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Abstract

Distributed Ledger Technology (DLT) refers to the technical architecture that enables

simultaneous access, validation, and record of transactions in an immutable way over a net-

work. IOTA is a distributed ledger developed to record and send transactions between nodes

in the Internet of Things (IoT) design. Node is an electronic device that can create, receive,

or transmit transactions over the IOTA network, known as the tangle. Every node in IOTA

wants to submit a transaction. The network will allow nodes to submit their transaction,

only after they run the Tip Selection Algorithm (TSA). TSA is an essential part of the IOTA

tangle. The term "tips" refers to transactions that are still waiting to be approved by other

nodes. The unverified transactions are called orphan tips, meaning that orphan transactions

are not approved by any node. Nodes in the tangle that approve older transactions are called

lazy nodes, and transactions submitted by lazy nodes are called lazy tips. There should be a

trade-off between verifying a transaction (orphan) and how quickly a transaction is verified

(lazy tips). The importance of the TSA is to balance the number of orphan transactions and

lazy tips. Our contribution in this thesis is to make adjustments in the TSAs by assigning

adaptive values for the TSAs. Parameter α is a determining factor in the TSA algorithms

to adjust the number of lazy and orphan tips. In this thesis, we propose a new hybrid TSA

algorithm. The hybrid TSA employs a recursive walk with a variable α parameter. In the

experimental analysis of the thesis, we measured the orphan and lazy tips for different TSA

algorithms from the output data generated by the IOTA simulator. The result shows that the

hybrid TSA can effectively eliminate the number of lazy tips.
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Chapter 1

Introduction

Distributed Ledger Technology or DLT refers to the technical architecture that multi-

ple users can access, share or have the record of transactions in an immutable way [41].

Nodes in IOTA are computer devices that can send and receive transactions from nodes in

the tangle. Nodes are responsible for the following: approving a transaction and keeping

transactions recorded in their local ledger. Nodes also broadcast the record to the rest of the

nodes in the tangle. In order to approve a transaction, nodes need to find the encrypted data

for each transaction. Every transaction information such as their timestamps, transaction

history, transaction amount, senders and receivers information is encrypted using a hashing

algorithm. Since the history of a transaction is included in the encrypted value, upon de-

crypting a transaction, the node will be aware of the history of the transaction and therefore

altering a transaction is difficult. All nodes keep a record of the balances of addresses, so

they can check that a transaction is not transferring more IOTA tokens than are available

on the address. when a transaction is confirmed, can nodes update their record of balances.

When any node in the tangle submits a transaction, they will first approve two previous

transactions. Approving the previous transactions helps the tangle to increase transaction

validity. Therefore transactions will get approvals faster, and nodes will no longer be re-

quired to wait for miners to accept the validity of their transactions.

In a distributed ledger such as IOTA, there might be some nodes trying to ‘tamper’

the ledger [37]. Tampering a ledger includes changing a transaction history, amount, date,

balance. Ledgers in distributed applications are immutable, meaning that once a transaction
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is added to the ledger, no malicious node can change the transaction data in the ledger [44].

In order to eliminate the malicious node to tamper the ledger, nodes will compete in solving

a cryptographic puzzle to find the transaction data.

Every node in IOTA will run the Tip Selection Algorithm or TSA to validate transactions

legitimacy. TSA refers to the methods that the nodes in IOTA employ to select unapproved

transactions (tips) [22]. Approving a transaction indicates the transaction legitimacy so that

the money transferring in a distributed network is reliable. If a transaction is unapproved

(orphan), the content of transactions is not approved, and the payment is suspended.

The first goal of this thesis is to improve the TSA algorithm so that the number of

orphan tips in the system is reduced. Elimination of orphan tips results in fewer on-hold

transactions in the tangle and more users being encouraged to use the IOTA network with a

more efficient TSA algorithm that helps their transactions be validated.

Second, some nodes in the tangle, known as the lazy node, are approving older trans-

actions. Although the validation of an orphan transaction is important (so that transactions

are no longer on hold), the transactions history must be trimmed depending on the storage

of the tangle. As a result, the lazy nodes are causing issues for the tangle, and we want to

get rid of the lazy nodes.

1.1 Problem definition

The main problem of the current TSA algorithms is the emergence of lazy tips as the

result of the TSA algorithms as well as leaving orphan transactions in the tangle. The

existence of lazy tips and orphan transactions can reduce the efficiency of the network by

slowing down the transaction’s approval speed so that users are less courageous to use

IOTA for their micro-transactions. To address how the orphan transactions and lazy tips are

generated in the tangle, we have the following definition in the tangle:

Definition 1.1 (Snapshot). A snapshot is a process of reducing the size of the tangle

database, by removing transactions and restarting the tangle from a new transaction.

2



Definition 1.2 (Orphan tips). The orphan tip is transaction that has not received approvals

upon the snapshot, meaning they have no parent transaction within the trimmed sub-tangle.

The problem with having multiple orphan tips in a tangle is that the tangle’s transactions

will remain on hold, preventing funds from being transferred in IOTA. On the other side,

transactions must be trimmed because of the ledger’s storage limit, therefore having a slow

node changes the ledger’s linear timestamp (an older transaction comes back to live), mak-

ing it difficult for the coordinator to trim the tangle into smaller parts. The other problem

in IOTA is the occurrence of lazy tips as the result of TSA. We define lazy tips as:

Definition 1.3 ( Lazy transaction). A lazy transaction is submitted by a node that approves

a transaction that has been waiting for approval for more than the specified amount of

time. In our thesis, we refer to the IOTA foundation’s mentioned specified time (we call it

thresholds) as follows:

• In a network with a small transaction rate (λ=0.5) which is similar to IOTA 1.00

(legacy network), the waiting time threshold is 2-3 minutes [1].

• In a network with λ = 15 which is similar to IOTA 1.50 (Chrystal network), the

waiting time threshold is around 9-10 seconds [1].

• In a network with with λ = 20 or more which is similar to IOTA 2.00 (Cordicide

network [2]), the waiting time threshold is around 3 seconds [4].

Suppose transactions in the tangle are generated using a random event generator called

the Poisson process model. A Poisson Process is a model for a series of events where the

average time between events is known, but the exact timing of events is random.

In our thesis we use the Poisson point process to model transaction’s arrival in tangle

where λ is the expected rate of transactions occurrences (transactions per seconds) and t is

the average inter-arrival time.
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Assume X is the time when new transactions are generated/arrive in the tangle. If the

time threshold is large enough, new transactions have a high probability (more than 99

percent) of being generated in the tangle within the time threshold (P(X < TT hreshold)). If a

transaction is "lucky", it receives approval by the same nodes submitting their transactions

within the time threshold. We use the Poisson distribution to calculate the probability of

new transactions occurring within the TT hreshold:

P(X < TT hreshold) = 1−P(X > TT hreshold) (1.1)

The Poisson probability that the new transaction arrival (X) is within the threshold range

(P(X < TT hreshold)), in a network with λ = 0.5 and TT hreshold = 120 second is:

P(X < TT hreshold) = 1− e−λt = 1− e−60 = 1 > 0.99 (1.2)

If we model the IOTA network with λ = 15, the Poisson probability that new transac-

tions arrive within (TT hreshold = 9 seconds) is:

P(X < TT hreshold) = 1− e−λt = 1− e−135 = 1 > 0.99 (1.3)

Also, if we model the IOTA network with λ = 20, the Poisson probability that the

transaction’s arrival time (X) is no longer than the threshold (TT hreshold = 3 seconds) is:

P(X < TT hreshold) = 1− e−λt = 1− e−60 = 1 > 0.99 (1.4)

We call a tip transaction an unlucky tip if there is more than a 99 percent chance that a

new transaction arrives in the tangle within TT hreshold , but still, the tip transaction receives

no approval. If the transaction is not lucky to receive an approval within TT hreshold , it may

receive approval from a node that submits its transaction after TT hreshold . We refer to the

approving node as a lazy node, and the transaction submitted by the lazy node is a lazy

4



transaction.

1.2 Contribution

The thesis contribution is as follow:

• Proposing a new "hybrid" TSA algorithm based on varying the random walk param-

eter (α) so that orphan and lazy transactions are less likely to happen in the system.

In the hybrid TSA-1, the random value of α is changing every time the nodes run the

TSA, therefore every tip transaction will get a new chance from each of the nodes

running TSA. The hybrid random walker also changes the value of α each time the

random walk traverse to a new transaction, therefore all the parent transaction of the

following transaction will be assigned with a new random value of α. In hybrid TSA-

2, all the tip transactions will receive the same random value of α upon running TSA

by the nodes, however, while the random walker traverse recursively to the parent

transaction of the current transaction, all the parent transactions will receive a new

random value of α. The following change of α helps to reduce the number of orphan

and lazy transactions.

• Simulate and compare the result of the STD TSA, measuring the number of orphans

and lazy tips.

• Presenting the new definition of the threshold range for measuring lazy tips. The

study of lazy tips (precisely the measurement of lazy tips) has not been done before

in previous studies. Therefore, it’s worth analyzing how the lazy nodes can affect the

tangle’s performance and the possible relation between orphan and lazy tips.

• Finding the orphan tips from the output ledger of the simulated tangle and we calcu-

lated what percentage of the total transactions are orphan. We want to conclude how

the TSA algorithms, especially hybrid TSAs, can reduce or increase the orphan tips

compared to the other TSA methods.
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This thesis will study issues caused by lazy and orphan tips. Different tip selection

methods are tested to determine how they impact lazy and orphan tips under different en-

vironments. Finally, the hybrid tip selection algorithm is assessed as an outcome of the

proposed TSA.

