td>15</td>
<td>0.02</td>
</tr>
<tr>
<td>Emergency blanket</td>
<td>3</td>
<td>0.09</td>
</tr>
<tr>
<td>Whistle</td>
<td>0.5</td>
<td>0.005</td>
</tr>
<tr>
<td>Signal mirror and flares</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Emergency snacks</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Sun hat</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>Repair kit (tape, material to patch hull, pliers, nuts and bolts to fit boat parts)</td>
<td>3</td>
<td>0.8</td>
</tr>
<tr>
<td>AM/FM hand radio for weather reports</td>
<td>10</td>
<td>0.25</td>
</tr>
<tr>
<td>Current tide tables</td>
<td>included</td>
<td>0.005</td>
</tr>
<tr>
<td>Waterproof watch</td>
<td>40</td>
<td>0.005</td>
</tr>
</tbody>
</table>

First Aid (all of this material will be supplied by guide but it is good to look at)

<table>
<thead>
<tr>
<th>Item</th>
<th>Included</th>
<th>Not Applic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiseptics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benadryl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tincture of Benzoin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterile gauze pads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller gauze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonadherent dressing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-inch adhesive tape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steristrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ace wrap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large compress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moleskin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tweezers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Included</td>
<td>Not Applic</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Bandage scissors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation syringe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-reading thermometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAM splint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space blanket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pencil and emergency report form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Phone Numbers and money for a phone call</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clothing

<table>
<thead>
<tr>
<th>Item</th>
<th>Owned</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Paddling jacket</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Long underwear (lightweight tops and bottoms. Synthetic is best or wool / synthetic/cotton blend)</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Paddling shorts</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Bathing suit</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Insulated hat</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Fleece or Polartec jacket</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Croakies or Chums for glasses and sunglasses</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Rain suit (jacket and pants)</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>Warm gloves for around camp</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Chamois towel</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Paddling shoes or wet suit booties</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Camp / hiking shoes or all-terrain sandals</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Socks for around camp</td>
<td></td>
<td>0.3</td>
</tr>
</tbody>
</table>

Personal

<table>
<thead>
<tr>
<th>Item</th>
<th>Owned</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick drying towel</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Biodegradable soap and shampoo</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Toothbrush and toothpaste</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Hair brush</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Personal medications</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Feminine hygiene</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Lip balm</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Compact mirror</td>
<td></td>
<td>0.2</td>
</tr>
</tbody>
</table>

Camping Gear

<table>
<thead>
<tr>
<th>Item</th>
<th>Owned</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact tent with rainfly</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>Sleeping bag and pad</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Backpacking stove and fuel (butane is typically the most compact and easiest to use)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cooking pot</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cup, plate and eating utensils</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bag for hanging food</td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Item</th>
<th>Owned</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Binoculars</td>
<td></td>
<td>0.7</td>
</tr>
</tbody>
</table>
Multi-tool knife owned 0.6
Fishing gear and license 20 4
Mini flashlight 10 0.8
Extra heavy duty garbage bags 6 1
Camera and film in waterproof bag or container owned 1
Sunscreen 4.5 0.5
Insect repellent 6 0.5
Daypack for side trips out of boat 24 1
Crazy Creek chair or kit to convert ThermaRest pad into chair owned 3
Bird / sea life guidbooks owned 5
Sewing kit owned 0.5
Bandana owned 0.2
Snorkel and mask owned 1
Zip-Lock bags owned 0.3
Moisturizing lotion 2 0.7

Food

Day one (depending on departure time, ie. Afternoon tides won't require a breakfast or lunch)

Water 0 30

Breakfast
Lunch 6 1
Dinner 8 2

Day two

Breakfast 4 1
Lunch 6 1
Dinner 8 2

Day Three

Breakfast 4 1
Lunch 6 1
Dinner 8 2

Day Four (again this will depend on tides as to the time of day to return)

Breakfast 4 1
Lunch 6 1
Dinner
3) packed in packing weight
Graduation Sea Kayak Trip
July-August 2000

