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Abstract

In 1927, Emil Artin conjectured a product expression for the density of primes p for which

a given non-zero integer a is a primitive root modulo p. The conjectured density was proved

in 1967 by Hooley under the assumption of the Generalized Riemann Hypothesis. In 2014,

Lenstra, Moree, and Stevenhagen introduced a method involving character sums to deduce

the formula for the product in the density for Artin’s conjecture. The method applies in

similar problems such as the density of primes of cyclic reduction for Serre curves. In this

thesis, we introduce a generalization of this method which yields product expressions for a

large family of problems that can be stated by summations involving the orders of certain

finite groups. As a consequence, the product expressions of some Artin type problems, such

as the Titchmarsh Divisor Problem in Kummer families for primes in a given arithmetic

progression, are computed here.
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Chapter 1

Introduction

1.1 Artin Type Problems

The study of primes p for which the decimal expansion of 1/p has the longest period

was initiated by Gauss. The period of the decimal expansion of 1/p exists and has an upper

bound p−1. The largest period occurs if and only if 10 has order p−1 mod p. This means

10 is a primitive root modulo p. Therefore it is natural to ask for which prime p a given

integer a is a primitive root modulo p, or whether there are infinitely primes p for which a

is a primitive root modulo p.

In 1927, Emil Artin proposed a conjecture for the density of primes p for which a given

integer a is a primitive root modulo p. Let a be a non-zero integer that is not ±1. We can

show that the integer a is a primitive root modulo prime p for p - 2a if and only if p does

not split completely in Kq =Q(ζq, q
√

a) for all primes q | p−1, where the Kummer field Kq

is the splitting field of xq− a over Q (see [26, Page 384]). The initial version of Artin’s

conjecture states that for a given integer a, not 0 and not ±1, the density of primes p such

that a is a primitive root modulo p is

Aa = ∏
q prime

(
1− 1

[Kq : Q]

)
.

Observe that if the integer a is not a perfect power, then the conjectured density is indepen-

dent of the choice of integer a. In fact, if a is not a perfect power, then [Kq : Q] = q(q−1)
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1.1. ARTIN TYPE PROBLEMS

for all primes q and thus, Aa = A, where

A = ∏
qprime

(
1− 1

q(q−1)

)
≈ 0.3739558.

The constant A is named Artin’s constant.

In 1957, computer calculations of the density for various values of a, by D. H. Lehmer

and E. Lehmer revealed some discrepancies from the conjectured value A. The reason for

these inconsistencies is the dependency between the splitting conditions in Kummer fields

Kq’s. More precisely, if D is the discriminant of K2, then K2 ⊂ K|D|. Thus, if p does

not split completely in K2, then it does not split completely in K|D|. Hence, the splitting

of primes in Kq for q | D is not independent of splitting of primes in K2. To deal with

these dependencies, Artin introduced a correction factor. An entanglement correction factor

appears when D = disc(K2/Q)≡ 1 (mod 4) and hence the conjectured density is Aa ·E(D),

where

E(D) = 1−µ(|D|) ∏
q|2D

1
[Kq : Q]−1

.

Here µ(.) is the Möbius function. This way of writing of the correction factor is due to

Lenstra, Moree and Stevenhagen [15]. The modified conjecture was proved by Hooley in

1967 under the assumption of the Generalized Riemann Hypothesis (GRH) for Kummer

fields Kn’s for square-free n’s. More precisely, Hooley proved, under the GRH, that the

density is
∞

∑
n=1

µ(n)
[Kn : Q]

.

He then showed that the above sum is equal to the corrected conjectured density Aa ·E(D).

We call a problem an Artin type problem if we can tackle it by Hooley’s method in-

troduced in [10]. More specifically, such problems can be formulated in terms of splitting

behaviour of primes in extensions of number fields. We next introduce some examples of

Artin type problems.

A problem analogous to Artin’s conjecture for Elliptic curves is the cyclicity problem.

2



1.1. ARTIN TYPE PROBLEMS

This problem asks for an asymptotic formula for the number of primes p≤ x for which the

group of rational points Ep(Fp) of the reduction mod p of a given elliptic curve E over Q

is cyclic. Here Fp denotes the finite field of p elements. Let E[n] be the group of n-torsion

points of E. Let Q(E[n]) be the n-th division field associated to E. In 1976, J. P. Serre

established an asymptotic formula for the cyclicity problem under the assumption of the

GRH for division fields Q(E[n]) where n is square-free. Similar to Artin’s conjecture there

exists a connection between the cyclicity problem and the splitting behaviour of primes

in a certain family of number fields. For an elliptic curve E over Q which has a good

reduction modulo p, we have that Ep(Fp) is cyclic if and only if p does not split completely

in Q(E[q]) for all primes q 6= p (see [5, Lemma 2.1]). By employing this fact and following

Hooley’s method, Serre showed that the density of primes for which Ep(Fp) is cyclic is

∞

∑
n=1

µ(n)
[Q(E[n]) : Q]

. (1.1)

Let Qtor be the field obtained by adding all the coordinates of the torsion points of E to

Q. Let G be the Galois group of Qtor over Q. The following representation is known for an

elliptic curve E

r : Gal(Qtor/Q)→ GL2(Ẑ) = lim
←

GL2(Z/nZ),

where Qtor = ∪∞
n=1Q(E[n]) and GL2(Ẑ) is the group of invertible matrices with entries in

the profinite completion of integers Ẑ (see Section 2.5 for more explanation). An elliptic

curve E is named a Serre curve if [GL2(Ẑ) : r(G)] = 2. Let ∆ be the discriminant of Weier-

strass equation of E. For the family of Serre curves, the authors of [15] show that (1.1) has

the product expression

(
1−µ(|D|) ∏

q|2D

1
[Kq : Q]−1

)
∏

q prime

(
1− 1

[Kq : Q]

)
,

where Kq =Q(E[q]) and D = discQ(Q(
√

∆)).
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1. PRODUCT EXPRESSIONS OF CONSTANTS IN ARTIN TYPE PROBLEMS

The work of Titchmarsh on τ(p− a), the number of divisors of a shifted prime p− a,

provides another example of an Artin type problem.

Theorem 1.1 (Titchmarsh Divisor Problem (TDP), 1931). Let a be a fixed positive integer.

If we assume the GRH for Dirichlet L-functions, then

∑
a<p≤x

τ(p−a) = ∏
p|a

(
1− 1

p

)
∏
p-a

(
1− 1

p(p−1)

)
x+O

(
x log logx

logx

)
, (1.2)

as x→ ∞.

The assumption of the GRH in the above theorem was removed by Linnik in 1961. This

theorem can be considered as the Titchmarsh Divisor Problem for family of number fields

{Q(ζn) : n≥ 1}. In this case, the arithmetic function τ(p−1) can be related to counting of

primes that split completely in cyclotomic fields. Observe that when p is an odd prime, then

p≡ 1 mod m if and only if p splits completely in Q(ζm). The prime 2 splits completely in

Q(ζm) if and only if m ∈ {1,2}. Therefore for odd primes p we have

τ(p−1) = #{m; p splits completely in Q(ζm)}.

Observe that in this case the constant in the asymptotic formula (1.2) can also be written as

∞

∑
n=1

1
[Q(ζn) : Q]

.

As other examples of Artin type problems, we can consider the Titchmarsh Divisor

Problem for different families such as Kummer fields and division fields of a given Serre

curve.

1.2 Product Expressions of the Constants in Artin Type Problems

One of the topics in studying Artin type problems is product expressions for the con-

stants. There are advantages in finding such product expressions. For instance, they help

4



1. PRODUCT EXPRESSIONS OF CONSTANTS IN ARTIN TYPE PROBLEMS

us in finding the conditions under which the constant becomes zero. Finding these product

expressions is not straightforward, since, similar to Artin’s conjecture, we should deal with

the possible entanglements in the family of number fields. These entanglements lead to

correction factors in Artin type problems.

In [15], Lenstra, Moree, and Stevenhagen introduced an effective method in finding

product expressions in certain Artin type problems. Their method directly studies the

primes that do not split completely in a family of number fields without considering the

summation expressions for the constants. For Artin’s conjecture they consider the family

of Kummer fields and for the cyclicity problem for Serre curves they consider the family

of division fields. Then, they interpret these problems using representations attached to the

Galois groups of these families. Their method can be described as follows.

Assume that K∞ = ∪nKn, where {Kn,n ≥ 1} is the family of Kummer fields. Let G be

the Galois group of K∞ over Q. Let

R∞ = {x ∈Q×; xk ∈ 〈a〉 ⊂Q× for some k ∈ Z>0}

be the group of radicals that generate the field extension K∞ of Q. The authors of [15]

construct an embedding r : G→ A, where A = AutR∞∩Q×(R∞) is a profinite group such that

A = ∏p Ap. Then, they establish the existence of a quadratic character

χ : A→ µ2

such that G ∼= kerχ, where µ2 is the multiplicative group {±1}. Let S be the family of

“good Frobenius elements” in A corresponding to primes p that do not split completely in

any Kq for primes q | p−1. Then it is shown in [14], that under the assumption of the GRH,

the density of such primes becomes νA(G∩ S)/νA(G), where νA is the normalized Haar

5



1. PRODUCT EXPRESSIONS OF CONSTANTS IN ARTIN TYPE PROBLEMS

measure attached to the profinite group A. It is proved in [15, Theorem 3.3] that

νA(G∩S)
νA(G)

=

(
1+

1
νA(S)

∫
S

χdνA

)
νA(S)
νA(A)

. (1.3)

Note that νA = ∏p νAp and S = ∏p Sp, where νAp is the normalized Haar measure on Ap and

Sp ⊂ Ap. The authors of [15] also show that χ = ∏p χp for certain characters χp : Ap→ µ2.

Therefore, they conclude that (1.3) has the product form

νA(G∩S)
νA(G)

=

(
1+∏

p
Ep

)
∏

p
νAp(Sp),

where for all except finitely many primes p, we have Ep = 1. Thus, the computation of the

integral in (1.3) implies the product expression in Artin’s conjecture. The authors of [15]

applied this method effectively for several Artin type problems such as Artin’s conjecture

for primes in a given arithmetic progression and near primitive roots. They also extend their

method to cover the cyclicity problem for Serre curves. However, their method should be

adjusted to deal with prime powers in some Artin type problems such as the Titchmarsh

Divisor Problem and the Titchmarsh Divisor Problem for primes in a given arithmetic pro-

gression.

The aim of this thesis is to generalize the method introduced in [15] to include the prod-

uct expressions of Artin type problems involving prime powers. Observe that the character

sums method introduced in [15] gives us the product expression of ν(G∩ S)/ν(G), where

S is a family of “good Frobenius elements” in A attached to the density of primes in each

Artin type problem. Instead of finding the product expression of ν(G∩S)/ν(G), the gener-

alization introduced in this thesis yields directly the product expression of the summations

appearing in Artin type problems. This helps us to consider a larger family of Artin type

problems. More specifically, we can consider the problems such as the Titchmarsh Divisor

Problem which are not formulated as a density of a subset of primes. Hence, our gener-

alization can be applied to find new explicit product formulas for some problems such as

6



1.3. THIS THESIS

the Titchmarsh Divisor Problem in Kummer and division fields and also the Titchmarsh

Divisor Problem for primes in an arithmetic progression in Kummer fields.

1.3 This Thesis

This thesis is organized as follows. After introducing needed preliminaries in Chapter 2,

in Chapter 3, we formulate and prove two main theorems as generalizations of the method

described in [15]. Our generalization has this important advantage that instead of starting

with a density of primes, we can consider any absolutely convergence summation

∞

∑
n=1

g(n)
#G(n)

, (1.4)

where g(n) is a multiplicative function and G(n) is a group with the following properties.

Let (G(n))n∈N and (A(n))n∈N be inverse systems of finite groups. Moreover, assume

that there are injective maps rn : G(n)→ A(n) for all n≥ 1. By taking inverse limit over n,

we have an injective map r : G = lim←−G(n)→ A = lim←−A(n). Further, suppose A ∼= ∏p Ap,

where Ap = lim←−A(pi). Then, if a character χ : A→ µm exists such that the sequence

1→ G r−→ A
χ−→ µm→ 1 (1.5)

is exact, by our Theorem 3.2 and Corollary 3.3, we have a product expression over primes

with a possible correction factor for summation (1.4). Here µm is the group of m-th roots of

unity in Q. For finding the product expression, we first show that by the normalized Haar

measure on the profinite group G, the summation (1.4) can be written as a summation of

measures of measurable subsets of G. Then, by the injective homomorphism r : G→ A, we

interpret the new summation as a summation of measurable subsets of A. Next, the property

A ∼= ∏p Ap together with the properties of the character χ given in (1.5) helps us to write

the desired product expression for (1.4) with a possible correction factor. The following

important corollary is a consequence of our Theorem 3.2 and Corollary 3.3, when µm = µ2.

7



1.3. THIS THESIS

Corollary 3.4. Let g be a real multiplicative arithmetic function such that

∑
n≥1

|g(n)|
#G(n)

< ∞.