1.3 Organization of Thesis

The thesis organization is as follows: Chapter 2 presents an overview of blockchain

networks, followed by a review of related works on traditional blockchain and DAG-based

IOTA data structure. The TSA algorithms are described in Chapter 3 of the thesis. Chapter

3 also discusses our proposed TSA algorithm and why the hybrid TSAs can reduce orphan

and lazy tips. In continuation, Chapter 4 introduces the simulation and our experimental

results. Finally, Chapter 5 summarises the thesis and suggests some possible future study

paths.
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Chapter 2

Background and Preliminaries

In this chapter, we will provide background information that will be useful in under-

standing the thesis.

2.1 Distributed ledger

Because of technological advances, a growing number of users choose to transfer and

receive money online rather than in person at a bank. Online banking and money transfer

systems are continuously updating database records managed by central authorities such as

banks or government-run sectors [27].

Online banking requires a trusted third party to communicate between two unknown

parties. If a problem happens, the third party solves the issue between the two parties.

There are multiple problems along with using a third party to finalize the transactions. First

of all, the third parties charge a fee for the services they provide. Second, it takes time for

the transactions to be approved. For example, processing a credit card transaction can take

up to 3 to 7 business days. The third issue is the concern about having complete control

over the transactions. Central authority can invalidate any transaction at any point. Fourth,

the third party can keep track of all of the transactions among different parties. Finally,

because there is only one central authority, the entire system will collapse if the controlling

center is hacked or compromised [28].

The mentioned problems can be solved by using Distributed Ledger Technology (DLT).

DLT eliminates central authority and allows for direct peer-to-peer interactions. In DLTs,
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there is little cost for the transaction’s verification [27]. Transactions between two parts

of the world happen in a matter of minutes. All the verified transactions are immutable,

which means once a transaction is recorded in the ledger, it cannot be changed. Also, in

DLTs, several copies of ledgers are kept by the nodes to make modifications. The attacker

must compete to gain the trust of 66 percent of the nodes[24], which is challenging since

unauthorized changes in the ledger would quickly notify other users.

One of the foremost DLT is Blockchain. Satoshi Nakamoto [29] invented the Bitcoin

blockchain to establish the digital token known as Bitcoin. Bitcoin is the most popular type

of blockchain technology. Bitcoin is a peer-to-peer network. Nodes in a bitcoin network

can send and receive transactions by publishing digitally signed messages to the network.

All the block’s information such as sender’s address, receiver’s address, date, amount of

payment, time stamping is hashed using the SHA-256 cryptographic hash algorithm [11].

Following are the blockchain components:

• Node: A user in blockchain architecture, and every user has their independent copy

of the ledger.

• Transaction: multiple data records which include an amount of money, value, time

stamp, date, etc.

• Block: A group of transactions. The number of transactions within a block depends

on block storage.

• Chain: A group of blocks in sequential order.

• Miners: Nodes who find the block’s hash.

• PoW: Finding the encrypted hash of a block is called Proof of Work (PoW) and

miners will receive rewards if they complete PoW of a block successfully before the

other miners solve the PoW.
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SHA-256 output is fixed for any size of input text. Nodes will start from the first block

with a nonce equal to zero to find the block’s cryptographic hash. For the nodes to keep

track of the blocks they hashed, every block in the blockchain will be defined with a specific

number of nonce in the header [29]. The Nonce (number used once) is a unique identifi-

cation number for each block. If the node finds the block hashes that has more than four

zero digit, the node wins the competition. However, if the block hashes do not provide

the circumstances (doesn’t start with four zeros), then the node needs to increase the nonce

number until it finds a block with a hash beginning with four zeros [16]. The process of

finding a block with a hash that starts with a certain number of zeros is called mining, and

the node that wins the competition is called miner.

Nodes who submit transactions in the blockchain will pay the transaction fee for their

transactions to be verified, and miners will benefit from the transaction fees [29] [20]. How-

ever, because of greater transaction fees in blockchain, In the case of micropayments, a

greater transaction fee than the payment makes no sense.

Figure 2.1: Blockchain structure

In the blockchain, a new block of multiple transactions attaches to the chain. Each

block is linked to the previous block with a hash generated by the previous, and current

block [31]. Every user on blockchain will update their ledger when a miner broadcasts the

network’s latest block. All users will not have the same chain picture in their local ledger,
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as some users do not have a recently updated ledger [12]. Therefore, the node with the

longest chain is the reference node and is considered the trusted node in the blockchain.

Figure 2.2: Blocks data

Miners are responsible for the latency in approving new blocks and, as a result, the

blockchain’s scalability issue [10][42]. Miners are given blocks of transactions and compete

to solve a complex puzzle (finding the nonce number). Finally, the miner who solves the

puzzle can add a new block to the chain and broadcast it to all the other nodes to update

their ledgers [13].

When the miner solves a cryptographic (mathematical) puzzle, the transaction is consid-

ered validated. In particular, miners execute a Secure Hash Algorithm 256 bit (SHA-256)

to generate an output known as a "hash." Blockchain rewards miners if they mine the blocks

by finding the corresponding hash for each block [43].

Another parameter in the blockchain is block size and the number of transactions each

block can store. Blocks with increased capacity help in the scalability of the blockchain

because as more transactions are included in a block, more transactions are validated in

single mining operation. After revealing the 6th block [17] in the chain, all transactions

are considered validated. A mined block’s status will remain unknown until the sixth block

gets approval by the miner.

Blockchain architecture is created as follows:

1. A transaction is requested.

2. A block containing the transaction is created.
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3. The block is sent to every node in the network, and miners start mining.

4. Miners find the block nonce.

5. Miners receive a reward for the mining

6. A block is added to the existing blockchain.

7. All the transactions within the block are approved.

8. The transactions are hidden in the system until six blocks pass onto the chain [17].

According to the white paper [29], when a large number of blocks are added to the Bit-

coin network at once, the Bitcoin blockchain experiences scalability issues which means

users need to wait a long time until their transaction is approved. In addition to the scal-

ability issue, the transaction fee for each transaction submitted to the network is another

Bitcoin blockchain issue. As a result, high transaction fees in micropayment transactions

in IoT applications discourage users from using Bitcoin blockchain because a transaction

fee greater than the value transferred is unreasonable. Until now, blockchain is unable to

suggest lower transaction fees since the fees in the blockchain are the incentives for the

miners.

Ledgers with a blockchain data structure also lack the storage that each node requires.

For example, the blockchain ledger needs a capacity of 250 GB for a node to participate

in the network, leading users to have Bitcoin blockchain size problems. Other blockchain

networks also suffer from the same problem. The blockchain size of Ethereum has already

crossed 1 TB. However, not every node is required to download the entire blockchain to

participate in the network. Some nodes are known as full nodes. Full nodes are required

for miners or users who prefer to participate in current transaction validation. Miners must

therefore download the entire 250 GB blockchain data set. However, some users are just

participating in a blockchain network to make transactions rather than to confirm them.
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The Bitcoin blockchain is also vulnerable to quantum computers [39]. If the adversary

node uses a quantum computer, it can mine new blocks in under 10 minutes and win the

block sequence. In this case, the quantum computer is 1.25 times faster than the honest

nodes doing the proof of work [19], and the malicious nodes can easily tamper the ledger.

Unlike blockchain ledgers, such as the Bitcoin blockchain, tangle uses a Directed Acyclic

Graph (DAG) as its data structure for storing transactions. Tangle has the potential to solve

some of the existing issues with traditional blockchains. First, the tangle network has no

transaction fees, making it suitable for IoT micropayments [34]. Second, tangle is quantum-

resistant [18]. Third, there are no restrictions on transaction arrival rates in the tangle net-

work. Furthermore, there is no concept of mining in the sense that miners receive monetary

rewards. There is no difference between transaction senders and transaction verifiers in the

tangle network, as there is in traditional blockchain networks.

2.2 Directed Acyclic Graph (DAG)

Graphs are powerful data structures for modeling transactions or block in a distributed

ledger [6], [45] and can help us compare models to determine the similarity of two mod-

els or find differences between them. Figure 2.3 shows a DAG (G = (V,E)), where V =

{V1, ...,VN} is a set of nodes and E = {E1, ...,EN} is an ordered set of edges.

Figure 2.3: Directed Acyclic Grah (DAG)

DAGs data structure include:

• Directed edges (arrows)

• Vertices (transactions submitted by nodes)
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• A path that is a sequence of transactions.

Suppose we have a direction of arrows from A to C. A, B and C are sequential transac-

tions where B happens after A, and C happens after B. If a directed path from A to C exists,

then A is an ancestor of C and C is a descendent of A.

A → B →C (2.1)

Using this definition of A→B→C, A is a direct cause or parent of B, and B is a child

of A and parent of C. At the same time, A is considered an indirect cause or ancestor of C.

Node B is on the pathway from A and C.

Figure 2.4: B directly approves A

Figure 2.5: C indirectly approves A

DAGs are acyclic because there is no node pointing to itself, and all edges must contain

arrows which means no directed path from any node to itself is allowed. If two nodes (and

their submitting transactions) are not linked together directly or indirectly, the missing link

shows that the nodes are not causally related.

2.3 Tangle components

The tangle main components are as follow:

Definition 2.1 (Transaction). Transaction is a multiple data records that includes an amount

of money, value, timestamp, date, etc.
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Transactions are the basis of the tangle network. A transaction is a transfer from one

account address to another address that can have a value or zero-value (contain data, a

message, or a signature) [34]. Users as a node in the IOTA network will send transactions to

tangle. If the transactions are verified, they are broadcast to all the other nodes. Nodes will

update their ledgers to have the same transaction in their local ledger so that all the tangle

nodes can have the same transaction. A transaction includes 2,673 encoded characters.