<table>
<thead>
<tr>
<th>Student's Name</th>
<th>Total Departure Weight (Kg's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob</td>
<td>232.8</td>
</tr>
<tr>
<td>Elaine</td>
<td>165</td>
</tr>
<tr>
<td>George</td>
<td>210.3</td>
</tr>
<tr>
<td>Colleen</td>
<td>193</td>
</tr>
<tr>
<td>Phil</td>
<td>215</td>
</tr>
<tr>
<td>Ahmed</td>
<td>208.4</td>
</tr>
<tr>
<td>Trahn</td>
<td>224</td>
</tr>
<tr>
<td>Ralph</td>
<td>186</td>
</tr>
<tr>
<td>Connie</td>
<td>178</td>
</tr>
<tr>
<td>Jane</td>
<td>188</td>
</tr>
</tbody>
</table>

Average: 200.05
Deviation: 21.4772775

95% Confidence Interval
Upper Bound: 242.145484
Lower Bound: 157.954516

Total Weight (gear plus paddler): 205.09

Z-score: 0.23
Percentage from table: 59.10%

Percentage of students who have a heavier kayak: 40.90%
<table>
<thead>
<tr>
<th>Time</th>
<th>Tide Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>0.7</td>
</tr>
<tr>
<td>947</td>
<td>2.7</td>
</tr>
<tr>
<td>1518</td>
<td>1.4</td>
</tr>
<tr>
<td>2130</td>
<td>3.4</td>
</tr>
<tr>
<td>2826</td>
<td>0.6</td>
</tr>
<tr>
<td>3446</td>
<td>2.8</td>
</tr>
<tr>
<td>4011</td>
<td>1.5</td>
</tr>
<tr>
<td>4617</td>
<td>3.4</td>
</tr>
<tr>
<td>5313</td>
<td>0.5</td>
</tr>
<tr>
<td>5936</td>
<td>2.9</td>
</tr>
<tr>
<td>6459</td>
<td>1.5</td>
</tr>
<tr>
<td>7100</td>
<td>3.4</td>
</tr>
<tr>
<td>7755</td>
<td>0.4</td>
</tr>
<tr>
<td>8422</td>
<td>2.9</td>
</tr>
<tr>
<td>8944</td>
<td>1.6</td>
</tr>
<tr>
<td>9541</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Tidal Chart regression for July 1 to July 4, 2001

Excel Chart

Example TI-83 Windows for the Sinusodial Regression

Questions

- The graph gives us a visual representation of the spreadsheet that cannot be seen.
- The regression equation is the algebraic representation of the tidal flows.
- The equation would be more accurate.
- Domain: first day of trip to last day of trip.
- Range: 0.4 to 3.4 meters tide height.

<table>
<thead>
<tr>
<th>Date</th>
<th>High Tide</th>
<th>Low Tide</th>
<th>Location</th>
<th>Best Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Finish</td>
<td>Distance</td>
<td>Direction</td>
<td>Time</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>H (Tofino)</td>
<td>A</td>
<td>8</td>
<td>E20°S</td>
<td>1.6</td>
</tr>
<tr>
<td>A</td>
<td>Camp 1</td>
<td>4</td>
<td>Due North</td>
<td>0.8</td>
</tr>
<tr>
<td>Camp 1</td>
<td>B</td>
<td>8</td>
<td>N20°E</td>
<td>1.6</td>
</tr>
<tr>
<td>B</td>
<td>Camp 2</td>
<td>2.75</td>
<td>Due West</td>
<td>0.55</td>
</tr>
<tr>
<td>Camp 2</td>
<td>C</td>
<td>7.75</td>
<td>E15°N</td>
<td>1.55</td>
</tr>
<tr>
<td>C</td>
<td>Camp 3</td>
<td>6.5</td>
<td>E35°S</td>
<td>1.3</td>
</tr>
<tr>
<td>Camp 3</td>
<td>H (Tofino)</td>
<td>7.5</td>
<td>E53°S</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Total Paddling Time 8.9

All of these times are the friendly tide, either case may be.