Let

g̃ = ∑
n≥1

g(n)1kerϕA,n

be a function from A to R= [−∞, +∞], where ϕA,n : A→ A(n) is the projection map. Let

g̃p = ∑
k≥0

g(pk)1kerϕpk

be a function from Ap to R, where ϕpk : Ap→ A(pk) is the projection map, such that g̃ =

∏p g̃p. Let χ : A→ µ2 be the character given in (1.5) and assume that χ = ∏p χp. Then, if∫
A g̃dνA 6= 0, we have

∞

∑
n=1

g(n)
#Gn

=

(
1+

∫
A g̃χdνA∫
A g̃dνA

)∫
A

g̃dνA

=

(
1+∏

p

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

)
∏

p

∫
Ap

g̃pdνAp.

This corollary can be considered as a generalization of (1.3).

To state our next main result, we consider a more specific family of groups {G(n) :

n ≥ 1}. Let {Kn : n ≥ 1} be a family of finite Galois extensions of Q with the property

that K2 contains a quadratic field K and ζn ∈ Kn, where ζn is a primitive n-th root of unity.

Suppose there exist injective homomorphisms G(n)→ A(n), where G(n) = Gal(Kn/Q). If

both families {G(n);n ≥ 1} and {A(n);n ≥ 1} are inverse systems of finite groups, then

by taking inverse limit we have injective homomorphism r : G = lim←−G(n)→ A = lim←−A(n).

Suppose that A = ∏p Ap, where Ap = lim←−A(pn). Moreover, suppose there exist different

characters

χD : A→ (Z/DZ)×
(D

. )−→ µ2

8



1.3. THIS THESIS

and

ψ : A→ µ2

such that χD and ψ are compatible, as defined in (3.15), with the restriction maps G→

Gal(Q(ζ|D|)/Q)∼= (Z/DZ)× and G→ Gal(K/Q) respectively, where D = discQK. Then,

we can construct a character χ : A→ µ2 such that r(G)⊂ kerχ. In Theorem 3.5, we explic-

itly construct such character χ. The computations in Theorem 3.5 for character χ helps us

to find the possible correction factor in Corollary 3.4 explicitly. As a consequence of this

theorem and Corollary 3.4, we have the following result.

Corollary 3.6. Let A and G be as above. Assume that [A : r(G)] = 2. Let g be a real

multiplicative arithmetic function such that

∑
n≥1

|g(n)|
#G(n)

< ∞.

Assume that

g̃ = ∏
p

g̃p = ∏
p

∑
k≥0

g(pk)1kerϕpk

is a function from A to R, where g̃p is a function from Ap to R and ϕpk : Ap→ A(pk) is the

projection map. If ζ4 /∈ K2 and ζ8 /∈ K4, then

∞

∑
n=1

g(n)
#G(n)

=

(
1+ ∏

p|2D

(
∑k≥` g(pk)/#A(pk)

1+∑k≥1 g(pk)/#A(pk)

))
∏

p

(
1+ ∑

k≥1

g(pk)

#A(pk)

)
,

where in the product on primes dividing 2D, we have `= 1 for odd primes and for prime 2

we have `= 1 if D is odd, `= 2 if 4 ‖ D, and `= 3 if 8 ‖ D.

Note that by Corollary 3.6, we can find the product expression for problems involving

prime powers such as the Titchmarsh Divisor Problem. Moreover, in the summation (1.4),

instead of µ(n) or 1, we can consider any multiplicative function g(n) and any family of

Galois groups that satisfies conditions of Corollary 3.6.

9



1.3. THIS THESIS

In Chapter 4, we describe needed properties of two families of fields namely Kummer

fields and division fields of Serre curves for applying the above corollaries. Let a be an

integer such that |a| is not a perfect power. For n≥ 1, the Kummer field Kn =Q(ζn, n
√

a) is

the splitting field of xn−a over Q. We will show that the inverse limit of the Galois groups

G(n) of Kn/Q is embedded in a profinite group A = lim←−A(n), where A(n) =
(

1 0
b d

)
, with

b ∈ Z/nZ and d ∈ (Z/nZ)×. Then, we will observe that A satisfies the conditions needed

in Corollary 3.6. Thus, by showing [A : G] = 2, and employing Corollary 3.6, we derive

∞

∑
n=1

g(n)
#G(n)

=

(
1+ ∏

p|2D

∑k≥` g(pk)/p2k−1(p−1)
1+∑k≥1 g(pk)/p2k−1(p−1)

)
∏

p

(
1+ ∑

k≥1

g(pk)

p2k−1(p−1)

)
,

(1.6)

where in the product on primes dividing 2D, we have ` = 1 for odd primes and for prime

2 we have ` = 1 if D is odd, ` = 2 if 4 ‖ D, and ` = 3 if 8 ‖ D. Using similar ideas, we

also find a general product formula for the sum in the left-hand side of (1.6) for the family

of division fields of a Serre curve. In addition, at the end of Chapter 4, we prove necessary

and sufficient conditions under which the important property [A : G] = 2 holds.

In Chapter 5, we generalize Theorem 3.2. This generalization helps us to put more

conditions on the set of primes which we consider. As an application, in Section 5.2, we

find the explicit product of the Titchmarsh Divisor Problem for primes in a given arithmetic

progression for the family of Kummer fields.

There are many directions that one can consider in extending the ideas and methods

described in this thesis. We briefly outline some of these possibilities in the final concluding

chapter of the thesis.

10



Chapter 2

Preliminaries

2.1 Topological Groups

In this section, we briefly introduce topological groups. Moreover, we will present the

Haar measure and its properties on topological groups.

Definition 2.1. We say a group G is a topological group if it is equipped with a topology

such that the maps

G×G→ G

(g1,g2) 7→ g1g2

and
G→ G

g 7→ g−1

are continuous.

Similarly, one can define topological rings and topological fields. The following are

some examples of topological groups.

Example 2.2. (i) The Euclidean n-space Rn with the usual topology, coming from the

Euclidean norm, forms a topological group under addition.

(ii) If R is a topological ring, then the group of n× n invertible matrices with entries

from R, denoted by GLn(R), forms a topological group. This topology is implied by the

subspace topology as a subset of the n×n matrices Matn(R)∼= Rn2
.

Next, we describe some properties of subgroups of topological groups.

Lemma 2.3. Let G be a topological group. The following assertions hold.

11



2.1. TOPOLOGICAL GROUPS

(i) A subgroup H of G is open (closed) if and only if the cosets gH are open (closed) for

all g ∈ G.

(ii) Every open subgroup of G is closed.

(iii) Every closed subgroup of finite index in G is open.

(iv) If G is compact, then a subgroup H is open if and only if it is closed and has finite

index in G.

Proof. (i) For an element g in a topological group G, the maps g′ 7→ g ·g′ and g′ 7→ g′ ·g are

continuous. Note that g′ 7→ g ·g′ has a continuous inverse g′ 7→ g−1 ·g′. Thus, it is an open

map. Therefore, if H is open, then cosets of H are open. A similar argument shows that if

H is closed, then its cosets are closed.

(ii) Let H be an open subgroup of G. The group G is the union of cosets of H. On the

other hand, by part (i), each coset is open. Since H is the complement of a union of these

cosets, H is closed.

(iii) If H is closed and of finite index in G, its complement G\H is the finite union of

some left cosets gH’s. Since each gH is closed, then H is open.

(iv) Let H be an open subgroup. Hence, by part (i), any coset of H is open. Thus, if G

is compact, then H has finite index, since the collection of H and its cosets is an open cover

for G. Therefore, parts (ii) and (iii) imply the desired result.

By a homomorphism of topological groups we mean a continuous group homomor-

phism. Similarly, an isomorphism of topological groups is a group isomorphism which is

also a homeomorphism of topological spaces.

We call a Borel measure µ on a topological space X regular if for every measurable set

A, we have

µ(A) = sup{µ(B);B⊂ A,B is compact and measurable}.

Finally, we introduce the Haar measure on topological groups.

Definition 2.4. A regular Borel measure µ on a topological group G is named Haar measure

12



2.2. PROFINITE GROUPS

if it is translation invariant (i.e., µ(gA) = µ(A) for any g ∈G and for any measurable subset

A).

It is known that any locally compact topological group admits a unique Haar measure

up to multiplication by a constant (see [4, Section 9.2]).

In the next section, we will define a specific family of topological groups, named profi-

nite groups.

2.2 Profinite Groups

In this section, we introduce profinite groups which are special example of topological

groups. The ring of p-adic integers may be considered as a motivation for this concept.

Furthermore, the topology on profinite groups attached to Galois groups helps us to obtain

the fundamental theorem of Galois theory for the infinite Galois extensions. At the end of

this section, we introduce a probability measure on profinite groups. In Chapter 3, we will

use this measure to construct and prove our main theorem.

In order to define profinite groups, we need first to introduce inverse systems. An inverse

system is a collection of objects indexed by a directed partially ordered set.

Definition 2.5. A nonempty set I equipped with a partial order relation ≤ is named a di-

rected partially ordered set (a directed poset for short) if every pair of its elements has an

upper bound.

We next define the concept of an inverse system of a collection of groups.

Definition 2.6. An inverse system of groups is a collection of groups (Gi)I , where I is a

directed poset, together with a collection of transition maps fi j for any pair (i, j) with i≤ j.

The maps fi j : G j → Gi are group homomorphisms such that fii = idGi and fi j ◦ f jk = fik

for all i, j,k ∈ I with i≤ j ≤ k.

We continue with some examples of inverse systems.

13
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Example 2.7. (i) Consider the directed poset (Z,≤) such that n ≤ m if and only if n | m.

Then the natural projections

fnm : Z/mZ→ Z/nZ

are well-defined transitions maps when n | m. Hence (Z/mZ, fnm)Z is an inverse system.

(ii) Consider the collection of finite Galois extensions L over a fixed field K. This

collection is a directed poset by inclusion. Note that if L and L′ are two finite extensions of

K, then the compositum of L and L′ is a finite extension of K. The set of such L’s equipped

with the restriction maps Gal(L/K)→ Gal(L′/K) for L′ ⊂ L forms an inverse system.

We next define the inverse systems as a categorical concept. Then we will introduce an

explicit description of them in Lemma 2.11.

Definition 2.8. The inverse limit of the inverse system ((Gi)i∈I,( fi j)i, j∈I
i≤ j

) is a group lim←−
i∈I

Gi

together with projection maps pi : lim←−
i∈I

Gi → Gi such that fi j ◦ p j = pi and that satisfy the

following universal property: Suppose Z is a group with projection maps qi : Z → Gi for

i ∈ I such that fi j ◦q j = qi for any i ≤ j. Then there exists a map q : Z→ lim←−
i∈I

Gi such that

the diagram
Z

lim←−
i∈I

Gi

G j Gi

qiq j

q

pip j

fi j

commutes.

We will drop the index of inverse limit when the directed poset is specified from the

context.

Definition 2.9. A group which is isomorphic to an inverse limit of an inverse system of

finite groups is called a profinite group.

14
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One may define the profinite ring in a similar way by starting with an inverse system of

finite rings.

Example 2.10. (i) The inverse limit of the inverse system (Z/mZ, fnm) of rings defined in

Example 2.7 (i) is a profinite ring denoted by Ẑ= lim←−Z/mZ.

(ii) The inverse limit Zp = lim←−Z/pnZ is a profinite ring and Ẑ∼= ∏pZp. Moreover any

element α ∈ Zp has a unique p-adic expansion

∞

∑
i=0

ai pi,

with 0≤ ai ≤ p−1.

(iii) The multiplicative groups of Ẑ and Zp, denoted by Ẑ× and Z×p respectively, are

profinite groups. Moreover, Ẑ× ∼= ∏pZ×p . We note that α = ∑
∞
i=0 ai pi ∈ Z×p if and only if

p - a0.

(iv) Any Galois group Gal(L/K) is a profinite group. More precisely, Gal(L/K) is the

inverse limit of Gal(E/K) over the finite intermediate fields E ordered by inclusion.

As a consequence of the universal property of the inverse limit, for an inverse system of

groups Gi there exists a unique inverse limit up to isomorphism. An explicit description of

an inverse limit of (Gi, fi j)i, j∈I is given by the next lemma.

Lemma 2.11. Let (Gi, fi j)i, j∈I be an inverse system of groups. Then

lim←−Gi ∼= {(gi)i∈I ∈∏
i∈I

Gi; fi j(g j) = gi for all i≤ j}.

Proof. We note that the candidate set on the right side of the above equation, which we

show by S, is a subgroup of the direct product of Gi’s since fi j’s are group homomorphisms.

Consider the projection map pi from S to Gi. Hence fi j ◦ p j = pi for all i ≤ j. Thus, it

remains to show that the universal property of Definition 2.8 holds. Let Z be another group

with maps qi : Z→ Gi such that fi j ◦ q j = qi whenever i ≤ j. Then the map q : Z→∏Gi

defined by q(z) = (qi(z))i∈I yields the desired map in the universal property.