Nodes transmit transactions as a single entity known as a bundle. A bundle may include

numerous transactions. When nodes in the tangle approve a bundle transaction, they ap-

proved all transactions in the bundle. Even if nodes want to broadcast a single transaction,

they must prepare a bundle. Figure 2.6 shows a bundle transaction in IOTA that includes a

head, a body, and a tail. The tail transaction is the one with a 0 in the current index field.

As an example, transaction T X(0,3) is the tail transaction in the index field of 3. The head

transaction (T X(3,3)) is the one with the biggest value in the last index field and the last

transaction in the bundle. The middle and tail transactions are connected through the field

of the trunk transaction.

Figure 2.6: Bundle,Branch and trunk transactions

The following fields within a transaction bundle are:

1. Signature
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2. Address

3. Timestamp transactions in order (First: Balance, Second: Sender, Third:Receiver)

4. Current index (Header index)

5. Last index (Tail index)

6. Value ( 0 for message, −1 for header,1 for tail)

7. Branch (When nodes run the TSA, the first link between two transaction is the branch)

8. Trunk (When the transaction selects the other transaction to verify, the second link

between two transaction is the branch)

9. Hash of the bundle transaction

All transaction information such as an address, amount, time stamping, indexes, and the

final index is stored in the bundle. Data in mentioned fields are immutable, which means

the transaction records can never change. Suppose any change in the transaction’s fields

happens. In that case, the transaction hash will be different with any change in head, tail or

middle transaction, leading to a wrong nonce number, making the transaction’s children (all

the other transactions that the invalid transaction issued) invalid. After approving previous

transactions, nodes will append the hash value of the public and private keys and balances

from the two prior transactions to its transaction, create a bundled transaction, and send it

out to the network to be reviewed and validated by the next node that publishes a transaction.

All the nodes in tangle need to have the same picture of tangle. Therefore, every participant

node is required to have the most updated ledger.

Definition 2.2 (Nodes). Node is a computer in the IOTA network. Node’s role is to approve

new transactions and approve transactions that are already existing.

Nodes are the heart of the tangle network. Every node in tangle has a copy of the

ledger, including DAG information (transactions and their approval time). Nodes can read
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information from DAG (view tip transaction), and they can write information to the DAG

(publishing a new transaction).

Definition 2.3 (Hashing algorithm)). Hashing algorithms are cryptographic methods that

accept a set of data as an input and generate a one-way encrypted hash of that data as an

output.

Definition 2.4 (Proof of Work (PoW)). Proof of Work (PoW) is a piece of data generated

by nodes that meet certain criteria. PoW uses the Hashcash algorithm [30] to discover the

encrypted piece of data (transactions address, timestamps and balances). Hashcash repeat-

edly hashes the same data over, with slight variations in the nonce number (an arbitrary

number that can be used just once in a cryptographic communication), until a hash is found

with a certain number of leading zero digits (more than four zero digits).

Definition 2.5 (Miners). Nodes who run the PoW are called the miners. In IOTA, every

node also acts as a miner and verify transactions validity.

Definition 2.6 (Tips). Tips are defined as transactions submitted by nodes.

Definition 2.7 (TSA). Tip Selection Algorithm (TSA) is the algorithm to select tips. TSA

is run by each node two times.

Definition 2.8 (Hidden time). : Hidden time in IOTA is the latency that nodes experience.

Every node in IOTA is waiting for the earlier nodes to submit their transactions. The previ-

ous nodes, however, might have lower computation power in running PoW causing a delay

in finding the transaction’s hash. Also, if nodes postpone running the TSA, which results in

finding a tip transaction with delay, the validation of a transaction may take a longer time.

All the mentioned reasons can cause delay known as the hidden time in the TSA.

Definition 2.9 (Cumulative weight). Cumulative weight is defined as a transaction’s own

weight plus the sum of weights of all transactions that directly or indirectly approve this

transaction [36].
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Equation 2.2 shows the cumulative weight of a transaction, where H(v) is the total

weight of all the transactions that approve v. In other words, the cumulative weight of a

vertex is the number of ancestors it has plus one.

F(v) = 1+H (v) (2.2)

Figure 2.7 shows the the cumulative weight of a finite DAG including 7 nodes publish-

ing their transaction V1, ...,V7.

Figure 2.7: Cumulative weight

Definition 2.10 (Consensus). When nodes make the final decision on the validity of a

transaction, they reach a consensus on whether to accept or reject a block

Nodes also are responsible for deciding which transactions to confirm as the unapproved

transactions remain pending. Nodes will attach transactions to their local ledger upon ap-

proving a transaction. We can consider that nodes in the tangle have the same responsibility

as the miners in the blockchain. In contrast to the blockchain, not every user can be a miner

since blockchain mining blocks demand huge electricity and computing power.

In IOTA, there might be times where different nodes might have different opinions on
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a transaction [35]. The current version of IOTA is not completely decentralized and uses a

central node called Coordinator to verify transactions.

Definition 2.11 (Coordinator). The Coordinator is a powerful node operated by the IOTA

Foundation that issues different types of transactions (called milestones) with zero values.

Milestone transactions only have a message (they do not have any value since they are not

transferring money) to validate transactions. If a milestone transaction points to a transac-

tion, all the other transactions approved directly or indirectly by the milestone transaction

are considered approved (red vertices).

Figure 2.8 shows the coordinator node publishes the milestone transaction (red vertex).

Upon approval of the tip transactions, the milestone transaction will link to the approved

transactions.

Figure 2.8: Milestone transaction is submitted by the coordinator

Figure 2.9 shows when a milestone transaction links to a tip transaction, the coordinator

approves all prior transactions that were linked by the tip transaction.

The most recent version of IOTA (IOTA 2.00) is completely decentralized, meaning

that there is no coordinator or central authority submitting milestones to verify transactions.

IOTA 2.00 uses mana to add a security code to each node. Mana is a measure of a node’s

reputation. The more trustworthy a node is, the more reputation/mana it will receive. Nodes

can earn mana by processing transactions. The IOTA foundation will then give nodes mana

as their incentives [15].
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Figure 2.9: Every transaction that is linked by the milestone transaction directly or indi-
rectly, is approved by the coordinator.

For the nodes to reach a consensus after mana, a voting algorithm in IOTA will ask the

opinion of the majority of nodes randomly. The new consensus algorithm in IOTA 2.00 is

called Fast Probabilistic Consensus (FPC) and is defines as:

Definition 2.12 (FPC). FPC is a protocol that allows IOTA nodes to quickly reach an agree-

ment on which of two conflicting transactions should be accepted by asking the opinion of

neighbour nodes. If the neighbour random nodes agree with the validity of a transaction,

they vote 1, which means they approve the transaction, otherwise, they vote 0.

IOTA 2.0 has been efficiently eliminating the possibility of the malicious nodes tam-

pering ledger. Suppose a node receives two conflicting transactions. Using FPC, nodes can

quickly find consensus and process transactions.

2.4 Tangle as a DAG data structure

The IOTA tangle uses Directed Acyclic Graph (DAG) as the data structure [26]. DAG is

developing as an alternative to conventional blockchain architectures for distributed ledger

technology [6].

Every node in tangle can publish transactions to the network and act as a user or issue the

previous transactions and act as the miner. A node must do the following for any incoming

transaction to be valid:
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• Every node runs TSA for selecting tips in the tangle. The tip transactions selected by

the TSA are the vertices of the DAG.

• Nodes ensure that there are no conflicts between transactions when they approve a

transaction. The process of approving transactions, checking nonce numbers, and

calculating transaction balances is similar to the PoW in blockchain.

2.5 Related works on distributed ledger simulators

Stoykov [40] studied a Bitcoin-like blockchain with the capability of large-scale net-

work simulations, focusing on scalability and speed. The study also used a Java-based

simulator for analyzing the scalability of Bitcoin-style blockchains. The research addresses

various mechanisms that can be employed to resolve the scalability limitation of Bitcoin-

style blockchains by measuring the differences between the simulator and real time scenar-

ios.

Another study by Kreku [21] employed a simulator to optimize network latency in

Ethereum. ABSOLUT was the simulation tool they used to measure the performance and

power consumption. These simulations assume that the network latency between the nodes

is minimal (less than 1 msec). They show that it is best to use the least number of nodes to

satisfy the performance requirements.

The evaluation of selfish mining and the latency on blockchain application was de-

veloped by Gobel [17] using discrete-event blockchain simulators under a network with

latency in sending decisions among the network miners. The simulation result of selfish

mining indicates that selfish mining puts honest nodes in a position where they are wast-

ing resources on mining blocks that have no chance of being included in the long-term

blockchain.

Kreku [21] study shows the practical application of architectural performance modelling

and simulation tools to predict blockchain latency. They also discussed how to leverage the

simulator to improve decision-making in blockchain applications.
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As a result of growing interest in DAG applications, several studies have tried to sim-

ulate the DAG ledger. Tools and visualizing models have been offering simulations for

building DAG systems. Kusmierz [23] modelled a discrete simulator to discuss the rela-

tionship between cumulative weights of transactions and the number of tips that result in

the unsatisfactory performance of the weighted random walk.

Lathif [25] suggested a DAG simulator with an adjustable parameters framework. The

simulator is based on VIBES to model simulations with a large number of transactions. The

drawback of the VIBE simulator is that the author still did not validate the simulator model.