Vector and time calculations
en easily from the data
meant to "ride"
in or out as the
Probability

Objective

<table>
<thead>
<tr>
<th>Objective</th>
<th>Powerpoint Presentation</th>
<th>Extra Questions</th>
<th>Relevant Websites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Experimental vs. Theoretical Probability</td>
<td>What is the difference between Experimental and Theoretical Probability?</td>
<td>Multiple Choice Questions</td>
<td>Probability Help</td>
</tr>
<tr>
<td>1.2 Generating and using sample spaces</td>
<td>What is a sample space and how do I generate one?</td>
<td></td>
<td>Same as above</td>
</tr>
<tr>
<td>1.3 The Fundamental Counting Principle</td>
<td>What is the Fundamental Counting Principle?</td>
<td>Multiple Choice Questions</td>
<td>Help with the FCP</td>
</tr>
<tr>
<td>1.4 Independent and Dependent Events</td>
<td>How can I tell the difference between independent and dependent events?</td>
<td></td>
<td>Same as first one</td>
</tr>
<tr>
<td>1.5 Mutually Exclusive Events</td>
<td></td>
<td></td>
<td>Same as first one</td>
</tr>
</tbody>
</table>
1.1 Describe briefly the difference between theoretical and experimental probabilities using examples to support your statements.

1.2 A friend tells you that a tree diagram can be used to create the sample space for any experiment, but a table or grid cannot. Is this true? Use examples to explain your response.

1.3 Using the fundamental counting principle, determine the number of different outfits you have in your closet.

1.4 Write a short paragraph to explain the difference between dependent and independent events in your own words.

1.5 Write to explain what is meant when two events are mutually exclusive and how the probabilities are affected when two events are not mutually exclusive.
The Virtual Spinner

Below you see a virtual spinner that we can use to help us through an activity that will hopefully give us an excellent understanding of what we need to learn in the Probabilities Unit.

To learn how to adjust the spinner and what all the buttons do, click here

Click here for the activity sheet, then print it off so that we can write directly on the sheet. Yep, we do get to use pencil and paper occasionally in this world :)

The pointer is on Blue

Number of Sections: 4

How many spins?

Spins So Far: 0

Spin	New Experiment	Show Results	Frame	Update
Blue | | | 25 | %
Cyan | | | 25 | %
Green | | | 25 | %
Magenta | | | 25 | %
By default, the spinner will always be 4 sections when you first open it up.

You can adjust the number of spins that each spin will represent. This allows you to simulate a much larger experimental set of data.

Press the spin button for each event, the new experiment will reset all of your values.

The Show Results Frame button will bring up a second window which will give you a visual picture of the results of your data, as shown in the table below the spinner.

The percentage of each color can be changed automatically in the window, or manually by moving the sliders.

RETURN TO SPINNER PAGE
SPINNER ACTIVITY SHEET

1. With the spinner program running on your computer in front of you (note: you may wish to minimize your toolbars so that you can see the whole spinner at the same time), change the spinner to only have 3 sections instead of the default four.
2. Make sure that you adjust the percentages of the area of each color. What should each color be if they are all to be equal?
3. On a separate piece of paper, create a table with the appropriate sample space for each of the different number of spins. Click here if you would like a refresher on this topic. Don't be afraid to sketch out a tree diagram if you need assistance.
4. For one spin - Answer
5. For two spin - Answer
6. You may check your answers, but you will have to enter the correct size (n) of each sample space to see the answers.
<table>
<thead>
<tr>
<th>1 Spin Sample Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
</tr>
<tr>
<td>cyan</td>
</tr>
<tr>
<td>green</td>
</tr>
</tbody>
</table>

The sample space is above, the n-value is 3 because there are 3 possible outcomes.
<table>
<thead>
<tr>
<th>2 Spin Sample Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue green</td>
</tr>
<tr>
<td>blue cyan</td>
</tr>
<tr>
<td>blue blue</td>
</tr>
<tr>
<td>green blue</td>
</tr>
<tr>
<td>green cyan</td>
</tr>
<tr>
<td>green green</td>
</tr>
<tr>
<td>cyan blue</td>
</tr>
<tr>
<td>cyan green</td>
</tr>
<tr>
<td>cyan cyan</td>
</tr>
</tbody>
</table>

The sample space is above, the n-value is 9 because there are 9 possible outcomes.
Experimental vs. Theoretical Probability

29/03/01

Click here to start

Table of Contents
Experimental vs. Theoretical Probability
A comparison
PPT Slide
Guess What?
PPT Slide
Review

Author: Robert James Peregoodoff
Email: rob.peregoodoff@lethsd.ab.ca
Return to Probability Main Page
Experimental vs. Theoretical Probability

Did I do the experiment or just think about it?