15
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Next we show that profinite groups are equipped with a compact topology. Each finite

group Gi (or ring) can be equipped with the discrete topology. Hence we may consider

∏Gi with the product topology as a topological group. By Lemma 2.11, we consider

lim←−Gi as a subset of ∏Gi. Thus the product topology on ∏Gi yields a subspace topology

for the profinite group lim←−Gi as a subspace of ∏Gi. Hence, lim←−Gi with this topology is

a topological group. Moreover, the maps fi j and pi are continuous. Note that pi’s are

restrictions of the projection maps of the product topology, and fi j’s are maps between

finite discrete topological groups.

Next, we introduce the profinite group attached to a Galois extension. Let L be an

arbitrary Galois extension of K. Hence L is the union of finite Galois extensions M of K

contained in L. We know that Gal(L/K)∼= lim←−Gal(M/K) where the limit is taken over the

collection of intermediate fields

M = {M ⊂ L : M/K is a finite Galois extension}.

Therefore Gal(L/K) is equipped with a topology through the profinite topology on

lim←−Gal(M/K). We name this topology Krull topology.

The discrete topology for each Gi is compact since Gi is finite. Hence the product

topology on ∏i Gi is compact. On the other hand, if (gi)i ∈ (∏Gi)\ lim←−Gi then for some

i≤ j we have fi j(g j) 6= gi. Hence the open subgroup U = {(g′i)i ∈∏Gi; g′i = gi for i≤ j}

contains (gi)i, and U∩ lim←−Gi = Ø. Thus, the subspace lim←−Gi is closed in ∏i Gi. Therefore

lim←−Gi is a compact topological group. This prove the compactness part of the following

general proposition about the topology of any profinite group.

Proposition 2.12. ([17, Theorem 1.1.12]) A topological group G is profinite if and only if

G is Hausdorff, compact, and totally disconnected.

We next introduce the abelianization of a profinite group G which is denoted by Gab.

Definition 2.13. Let G be a profinite group. The commutator subgroup of G is the closure

16
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of

〈[x,y] ; x,y ∈ G〉

in G, where [x,y] = x−1y−1xy is the commutator of x and y. We denote the commutator of

G by G′.

We can see that for a closed normal subgroup N of G, the quotient group G/N is abelian

if and only if N contains G′. Therefore, we define abelianization of G to be Gab = G/G′.

Finally, we introduce a probability measure in profinite groups.

A profinite group is endowed with a two sided invariant Haar measure (see [9, Propo-

sition 18.2.1]). This measure is implied by the Haar measure on locally compact groups as

described at the end of Section 2.1. Since G is compact, the Haar measure on G is finite

(see [4, Proposition 9.3.3]). Hence, we can consider the normalized Haar measure νG on

the profinite group G, i.e., a measure νG with νG(G) = 1. This gives a probability measure

on a profinite group.

We have the following lemmas regarding the probability measure νG on a profinite

group G.

Lemma 2.14. If H is a closed subgroup of a profinite group G, then νG(H) = 1/[G : H].

Proof. If [G : H] = n then G is the union of n disjoint cosets giH (1≤ i≤ n) of H. Hence,

1 = νG(G) =
n

∑
i=1

νG(giH) = n ·νG(H),

which is the desired result. If H has infinite index, then it is contained in the intersection of

a decreasing sequence of open subgroup H1 > H2 > .. . (see [9, Lemma 1.2.3]). Thus,

0≤ νG(H)≤ lim
i→∞

1/[G : Hi] = 0.

Therefore, νG(H) = 0 = 1/[G : H].
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Consider the product of measurable spaces G and G′. A product measure νG×νG′ on

G×G′ is defined by

(νG×νG′)(H×H ′) = νG(H)νG′(H
′),

for all measurable subsets H ⊂ G and H ⊂ G′.

We have the following property of the normalized Haar measure of products of profinite

groups.

Lemma 2.15. ([9, Proposition 18.4.2]) The normalized Haar measure on the direct product

G×G′ of profinite groups G and G′ coincides with νG×νG′ .

We also need to define the direct limit of a direct system of groups. We first introduce a

direct system of groups.

Definition 2.16. Let I be a directed partially ordered set. Let (Gi)i∈I be a family of groups

together with homomorphisms fi j : Gi→G j for all i≤ j ∈ I. We name this family a directed

system over I, if fii = idGi and fik = f jk ◦ fi j for all i≤ j ≤ k ∈ I.

Note that if i≤ j, then in an inverse system the maps fi j are defined from G j to Gi and

in a directed system the maps fi j are defined from Gi to G j.

Example 2.17. The family of additive groups (1
nZ)/Z with homomorphisms fnm : (1

nZ)/Z→

( 1
mZ)/Z for all n | m which sends a+Z to a

c +Z, where m = cn. Hence, this family is a

direct system.

Finally, we define the direct limit of a direct system of groups.

Definition 2.18. The direct limit of a directed system of groups (Gi)i∈I is the disjoint union

of Gi’s modulo an equivalence relation ∼, denoted

lim−→
i

Gi =

(⊔
i

Gi

)
/∼,

where gi ∼ g j, for gi ∈ Gi and g j ∈ G j, if and only if there is k ∈ I with i, j ≤ k such that

fik(gi) = f jk(g j).
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As an example, we have lim−→(1
nZ/Z)∼=Q/Z.

2.3 Characters

In this section, we introduce characters of a group G. Specifically, we consider the

quadratic Dirichlet character associated to the Kronecker symbol χD, where D is a funda-

mental discriminant.

Definition 2.19. A multiplicative character on a group G is a group homomorphism

χ : G→ C×.

If the group G is a topological group, we shall require χ to be a continuous homomor-

phism. A character χ : G→ µ2 is named a quadratic character, where µ2 is the multiplica-

tive group {±1}.

Next, we introduce some basic facts about Dirichlet characters.

Definition 2.20. For k ∈ Z, consider a multiplicative homomorphism

χ : (Z/kZ)×→ C×.

We extend this map on Z by defining χ(n) = 0, when gcd(k,n) 6= 1. A Dirichlet character

mod k is the extended homomorphism

χ : Z→ C×.

The conductor of a Dirichlet character χ mod k is the smallest integer f | k, such that

there is a Dirichlet character χ′ mod f for which χ(n) = χ′(n) for (n,k) = 1. We denote the

conductor of χ by fχ. A character is also named even if χ(−1) = 1 and odd otherwise.

Example 2.21. Let χ be the character mod 8 such that χ(x) = 1 for x ∈ {1,5}, and χ(x) =

−1 for x ∈ {3,7}. We have χ(x+ 4) = χ(x). Since 4 is the smallest n such that χ can be
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defined mod n then fχ = 4. Furthermore, since χ(−1) =−1, the character χ is odd. Also χ

is a quadratic character since it maps to µ2 = {±1}.

Next, we introduce the Kronecker symbol which is an important example of a Dirichlet

character. To define this character first we need to define the Legendre symbol.

Definition 2.22. The Legendre symbol
(

a
p

)
for odd primes p is defined as

(
a
p

)
=


0 if p | a

1 if x2 ≡ a (mod p) has a nonzero solution,

−1 if x2 ≡ a (mod p) has no solutions.

For odd primes p and q, we have the relation

(
p
q

)
= (−1)

p−1
2 ·

q−1
2

(
q
p

)

known as the law of quadratic reciprocity (see [16, Thorem I.8.6]). Next, we extend the

definition of the Legendre symbol.

Definition 2.23. Set
(a

0

)
= 0,

(a
1

)
= 1,

( a
−1

)
= sign(a), and

(a
2

)
=


0 if 2 | a,

1 if a≡±1 (mod8),

−1 if a≡±3 (mod8).

For integer b = sign(b)pe1
1 . . . pek

k , the Kronecker symbol
(a

b

)
is defined by

(a
b

)
=

(
a

sign(b)

)(
a
p1

)e1

. . .

(
a
pk

)ek

.

Let D be a fundamental discriminant. Then, it is known that the Kronecker symbol
(D
.

)
is a Dirichlet character mod |D| (see [7, Chapter 5]). We denote this Dirichlet character by

20



2.4. ARTIN SYMBOL

χD. By using the law of quadratic reciprocity, we can show that the Kronecker symbol cor-

responding to a fundamental discriminant D is the product of Legendre symbols of primes

p | D and a Dirichlet character mod 8.

Proposition 2.24. Let D be a fundamental discriminant. If D = ±2`p1 . . . pk with ` ∈

{0, 2, 3}, then, for any integer a, we have

χD(a) =
(

D
a

)
= χD,2(a)

k

∏
i=1

(
a
pi

)
,

where
(

a
pi

)
is the Legendre symbol and χD,2 is one of the four Dirichlet characters mod 8.

More precisely, if D is odd, then χD,2 = 1, if 4 ‖ D, then χD,2 =
(−4

.

)
is the unique Dirichlet

character mod 8 of conductor 4, and if 8 ‖ D, then χD,2 =
(±8

.

)
is one of the two Dirichlet

characters mod 8 of conductor 8. More precisely, for the case 8 ‖ D, if D > 0 and the

number of 1≤ i≤ k with pi ≡ 3 (mod 4) is even, or D < 0 and the number of 1≤ i≤ k with

pi ≡ 3 (mod 4) is odd, then χD,2 =
(8
.

)
. Otherwise, we have χD,2 =

(−8
.

)
.

Proof. See [7, Chapter 5].

2.4 Artin Symbol

In this section, we define the Artin symbol associated to a prime ideal in a Galois ex-

tension of a number field. Then, we will see the relation between the Artin and Kronecker

symbols which is one of the most important tools for us in Chapter 3.

We denote the ring of integers of a number field K (a finite extension of Q) by OK . Let

L/K be an extension of number fields. Let p be a prime ideal of OK . Then, pOL (the ideal

generated by p in OL) is an ideal of OL. Since OL is a Dedekind domain, pOL has a prime

factorization

pOL =Pe1
1 . . .P

eg
g

in OL, where Pi’s are the distinct primes of OL containing p. We say p is unramified in L if
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ei = 1 for 1≤ i≤ g. Otherwise, we say p ramifies in L. If L/K is a Galois extensions, then

the ei’s are all equal (see [12, Corollary I.7.2]) and we name eL,p = ei (for 1 ≤ i ≤ g) the

ramification index of p. For a fixed prime P of OL lying over p, the subgroup

DP = {σ ∈ Gal(L/K); σ(P) =P}

of Gal(L/K) is named the decomposition group of P. Let G̃ be the Galois group of the

residue field extension (OL/P)/(OK/p). We define the natural map σ 7→ σ̃ from DP to

G̃, where σ̃(α+P) = σ(α)+P for α ∈ OL. It can be shown that this map is a surjective

homomorphism. We denote the kernel of this homomorphism by

IP = {σ ∈ DP; σ(α)≡ α modP for all α ∈ OL}

and we call it the inertia group of P. It is known that |IP|= eL,p (see [6, Proposition 5.10]).

Therefore, if p is unramified in L, then we have DP
∼= G̃. On the other hand, since G̃ is

the Galois group of an extension of finite fields, then G̃ is a cyclic group generated by the

Frobenius automorphism FrobP : x 7→ xq, where q = |OK/p|.

Definition 2.25. Let p be unramified in L. Let σ ∈ DP be the unique element that maps to

the Frobenius automorphism FrobP through the isomorphism DP
∼−→ G̃. The element σ is

named Artin symbol of P in the extension L/K, and is denoted by
(

L/K
P

)
.

If L/K is an abelian extension, then the Artin symbol of P′s are the same for all prime

P′s above p, i.e., all primes P in factorization of p into prime ideals in OL (see [6, Corollary

5.21]). In this case, we denote the Artin symbol of any P above p by
(

L/K
p

)
.

Let L/K be an abelian extension of number fields. We generalize the Artin symbol to

any fractional ideal a = ∏i p
ri
i ⊂ OK , coprime to ramified primes of L/K, multiplicatively

by (
L/K
a

)
= ∏

i

(
L/K
pi

)ri

.

22



2.4. ARTIN SYMBOL

Example 2.26 (Cyclotomic extensions). Let Q(ζn)/Q be the cyclotomic extension ob-

tained by adjoining a primitive n-th root of unity ζn to Q. Then, an element σ∈Gal(Q(ζn)/Q)

is correspond to the Artin symbol
(
Q(ζn)/Q

a

)
, where σ(ζn) = ζa

n with gcd(a,n) = 1 (see [12,

Example, Page 199])

Next, we observe that the Artin symbol of a quadratic extension K/Q coincides with

the Kronecker symbol of the discriminant of K/Q.

Proposition 2.27. Let Q(
√

a) be a quadratic field of discriminant DQ(
√

a). The prime p in

Z ramifies in Q(
√

a) if and only if p | DQ(
√

a). For primes p that are unramified in Q(
√

a),

we have (
Q(
√

a)/Q
p

)
(
√

a) =
(DQ(

√
a)

p

)√
a.

Proof. For a proof see [6, Proposition 5.16 and Corollary 5.17].

We next describe an application of Proposition 2.27 which will be used in Chapter 3.