Alon Gol [3] also developed a simulator to study the number of tips. The study shows

effecting factor on the number of lazy tips is the cumulative weight, and as the cumulative

weight increases, fewer lazy tips will happen in the system. However, the weighted TSA

will result in more transactions left unvalidated. An IOTA simulator is developed for tangle

visualization to observe several tangles generated with different tip selection algorithms

such as uniform TSA, unweighted, random walk, and weighted random walk.

The adaptive random walker study [9] presented a hybrid TSA based on a simulator

from Gol [3] that has the benefits of both unweighted random walk and weighted random

walk at the same time. The authors claim that an adaptive random walker can approve

tip transactions in a shorter amount of time. The lazy tips do not have the chance to be

generated in the system, and a weighted algorithm can better resist lazy tips.

Ferrero’s study used Gol’s simulator to create an adaptive TSA so that when the node

runs the TSA for the first time, Ferrero’s algorithm selects a tip using a weighted TSA,

and when the same node runs the TSA for the second time, Ferrero’s algorithm employs an

unweighted TSA. Ferrero’s results indicate a significant decrease in the number of orphan

tips.

The goal of our thesis is to improve existing TSAs by proposing a new TSA called

hybrid TSA. We used the Gol simulator to measure the number of orphan transactions in

the hybrid TSA, as well as the number of lazy tips, and we measured the performance of
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different TSAs by presenting a ratio between lazy tips to orphan transactions in different

TSA algorithms.
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Chapter 3

Efficient Implementation of Tip
Selection Algorithm

In this chapter, we explain different TSA algorithms using the simulator concept. The

following sections help to get a better understanding of the simulator. Based on the sim-

ulation model, we describe how different TSAs can cause lazy and orphan transactions to

occur in the tangle.

3.1 Introduction to the simulation

IOTA visualization [3] is a tool for modelling tangle’s behaviour using the JavaScript

statistics library [7] and React [38]. The following section describes how the simulation

works by examining how a transaction is created using the Poisson process. As described

in Chapter 2, a node must choose two previous transactions submitted by prior nodes.

When nodes submit a transaction in the tangle, the transaction is held until other nodes

approve it. The unverified transactions will remain as a tip until the other nodes run the

TSA algorithm and choose the unverified transaction. Every time nodes run the TSA to

pick two transactions to verify.

Consider the total number of tips in the tangle, which is denoted as L0 where L0 > 0.

The number of tips includes the number of tips revealed to nodes and the number of hidden

tips [33]. The hidden time, abbreviated as h, is the amount of time that a node that publishes

transactions must wait until their transaction is visible to the rest of the tangle. Also, at any

given moment t, there are hidden tips that are not yet visible to the network. Assume that
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there are typical r known tips (attached before time t-h and remain tips at time t). Let λ be

the rate of the Poisson process. For any time t, there are specific hidden tips λh connected

to the last r tips, but they are not yet visible to the nodes [5]. If r is the number of known

tips at time t-h, the expected number of transactions in the tangle is [33]:

L0 = r+λ∗h (3.1)

The DAG linear model is defined as a model to describe transaction arrival in a way

that transactions arrive at every integer value of time. In order to simulate the transaction’s

arrival in the real tangle, we need to implement the non-linear simulator using the Poisson

Process model. A Poisson Process is a model for a series of discrete events where the

average time between events is known but the precise timing is uncertain. The arrival

of an event is independent of the previous event. Poisson process model is suitable for

simulating the arrival time of transactions. The JavaScript statistical library can return a

random number with exponential distribution, and the arrival rate of λ [7], [3].

A Poisson Process has the following conditions:

• Every event is independent of another event.

• The average rate (events per second) remains constant.

• There are no two events that happen at the same moment.

To implement the DAG, the simulator implements the vertice and the links. Each vertex

in a DAG is called a site. Each site keeps a transaction and its corresponding cumulative

weight in the local version of the DAG. Every site will act as the node and upon arrival

to the tangle, it needs all the TSA to select two previous sites. Therefore, sites are the

representatives for both nodes and the transactions (tips). Sites in the simulation will call

the TSA while at the same time they also need to be selected by the TSA and not left behind

(being an orphan)
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Each simulation run is as follows: first, sites are created using an exponential function.

Incoming sites arrival times are sampled from an exponential distribution based on the value

of λ for every incoming site. Every site in the tangle runs the TSA to approve two previous

site. Let h be the average time for a site to complete the computations (PoW) needed to

validate a transaction.

For the entire TSA run with 500 nodes, we assume that λ is constant during the sim-

ulation time. We assume that all devices have the same amount of computing power and

latency (1 sec), and each transaction’s weight is equal to 1.

3.2 TSA Algorithm Background

Assume that t = 0 is the time origin that the genesis transaction enters the tangle and

t = T is the current moment. When nodes at T run the TSA algorithm, the simulator

separates all tip transactions in (T −h), where h is the hidden time due to network latency.

• The hidden time (h) is the amount of time that recent nodes and their submitted

transactions in the tangle are not visible to other nodes due to proof of work latency.

• As shown in table 3.1, T − h is defined as the period that the TSA’s random walk is

allowed to find the tip transaction.

Table 3.1: Periods in the tangle

Period Description

T Revealed nodes and hidden nodes

h Nodes that are running TSA and doing PoW are hidden to other nodes

T-h The random walker finds the tip transaction in this period

Figure 3.1 shows node V4 running TSA. Suppose t is the average inter-arrival rate of the

transactions. In our example, V 4 arrives t seconds after V1, V2 and V3.
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Figure 3.1: Node in the hidden time (node V4 runs the TSA to choose a tip transaction in
T −h)

If a tip is never verified and turns to an orphan tip, then the on-hold transactions will be

declined. If the orphan tips increase, declined transactions will grow in the tangle. As more

users’ transactions decline, the users will lose the courage to submit their transactions with

IOTA because more users will receive failure messages for their submitted transactions.

We can conclude that the trade-off between the orphan tips and the lazy tips to analyze

the performance of a tip selection algorithm.

3.3 Random walks in tangle

Figure 3.2 shows the random walk steps. The random walker traverses the tangle from

the first submitted transaction in T −h, until finding a tip transaction in T −h that needs to

be approved by the node in h [8].

Following are the random walk steps:

• Start with the first transaction.

• Find transaction’s approvers.
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Figure 3.2: Random walk in tangle

• Choose a random transaction among the approvers and traverse to the chosen trans-

action.

• Check if the approver (chosen transaction in step 3) is a tip transaction.

• If the transaction is not a tip, the random walker will continue to find the approver’s

approvers (random walker uses approver function in step 2 to find the approvers of

the chosen transaction in step 3).

• Randomly choose one of the approvers and check whether it is a tip.

By running the approver function on a transaction, the random walk will get all the

parents of the selected transaction. Approver’s function begins by obtaining all transac-

tions and corresponding links until T − h. The following example explains the approver’s

function more clearly:

As it is shown in figure 3.3, let’s say we have V0 and V1 as well as L0, L1, and L2. The

approver function will begin with V0 and search for links that lead to transaction V0, that are

L0, L1, and L2. The approver function will associate these links with their source values,
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which are V1 for L0, V2 for L1, and V3 for L2. Therefore, V0’s approvers are V1, V2, and V3.

Figure 3.3: Approvers for transaction V0 are (V1, V2 and V3). L0, L1, L2 target is V0 and their
corresponding sources is V1, V2 and V3

Figure 3.4 shows the choose function in the random walk. In the choose function, the

length of the approvers is determined first. Then a random number between the minimum

and the maximum length of the approvers will determine the index of the chosen transaction

among the approvers. In the previous example, V1, V2 and V3 were the approver transactions.

The upper and the lower bound is 0 ≤ random ≤ 2, therefore the random chosen number

can be 0 (index 0, transaction V1), 1 (index 1, transaction V2) or (index 2, transaction V3).

Figure 3.4: Choose function in random walk
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The random walker’s isTip function ensures that the approver transaction in T −h is still

tip (if the approver transaction has no parent transaction, the approver is a tip transaction).

Suppose the current approver in T − h is not a tip. In that case, the walker will continue

to get the approver’s approvers. The random walker will then choose a transaction among

the approvers and walk/traverse toward the transaction. If the new transaction is a tip, the

random walker will stop.

Figure 3.5 shows a random walk starting from V0. The random walker begins with the

starting transaction V0 and finds approvers for transaction V0. Transactions V1, V2, and V3

are the approvers for transaction V0. Random walkers will then randomly choose one of

the approvers (choose function). Assume the choose function picks V1. V1 then must be

examined to see if it is a tip. Since V1 is a tip, the random walker stops.

Figure 3.5: The random walker starts from V0 and search for the tips (V1, V4, V5)

3.4 Uniform TSA [32]

In the uniform TSA, the probability of selecting a tip is shown in equation (3.2):

Puni f orm =
1

∑
T−h
t=0 Tips

(3.2)

As tangle expands, the T −h period contains more tip transactions. Because the chance
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of selection is the same for all tips in T −h [32], tips gain an opportunity to be selected by

a lazy node instead of newly published tips.

3.5 Unweighted TSA

The unweighted random walk is similar to the uniform TSA. The only difference be-

tween the unweighted TSA and uniform TSA is that the unweighted TSA uses a random

walker [32].

As mentioned in section 3.3, the random walker is a recursive function starting from

the genesis transaction. It moves recursively to find the approver transactions and checks if

they are still tips (not selected by other transactions).