Slide 1 of 6
A comparison

- Experimental probability refers to actually performing the event that we wish to study
- While Theoretical is exactly what the name implies; we are going to think about what the probabilities are
- Let's take a look at an example
So pull a quarter out of your pocket. It's okay, I'll wait..........ok good, now flip it 10 times and count the number of heads that you got.

So we all know that the probability of getting one head is 0.5 or 50% but did you get exactly 5 heads out of your 10 tosses?

My bet is that you didn't, more likely you got 4 or 6 or even 7.

- While the theoretical probability maybe 50%, the experimental is not always exactly the same.
Guess What?

- That's why people gamble ！！！！！！
What we think is going to happen isn't what always happens........

- Now here's a question for you:
 - What should happen to the experimental probability, in relation to the theoretical, the more times that we perform the experiment?
Yep, the two will become closer and closer

Let's take a look at the following chart that shows flipping a coin numerous times: (I was bored on a Saturday night :)

<table>
<thead>
<tr>
<th>Number of flips</th>
<th>Number of heads</th>
<th>P(heads) as a fraction</th>
<th>P(heads) as a decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>4/10</td>
<td>0.4</td>
</tr>
<tr>
<td>100</td>
<td>46</td>
<td>46/100</td>
<td>0.46</td>
</tr>
<tr>
<td>1000</td>
<td>515</td>
<td>515/1000</td>
<td>0.515</td>
</tr>
</tbody>
</table>

Do you see that the experimental probability is getting closer to 50%, which is the theoretical probability.
Review

- So, what have we learned? Well, experimental prob is what we actually see, and theoretical prob is what we think we'll see; and the more times we do the experiment, the closer the two values should become!

- Whew, that was a lot. Why don't you take a break and go talk to a friend 😊
Each of our 54 lessons is a comprehensive learning module. This Volume consists of 10 lessons, and a solutions page. Read our Terms and Conditions under which these lessons are provided to you. If you are using our lessons for the first time, you also need to read this important technical information.

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Probability</td>
<td>To define experiment, outcome, event, and probability. To understand the formula for finding the probability of an event. To find the probabilities of simple events with equally likely and with non-equally likely outcomes. Interactive spinners and dice are included.</td>
</tr>
<tr>
<td>Certain and Impossible</td>
<td>To define certain and impossible events. To identify events as certain or impossible, and to compute the probabilities of these events.</td>
</tr>
<tr>
<td>Events</td>
<td></td>
</tr>
<tr>
<td>Sample Spaces</td>
<td>To define the sample space of an experiment. To determine the sample space of an experiment by examining each possible outcome.</td>
</tr>
<tr>
<td>The Complement of an Event</td>
<td>To define the complement of an event. To find the probability of the complement of an event.</td>
</tr>
<tr>
<td>Mutually Exclusive Events</td>
<td>To understand the difference between mutually exclusive and non-mutually exclusive events. Venn diagrams are used to make this distinction clear. To classify an experiment as having mutually exclusive or non-mutually exclusive events.</td>
</tr>
<tr>
<td>Addition Rules for Probability</td>
<td>To find the probability of mutually exclusive events by using the addition rule.</td>
</tr>
<tr>
<td>Independent Events</td>
<td>To define and understand independent events. To use the multiplication rule to find the probability of independent events.</td>
</tr>
<tr>
<td>Dependent Events</td>
<td>To define and understand dependent events. To use a modified version of the multiplication rule to find the probability of dependent events.</td>
</tr>
<tr>
<td>Conditional Probability</td>
<td>To define conditional probability. To understand the formula for finding conditional probabilities. To compute the probabilities of conditional events.</td>
</tr>
</tbody>
</table>
| Challenge Exercises | To solve 10 additional problems that challenge students'
Challenge Exercises