Let {Kn : n≥ 1} be a family of finite Galois extensions of Q with the property that ζn ∈

Kn, where ζn is a primitive n-th root of unity. Let Kn ⊂ Km if n |m. Hence, we have restric-

tion maps resnm : G(m)→ G(n) for all n | m. Thus, the family (G(n) = Gal(Kn/Q), resnm)

is an inverse system of finite groups with respect to division order, i.e., n≤ m if and only if

n | m. Assume that K2 contains a quadratic field K of discriminant D. There are restriction

homomorphisms

G res−→ Gal(Qab/Q)∼= Ẑ× and G res−→ Gal(Q(ζ|D|)/Q),

where Qab =
⋃

n>2Q(ζn) is the maximal abelian extension of Q. Considering Example

2.26, we have the following proposition which plays a crucial rule in Theorem 3.5 in the

next chapter.
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Proposition 2.28. With the notations described above, the diagram

Gal(Q(ζ|D|)/Q) Gal(K/Q)

G

Gal(Qab/Q)∼= Ẑ× µ2

res

∼=

res

res

(D
. )

is a commutative diagram, where
(D
.

)
is the Kronecker symbol mod D.

Proof. The diagram is commutative because of Proposition 2.27 and the fact that the restric-

tion map Gal(Q(ζ|D|)/Q)→Gal(K/Q) sends
(Q(ζ|D|)/Q

a

)
to
(

K/Q
a

)
(see [13, Property A2,

Page 198]).

2.5 Elliptic Curves

In this section, we will introduce division fields associated to an elliptic curve. The

Galois group attached to the family of division fields of an elliptic curve forms a profinite

group. We will describe the representation of this profinite group on the p-torsion points of

the elliptic curve. At the end, we introduce the family of Serre curves. We begin with the

definition of an elliptic curve.

Definition 2.29. An elliptic curve E defined over Q is a non-singular curve which is defined

by an equation

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6,

where a1, a2, a3, a4, a6 ∈Q with a point O at infinity.

Let E be an elliptic curve defined over Q. The discriminant of E is a polynomial in the

ai which is non-zero if and only if E is non-singular. The set of points of the elliptic curve

E with rational coordinates forms an abelian group, in which O = (0,1,0) (in projective

coordinates) is the identity element. We denote the subgroup of all n-torsion points of E
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with coordinates in Q by E[n]. We assume that E is given by a global minimal Weierstrass

equation y2 + a1xy+ a3y = x3 + a2x2 + a4x+ a6, where ai ∈ Z (see [24, Section VIII.8]).

For a prime p - ∆, the reduction modulo p of the elliptic curve E is the elliptic curve Ep

given by

Ep : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6,

where ai denotes ai modulo p. We say E is cyclic modulo p if the group of points of Ep

with coordinates in Fp (the finite field of p elements) is cyclic.

Definition 2.30. The extension field Q(E[n]) over Q which is generated by the x and y-

coordinates of all points in E[n] is named the n-division field of E.

Recall that the set of n-torsion points E[n] forms a subgroup of the group of points of

E. The following assertion describes the structure of this subgroup.

Lemma 2.31. If E is an elliptic curve over Q, for any integer n≥ 2, we have

E[n]∼= Z/nZ×Z/nZ.

Proof. See [24, Corollary III.6.4b].

We can show that the n-division fields of E over Q are Galois extensions (see [25,

Proposition 6.5]). We introduce representations for the Galois groups attached to such

extensions. Each σ ∈ Gal(Q(E[n])/Q) acts on E[n] and thus yields an automorphism on

E[n]. By fixing two generators of E[n], we can correspond a matrix in GL2(Z/nZ) for

each σ. This yields a representation of Gal(Q(E[n])/Q) to GL2(Z/nZ). Note that for

n = ∏pe‖n pe, we have

|GL2(Z/nZ)|= ∏
pe ‖n

p4e−3(p2−1)(p−1). (2.1)
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Theorem 2.32. Let E be an elliptic curve over Q and let n≥ 2. Then the map

rn : Gal(Q(E[n])/Q)→ Aut(E[n])∼= GL2(Z/nZ)

described above is an injective homomorphism.

Proof. See [25, Theorem 6.7] for a proof.

By taking the inverse limit on rn in Theorem 2.32 over all positive integer n, we have

the injective homomorphism

r : Gal(Qtor/Q)→ GL2(Ẑ) = lim
←

GL2(Z/nZ), (2.2)

where Qtor = ∪∞
n=1Q(E[n]). It can be shown that this representation is never surjective. An

elliptic curve is called non-CM if its ring of endomorphisms is isomorphic to integers Z.

In [23], Serre shows that for a non-CM elliptic curve E, the image of r has finite index in

GL2(Ẑ).

Definition 2.33. An elliptic curve E defined over Q is called a Serre curve if [GL2(Ẑ) :

r(Gal(Qtor/Q))] = 2.

It is proved in [11] that almost all elliptic curves over Q are Serre curves.
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Chapter 3

The Main Theorems

Throughout this section, let (G(n))n∈N and (A(n))n∈N be inverse systems of finite groups.

Moreover, assume that there is an injective map rn : G(n)→ A(n) for all n≥ 1. This yields

an injective map r : G→ A by taking inverse limit over n. Further, suppose A ∼= ∏p Ap,

where Ap = lim←−A(pi).

3.1 The First Main Theorem

In the following, we introduce the expected value of a measurable function.

Definition 3.1. Let M be a σ-algebra on a set M and let ν be a measure on (M,M ). Let

f : M → R be any ν-measurable function where R = [−∞,+∞] is the extended real line.

For N ∈M , we define the expected value of f over N by

EN( f ) =
∫

M f ·1Ndν∫
M 1Ndν

,

where

1N(α) =


1 if α ∈ N,

0 otherwise,

is the characteristic function of N.

Let A be the profinite group defined in the beginning of this chapter. Note that since A is

a profinite group, it is equipped by a probability measure νA, which is introduced at the end

of Section 2.2. Let χ be a character of A. Considering a measurable function f : A→R, we
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denote the expected value of f over kerχ by Eχ( f ), i.e.,

Eχ( f ) =
∫

A f .1kerχdνA∫
A 1kerχdνA

.

Let µm be the multiplicative group of the complex m-th roots of unity equipped with the

discrete topology.

The following theorem is the first main theorem of this thesis.

Theorem 3.2. Let (G(n))n∈N, (A(n))n∈N, (rn)n∈N, G, A, and r be as the beginning of this

chapter. Suppose there exists an exact sequence

1→ G r→ A
χ→ µm→ 1 (3.1)

of continuous homomorphisms. Let g be a real arithmetic function such that

∑
n≥1

|g(n)|
#G(n)

< ∞.

Consider the natural projections ϕA,n : A→ A(n) and assume that

g̃ = ∑
n≥1

g(n)1kerϕA,n (3.2)

defines a function from A to R. Then,

∑
n≥1

g(n)
#G(n)

= Eχ(g̃) =
m−1

∑
i=0

∫
A

g̃χ
idνA.

Moreover, if
∫

A g̃dνA 6= 0, then

∑
n≥1

g(n)
#G(n)

=

(
1+

∑
m−1
i=1

∫
A g̃χidνA∫

A g̃dνA

)∫
A

g̃dνA.
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Proof. We start by writing the summation

∑
n≥1

g(n)
#G(n)

in terms of measures of certain measurable subgroups of G. For this purpose, let Φn : G→

G(n) be the projection map for each n ≥ 1. Then, G/kerΦn ∼= G(n) and [G : kerΦn] =

#G(n). Hence, by Lemma 2.14, νG(kerΦn) = 1/#G(n), where νG is the normalized Haar

measure on G. Thus,

∑
n≥1

g(n)
#Gn

= ∑
n≥1

g(n)νG(kerΦn). (3.3)

Observe that the number of cosets of the set A/r(kerΦn) divided by the number of

cosets of the group G/kerΦn ∼= r(G)/r(kerΦn) is equal to |A/r(G)|. Hence, by Lemma

2.14, we have

νG(kerΦn) =
νA(r(kerΦn))

νA(r(G))
, (3.4)

where νA is the normalized Haar measure on A (note that r(G) is closed in A and r(kerΦn)

is closed in r(G) and thus it is closed subgroup of A). Hence, by (3.4), we have

∑
n≥1

g(n)νG(kerΦn) = ∑
n≥1

g(n)
νA(r(kerΦn))

νA(kerχ)

=
1

νA(kerχ) ∑
n≥1

g(n)νA(r(kerΦn)).

(3.5)

Next, we show that r(kerΦn)= ker(ϕA,n)∩kerχ, where ϕA,n : A→A(n) is the projection

map for n ≥ 1. We denote the identity of a group H by eH . To prove this claim, we note

that the following diagram commutes:

G G(n)

A A(n)

r

Φn

rn

ϕA,n

(3.6)

If σ ∈ kerΦn, then rn(Φn(σ)) = rn(eG(n)) = eA(n). Hence, by commutative diagram (3.6),
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we have r(σ) ∈ ker(ϕA,n). Moreover, by the exact sequence (3.1), we have r(σ) ∈ r(G) =

kerχ. Therefore, r(kerΦn)⊂ ker(ϕA,n)∩kerχ. On the other hand, if α∈ ker(ϕA,n)∩kerχ⊂

kerχ = r(G), then there exists a σ ∈ G such that r(σ) = α. Moreover, r(σ) ∈ ker(ϕA,n)

means ϕA,n(r(σ)) = eA(n). Hence, rn(Φn(σ)) = eA(n) since (3.6) is commutative. Thus,

σ ∈ kerΦn since rn is injective. This shows that ker(ϕA,n)∩kerχ⊂ r(kerΦn). Therefore,

r(kerΦn) = ker(ϕA,n)∩kerχ. (3.7)

By (3.7), we have

∑
n≥1

g(n)νA(r(kerΦn)) = ∑
n≥1

g(n)νA(kerϕA,n∩kerχ)

= ∑
n≥1

g(n)
∫

A
1kerϕA,n∩kerχdνA

= ∑
n≥1

g(n)
∫

A
1kerϕA,n1kerχdνA

=
∫

A

(
∑
n≥1

g(n)1kerϕA,n

)
1kerχdνA.

(3.8)

We note that the last equality holds because of the following fact. Observe that

∣∣∣∣∣ m

∑
n=1

g(n)1kerϕA,n∩kerχ

∣∣∣∣∣≤ ∑
n≥1
|g(n)|1kerϕA,n∩kerχ.

By the assumption ∑n≥1|g(n)|/#G(n) converges. Hence, ∑k≥1|g(n)|1kerϕA,n∩kerχ is inte-

grable. Thus, by the Lebesgue’s dominated convergence theorem (see [19, Chapter 11,

16]), we can interchange the sum and the integrals to get

∑
n≥1

g(n)
∫

A
1kerϕn∩kerχdνA =

∫
A

∑
n≥1

g(n)1kerϕA,n∩kerχdνA.
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Now from (3.3), (3.5), and (3.8), we have

∑
n≥1

g(n)
#G(n)

=

∫
A g̃1kerχdνA∫
A 1kerχdνA

= Eχ(g̃).

(3.9)

Note that the character χ in (3.1) induces the character χ′ : A/r(G)
∼−→ µm by χ′(α) =

χ(α). More precisely χ is the lift of χ′ to A. Thus, χ′ sends a generator of A/r(G) to a

generator of µm. Hence, χ′ is a generator of the group of characters of A/r(G) denoted by

Â/r(G).

For α ∈ A/r(G), by [21, Chapter VI, Proposition 4], we have

∑
ε∈Â/G

ε(α) =
m−1

∑
i=0

(χ′)i(α) =


m if α = 1,

0 if α 6= 1.

Therefore, since α = 1 means α ∈ kerχ, we have

m−1

∑
i=0

χ
i(α) =


m if α ∈ kerχ,

0 if α /∈ kerχ.

This implies ∑
m−1
i=0 χi(α) = m ·1kerχ(α). Thus,

Eχ(g̃) =
∫

A g̃1kerχ dνA∫
A 1kerχ dνA

=

∫
A g̃∑

m
1 χidνA

n
∫

A 1kerχdνA
. (3.10)

Furthermore, by (3.1), we have [A : kerχ] = [A : r(G)] = m. Hence, νA(kerχ) = 1/m. Thus,

by (3.10),

Eχ(g̃) =
∫

A
g̃

m−1

∑
i=0

χ
idνA. (3.11)

The desired result holds by considering (3.9) and (3.11).

Next we consider the special case that A∼= ∏p Ap and χ = ∏p χp, where Ap = lim←−A(pi)
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and χp’s (χp : Ap→ µm) are characters of Ap’s. Then, by Lemma 2.15, we have νA =∏p νAp ,

since νAp’s are probability measures. The following corollary considers this special case of

Theorem 3.2.

Corollary 3.3. In Theorem 3.2, suppose that g is a real multiplicative arithmetic function.

In addition, assume that A∼=∏p Ap, where Ap = lim←−A(pi), and χ=∏p χp, where χp : Ap→

µm is a character of Ap. Let

g̃p = ∑
k≥0

g(pk)1kerϕpk (3.12)

be a function from Ap to R, where ϕpk : Ap→ A(pk) is the projection map, such that g̃ =

∏p g̃p. If
∫

A g̃dνA 6= 0, then

∞

∑
n=1

g(n)
#Gn

=

(
1+

m−1

∑
i=1

∏
p

∫
Ap

g̃pχi
pdνAp∫

Ap
g̃pdνAp

)
∏

p

∫
Ap

g̃pdνAp.