Figure 3.6 shows an example of DAG with the unweighted TSA. Suppose the average

inter-arrival time between transactions is one second. In our example in figure 3.6, V1 is

an tip transactions. Starting from V0, the random walker select one transaction among the

approvers (V1, V2, V3, V4, V5). The probability of V1 being selected by the TSA is equal to the

probability of V2, V3, V4 or V5 being selected by the TSA. Therefore, the unweighted TSA

can select the tip because any outgoing links visited by the walker have an equal chance of

being picked. In our example, node V23, picks V1. Since (V23) links to an older tip, V23 is a

lazy transaction. To conclude, the lazy transaction appears in the tangle as the result of the

unweighted TSA.

3.6 Weighted TSA

The weighted random walker starts from the first transaction, as shown in figure 3.7, and

gets the approver transactions (approver function mentioned in the random walk section).

The random walk will then select one transaction among the approvers based on the Weight

Coefficient Factor (WCF). The WCF measurement [34], determines whether a transaction

has a chance of being selected by the TSA and is calculated as follows:
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Figure 3.6: When the lazy transaction is appeared in the tangle as the result of unweighted
TSA picking (V1)

WCF = e−α∗Wnormalised (3.3)

Parameter α in equation 3.3 is defined to change the TSA’s weighting impact where the

α upper and lower bound is:

[αmin,αmax] = [0,1] (3.4)

As a result, if the α value in equation 3.4 is equal to zero, the TSA behaves similarly to

the unweighted TSA. On the other hand, if α is equal to one, the TSA behaviour is similar

to the weighted random walk.

Wnormalised in equation 3.3 is the normalised cumulative weight. The cumulative weight

of a transactions is the same equation we already explained in chapter 2 (2.2), where H(v)

that is the total weight of all the transactions that approve v.

To normalize the cumulative weights we have:

WNormalized =W −WMax (3.5)

Figure 3.8 shows an example of seven transactions in the DAG named as V0 (genesis
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Figure 3.7: Weighted TSA algorithm
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transaction),V1,V2,V3,V4,V5,V6,V7. The corresponding node of [V5,V6,V7] will run the TSA

algorithm six times. The weighted TSA is as follow:

1. The walker starts from V0 and search approvers.

2. The approver of V0 is V1 which is not a tip, so the random walker continues looking

at V1’s approvers that are [V2,V3,V4].

3. V1’s approvers ([V2,V3,V4]) are still tips. The random walker stops walking.

4. The choose function decides to select among V0’s approvers ([V2,V3,V4]). The WCF

of each transaction is calculated.

5. Since α is the same for all the elements in ([V2,V3,V4]) and they have the cumulative

weight of 1, TSA is similar to the unweighted random walk (W −Wmax = 0).


w2

w3

w4

=


1

1

1

⇒


w2 −wmax

w3 −wmax

w4 −wmax

=


0

0

0

 (3.6)


WCF2

WCF3

WCF4

=


e−α∗w2

e−α∗w3

e−α∗w4

=


1

1

1

 (3.7)

Every element in [V2,V3,V4] has a WCF equal to 1. After calculating each transaction’s

WCF, the total sum of the WCFs as mentioned in figure 3.9 is calculated:

∑WCF =WCF2 +WCF3 +WCF4 = 3 (3.8)

The probability of each transaction selected by the TSA is:
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Figure 3.8: Weighted TSA(1) and TSA(2)

Probability =


WCF2
∑WCF

WCF3
∑WCF

WCF4
∑WCF

=


0.33

0.33

0.33

 (3.9)

The direct arrows from V5 to V4 and V3 shows that V4 and V3 are chosen by the TSA:

T SA(1) : V5 →V3 →V1 →V0 (3.10)

T SA(2) : V5 →V4 →V1 →V0 (3.11)

The updated cumulative weight will be:


w2

w3

w4

=


1

2

2

⇒


w2 −wmax

w3 −wmax

w4 −wmax

=


−1

0

0

 (3.12)

So the WCF matrix for [V5,V6,V7] is updated as:

34



Figure 3.9: Weighted choose function
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
WCF2

WCF3

WCF4

=


e−α∗w2

e−α∗w3

e−α∗w4

=


0.36

1

1

 (3.13)

The total sum of the WCFs as mentioned in (figure 3.9) is calculated:

∑WCF =WCF2 +WCF3 +WCF4 = 2.36 (3.14)

The probability of each transaction selected by the TSA is:

Probability =


WCF2
∑WCF

WCF3
∑WCF

WCF4
∑WCF

=


0.15

0.42

0.42

 (3.15)

Therefore, V3 and V4 are chosen by the TSA for the second time:

T SA(3) : V6 →V3 →V1 →V0 (3.16)

T SA(4) : V6 →V4 →V1 →V0 (3.17)

The updated coefficients are:


w2

w3

w4

=


1

3

3

⇒


w2 −wmax

w3 −wmax

w4 −wmax

=


−2

0

0

 (3.18)
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Figure 3.10: Weighted TSA (3) and TSA (4)


WCF2

WCF3

WCF4

=


e−α∗w2

e−α∗w3

e−α∗w4

=


0.135

1

1

 (3.19)

The total cumulative weight is calculated as:

∑WCF =WCF2 +WCF3 +WCF4 = 0.135+1+1 = 2.135 (3.20)

The probability of each transaction selected by the TSA is:

Probability =


WCF2
∑WCF

WCF3
∑WCF

WCF4
∑WCF

=


0.063

0.46

0.46

 (3.21)

T SA(5) : V7 →V3 →V1 →V0 (3.22)
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T SA(6) : V7 →V4 →V1 →V0 (3.23)

Figure 3.11: Weighted TSA(5) and TSA (6)


w2

w3

w4

=


1

4

4

⇒


w2 −wmax

w3 −wmax

w4 −wmax

=


−3

0

0

 (3.24)


WCF2

WCF3

WCF4

=


e−α∗w2

e−α∗w3

e−α∗w4

=


0.049

1

1

 (3.25)

Therefore the WCFs are updated:

∑WCF =WCF1 +WCF2 +WCF3 = 0.049+1+1 = 2.049 (3.26)

The probability of each transaction selected by the TSA is:
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Probability =


WCF2
∑WCF

WCF3
∑WCF

WCF4
∑WCF

=


0.023

0.48

0.48

 (3.27)

V2 will not get the approval and remain orphan. The mentioned example shows that tips

can easily turn into lazy tips (V2 in the previous example).

The weighted TSA can generate more orphan tips in comparison to the unweighted

TSA. However, in the unweighted TSA, there is the chance that lazy nodes will approve the

older tips, while in the weighted TSA,the older tips remain orphaned.

3.7 Standard Deviation Algorithm (STD) [9]

When nodes run the weighted TSA algorithm, the algorithm uses a fixed α value in

the weighted random walks. Therefore, only the cumulative weight of the approvers is

affecting the WCF. When a transaction has a larger cumulative weight in a weighted TSA,

the WCF of the transaction is also greater, and the transaction has a higher chance of being

selected by the TSA.

The standard deviation (STD) TSA [9] aims to determine the α value to reduce the

number of lazy and orphan tips in tangle. In a tangle with n transaction, parameter α in the

STD algorithm varies depending on the cumulative weight of each tip among approvers:

α =
6

n
√

2
ST D (3.28)

Where in equation 3.28 the value of α is changing based on the number of transactions

(n) and the STD of the approvers weight.

As it is shown in figure 3.12, the main difference between the STD algorithm and

weighted TSA is in the normalization of weights. Weights in a weighted TSA are normal-

ized by subtracting the cumulative weight of each transaction from the cumulative weight
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of the transaction with the highest cumulative weight.

WNormalised =W −Wmax (3.29)

In the STD TSA, normalized weights are calculated by subtracting each transaction’s

cumulative weight from the transaction’s mean cumulative weight:

WNormalised =
n

∑
i
|W −Wmean | (3.30)

In a weighted TSA, the normalized weight of the transaction with the largest cumulative

weight is zero (W −Wmax = 0), which results in a WCF with a value of one. As a result, in

a weighted TSA, the transaction with the highest cumulative weight has a high chance of

being chosen.

The following example shows the impact of normalizing weights on choosing transac-

tions in the weighted TSA:

Consider a group of approvers, that are the transactions with the cumulative weight of

[3,4,2,3,3,3] and the STD TSA is applied. Since the mean weight in [3,4,2,3,3,3] is 3,

the Squared Deviation (SD) is:

SD =
i=6

∑
i=1

|W −Wmean |2= 2 (3.31)

Given the SD of the approvers and the approvers length, equation 3.32 gives the variance

of the approvers:

Variance =
SD

Numbero f Approvers
=

2
6
= 0.33 (3.32)

Therefore the STD of the approvers (equation 3.33) will be:

σ(ST D) =
√

0.33 = 0.57 (3.33)
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Figure 3.12: STD algorithm
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With a total number of 500 transactions and equation 3.28, the value of α is 0.0048.

3.8 Ferraro’s algorithm [14]

Ferraro’s study [14] focuses on eliminating orphan tips in the DAG. The study offers a

two-step random walk for each node to choose the tip. First, a node will run the TSA with

a high α value to ensure that the transaction with the highest cumulative weight is chosen.

The same node will then use a second TSA, but this time with a small value of α to ensure

that the transaction with the lowest cumulative weight has the opportunity to be chosen by

the node.

Assume we want to measure the approval probability of V1 by a lazy tip in figure 3.13.

If V19, approves V1 in Ferraro’s algorithm, V19 is a lazy tip.