<table>
<thead>
<tr>
<th>Challenge Exercises</th>
<th>To solve 10 additional problems that challenge students' understanding of probability. To review concepts learned and to assess students' understanding.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions</td>
<td>Complete solutions to all exercises presented in each lesson of this Volume. Includes the problem, solution, and answer for each exercise.</td>
</tr>
</tbody>
</table>

Want notification of new lessons?

Join the Math Goodies Newsletter!

Other Lessons || lecons en francais || Feedback

Calculating Probabilities

1. The theoretical probability of rolling an even number with one die, reduced to its simplest form, is
 a) $P(\text{even}) = \frac{1}{6}$
 b) $P(\text{even}) = \frac{3}{6}$
 c) $P(\text{even}) = \frac{1}{2}$
 d) $P(\text{even}) = \frac{5}{6}$

2. The outcome that is seen from performing an experiment would be called the:
 a) Theoretical probability
 b) Experimental probability
 c) Complement
 d) Statistical probability

3. One card is drawn from a well-shuffled deck of 52 playing cards. The probability of drawing a red card, in reduced form, is
 a) $P(\text{red card}) = \frac{13}{52}$
 b) $P(\text{red card}) = \frac{26}{52}$
 c) $P(\text{red card}) = \frac{1}{52}$
 d) $P(\text{red card}) = \frac{1}{2}$

--------Key--------

1.
2.
3.
Sample Spaces

29/03/01

Click here to start

Table of Contents

Sample Spaces

What is the Sample Space?

Let's look at an example

Now you try one

Just remember that when you are asked for a sample space,

Author: Robert James Peregoodoff

Email: rob.peregoodoff@lethsd.ab.ca

return to Probability Main Page
Sample Spaces

Determining All Possible Outcomes

Slide 1 of 5
What is the Sample Space?

• Simply put, the sample space is the LIST of all the possible outcomes of an experiment (theoretical OR experimental!)

• In the previous section, we learned that probabilities are calculated using \[P(A) = \frac{r}{n} \]

• Calculating the \(n \) value can be difficult, but may be easier if we can visualize the sample space for the experiment.
Let's look at an example

- If you were asked to list the sample space for the experiment of rolling one die, what would it be?
- Answer \{1,2,3,4,5,6\}
- The actual value of n will be 6, but the sample space is all of the above items
Now you try one

- What is the sample space of grades in a high school?
- Yep, it would be \{10, 11, 12\}, giving us an \(n \) value of 3.
Just remember that when you are asked for a sample space,

You are being asked to LIST all of the possible outcomes of the given experiment.

What about the sample space for rolling two dice? The n value will be 36, try and find them all.
Fundamental Counting Principle

25/03/01

Click here to start

Table of Contents

Fundamental Counting Principle

Definition of the FCP

What does this mean for us?

Example of FCP

Now let’s try one

Seems simple enough eh? Well let’s throw in the wrinkle, restrictions!

The simple way to handle this is to set up the spaces that we would use

So that is the FCP

Author: Robert James Peregoddoff

Email: rob.peregoddoff@lethsd.ab.ca

Return to Probability Main Page
Fundamental Counting Principle

The lazy way to determine the values of r and n.
Definition of the FCP

- The fundamental counting principle (FCP) is defined as:
 - If one item can be selected in m different ways and a second item can be selected in n different ways, then the two items can be selected in mn ways. This same principle works for 3 or 4 or even 23 items!
What does this mean for us?

• Very simply, the FCP will allow us to determine the number of possible (or favorable) outcomes WITHOUT having to actually determine the entire sample space. Let’s look at an example.
Example of FCP

• A hockey coach has the following players on her team:
 - 6 forwards
 - 5 defence
 - 2 goal tenders
• The question is
 - How many different lines can this coach put on the ice?