Proof. By Theorem 3.2, we have

∑
n≥1

g(n)
#G(n)

=
m−1

∑
i=0

∫
A

g̃χ
idνA. (3.13)

Since g(n) is multiplicative, A ∼= ∏p Ap, νA = ∏p νAp , χ = ∏p χp, and g̃ = ∏p g̃p, then,

from (3.13), we have

∑
n≥1

g(n)
#G(n)

=
m−1

∑
i=0

∏
p

∫
Ap

g̃pχ
i
pdνAp.

Thus, the desired result holds since
∫

A g̃dνA = ∏p
∫

Ap
g̃pdνAp 6= 0.

Next, we consider the case that [A : r(G)] = 2 which plays a crucial role in the Artin

type problems we consider in this thesis.

Corollary 3.4. In Corollary 3.3, if [A : r(G)] = 2, then

∞

∑
n=1

g(n)
#Gn

=

(
1+∏

p

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

)
∏

p

∫
Ap

g̃pdνAp.
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3.2 The Second Main Theorem

In this section, we introduce a family of Galois groups for which we apply the results

of Section 3.1. We fix the following notations and conditions throughout this section.

Let {Kn : n ≥ 1} be a family of finite Galois extensions of Q with the property that

ζn ∈Kn, where ζn is a primitive n-th root of unity. Suppose that Kn⊂Km if n |m. Let resnm :

G(m)→ G(n) be restriction maps for n | m. Thus, the family (G(n) = Gal(Kn/Q), resnm)

is an inverse system of finite groups with respect to division order, i.e., n ≤ m if and only

if n | m. Assume that K2 contains a quadratic field K. Let (A(n), fnm) be an inverse system

of finite groups with respect to division order. Assume that for any n ≥ 1, there exists an

injective homomorphism

rn : Gal(Kn/Q)→ A(n)

such that the diagram
G(m) G(n)

A(m) A(n)

resnm

rm rn

fnm

commutes. Hence, we have an injective homomorphism of profinite groups

r : G = lim←−Gal(Kn/Q)→ A = lim←−A(n).

Note that since Q(ζn) ⊂ Kn (for all n ≥ 1) and K ⊂ K2, then the restriction maps G→

Gal(Qab/Q) ∼= Ẑ× and G→ Gal(K/Q) are well-defined (Recall that Qab is the maximal

abelian extension of Q). In addition, assume that there are profinite homomorphisms

A
γ−→ Ẑ× and A

ψ−→ µ2 (3.14)

such that γ is induced by taking the inverse limit of maps γn : A(n)→ (Z/nZ)× and the
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diagrams

G Gal(Qab/Q)

A Ẑ×
r ∼=

γ

and

G Gal(K/Q)

A µ2

A(2)

r '
ψ (3.15)

commute, where A→ A(2) is the projection map. Note that γ and ψ are surjective since

the restriction maps G→ Gal(Qab/Q) and G→ Gal(K/Q) are surjective. Moreover, let

A = ∏p Ap, where Ap = lim←−A(pn).

In the next theorem, we construct a quadratic character on A and we show how this

character helps us to study the index [A : r(G)].

Theorem 3.5. With the above notations and assumptions, there exists a non-trivial quadratic

character χ : A→ µ2 for which the following statements hold:

(i) r(G)⊂ kerχ.

(ii) The character χ = ∏p χp, where each χp is a certain quadratic character of Ap de-

scribed in the proof.

In addition, let ϕpk : Ap→ A(pk) be the projection map, and D be the discriminant of

the quadratic field K. Then, the following assertions are true:

(iii) For odd primes p - D, χp = 1Ap .

(iv) If p | D and p is odd, then χp 6= 1Ap and χp
∣∣
kerϕpk

= 1kerϕpk for all k ≥ 1.

(v) If D is odd, then χ2 6= 1A2 and χ2|kerϕ2k
= 1kerϕ2k for all k ≥ 1.

(vi) If 4 ‖ D and ζ4 = i /∈ K2, then χ2 6= 1A2 , χ2|kerϕ2
6= 1kerϕ2 , and χ2|kerϕ2k

= 1kerϕ2k for

all k ≥ 2.

(vii) If 8 ‖ D and ζ8 /∈ K4, then χ2 6= 1A2 , χ2|kerϕ2k
6= 1kerϕ2k for k = 1,2, and χ2|kerϕ2k

=

1kerϕ2k for all k ≥ 3.
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Proof. We start by describing the construction of the quadratic character χ. Let γ be as

defined in (3.14). Consider the sequence of continuous homomorphisms

A
γ−→ Ẑ× proj−→ (Z/DZ)×

(D
. )−→ µ2,

where the second map is projection and the last map is the Kronecker symbol mod D(=

discQ(K)). Hence, the composition of the lift of the Kronecker symbol mod D to Ẑ× with

γ gives the quadratic character

χD : A→ µ2.

On the other hand, let

ψ : A→ A(2)→ µ2

be the character on A defined in (3.14).

Define the character χ = χD ·ψ. We claim that the character χ is non-trivial. If χD = ψ

on A, then χD splits via A(2) as ψ does. Moreover, since χD factors via Ẑ× then each

component A(n) factors via (Z/nZ)×. Thus, we have the commutative diagram:

A µ2

A(2) (Z/2Z)× ∼= {1}

χD

γ2

(3.16)

Therefore, since the above diagram is commutative, χD is the trivial character on A. On

the other hand, χD is the composition of the lift of the Kronecker symbol and γ. Since γ

is surjective (see the left diagram in (3.15)), then χD is surjective. This is a contradiction

with the claim χD = ψ. Therefore, the characters χD and ψ are not the same on A. Thus,

χ = χD ·ψ is non-trivial on A.

We now prove the other assertions.

(i) By Proposition 2.28, we know that the characters χD and ψ are the same on r(G). Thus,

χ = χD ·ψ is trivial on r(G), i.e., r(G)⊂ kerχ.
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(ii) Next we show that χ = ∏p χp for certain quadratic characters χp of Ap. The character

χD is the lift of the Kronecker symbol
(D
.

)
to A via

A
γ−→ Ẑ× proj−→ (Z/DZ)×.

Note that D is a fundamental discriminant. Thus, D = ±2`p1 . . . pk, where pi’s are odd

primes and ` ∈ { 0, 2, 3}. Hence, χD = ∏p|D χD,p, where χD,p is the Legendre symbol

modulo p for odd p, and for D even, χD,2 is one of the non-trivial Dirichlet characters mod

8 (see Proposition 2.24). On the other hand, since ψ factors via A(2), then it factors via

A2. Let ψ2 : A2→ µ2 be the corresponding homomorphism obtained from factorization of

ψ via A2. Let χp = χD,p for odd primes p | D and for prime 2 let χ2 = χD,2 ·ψ2 if 2 | D and

χ2 = ψ2 if 2 - D. For odd primes p - D, let χp = 1. Therefore, we have the decomposition

χ = ∏p χp. This complete the proof of (ii).

Next we describe the action of χp on Ap for all p. First of all note that kerϕpk ⊂ kerϕpt

for all primes p and for any k ≥ t. Thus, if a character is trivial on kerϕpt , then it is trivial

on kerϕpk for any k ≥ t. We now consider assertions (iii)-(vii).

(iii) If p is odd and p - D, then χp is trivial. Thus, the desired result holds.

(iv) For odd primes p | D, the character χp is the Legendre symbol mod p. Since the map

γp : Ap→ Z×p is surjective as γ : ∏p Ap ∼= A→ Ẑ× ∼= ∏pZ×p is surjective, then χp is non-

trivial on Ap. Moreover, χp is trivial on kerϕp, since we can factor Ap → (Z/pZ)× via

A(p), i.e., the diagram

Ap (Z/pZ)×

A(p)

ϕp

commutes, where Ap→ (Z/pZ)× is the composition of γp with the projective map Z×p →

(Z/pZ)×. Hence, elements of kerϕp maps to 1 mod p.

Next consider p = 2. Since χD 6= ψ on A(2), then χ2 = χD,2 ·ψ2 is not trivial on A2.

Moreover, since ψ2 factors via A(2), the character ψ2 is trivial on kerϕ2. Hence, the char-
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acter χ2 is the same as χD,2 on kerϕ2k for k ≥ 1.

(v) If D is odd, then χ2 = ψ2. Hence, the character χ2 factors via A(2), i.e.,

A2 µ2

A(2)

χ2

The factorization comes from commutative diagram 3.15 corresponding to ψ. Thus, it is

non-trivial on A2 and trivial on kerϕ2.

(vi) If 4 ‖ D, then χD,2 is the lift of the unique non-trivial Dirichlet character mod 8 of

conductor 4. In the following, we describe the action of this character on kerϕpk . In this

case, since the conductor of χD,2 is 4, for k > 1, we have the following map

χD,2 : A2
ϕ2k−→ A(2k)→ (Z/2kZ)×→ (Z/4Z)×

(−4
. )−→ µ2,

where A(2k)→ (Z/2kZ)× is the map corresponding to component 2k of γ2 : A2→ Z×2 , and

(Z/2kZ)×→ (Z/4Z)× is the natural map coming from reducing to modulo 4. Hence, for

α ∈ kerϕ2k , we have ϕ2k(α) = 1 if k > 1. Thus, χ2 is trivial on kerϕ2k for k > 1. For the

case k = 1, let (βi)i ∈ G be such that β4 : ζ4 7→ ζ3
4. If (βi)i maps to α via G→ A→ A2,

then χD,2(α) =
(−4

3

)
= −1. On the other hand, since β4 : ζ4 7→ ζ3

4 and ζ4 /∈ K2, we have

β2 = β4
∣∣
K2

= idK2 . Hence, r2(β2) = 1A(2). Thus, α ∈ kerϕ2. Thus, χD,2 is non-trivial on

kerϕ2. Therefore, if 4 ‖ D, the character χ2 is non-trivial on A2 and kerϕ2, and trivial on

kerϕ2k for k > 1.

(vii) If 8 ‖ D, then χD,2 is the lift of one of the two characters modulo 8 of conductor 8.

Similar to part (vi), if 8 ‖ D, we observe that χD,2 is trivial on ϕ2k for k > 2 since χD,2

factors via (Z/8Z)× and we have

χD,2 : A2
ϕ2k−→ A(2k)→ (Z/2kZ)×→ (Z/8Z)×

(±8
. )−→ µ2,
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for k > 2, where A(2k)→ (Z/2kZ)× is the map corresponding to component 2k of γ2 :

A2→ Z×2 , and (Z/2kZ)×→ (Z/8Z)× is the natural map coming from reducing to modulo

8. For the case k = 2, an argument similar to the one given in the proof of (vi) works for

element (βi)i ∈G such that β8 : ζ8 7→ ζ5
8 in G(8). Thus, if (βi)i maps to α via G→ A→ A2,

then χD,2(α) =
(±8

5

)
= −1. On the other hand, since ζ8 /∈ K4, we have β4 = idK4 and

hence r4(β4) = 1A(4). Thus, since α ∈ kerϕ4, we have χD,2 is non-trivial on kerϕ4. Since

kerχ4 ⊂ kerχ2, we have χD,2 is non-trivial on kerϕ2. Therefore, if 8 ‖ D, the character χ2

is non-trivial on A2, kerϕ2 and kerϕ4, and it is trivial on kerϕ2k for k > 2.

Next, we have the following corollary which unifies the product forms of several Artin

type problems, such as Cyclicity problem and the Titchmarsh Divisor Problem.

Corollary 3.6. Let A and G be as described in the beginning of this section. Assume that

[A : r(G)] = 2. Let g be a real multiplicative arithmetic function such that

∑
n≥1

|g(n)|
#G(n)

< ∞.

Assume that (3.2) defines a function g̃ from A to R. Let g̃p defined in (3.12) be the function

from Ap to R such that g̃ = ∏p g̃p. Then, if ζ4 /∈ K2, ζ8 /∈ K4, and
∫

A g̃dνA 6= 0, we have

∞

∑
n=1

g(n)
#G(n)

=

(
1+ ∏

p|2D

∑k≥` g(pk)/#A(pk)

1+∑k≥1 g(pk)/#A(pk)

)
∏

p

(
1+ ∑

k≥1

g(pk)

#A(pk)

)
,

where in the product on primes dividing 2D, we have `= 1 for odd primes and for prime 2

we have `= 1 if D is odd, `= 2 if 4 ‖ D, and `= 3 if 8 ‖ D.

Proof. By Theorem 3.5, there exists a non-trivial character χ : A→ µ2, where χ = ∏p χp,

such that r(G) ⊂ kerχ. Hence, since [A : r(G)] = [A : kerχ] = 2, we have r(G) = kerχ.