The first step in Ferraro’s paper is referred to as the security step. In the security step,

the tip TSA uses α = 1. Figure 3.13 and equation 3.35 show the calculated WCFs for

[V1,V2,V3]:


w2

w3

w4

=


1

16

16

⇒


w2 −wmax

w3 −wmax

w4 −wmax

=


−15

0

0

 (3.34)


WCF2

WCF3

WCF4

=


e−α∗w2

e−α∗w3

e−α∗w4

=


3.05902321e−7

1

1

 (3.35)

The total sum of the WCFs considering that WCF4 is almost zero (3.05902321e− 7), is

calculated as:

∑WCF =WCF2 +WCF3 +WCF4 = 1+1+(3.05902321e−7)≃ 2 (3.36)
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To check if the V1 is selected by the TSA , the probability of V2 is calculated:

Probability =


WCF2
∑WCF

WCF3
∑WCF

WCF4
∑WCF

=


1.0196744e−7

0.50

0.50

 (3.37)

Since the probability of V2 being chosen by the TSA is 1.0196744e−7, therefore V2 is

not selected by the security step in the TSA.

Figure 3.13: The chance of V1 being selected by a lazy tip in the security step of the Fer-
raro’s algorithm

In the second step (figure 3.14), the TSA uses α = 0.001, known as the sweep step. The

example below will also show the possibility of selecting an older transaction (V1) in the

sweepe step of Ferraro’s TSA. The updated WCFs in figure 3.14 are:


w2

w3

w4

=


1

17

16

⇒


w2 −wmax

w3 −wmax

w4 −wmax

=


−16

0

−1

 (3.38)

since α = 0.1 in the sweep step:
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Figure 3.14: The chance of V1 being selected by a lazy tip in the sweepe step of the Ferraro’s
algorithm


WCF2

WCF3

WCF4

=


e−α∗w2

e−α∗w3

e−α∗w4

=


0.2

1

0.9

 (3.39)

∑WCF =WCF2 +WCF3 +WCF4 = 0.2+1+0.9 ≃ 2.1 (3.40)

The probability of each transaction being selected is:

Probability =


WCF2
∑WCF

WCF3
∑WCF

WCF4
∑WCF

=


0.095

0.47

0.42

 (3.41)

Therefore, V1 is not selected by the Ferraro’s TSA.

3.9 Hybrid TSA algorithm

In this section, we describe our proposed hybrid TSA. In the hybrid TSA algorithm, the

α parameter is not a fixed value and changes with a random function. Therefore the WCF

and the chance of selecting a tip is changing.
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Figure 3.15: Hybrid TSA-1 and Hybrid TSA-2
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In hybrid TSA-1, starting from the first transaction, the random walker finds the ap-

prover transactions (approvers function in the random walk section). The algorithm will

then calculate the cumulative weight of each approver. Also, each approver will be assigned

a random value of α. The random number generator in hybrid TSAs returns a floating-point,

pseudo-random number in the range 0 to less than 1 (inclusive of 0, but not 1) with a uni-

form distribution over that range. The random value of α is different for each approver, and

each time a node runs the TSA, approver transactions will get a new random α. Finally,

the algorithm calculates the WCF for each approver, and if the approver is a tip, the hy-

brid random walker will stop. However, if the approver transaction is not a tip, the random

walker continues looking for an approver that is a tip. Figure 3.15 shows the hybrid TSA-1

and hybrid TSA-2 method. The choose function in the hybrid TSA, is similar to the one we

described in the weighted, STD and the Ferrero’s TSA.

Figure 3.16: The chance of (V1) being selected by hybrid TSA-1


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w2

w3

w4


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
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

w1 −wmax

w2 −wmax

w3 −wmax

w4 −wmax


=



−22

−2

0

−2


(3.42)

Suppose we have a sample of DAG including 29 transactions (V0-V28), where V1 is the

transaction waiting for its approval.The following example shows that the hybrid TSA-1
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is less likely to select transaction V1 as it is shown in figure (3.17). Suppose the random

walker starts from V0 in figure 3.17 and find the approvers for V0 that are [V1,V2,V3,V4].

The TSA will then assign the random α1, α2, α3, α4 with a uniform distribution between

[0,1] to each approver transaction, in our example V1, V2, V3, V4, V5. Suppose the random α

values are:

[α1,α2,α3,α4] = [0.1,0.8,0.6,0.4] (3.43)

The WCF for each transaction is:



WCF1

WCF2

WCF3

WCF4


=



e−α∗w1

e−α∗w2

e−α∗w3

e−α∗w4


=



0.11

0.2

1

0.44


(3.44)

The total cumulative weight is calculated as:

∑WCF =WCF2 +WCF3 +WCF4 = 0.11+0.2+1+0.44 = 1.75 (3.45)

The probability of each transaction selected by the TSA is:

Probability =



WCF1
∑WCF

WCF2
∑WCF

WCF3
∑WCF

WCF4
∑WCF


=



0.062

0.11

0.57

0.25


(3.46)

The example below shows the chance of an older tip being selected by a lazy tip in hy-

brid TSA-2. Suppose we have a similar sample of DAG mentioned in the previous example

including 29 transactions (V0-V28), where V1 is the transaction waiting for its approval. The
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Figure 3.17: The chance that V1 being selected by hybrid TSA-2

hybrid TSA-2 focus is to change α from one approver’s array to another, meaning that α

still will be the same among the approvers of a particular tip transaction, but α will change

when the walker traverse to another transaction and finds new transaction’s approvers. Fig-

ure 3.17 shows all the approver transactions of the genesis transaction V0 (in our example

V1, V2, V3 and V4) receive the same amount of α where α is the random number generated

with the uniform distribution between [0,1]. Suppose the random α value generated is equal

to 0.3, therefore, the WCF for the approvers (V1, V2, V3 and V4) is updated as:
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

w1 −wmax

w2 −wmax

w3 −wmax

w4 −wmax


=



−22

−2

0

−2


(3.47)



WCF1

WCF2

WCF3

WCF4


=



e−α∗w1

e−α∗w2

e−α∗w3

e−α∗w4


=



0.0013

0.54

1

0.54


(3.48)

The total cumulative weight of each transaction is calculated as:
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∑WCF =WCF1 +WCF2 +WCF3 +WCF4 = 0.0013+0.54+1+0.54 = 2.0813 (3.49)

The probability of each transaction selected by the TSA is:

Probability =



WCF1
∑WCF

WCF2
∑WCF

WCF3
∑WCF

WCF4
∑WCF


=



0.00062

0.25

0.48

0.25


(3.50)

Therefore, V1 becomes an orphan transaction.
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Chapter 4

Discussion

4.1 Reviews and test results

In this chapter, we analyze the simulation result of different TSA algorithms. For a

better examination of the simulated result, we use some of the parameters obtained from

the IOTA tangle explorer. The IOTA tangle Explorer shows live IOTA transaction data and

lets users search the IOTA tangle for transactions, addresses, bundles, and live market data.

We start with the evaluation of TSA algorithms and how to identify lazy tips that occurred

in the system as a result of TSA. We also discuss identifying orphan transactions in the

tangle and examining the number of orphan transactions. We will finally introduce a metric

to measure the efficiency of each TSA.

4.1.1 TSA evaluation

To evaluate the TSA’s performance, we run the simulator with a set of parameters to

answer the following questions:

• What is the average number of orphan tips with the given parameters (network types)?

• What is the average number of lazy tips as the result of TSA?

As we already discussed in the simulation section (chapter 3), the following is the trans-

action flow:

• Transaction creation: Transaction arrives randomly in the network. For each incom-

ing transaction, a site is created. Each site contains the corresponding transaction and
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its total weight.

• Tip selection: Each new site should approve two other unverified sites (tips).

• After the simulation run is completed, the simulator provides us with information

such as the sites and the timing of their approval.

• Based on the site’s approval timing, we calculate the number of orphan and lazy tip

transactions.

4.1.2 Simulator output

Every transaction in the simulator has its unique name and timing, therefore, making

it easy to identify orphan and lazy transactions. The simulator’s output includes selected

transactions (approved/child transactions) and the approver/parent transactions. The ap-

prover transactions includes two main objects:

• Approver transaction name (each transaction has a unique name)

• Approver transaction time (each transaction has a unique timing).

Also, transactions selected by the TSA provide us information about their approval. The

approved transaction includes two main objects:

• Approved transaction name (each transaction has a unique name)

• Approved transaction time (each transaction has a unique timing)

The structure of the tangle’s recorded output by the simulator is shown below:.

Transactions :



Approvers :


TransactionName : 1,2,3, ...,500

TransactionTime : t = 1, t = 5, t = 7,etc...

Approved :


TransactionName : 0, ...,499

TransactionTime : t = 0, t = 6, t = 7,etc...

(4.1)
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4.1.3 Modifications we made into the simulator

We made the following changes to the simulator:

1. Counting number of orphan tips (sites with no approvals).

2. Defining lazy tips in the tangle, providing a threshold delay to identify lazy tips and

counting the number of lazy tips for different values of time threshold.

In order to count the number of orphan transactions and the lazy tips we made some

modifications to the simulator:

• Adding TSA files to the simulator: (STD TSA, Ferraro TSA and our proposed TSA

hybrid TSA-1 and hybrid TSA-2)

• Adding a file to identify and count the number of orphan tips

• Adding a file to identify and count the number of lazy tips

Figure 4.1 shows the modification we made into the simulator (red areas). To count the

number of orphan transactions, we wait until the last site runs the TSA, and then we look

into the simulator output. We look into the sites with no parent transaction and count them

as the orphan transactions.