• Now we could design a very elaborate tree diagram to visualize this situation but we are too lazy for this!!
• The FCP tells us that
 - $6 \times 5 \times 2 = 60$
• In other words, the coach has 60 different lines that can be played.
Now let's try one

- The lock on your locker uses the numbers from 0 to 59. How many different lock combinations are there?
 - Hint: there are 60 numbers to use!
 - Click to see the answer

- We could draw a tree diagram for this but Wow, way too much work. Let's be lazy and use the FCP. This gives us:
 - $60 \times 60 \times 60$ or 60^3 which equals 216000 different possible combinations for your lock
Seems simple enough eh? Well let's throw in the wrinkle, restrictions!

- What if there are numbers that cannot be used? One example that is common are postal codes.
- Here in Alberta, all of our postal codes must begin with the letter T, so how many different codes are there?
So that is the FCP

- In the next set of slides, we will learn how this can be used to calculate probabilities of very complex events.
Fundamental Counting Principle (FCP)

1. The number of ways that a person can dress if they have 6 shirts, 3 sweaters and 4 pairs of slacks is:
 a) 72
 b) 18
 c) 13
 d) 12

2. Using the digits 1, 4, 6, 8, and 9, how many 2 digit numbers can be formed?
 a) 100
 b) 10
 c) 25
 d) 28

3. A person must choose 1 card from a well-shuffled deck of 52 playing cards, then roll a six-sided die, and finally toss a coin. How many different results are possible?
 a) 624
 b) 312
 c) 104
 d) 52

4. Using the digits 2, 3, 5, 6, 8, and 9, how many three digit numbers can be formed if no digit can be repeated?
 a) 120
 b) 218
 c) 60
 d) 16

5. How many different phone numbers are possible if the number must start with 317 because it is a certain cell phone company?
 a) 10,000
 b) 40
 c) \(10^7\)
 d) \(10^4\)

6. Given the following digits: 2, 3, 5, 7, and 8, what is the probability that you will randomly create a 2 digit number that is odd?
 a) \(P(\text{2digit odd number}) = \frac{3}{5}\)
 b) \(P(\text{2digit odd number}) = \frac{6}{25}\)
 c) \(P(\text{2digit odd number}) = \frac{20}{25}\)
 d) \(P(\text{2digit odd number}) = \frac{4}{16}\)
Are you an Independent Person

28/05/01

Click here to start

Table of Contents

Are you an Independent Person
When is this important
PPT Slide
PPT Slide
PPT Slide
PPT Slide
The Answers
What is really important here
PPT Slide

Author: Robert James Peregoodoff
Email: rob.peregoodoff@lethsd.ab.ca

Return to Probability Main Page
Are you an Independent Person

What is the difference between an Independent and a Dependent Event?
When is this important

• The first key point to understand in this section is that we are dealing with calculating the probabilities of more than one event occurring here.

• An example of this would be what is the probability of you graduating from high school AND getting married.
We can determine if two (or more) events are independent if they pass the following test of logic?

- Does the outcome of the first event effect the outcome of the second event?

It seems like a simple question but let's look at some examples.
If you pull out a quarter from your pocket and flip it in the air, then select one card from a well-shuffled deck. Are these events independent of each other?
Of course they are. Whether or not you get a head or a tail on the coin makes no difference on what card is drawn from the deck.

Let's try some more. On the next slide you will see two columns of events. You decide if they are Independent or Dependent.
- ✔ Graduating from high school
- ✔ Playing basketball
- ✔ Your parents having blue eyes
- ✔ Toss a head with a coin
- ✔ Going to university
- ✔ Learning to fish
- ✔ You having blue eyes
- ✔ Rolling a 6 with one die
The Answers

☑ Dependent, no chance of going to Uni without a high school diploma
☑ Independent events
☑ Dependent, naturally you inherit your parent’s genes
☑ Independent, one does not affect the other
What is really important here

- In this course, a key term to watch for is "with replacement" or "without replacement".
- The most common example of this is pulling colored balls from a bag. Let's say there are 4 blue balls, 6 red ones, and 3 white balls in a bag. We must assume that all the balls are the same size.
That gives us 13 balls all together in the bag. If we were asked the probability of drawing one red ball out of the bag, putting it aside, and then drawing a second ball out of the bag, these two events would be DEPENDENT. This is because if we don’t put the first ball back (without replacement) then the outcome of the second draw is going to depend on what we draw first!