Thus, the sequence

1→ G r−→ A
χ−→ µ2→ 1 (3.17)
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is exact. Therefore, by Corollary 3.4,

∞

∑
n=1

g(n)
#Gn

=

(
∏

p

∫
Ap

g̃pdνAp

)(
1+∏

p

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

)
. (3.18)

Recall that by Lemma 2.14, we have νAp(kerϕpk) = 1/#A(pk). Observe that

∫
Ap

g̃pdνAp =
∫

Ap

(
1Ap + ∑

k≥1
g(pk)1kerϕpk

)
dνAp

= νAp(Ap)+ ∑
k≥1

g(pk)νAp(kerϕpk)

= 1+ ∑
k≥1

g(pk)

#A(pk)
.

(3.19)

Next, by part (iii) of Theorem 3.5, for p - 2D, the character χp is trivial on Ap. Hence,

∏
p

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

= ∏
p|2D

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

. (3.20)

In addition, by part (iv) of Theorem 3.5, for odd primes p | D,

∫
Ap

g̃pχpdνAp =
∫

Ap

(
1Apχp +g(p)1kerϕpχp + · · ·+g(pk)1kerϕpk χp + . . .

)
dνAp

= 0+ ∑
k≥1

g(pk)νAp(kerϕpk)

= ∑
k≥1

g(pk)

#A(pk)
.

(3.21)

For prime 2, by parts (v), (vi), and (vii) of Theorem 3.5,

∫
A2

g̃2χ2dνA2 =
∫

A2

(
1A2χp +g(2)1kerϕ2χ2 + · · ·+g(2k)1kerϕ2k χ2 + . . .

)
dνA2

= 0+ ∑
k≥`

g(2k)νA2(kerϕ2k)

= ∑
k≥`

g(2k)

#A(2k)
,

(3.22)
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where `= 2 if 4 ‖ D, `= 3 if 8 ‖ D, and `= 1 otherwise.

Therefore, (3.18), (3.19), (3.20), (3.21) and (3.22) imply

∞

∑
n=1

g(n)
#G(n)

=

(
1+ ∏

p|2D

∑k≥` g(pk)/#A(pk)

1+∑k≥1 g(pk)/#A(pk)

)
∏

p

(
1+ ∑

k≥1

g(pk)

#A(pk)

)
,

where in the product on primes dividing 2D, we have `= 1 for odd primes and for prime 2

we have `= 1 if D is odd, `= 2 if 4 ‖ D, and `= 3 if 8 ‖ D.
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Chapter 4

Examples and Results

4.1 Kummer Fields

In this section, for n ≥ 1, the field Kn is the splitting field of xn− a over Q, where |a|

is not a perfect power. We will show that the inverse limit of the Galois groups of Kn/Q is

embedded in a profinite group A, where A satisfies the conditions described at the beginning

of Section 3.2.

Let G(n) be the Galois group of Kn = Q(ζn, n
√

a) over Q. Let a1/n be a fixed root of

xn−a = 0. Then each σ∈G(n) is determined uniquely by its action on a1/n and a primitive

root of unity ζn. For such σ, we have σ(a1/n) = ζb
na1/n and σ(ζn) = ζd

n , where b ∈ Z/nZ

and d ∈ (Z/nZ)×. Therefore, each σ ∈ G(n) is determined by a pair (b,d), with b ∈ Z/nZ

and d ∈ (Z/nZ)×. Thus, there exists an injective homomorphism

rn : G(n)→ A(n), (4.1)

where A(n) is the group of matrices of the form
(

1 0
b d

)
with multiplication, where b ∈ Z/nZ

and d ∈ (Z/nZ)× (see [13, Chapter VI, Section 9, Example 2] for details). Taking the

inverse limit on both sides of (4.1), we have an injective homomorphism of profinite groups

r : G→ A, (4.2)
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where

A =


1 0

b d

 ; b ∈ Ẑ and d ∈ Ẑ×

 . (4.3)

Note that A ∼= ∏p Ap. On the other hand, G = Gal(K∞/Q), where K∞ = ∪n≥1Kn. Let

µm(L) be the group of all m-th roots of unity in L. Note that K∞ contains the group µ∞ =

∪n≥1µm(Q) of all roots of unity in Q.

Therefore, A and G satisfy conditions of Theorem 3.5. Let the map γ, introduced in

(3.14), be the determinant map A det−→ Ẑ× and ψ : A→ A(2) ∼= µ2 be the projection map.

Consider the surjective map det : A→ Ẑ×. Let H be

H = ker(det) =


1 0

b 1

 ; b ∈ Ẑ

 . (4.4)

Thus, the sequence

1→ H i−→ A det−→ Ẑ×→ 1 (4.5)

is exact, where i is the inclusion map.

Next note that since Qab is the maximal abelian extension over Q, the exact sequence

1→ Gal(K∞/Qab)→ G→ Gal(Qab/Q)→ 1

shows that Gal(K∞/Qab) =G′, where G′ is the commutator of G. Note that r(G′)⊂ A′⊂H.

Hence, r maps G′ to H, i.e., we have the homomorphism η = r
∣∣
G′ : G′→ H. Hence, the

diagram

1 G′ G Gal(Qab/Q) 1

1 H A Ẑ× 1,

i1

η

res

r '

i2 det

(4.6)

commutes, where i1 and i2 are inclusions.

We claim that [A : r(G)] = 2. The next three lemmas summarize some facts used in [15]
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that will help us in achieving this goal.

Lemma 4.1. Consider the group Hom(aQ/aZ,µ∞) of all homomorphisms from aQ/aZ to

µ∞, where groups aQ= {aq;q∈Q} and aZ= {az;z∈Z} are considered with multiplication.

Then Hom(aQ/aZ,µ∞)∼= H, where H is defined in (4.4).

Proof. Let µ̂ = lim←−µm. Then, H ∼= µ̂. The multiplicative group aQ/aZ is isomorphic

to the additive group Q/Z. Hence, Hom(aQ/aZ, µ∞) ∼= Hom(Q/Z, µ∞). Thus, since

lim−→
n
(1

nZ/Z)=Q/Z, we have Hom(aQ/aZ, µ∞)∼=Hom(lim−→
n
( 1

nZ/Z), µ∞). On the other hand,

Hom(lim−→
n
( 1

nZ/Z), µ∞) = lim←−
n

Hom( 1
nZ/Z, µ∞)∼= µ̂

(see [18, Proposition 5.26]). Therefore, H ∼= Hom(aQ/aZ, µ∞).

Next we consider the injective homomorphism

δ : G′ = Gal(K∞/Qab)→ Hom(aQ/aZ, µ∞)

σ 7→ [ax 7→ σ(ax)/ax].

Note that this map is injective since if σ maps to identity, then σ(ax) = ax fo all x ∈ Q.

Hence, σ is the identity in Gal(K∞/Qab).

The next lemma provides a description of the image of this injective hopmomorphism.

Lemma 4.2. The image of

δ : G′→ Hom(aQ/aZ, µ∞)

is Hom(aQ/aQ∩Q×ab, µ∞).

Proof. For the proof, see [15, Page 494].

Note that the composition of δ with the isomorphism H ∼= Hom(aQ/aZ, µ∞) proved in

Lemma 4.1 is the same as η = r
∣∣
G′ : G′→ H.
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To understand the intersection aQ ∩Q×ab in Lemma 4.2, we need to know when the

splitting field of xn−a is abelian over Q. The next lemma gives us the answer.

Lemma 4.3 ([20], Theorem 2). Let k ≥ 1 be not divisible by the characteristic of field L.

The splitting field of xk−a over L is abelian if and only if a#µk(L) is a k-th power in L, where

#µk(L) is the number of k-th roots of unity contained in L.

We are ready to prove our claim regarding [A : r(G)].

Theorem 4.4. With G and A as defined at the beginning of this section, we have

[A : r(G)] = 2.

Proof. First, we show that Hom(aQ/aQ ∩Q×ab, µ∞) has index 2 in Hom(aQ/aZ, µ∞). To

determine the intersection aQ∩Q×ab, we show that k = 2 is the largest integer such that the

splitting field of xk−a is abelian over Q. By Lemma 4.3, such a splitting field is abelian over

Q if and only if a#µk(Q) is a k-th power in Q. This means a#µk(Q) = bk for some b∈Q. Since

a is not a perfect power and #µk(Q)≤ k, we conclude that k = #µk(Q) = 2. Therefore, aQ∩

Q×ab = a
1
2Z. Hence, aQ/a

1
2Z ∼= (aQ/aZ)

/
〈a 1

2 modaZ〉, where 〈a 1
2 modaZ〉 is the unique sub-

group of order 2 of aQ/aZ. Thus, Hom(aQ/aQ∩Q×ab, µ∞) is of index 2 in Hom(aQ/aZ, µ∞).

Equivalently, by Lemma 4.2, the image of Gal(K∞/Qab) in Hom(aQ/aZ, µ∞) has index 2

in Hom(aQ/aZ, µ∞). Hence, the image of G′ in Hom(aQ/aZ, µ∞) has index 2, then by

Lemma 4.1, the image of G′ under the map

G′ δ−→ Hom(aQ/aZ, µ∞)
∼=−→ H

has index 2 in H. Note that this map is the same as η. Therefore, [H : η(G′)] = 2. Thus,

since the diagram (4.6) is commutative, we have [A : r(G)] = 2.

Our next goal is to describe a quadratic character of A, which will play an essential role

in computing the correction factors in Artin type problems for Kummer fields.
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As described at the beginning of this section, let the map γ be the determinant map

A det−→ Ẑ× and ψ : A→ A(2) ∼= µ2 be the projection map. Note that A(2) ∼= Gal(K2/Q).

Corresponding to γ, consider the quadratic character χD described in the proof of Theorem

3.5 with K = K2. Thus, χD : A→ µ2 is the quadratic character which is the lift of the

Kronecker symbol attached to D = discQ(K2). Hence, we have the exact sequence

1→ G r−→ A
χ−→ µ2→ 1, (4.7)

where χ = χD ·ψ. This is true since, by Theorem 3.5(i), the character χ is non-trivial on A

with r(G)⊂ kerχ, and by Theorem 4.4, [A : r(G)] = 2.

We are ready to present a general formula for

∞

∑
n≥1

g(n)
#G(n)

,

where G(n) = Gal(Q( n
√

a,ζn)/Q). Let g be a real multiplicative arithmetic function such

that
∞

∑
n≥1

|g(n)|
#G(n)

< ∞.

Let

g̃ = ∑
n≥1

g(n)1kerϕA,n

be a function from A to R, where ϕA,n : A→ A(n) is the projection map such that g̃ = ∏p g̃p.

Let

g̃p = ∑
k≥0

g(pk)1kerϕpk

be a function from Ap to R, where ϕpk : Ap→ A(pk) is the projection map. Let χ : A→ µ2

be the character given in (1.5) and assume that χ = ∏p χp. Then, if
∫

A g̃ 6= 0, by Corollary

3.6 and

#A(pk) = pk
φ(pk) = p2k−1(p−1),
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where φ denotes the Euler phi function,

∞

∑
n=1

g(n)
#G(n)

=

(
1+ ∏

p|2D

∑k≥` g(pk)/p2k−1(p−1)
1+∑k≥1 g(pk)/p2k−1(p−1)

)
∏

p

(
1+ ∑

k≥1

g(pk)

p2k−1(p−1)

)
,

(4.8)

where in the product on primes dividing 2D, we have `= 1 for odd primes and for prime 2

we have `= 1 if D is odd, `= 2 if 4 ‖ D, and `= 3 if 8 ‖ D.

Note that the conditions appearing in parts (vi) and (vii) of Theorem 3.5 are not needed

for the family of Kummer fields. In this case, the profinite group A is the group of matrices

given in (4.3). Hence, for part (vi), considering α ∈ A such that α maps to
(1 0

0 3

)
via projec-

tion to A(4), then α is in kerϕ2. On the other hand, we have χ2(α) = χD,2(3) =−1. Thus,

χ2 is non-trivial on kerϕ2. Therefore, the assertions of part (vi) of Theorem 3.5 hold for χ2.

Similarly, for part (vii), let α map to
(1 0

0 5

)
via projection to A(8). Then, α is in kerϕ2 and

kerϕ4. On the other hand, χ2(α) = χD,2(5) =−1. Therefore, χ2 is non-trivial on kerϕ2 and

kerϕ4. Hence, in the case of the family of Kummer fields the assertions in part (vii) hold

automatically.

We next employ (4.8) to compute the correction factor in some Artin type problems.

4.1.1 The Classical Artin Problem

In this section, we apply (4.8) to the Artin’s primitive root conjecture. The following

result is proved in [10].

Corollary 4.5 (Artin’s Primitive Root Density). Let a be an integer for which |a| is not a

perfect power. Let δ be the density of primes q for which a is a primitive root modulo q. Let

D be the discriminant of Q(
√

a). Then, under the Generalized Riemann Hypothesis (GRH)

for Q(ζn, n
√

a), n square-free, if D≡ 1 (mod 4),

δ =

(
1+ ∏

p|2D

−1
p(p−1)−1

)
∏

p

(
1− 1

p(p−1)

)
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and

δ = ∏
p

(
1− 1

p(p−1)

)
otherwise.