4.1.4 Identifying orphan transactions in the simulator

Figure 4.2 shows the orphan transaction in a finite DAG. The gray transaction in sim-

ulator show tips with no parent transaction. Based on the orphan tip definition, V8 and V15

are the orphan transactions. To count the number of orphan transaction in a bigger scale

(500 transaction) in our simulation, the following steps are taken:

• We get all the transactions and their corresponding links from the simulator output.
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Figure 4.1: Modification we made into the original simulator
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Figure 4.2: Orphan tips (the colour of transaction 19 is gray, which means transaction 19
has no parent, but only transaction 8 and 15 are orphan)

• Considering the first and the last transaction that gets approval (
[
Vf irst ,Vlast

]
, if any

transaction is missing between the first and the last approved transaction, the missing

transaction is orphan).

In our example, [V0,V1,V2,V3,V4,V5,V6,V7,V9,V10,V11,V12,V13,V14,V16,V17,V18,V19],

are the approved transactions. Since V8 and V15 are missing transactions, we consider

them as the orphan tips.

4.1.5 Identifying lazy tips as a result of TSA in the simulator

We decided to define different latency thresholds and determine which transactions are

in the given range to measure the transactions with delays in their approvals. To decide

whether a transaction is lazy, we do the following steps:

• We get all the transactions and their corresponding links until the last transaction.

Every link includes data such as parent and child transactions and their timestamps.

• We set different time thresholds. Starting from a 2-second delay, we increase the

sensitivity of delays to 9 sec. If the time difference between the child and parent

transaction is larger than the threshold, the parent transaction is a lazy transaction.
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Figure 4.3 shows an example of simulator output to identify emergence of lazy trans-

actions as the result of the TSA. Transaction submitted at "1 : 53 : 00 pm" is a lazy trans-

action for the transaction occurring at "1 : 52 : 54 pm" (6-second approval) but is a normal

parent for the transaction occurring at "1 : 52 : 58 pm" (2-second approval).

Figure 4.3: A sample of simulator’s output

4.1.6 Emergence of lazy tips as a result of TSA in the real IOTA

Figure 4.4 shows our observation of transaction approvals in the real IOTA network by

observing the timestamps of the approved transactions. In the IOTA network, the approval

range of sequent transactions has a minimum of 1 sec (or less than that). We were only able

to monitor a sample of transactions. We can conclude that based on the sample output data

from the IOTA explorer the maximum approval range for a transaction is 9 seconds.

As we mentioned earlier, since the transaction’s approval time is a stochastic process

(T is not determined), we decided to use a range of approval time between two sequent

transactions to verify our results .
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Figure 4.4: Lazy tips in real IOTA

4.1.7 Simulator parameters

We perform IOTA measurements for orphan and lazy tips in the previous IOTA legacy

network (with the small number of λ) and the updated IOTA main-net (with a large value

of λ). The transaction rate in the IOTA legacy network is around 0.5 , and in the best-case

scenario, the arrival rate can reach up to 1. Tangle’s transaction rate on the main net can

reach up to 20 transactions per second (high-load), with an average of 15 transactions per

second. Table 4.1, shows the transaction rate in different IOTA networks. The simulation

is run with 500 nodes (500 submitted transaction). The hidden time is h = 1 and the value

of λ changes depending on the network type (legacy, main net and high load main net). For

each TSA, the simulation is run 10 times and the frequency of orphan tips are reported as

the average number of orphan tips per 500 transaction.

4.1.8 Analyzing orphan transactions from the simulator’s output

As the number of transactions on the main net grows, the weighted TSA performance

degrades. The unweighted, uniform and STD algorithms have the fewest orphan tips in the

legacy and main networks. On the other hand, the hybrid random walk surpasses the uni-
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Table 4.1: Simulator parameters for the main-net and legacy network

Simulated Network λ h

Legacy net 0.5 1 Sec

Main-net 15 1 Sec

High load Main-net 20 1 Sec

form, unweighted, and STD algorithms in terms of orphans. The increased rate of orphan

tips is due to eliminating more lazy tips from the system.

Figure 4.5 shows the histogram result of the measured orphan tips in different TSA’s

methods. The labels shown in figure 4.5 are the TSA algorithms explained in table 4.2.

Table 4.2: Labels we used in the simulator

TSA algorithm discussion

Uniform TSA Section 3.4: TSA uses uniform selection

Unweighted TSA Section 3.5: TSA uses a random walk

Weighted TSA Section 3.6: TSA uses a weighted random walk

STD TSA Section 3.7: TSA uses a standard deviation of transaction’s weights

Ferraro’s TSA Section 3.8: TSA uses [0.1,1] for the security and sweep step

Ferraro’s TSA Section 3.8: TSA uses [0.2,0.9] for the security and sweep step

Hybrid TSAs Section 3.9: Our proposed TSAs by using random values of α

Table 4.3 shows the the average number of orphan transactions in network with different

value of λ.

Identified lazy transactions in the uniform TSA

Multiple lazy tips are identified in the uniform TSA for a 3-second threshold. For a 9

second threshold in the network with λ= 15, 10 percent of total transactions were identified

as lazy transactions. In the network with λ = 20 and a 5-second threshold, 52.2 percent of
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Figure 4.5: Orphan transactions in different TSA algorithms in legacy, main net and high
load main net

Table 4.3: Orphan transactions in different TSAs

Average number of orphan transactions

TSA λ=0.5 λ=15 λ=20

Uniform TSA 1 3.8 4

Unweighted TSA 1.6 3 4.6

Weighted TSA 10 30 33.4

STD TSA 3 4.4 5.8

Ferraro TSA [0.2,0.9]} 0.8 17 18

Ferraro TSA [0.1,1]} 0.4 14 16

Hybrid TSA-1 5 14.4 15.8

Hybrid TSA-2 5.2 15 16.2
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total transactions were identified as lazy transactions. Also in a network with λ = 20, and a

3-second threshold, 59.4 percent of total transactions were identified as lazy transactions.

Table 4.4 shows the time threshold we used in the thesis and the colours we used to

highlight different thresholds in networks with different value of λ:

Table 4.4: Colours we used for λ and TT hreshold

λ TT hreshold Colour Discussion

λ = 15 9 Second IOTA Suggested time threshold for IOTA 1.50 (Chrystal)

λ = 20 5 Second Our Suggested time threshold for IOTA 2.00 (Coordicide.)

λ = 20 3 Second IOTA Suggested time threshold for IOTA 2.00 (Coordicide)

Table 4.5 shows the average number of lazy transactions in the uniform TSA.

Table 4.5: Emergence of lazy tips as the result of uniform TSA

Lazy tips percentage

TSA Threshold (Sec) λ=0.5 λ=15 λ=20

9 0.8 10 20.2

8 2 19.4 33.6

7 3.8 26.8 43

6 8 31.6 49.4

5 16.4 34.6 52.2

4 23.2 40 56.4

3 32.8 46.6 59.4

Uniform TSA

2 36 57.6 64.6

Identified lazy transactions in the unweighted TSA

When the unweighted TSA is run in the network with λ = 0.5, 32 percent of total

transactions were identified as lazy transactions. Lazy transactions grow in networks with

λ = 15 and λ = 20, resulting in 60.6 percent and 62.4 percent of all transactions, respec-

tively. Fewer lazy tips were identified in the unweighted TSA for a 9-second threshold
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accounting for 1% of the total transactions. Also, for a 9-second threshold in the network

with λ = 15 and λ = 20, the number of lazy transactions are 9% and 16.4% of total trans-

actions, respectively. The result of lazy tips in the unweighted TSA is shown in table 4.6:

Table 4.6: Emergence of lazy tips as the result of unweighted TSA

Lazy tips percentage

TSA Threshold (Sec) λ=0.5 λ=15 λ=20

9 1 9 16.4

8 1.6 15.2 29

7 3.2 22.6 37.2

6 8.8 28.6 43.8

5 15.6 34 50.8

4 25 37.8 56.6

3 28.4 45.2 59.6

Unweighted TSA

2 32 60.6 62.4

Identified lazy transactions in the weighted TSA

In the weighted TSA, the number of identified lazy tips is significantly reduced. There

are no lazy tips for a 9-second threshold in the networks with λ = 15. For a 3-second

threshold, 6.4 percent of total transactions are lazy in a network with λ = 20. For our

proposed 5-second threshold, 2.8 percent of total transactions are lazy in a network with

λ = 20.

Table 4.7 shows the lazy tips percentage in different TSA algorithms.

Identified lazy transactions in STD TSA

In the STD TSA, the number of lazy tips is lower than in the uniform and unweighted

TSAs, however, the number of lazy transactions is still larger than in the weighted TSA. In

the network with λ = 0.5 and a 9-second threshold, the number of lazy tips accounts for

1.2 of the total transactions. In the same threshold, the lazy transactions increase to 3.6

and 14.4. For a 3-sec threshold in the network with λ = 20, the lazy transactions result in
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Table 4.7: Emergence of lazy tips as the result of weighted TSA

Lazy tips percentage

TSA Threshold(Sec) λ=0.5 λ=15 λ=20

9 0 0 0

8 0 0 0

7 0 0.4 1

6 0 1.2 1.8

5 0.4 3.2 2.8

4 1 3.6 5

3 2.4 5.2 6.4

Weighted TSA

2 3.7 6.6 10

46 percent of total transactions, whereas in the network with λ = 20 and a 5-sec threshold,

the number of lazy transactions is 34.2 percent of total transactions respectively. Table 4.8

shows the result of lazy tips in the STD TSA.