Clear as mud, eh? Hope you understand but I guess it depends doesn’t it :)

Slide 9 of 9
Click here to see the Power-point® presentation that will review and introduce this unit.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Power-point Presentation</th>
<th>Extra Questions</th>
<th>Relevant Websites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Distributions</td>
<td>What is a Probability Distribution?</td>
<td>Multiple Choice Questions</td>
<td>Probability Distribution Help</td>
</tr>
<tr>
<td>3.2 Mean and Standard Deviation</td>
<td>The two methods of calculating Mean and Standard Deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Normal Distributions</td>
<td>The Normal Distribution Graph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Standard Normal Distributions</td>
<td>What does it mean to Standardize a score?</td>
<td></td>
<td>Java help calculating Z-scores (excellent)</td>
</tr>
<tr>
<td>3.6 Confidence Intervals</td>
<td>Calculating a 95% confidence interval</td>
<td></td>
<td>What is a Confidence Interval?</td>
</tr>
</tbody>
</table>

Chapter Review Quiz

Other Websites that might be interesting for the Probability Unit

- Probability Puzzles
APPLIED MATH 30 EXAMS & ASSIGNMENTS

UNIT: Statistics

HOMEWORK ASSIGNMENTS

<table>
<thead>
<tr>
<th>3.1</th>
<th>3.2</th>
<th>3.3</th>
<th>3.4</th>
<th>3.5</th>
<th>3.6</th>
<th>3.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 106</td>
<td>114</td>
<td>115</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>52</td>
</tr>
<tr>
<td>1 - 5</td>
<td>1 - 6</td>
<td>1 - 7</td>
<td>1 - 8</td>
<td>1 - 9</td>
<td>1 - 10</td>
<td>1 - 11</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

Note that there may be changes to these assignments during the unit.

JOURNAL QUESTIONS

1. Create a chart that compares uniform, binomial and normal distributions, outlining the similarities and differences.
2. Describe in your own words what Standard Deviation is and how it can be a valuable measure.
3. What is meant by Normal Distribution?
4. What is the advantage of calculating the z-score of different sets of data?
5. Explain what is meant by the term confidence interval in your words?
Statistics

1. Standard deviation can also be called:
 a) Median
 b) Mode
 c) Mean
 d) Dispersion

2. The measures of central tendency are
 a) Mean
 b) Median
 c) Mode
 d) Standard Deviation

3. Standard deviation can be used in which of the following situations
 a) Air-traffic control
 b) ball-bearing manufacturing
 c) provincial elections
 d) all of the above

4. Which of the following formulas is used to calculate the average if you are given the number of trials (n), along with the probability (p) of your intended outcome
 a) =n x p
 b) =1 - p
 c)
 d)

5. Given the following set of data, the mean and standard deviation respectively would be: (hint: use your calculator)
 <table border="1" cellpadding="2" cellspacing="2" width="100%">
 <tr>
 <td>8</td>
 <td>16</td>
 </tr>
 <tr>
 <td>7</td>
 <td>3</td>
 </tr>
 <tr>
 <td>13</td>
 <td>11</td>
 </tr>
 </table>
6. The following expenditures for food were recorded over an 8-week period: 113, 89, 125, 107, 93, 124, 130, 109

What is the arithmetic mean of these amounts?

a) $13.95
b) $890.00
c) $111.00
d) $111.25

7. The standard deviation (correct to two decimal places) of the population shown below is:

61, 59, 62, 60, 60, 58, 63, 60, 61, 61, 56, 59
a) 1.78
b) 1.77
c) 1.86
d) 2.05

8. The marks on an examination were normally distributed with a mean of 54% and a standard deviation of 8%. The teacher decided to raise the average to 64% by adding 10% to each of the student’s score. The new standard deviation will be:

a) 18%
b) 54%
c) 5%
d) 8%
9. What percentage of the area under the standard normal curve lies between z-scores of -1.8 and 0.7? (hint: you are going to have to do more than just read the numbers off of the chart, draw a diagram to help you visualize the area needed)
a) 72.21%
b) 79.39%
c) 3.59%
d) 75.80%