Proof. It is known that the integer a is a primitive root modulo q - 2a if and only if for all

primes p | q− 1, the prime q does not split completely in Kp, the splitting field of xp− a

(see [26, Page 384]). By the main result of [10], we have, under the GRH, that the density

δ is finite and is given by

δ =
∞

∑
n=1

µ(n)
[Kn : Q]

, (4.9)

where Kn =Q(ζn, n
√

a) and µ(n) is the Möbius function. By (4.8), we have

∞

∑
n=1

µ(n)
[Kn : Q]

=

(
1+ ∏

p|2D

∑k≥` µ(pk)/p2k−1(p−1)
1+∑k≥1 µ(pk)/p2k−1(p−1)

)
∏

p

(
1+ ∑

k≥1

µ(pk)

p2k−1(p−1)

)
,

(4.10)

where ` = 1 for odd primes. For prime 2, we have ` = 1 if D is odd, ` = 2 if 4 ‖ D, and

`= 3 if 8 ‖ D.

If D≡ 1 (mod 4), then `= 1 for all p | 2D. Hence, in this case

∞

∑
n=1

µ(n)
[Kn : Q]

=

(
1+ ∏

p|2D

∑k≥1 µ(pk)/p2k−1(p−1)
1+∑k≥1 µ(pk)/p2k−1(p−1)

)
∏

p

(
1+ ∑

k≥1

µ(pk)

p2k−1(p−1)

)

=

(
1+ ∏

p|2D

µ(p)/p2−1(p−1)
1+µ(p)/p2−1(p−1)

)
∏

p

(
1+

µ(p)
p2−1(p−1)

)
,

(4.11)

which is the desired result. On the other hand, if D is even then for prime 2, we have

` > 1. Hence, the first parentheses in (4.11) become 1 since µ(2k) = 0. This completes the

proof.

47



4.1. KUMMER FIELDS

4.1.2 Titchmarsh Divisor Problem (Kummer Case)

Consider a family of Galois extensions F = {Fm/Q; m ∈ N}. Let Dm be a union of

conjugacy classes of Gal(Fm/Q). Define

τF (p) = #
{

m ∈ N; p is unramified in Fm/Q and the Artin symbol
(

Fm/Q
p

)
⊂ Dm

}
.

Recall that the Titchmarsh divisor problem concerns the behaviour of ∑p≤x τF (p) as

x→ ∞.

For the family of Kummer fields, the following theorem is proved in [8, Theorem 1.6].

Theorem 4.6 (Felix-Murty). Let F be the family of Kummer fields

{Kn =Q(ζn,a1/n); n≥ 1}.

Then under the GRH for the Dedekind zeta function of Q(ζn, n
√

a)/Q for n≥ 1, we have

∑
p≤x

τF (p)∼

(
∑
n≥1

1
[Kn : Q]

)
· li(x) (4.12)

as x→ ∞, where li(x) =
∫ x

2
1

log t dt.

Note that unlike Artin’s conjecture, instead of µ(n), we have 1 in the numerator of

the summands of the infinite sum in (4.12). Thus, integers that are not square free make

contributions to the constant in (4.12).

We next give the product form of the summation ∑n≥1
1

[Kn:Q] . The following corollary

is a new result derived from the methods presented in this thesis.

Corollary 4.7. Let a be an integer such that |a| is not a perfect power. Let

{Kn =Q(ζn,a1/n), n≥ 1}
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be the family of Kummer fields. We have

∑
n≥1

1
[Kn : Q]

=

(
1+ c0 ∏

p|2D

p
(p−1)(p2−1)+ p

)
∏

p

(
1+

p
(p−1)(p2−1)

)
, (4.13)

where c0 ∈ {1,1/4,1/16}. More precisely, c0 = 1 if D is odd, c0 = 1/4 if 4 || D, and

c0 = 1/16 if 8 || D.

Proof. By (4.8),

∞

∑
n=1

1
[Kn : Q]

=

(
1+ ∏

p|2D

∑k≥` 1/p2k−1(p−1)
1+∑k≥1 1/p2k−1(p−1)

)
∏

p

(
1+ ∑

k≥1

1
p2k−1(p−1)

)
,

where in the product on the primes dividing 2D, we have `= 1 for odd primes and for prime

2, `= 1 if D is odd, `= 2 if 4 ‖ D, and `= 3 if 8 ‖ D.

Note that
∑k≥1 1/p2k−1(p−1)

1+∑k≥1 1/p2k−1(p−1)
=

p
(p−1)(p2−1)+ p

and we have

∑
k≥`

1
22k−1(2−1)

= c0 ·∑
k≥1

1
22k−1(2−1)

,

where c0 = 1 if ` = 1, c0 = 1/4 if ` = 2, and c0 = 1/16 if ` = 3. Therefore, the desired

result holds.

4.2 Serre Curves

Let E be an elliptic curve over Q given by a Weierstrass equation

y2 = x3 +ax+b,
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where a,b∈Q. Let ∆ be the discriminant of x3+ax+b. Let Kn =Q(E[n]) be the n-division

field of E. By taking the inverse limit of the natural injective maps

rn : Gal(Kn/Q)→ Aut(E[n])∼= A(n) = GL2(Z/nZ),

over all n≥ 1 given in Theorem 2.32, we have an injective profinite homomorphism

r : G = Gal(K∞/Q)→ Aut(E[∞])∼= A = GL2(Ẑ).

As a consequence of the Chinese Remainder Theorem, we note that A = GL2(Ẑ)∼= ∏p Ap,

where Ap = GL2(Zp). For K =Q(
√

∆), we have that K ⊂ K2 =Q(E[2]) since

∆ = ((x1− x2)(x1− x3)(x2− x3))
2, (4.14)

where x1, x2, and x3 are roots of x3+ax+b and thus, they are the x-coordinate of the points

of order 2 of E. Moreover, by the Weil pairing we have that ζn ∈ Kn (see [24, Corollary

III.8.1.1]). Thus, we have the following commutative diagram

1 G′ G Gal(Qab/Q) 1

1 SL2(Ẑ) A = GL2(Ẑ) Ẑ× 1,

i1 rest

r '

i2 det

(4.15)

where i1 and i2 are inclusion maps, G′=Gal(K∞/Qab) is the commutator of G, and SL2(Ẑ)=

ker(det) is the subgroup of matrices in GL2(Ẑ) with determinant 1.

In anticipation of applying Theorem 3.2, let γ be the determinant map det : A→ Ẑ× and

χD : A
γ−→ Ẑ×

(D
. )−→ µ2

be the composition of γ with the lift of the Kronecker symbol attached to D to Ẑ×. We also
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note that A(2) = GL2(Z/2Z)∼= S3, where S3 is the symmetric group on three letters. Let

ψ : A→ A(2)∼= S3
sign−→ µ2

be the composition of the projection map with the signature character on S3. By (4.14), the

signature map for σ ∈ Gal(K/Q) is the same as σ(
√

∆)√
∆

. Thus, the diagram attached to ψ in

(3.15) commutes. Therefore, by Theorem 3.2, we have r(G)⊂ kerχ, where χ = χD ·ψ is a

non-trivial character on A. This construction of character χ was described by J. P. Serre in

[23].

Recall that we name E a Serre curve if r(G) = kerχ. The condition r(G) = kerχ is

equivalent to [GL2(Ẑ) : r(G)] = 2 since r(G)⊂ kerχ. Thus, for Serre curve E, the sequence

1−→ G r−→ A
χ−→ µ2 −→ 1 (4.16)

is an exact sequence. Therefore, we can conclude the result of Corollary 3.6 for sums

involving the size of G(n) = Gal(Kn/Q). More precisely, let g be a real multiplicative

arithmetic function such that

∑
n≥1

|g(n)|
#G(n)

< ∞.

Let

g̃ = ∑
n≥1

g(n)1kerϕA,n

be a function from A to R, where ϕA,n : A→A(n) is the projection map, such that g̃=∏p g̃p.

Let

g̃p = ∑
k≥0

g(pk)1kerϕpk

be a function from Ap to R, where ϕpk : Ap→A(pk) is the projection map. Let χ : A→ µ2 be

the character given in (1.5) and assume that χ = ∏p χp. Therefore, if
∫

A g̃ 6= 0, by Corollary
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3.6, we have

∞

∑
n=1

g(n)
#G(n)

=

(
1+ ∏

p|2D

∑k≥` g(pk)/p4k−3(p2−1)(p−1)
1+∑k≥1 g(pk)/p4k−3(p2−1)(p−1)

)
∏

p

(
1+ ∑

k≥1

g(pk)

p4k−3(p2−1)(p−1)

)
,

(4.17)

where in the product on primes dividing 2D, we have `= 1 for odd primes and for prime 2

we have `= 1 if D is odd, `= 2 if 4 ‖ D, and `= 3 if 8 ‖ D. Here, we used (2.1) that states

#A(pk) = p4k−3(p2−1)(p−1).

Note that the conditions ζ4 /∈ K2 and ζ8 /∈ K4 are not needed here since the profinite

group A is GL2(Ẑ). Hence, similar to the case of Kummer family using an argument iden-

tical to the one described after formula (4.8), the desired results hold automatically without

conditions ζ4 ∈ K2 and ζ8 ∈ K4.

4.2.1 The Cyclicity Problem (Serre Curve Case)

In this section, we study the density of primes q for which a given Serre curve E is

cyclic modulo q (Cyclicity Problem). It is known that the reduction of E is cyclic modulo

q if and only if the prime q does not split completely in division fields Kp = Q(E[p]), for

any prime p less than q (see [5, Lemma 2.1]). We derive the following as a combination of

Serre’s cyclicity result and our formula (4.17) for g(n) = µ(n).

Corollary 4.8 (Cyclic Reduction of Serre Curves). Let E be a Serre curve with discriminant

∆. Let δ be the density of primes q for which E is cyclic modulo q. Let D be the discriminant

of Q(
√

∆). Then, under the GRH for the Dedekind zeta function of Q(E[n])/Q for each n,

if D is odd,

δ =

(
1+ ∏

p|2D

−1
(p2−1)(p2− p)−1

)
∏

p

(
1− 1

(p2−1)(p2− p)

)
,
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and

δ = ∏
p

(
1− 1

(p2−1)(p2− p)

)
otherwise.

Proof. Under the assumption of the GRH for the Dedekind zeta function of Q(E[n])/Q for

square-free n, in [22], Serre proved that the density in the Cyclicity Problem is

δ =
∞

∑
n=1

µ(n)
[Kn : Q]

.

Hence, by (4.17), we have

∞

∑
n=1

µ(n)
#G(n)

=

(
1+ ∏

p|2D

∑k≥` µ(pk)/p4k−3(p2−1)(p−1)
1+∑k≥1 µ(pk)/p4k−3(p2−1)(p−1)

)
∏

p

(
1+ ∑

k≥1

µ(pk)

p4k−3(p2−1)(p−1)

)
,

(4.18)

where in the product on primes dividing 2D, we have `= 1 for odd primes and for prime 2

we have `= 1 if D is odd, `= 2 if 4 ‖ D, and `= 3 if 8 ‖ D.

If D≡ 1mod4, then `= 1 for all p | 2D. Hence, in this case

∞

∑
n=1

µ(n)
#G(n)

=

(
1+ ∏

p|2D

µ(p)/p4−3(p2−1)(p−1)
1+µ(p)/p4−3(p2−1)(p−1)

)
∏

p

(
1+

µ(p)
p4−3(p2−1)(p−1)

)
,

which is the desired result for odd D. On the other hand, if D is even then for prime 2 in

(4.18), we have ` > 1. Hence, the first parentheses in the right-hand side of the identity

(4.18) becomes 1. This completes the proof.

4.2.2 The Titchmarsh Divisor Problem (Serre Curve Case)

In this section, we study the elliptic curve analogue of the Titchmarsh Divisor Problem

studied in Section 4.1.2. Let F be the family of fields {Kn =Q(E[n]),n≥ 1}, where E is a
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Serre curve. Let τF (p) be as described in Section 4.1.2. The following result was proven

in [1, Theorem 1.2].

Theorem 4.9 (Akbary-Ghioca). Let E be an elliptic curve defined over Q. Then under the

GRH for the Dedekind zeta function of Q(E[n])/Q for each n≥ 1, we have

∑
p≤x

τF (p) =

(
∞

∑
n=1

1
[Q(E[n]) : Q]

)
· li(x)+O

(
x5/6(logx)2/3

)
.

An application of (4.17) with g(n) = 1 provides the following result regarding the con-

stant in the asymptotic formula of Theorem 4.9.

Corollary 4.10. For the family of fields {Kn = Q(E[n]),n ≥ 1}, where E is a Serre curve,

we have

∞

∑
n=1

1
[Q(E[n]) : Q]

=

(
1+ ∏

p|2D

∑k≥` 1/p4k−3(p2−1)(p−1)
1+∑k≥1 1/p4k−3(p2−1)(p−1)

)
∏

p

(
1+ ∑

k≥1

1
p4k−3(p2−1)(p−1)

)
,

where in the product on primes dividing 2D, we have `= 1 for odd primes and for prime 2

we have `= 1 if D is odd, `= 2 if 4 ‖ D, and `= 3 if 8 ‖ D.

Proof. By Theorem 4.9 and (4.17), where g(n) = 1, the result holds.

The above corollary is proved in [2, Theorem 5] by another method.