Table 4.8: Emergence of lazy tips as the result of STD TSA

Lazy tips percentage

TSA Threshold (Sec) λ=0.5 λ=15 λ=20

9 1.2 3.6 14.4

8 2 6.6 18.4

7 3 10.4 24.2

6 3.8 15 27.8

5 6.4 20.4 34.2

4 12.4 24.8 39.2

3 31.4 20 46.6

STD TSA

2 18 44.2 55.4

Identified lazy transactions in Ferraro TSA

In Ferraro’s TSA, we simulate 2 different values. We first simulated a network with

α = 0.1 as the sweep step, and α = 1 as the security step (we call it Ferraro [0.1,1]). We

also simulated a network with α = 0.2 as the sweep step, and α = 0.9 as the security step
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(we call it Ferraro [0.2,0.9]). In a network with λ = 0.5, λ = 15 and λ = 20, Ferraro [0.1,1]

identifies lazy transactions accounting as the maximum of 1 percent of total transactions. In

the network with λ= 0.5, 36 percent of total transactions are lazy. 70.2 and 77.8 percentage

of total transactions are lazy in a network with λ = 15 and λ = 20.

In Ferrero [0.2,0.9], no lazy transaction appeared as the result of TSA after a 9-second

threshold in the network with λ = 15. In a 3-sec threshold, the number of lazy transactions

is 20 percent of the total transactions in a network with λ = 20. Also, In a 5-sec threshold,

the number of lazy transactions is 5 percent of the total transactions in a network with

λ = 20.

Table 4.9: Emergence of lazy tips as the result of Ferraro[0.1,1] TSA

Lazy tips percentage

TSA Threshold (Sec) λ=0.5 λ=15 λ=20

9 1 0.5 0

8 3 1 0

7 5.6 3.8 1.8

6 6.4 4.5 2.6

5 10.2 8.2 5

4 23.8 28.9 10

3 58 53 20

Ferraro TSA [0.1,1]

2 36 70.2 77.8

Identified lazy transactions in hybrid TSA

Hybrid TSA-1 and TSA-2 have the minimum amount of lazy tips among all the TSA

algorithms. For a 9-second threshold, hybrid TSA-1 has the maximum of 0.8 percent of the

total lazy transactions. In a 3-second threshold, the maximum percentage of lazy transac-

tions is 9 percent of the total transactions. Also, for a 5-second threshold in a network with

λ= 20, the maximum percentage of lazy transactions is 5.8 percent of the total transactions.

for a Table 4.11 and 4.12 show the result of lazy transactions in the hybrid TSAs.
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Table 4.10: Emergence of lazy tips as the result of Ferraro[0.2,0.9] TSA

Lazy tips percentage

TSA Threshold (Sec) λ=0.5 λ=15 λ=20

9 0 0 0

8 0 0 1

7 0 1.8 3

6 0 2.6 6

5 1.2 5 8

4 3.6 10 12

3 10 20 25

Ferraro TSA [0.2,0.9]

2 28.2 35 39

Table 4.11: Emergence of lazy tips as the result of hybrid TSA-1

Lazy tips percentage
TSA Threshold (Sec) λ=0.5 λ=15 λ=20

9 0 0.8 1.6
8 0 1.4 2.4
7 0 3.6 3.8
6 0.6 5.4 4.2
5 1 6.2 5.8
4 2.4 7.8 8.4
3 3.6 9 9

Hybrid TSA-1

2 7 11.4 13.2

Overview of TSA algorithms: Which TSA is better?

As the delay range increases, we expect to have lazy tips, in which their corresponding

node approves an old transaction (8 seconds or more). For the legacy net, the hybrid TSAs

almost have no lazy tips. The hybrid TSAs have the least lazy tips after an 8-second delay

with a growing range of transactions in the main net. The uniform, unweighted, and the

STD TSA have the highest number of lazy tips in 8-sec or more delay. The weighted TSA

is also experiencing no lazy tips both in the main net and the legacy net.

Given that the maximum approval time is 9 seconds, the uniform, unweighted and STD
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Table 4.12: Emergence of lazy tips as the result of hybrid TSA-2

Lazy tips percentage
TSA Threshold (Sec) λ=0.5 λ=15 λ=20

9 0 0.6 0.6
8 0 1.6 1.6
7 0 3.2 1.8
6 0.2 4.2 3
5 0.4 5.6 4.4
4 2 7 8
3 4 8.4 9.6

Hybrid TSA-2

2 7.6 10.6 13.2

TSA have the least resilience against lazy tips. Ferraro’s TSA is also having a large number

of lazy tips in a 2-second threshold. In the main-net simulation, the uniform, unweighted,

and STD TSA will have the largest number of lazy tips. If the main-net simulator is expe-

riencing high load transaction arrival (λ = 20), the frequency of lazy tips in the unweighted

and uniform TSA is more than 60 percent of total tips and 80 percent for the Ferraro’s TSA.

The weighted and hybrid TSAs are slower than the uniform algorithm, but they can elimi-

nate lazy tips. If the nodes approve a transaction with latency, the submitted transaction by

the lazy nodes will remain unconfirmed. For a 2 second delay on the main net, the hybrid

TSAs leave around 12 percent lazy tips. As latency grows to 9 seconds, lazy tips reduce

to 0.8 percent lazy tips, proving that hybrid TSA-2 is resilient to lazy nodes in the main

network.

To measure the quality of transactions, we introduce an quality metric to show what

percentage of total lazy transactions are orphans:

Quality =
OrphanTransactions

LazyTransactions
(4.2)

When the quality metric is 1, it will indicate that most of the lazy transactions that

have been appeared in the tangle as the result of TSA, will remain orphans. Taking a look

at the result of uniform and the unweighted TSA, we can see that the quality measure is
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(a) λ=0.5 (b) λ=15

(c) λ=20

Figure 4.6: Lazy tips in different TSA algorithms. λ.

near zero, which means that although the number of lazy tips is the largest in the uniform

and unweighted TSA, almost no orphan transactions exist in the tangle, and all the lazy

transactions are approved in the tangle. On the other hand, the quality measure for the

weighted TSA is 2.7 for the network with λ = 0.5 and increases to 4.54 for a network

with λ = 15 meaning that not only lazy transactions remained orphan, but also some of

the transactions that were not lazy remained orphan. Ferraro TSA [0.2,0.9] shows better

quality in a network with λ = 15 and λ = 20 with an quality equal to 0.5) showing that
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lazy transactions remained orphans in the tangle. However, in Ferrero’s TSA, the other half

of lazy tips will receive approvals in the tangle. The hybrid TSA-1 shows the best quality

among all the other TSA algorithms with an quality equal to 1.19 meaning that the majority

of the lazy transactions didn’t receive approvals and remained orphans. Table 4.13 shows

the result of the quality metric on different TSAs:

Table 4.13: Quality of transactions in different TSA algorithms

Quality

TSA λ=0.5 λ=15 λ=20

Uniform TSA 0.027 0.065 0.061

Unweighted TSA 0.05 0.049 0.073

Weighted TSA 2.70 4.54 3.34

STD TSA 0.16 0.099 0.104

Ferraro TSA [0.2,0.9]} 0.028 0.48 0.46

Ferraro TSA [0.1,1]} 0.01 0.19 0.20

Hybrid TSA-1 0.71 1.26 1.19

Hybrid TSA-2 0.68 1.41 1.22

When comparing the results of different TSAs, the quality measurement is the most

useful. For example, in a network with lambda = 20, we want to compare the results of the

hybrid and STD TSAs.

As shown in the result of STD TSA in table 4.3, for a 5-second threshold, 5.8 percent

of total transactions are considered orphan tips, whereas 34.2 percent of total transactions

are considered lazy transactions (table 4.8).

On the other hand, in the hybrid TSA, around 15.8 percent of total transactions are con-

sidered orphan transactions (table 4.3) whereas 5.8 percent of transactions are considered

lazy (table 4.11). It seems that the hybrid TSA is losing more transactions and leaving more

transactions as orphans, however, when examining the quality measurement, the STD TSA

received a 0.1 score, while the quality measure for the hybrid TSA is 1.19, indicating that
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the hybrid TSA includes more high-quality transactions.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, we studied tangle’s different features, such as orphan and lazy tips and

the cause they are created in tangle. We started the thesis by reviewing the literature on

distributed ledger applications such as blockchain and DAG data structure. We then studied

the tangle simulation using the tangle visualization tool. Throughout the simulation, we

analyzed the result of orphan and lazy tips and how they can rely on the transaction rate.

We leveraged the simulator to design the new hybrid TSA algorithms based on the adaptive

value of the random walks in the algorithm. The algorithm efficiency is determined by

measuring the orphan and the lazy tips in tangle under different tangle parameters and

latency of the nodes.

Through the simulation, we analyzed the impacts of different parameters, including

node’s latency, the random walker adaptive behaviour and the transaction rate in the tangle,

both for the previous network (legacy-net) and the recent network (main-net).

In the hybrid TSAs, tip transactions in tangle will not get a chance to be approved by

the lazy node. Also, the left behind tips are less likely to be approved by the lazy tips, and

fewer transactions are left unvalidated (orphan).

The current measures of the tangle can be extended for further studies on other charac-

teristics of the tangle network. The study of the tip selection features can provide insight

into tangle’s performance in approving transactions and improve tangle’s scalability by

speeding up the tangle performance. Following is the future research direction:
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1. Examining different distribution probabilities to measure the chance of transactions

with different WCFs being selected by the TSA.

2. Instead of employing the weight coefficient factor on the weighted walker to balance

lazy and orphan tips, a machine learning application may be used to categorize the

lazy and orphan tips on the random walker.
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