10. A brush manufacturer determines the mean life of his brushes to be five years, with a standard deviation of two years. If he guarantees this brushes for three years, the percentage of brushes (rounded to the nearest whole) that he should expect to replace under warranty are:
a) 60%
b) 84%
c) 16%
d) 2%

11. The heights of 1500 students at a local high school were determined and the results analyzed. If the heights were normally distributed about a mean of 165 cm and a standard deviation of 12 cm, the number of students who are taller than 180 cm is:
a) 158
b) 1341
c) 1200
d) 300

12. On a university entrance exam, the mean of all the scores was 53 and the deviation was 5.2. If Sue's score on the test was 65, what was her Z-score?
a) 2.3
b) -2.3
c) 12.0
d) 98.93

-------Key-------
1. (d)
2. (a) (b) (c)
3. (d)
4. (a)
5. (a)
6. (d)
7. (a)
8. (d)
9. (a)
10. (c)
11. (a)
12. (a)
Statistics

1. Standard deviation can also be called:
 a) Median
 b) Mode
 c) Mean
 d) Dispersion

2. The measures of central tendency are
 a) Mean
 b) Median
 c) Mode
 d) Standard Deviation

3. Standard deviation can be used in which of the following situations
 a) Air-traffic control
 b) ball-bearing manufacturing
 c) provincial elections
 d) all of the above

4. Which of the following formulas is used to calculate the average if you are given the number of trials \(n\), along with the probability \(p\) of your intended outcome
 a) \(= n \times p \)
 b) \(= 1 - p \)
 c) ![Standevform](image)
 d) ![Zscoreform](image)

5. Given the following set of data, the mean and standard deviation respectively would be: (hint: use your calculator)
 ![Table](image)
6. The following expenditures for food were recorded over an 8-week period:
113, 89, 125, 107, 93, 124, 130, 109

What is the arithmetic mean of these amounts?
a) $13.95
b) $890.00
c) $111.00
d) $111.25

7. The standard deviation (correct to two decimal places) of the population shown below is:
61, 59, 62, 60, 60, 58, 63, 60, 61, 61, 56, 59
a) 1.78
b) 1.77
c) 1.86
d) 2.05

8. The marks on an examination were normally distributed with a mean of 54% and a standard deviation of 8%. The teacher decided to raise the average to 64% by adding 10% to each of the student's score. The new standard deviation will be:
a) 18%
b) 54%
c) 5%
d) 8%
9. What percentage of the area under the standard normal curve lies between z-scores of -1.8 and 0.7? (hint: you are going to have to do more than just read the numbers off of the chart, draw a diagram to help you visualize the area needed)
 a) 72.21%
 b) 79.39%
 c) 3.59%
 d) 75.80%

10. A brush manufacturer determines the mean life of his brushes to be five years, with a standard deviation of two years. If he guarantees this brushes for three years, the percentage of brushes (rounded to the nearest whole) that he should expect to replace under warranty are:
 a) 60%
 b) 84%
 c) 16%
 d) 2%

11. The heights of 1500 students at a local high school were determined and the results analyzed. If the heights were normally distributed about a mean of 165 cm and a standard deviation of 12 cm, the number of students who are taller than 180 cm is:
 a) 158
 b) 1341
 c) 1200
 d) 300

12. On a university entrance exam, the mean of all the scores was 53 and the deviation was 5.2. If Sue's score on the test was 65, what was her Z-score?
 a) 2.3
 b) -2.3
 c) 12.0
 d) 98.93

----------Key----------
1. (d)
2. (a) (b) (c)
3. (d)
4. (a)
5. (a)
6. (d)
7. (a)
8. (d)
9. (a)
10. (c)
11. (a)
12. (a)