4.3 Remarks on the Condition [A : r(G)] = 2

It is evident that the condition [A : r(G)] = 2 in Corollary 3.6 plays a crucial rule in

our computation of the constants in the Artin type problems. This condition holds in Serre

curves as part of the definition of a Serre curve. The proof of this condition for the Kummer

family was one of our major tasks in Section 4.1. We end this chapter by stating necessary
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and sufficient assertions for which the condition [A : r(G)] = 2 in Corollary 3.6 holds. Recall

that, we denote the commutator of a group G by G′.

Proposition 4.11. Let A and G be the profinite groups described in the beginning of Section

3.2 with injective homomorphism r : G→ A. Let χ = ∏p χp : A→ µ2 be the quadratic

character defined in Theorem 3.5. If Aab ∼= Ẑ××µ2, where Aab = A/A′ is the abelianization

of A, then [A : r(G)] = 2 if and only if G′ ∼= A′.

Proof. Observe that G/G′ is the Galois group of maximal the abelian extension over Q

which is contained in K∞ = ∪n≥1Kn. Thus, since Qab is contained in K∞, we have G/G′ =

Gal(Qab/Q)∼= Ẑ×.

Assume [A : r(G)] = 2. Hence, [A/A′ : r(G)/r(G′)] = [Ẑ××µ2 : Ẑ×] = [A : r(G)]. Thus,

since r is injective and r(G′)⊂ A′, we have G′ ∼= A′.

Conversely, if G′ ∼= A′, we get

A/r(G′)∼= A/A′ ∼= Ẑ××µ2.

Therefore, since r(G)/r(G′) ∼= G/G′ ∼= Ẑ×, we have [A/r(G′) : r(G)/r(G′)] = 2. Thus,

[A : r(G)] = 2.

For the family of Kummer fields in Section 4.1, we are able to prove that one of the

conditions of Proposition 4.11 holds.

Proposition 4.12. With the above notation, we have Aab ∼= Ẑ××µ2.

Proof. Consider the surjective map det : A→ Ẑ×. Let H be

H = ker(det) =


1 0

b 1

 ; b ∈ Ẑ

 .

Thus, the sequence

1→ H i−→ A det−→ Ẑ×→ 1 (4.19)
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is exact, where i is the inclusion map. Since A/H ∼= Ẑ× is abelian, we have A′ ⊂ H, where

A′ is the commutator of A.

Next, we find the index of A′ in H. Observe that if α =
(

1 0
b d

)
and β =

( 1 0
b′ d′
)

are in A,

then

αβα
−1

β
−1 =

 1 0

b(1−d′)+b′(1−d) 1

 . (4.20)

Hence,

A′ =


 1 0

∑k bk(1−dk) 1

 ; bk ∈ Ẑ and dk ∈ Ẑ×

 .

We claim that

A′ =


1 0

c 1

 ∈ H; c = (ci) ∈ Ẑ and c2 = 0 ∈ Z/2Z

 .

First, we show A′ ⊂ {
(

1 0
c 1

)
∈ H; c = (ci) ∈ Ẑ and c2 = 0}. If c = (ci) ∈ Ẑ has the form

∑k bk(1− dk) with bk ∈ Ẑ and dk ∈ Ẑ×, then c2 = 0 since (Z/2Z)× = {1}. Thus, A′ ⊂

{
(

1 0
c 1

)
∈ H; c = (ci) ∈ Ẑ and c2 = 0}. On the other hand, if i is odd, then we can consider

ci =
ci
2 (1− (−1)), since both−1 and 2 are invertible in Z/iZ. If i 6= 2 is even, then we have

ci = 2c′i = c′i(1−(−1)) for some c′i ∈Z/iZ and−1∈ (Z/iZ)×. Therefore, {
(

1 0
c 1

)
∈H; c =

(ci) ∈ Ẑ and c2 = 0} ⊂ A′. Thus, we showed that

A′ =


1 0

c 1

 ∈ H; c = (ci) ∈ Ẑ and c2 = 0 ∈ Z/2Z

 .

From description of H and A′ we conclude that H/A′ ∼= µ2. Hence, (4.5) implies

Aab = A/A′ ∼= A/H×H/A′ ∼= Ẑ××µ2.
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Note that A′�H �A and thus A/A′ ∼= A/H×H/A′.

We note that in view of Propositions 4.11 and 4.12 for the family of Kummer fields,

if we can prove in a straightforward way that A′ ∼= G′, then we have another proof of the

important fact [A : r(G)] = 2 for the Kummer family. In addition, we observe that the

assertion [A : r(G)] = 2 for the Kummer family implies that A′ ∼= G′. This is true since

G′ ⊂ A′ and by the commutative diagram (4.6) and the proof of Proposition 4.12, we have

[H : A′] = [H : G′] = 2. Therefore for the Kummer family the condition [A : r(G)] = 2 is

equivalent to G′ ∼= A′.

We finally provide a characterization of Serre curves using the idea described in this

section.

Proposition 4.13. Let E be an elliptic curve defined over Q. With notation of diagram

(4.15), we have that E is a Serre curve if and only if G′ ∼= A′.

Proof. First of all we note that Aab ∼= Ẑ×× µ2. This is true since in [27, Lemma 4.11],

Zywina proves that the commutator GL′2(Ẑ) has index 2 inside SL2(Ẑ). More precisely, he

shows that [SL2(Z2) : GL′2(Z2)] = 2 and SL2(Zp) = GL′2(Zp) for odd primes. Hence, con-

sidering the second row of the commutative diagram (4.15), we have GL2(Ẑ)/GL′2(Ẑ) ∼=

Ẑ××µ2. Thus, Aab = Ẑ××µ2.

Now by Proposition 4.11, the desired result holds.
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Chapter 5

Generalizations and Results

In this section, we generalize the idea of using the maps ϕA,n : A→ A(n) in Theorem 3.2.

Let B = lim←−B(n) be a profinite group together with a homomorphism from A to B. Let

B ∼= ∏p Bp, where Bp = lim←−B(pk). We consider the homomorphisms ϕA,n : A→ B(n) for

n ≥ 1. Then we have the following assertion that generalizes parts of Theorem 3.2 and

Corollary 3.4.

Theorem 5.1. Let A = lim←−A(n) and B = lim←−B(n) be as described above. Let g be an

arithmetic function. Let χ : A→ µm be a surjective continuous homomorphism. For a fixed

subset H ⊂ B, let ϕ
−1
A,n(H(n)) be the inverse image of H(n) via ϕA,n, where H(n) is the

projection of H in B(n). Suppose

∑
n≥1
|g(n)|νA(ϕ

−1
A,n(H(n))∩kerχ)< ∞,

and g̃ = ∑n≥1 g(n)1
ϕ
−1
A,n(H(n)) defines a function from A to R. Then

1
νA(kerχ) ∑

n≥1
g(n)νA(ϕ

−1
A,n(H(n))∩kerχ) =

m−1

∑
i=0

∫
A

g̃χ
idνA.

Furthermore, if g is real multiplicative, A ∼= ∏p Ap, χ = ∏p χp, g̃ = ∏p g̃p, [A : kerχ] = 2,

and
∫

A g̃dνA 6= 0, then

1
νA(kerχ) ∑

n≥1
g(n)νA(ϕ

−1
A,n(H(n))∩kerχ) =

(
∏

p

∫
Ap

g̃pdνAp

)(
1+∏

p

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

)
.
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Here, we assume that g̃p = ∑k≥0 g(pk)1
ϕ
−1
pk (H(pk)) defines a function from Ap to R, where

the functions ϕpk : Ap→ B(pk) are projections.

Proof. The proof follows steps indicated in the proofs of Theorem 3.2 and Corollary 3.3.

We have, by an application of dominant convergence theorem,

1
νA(kerχ) ∑

n≥1
g(n)νA(ϕ

−1
A,n(H(n)∩kerχ) =

∫
A g̃1kerχdνA∫
A 1kerχdνA

.

Now using the character relations described in the proof of Theorem 3.2, we get

∫
A g̃1kerχdνA∫
A 1kerχdνA

= Eχ(g̃) =
m−1

∑
i=1

∫
A

g̃χ
idνA.

The rest of the proof is similar to the proof of Corollary 3.3, which uses the multiplicativity

of g, A∼= ∏p Ap, νA = ∏p νAp , χ = ∏p χp, g̃ = ∏p g̃p, and [A : kerχ] = 2.

5.1 The Generalized Artin Problem

Artin’s conjecture predicts the density of primes p such that p does not split completely

in any Kq for all primes q < p. In another words, this is the density of primes p such that(
Kq/Q

p

)
6= id for any prime q < p.

We have the following theorem related to the density in a generalization of Artin’s

conjecture.

Theorem 5.2. For a fixed integer a where |a| is not a perfect power, let

{Kn =Q( n
√

a,ζn),n≥ 1}

be the family of Kummer fields with Galois groups G(n) over Q. Let D = discQ(K2). Let

G = lim←−G(n) and let C be a conjugacy class in G. Let C(n) be the image of C under
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projection (restriction map) Φn : G→ G(n). Assume that

∑
n≥1

µ2(n)#C(n)
[Kn : Q]

< ∞.

Then, we have

∑
n≥1

µ(n)#C(n)
[Kn : Q]

=

(
1−µ(D) ∏

p|2D

#C(p)
[Kp : Q]−#C(p)

)
∏

p

(
1− #C(p)

[Kp : Q]

)

=

(
1−µ(D) ∏

p|2D

#C(p)
p2− p−#C(p)

)
∏

p

(
1− #C(p)

p2− p

)
.

Proof. We first show that

νG(Φ
−1
n (C(n))) =

#C(n)
#G(n)

. (5.1)

Since νG is translation invariant, we have

νG(akerΦn) = νG(kerΦ) =
1

#G(n)
.

Note that G = ∪m
i=1(ai kerΦn), where G(n) = {Φn(a1), . . . ,Φn(am)}. Hence,

νG(Φ
−1
n (C(n))) = νG(∪k

i=1bi kerΦn) =
k

∑
i=1

1
#G(n)

=
k

#G(n)
,

where k = #C(n).

By (3.4), we have νG(kerΦn) = νA(r(kerΦn))/νA(r(G)). Hence,

νG(Φ
−1
n (C(n))) =

k

∑
1

νG(kerΦn)

=
k

∑
1

νA(r(kerΦn))

νA(r(G))

=
νA(r(∪k

1bi kerΦn))

νA(kerχ)

=
νA(r(Φ−1(C(n))))

νA(kerχ)
.

(5.2)
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Let H = r(C) and H(n) be the image of H under the projection map ϕA,n : A→ A(n).

We claim that

r(Φ−1
n (C(n))) = ϕ

−1
A,n(H(n))∩kerχ. (5.3)

To prove the claim, note that we have the commutative diagram:

G G(n)

A A(n)

r

Φn

rn

ϕA,n

(5.4)

Note that r(C) = H and so rn(C(n)) = H(n). Let α ∈ r(Φ−1
n (C(n))). Hence, α ∈ kerχ and

there exists σ ∈ Φ−1
n (C(n)) such that r(σ) = α. Thus, Φn(σ) ∈C(n). Hence, rn(Φn(σ)) ∈

H(n). On the other hand by commutative diagram (5.4), ϕA,n(α) ∈ H(n). Thus, α ∈

ϕ
−1
A,n(H(n)). Therefore, r(Φ−1

n (C(n))) ⊂ ϕ
−1
A,n(H(n))∩ kerχ. On the other hand, let α ∈

ϕ−1
n (H(n))∩kerχ. Hence, there exists σ ∈G such that r(σ) = α. Since r(σ) ∈ ϕ

−1
A,n(H(n)),

we have ϕA,n(r(σ)) ∈ H(n). Note that rn(C(n)) = H(n). Thus, since rn is injective and the

diagram commutes, we have Φn(σ) ∈ C(n). Therefore, σ ∈ Φ−1
n (C(n)). This proves the

claim.

Now by (5.1), (5.2), and (5.3), we have

∑
n≥1

µ(n)#C(n)
#G(n)

=
1

νA(kerχ) ∑
n≥1

µ(n)νA(ϕ
−1
A,n(H(n))∩kerχ).

Thus, by Theorem 5.1 for B = A and H = r(C), we have

∑
n≥1

µ(n)#C(n)
#G(n)

=

(
∏

p

∫
Ap

g̃pdνAp

)(
1+∏

p

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

)
, (5.5)

where g̃p = (1Ap +∑k≥1 µ(pk)1
ϕ
−1
pk (H(pk))) = (1Ap−1

ϕ
−1
p (H(p))). By an argument similar to

the proof of (5.1), we have

νA(ϕ
−1
p (H(p))) =

#H(p)
#A(p)

.

61



5. ARTIN TYPE PROBLEMS IN KUMMER FAMILY FOR PRIMES IN A.P.

Note that rn(C(n)) = H(n) and rn is injective, thus #H(p) = #C(p). Therefore, the compu-

tation of the integrals is (5.5) implies the result.

Similarly, we can consider the following generalization of the Cyclicity Problem for

Serre curves.

Let C be a conjugacy class in G = Gal(Q(E tor)/Q), where E is a Serre curve. Let C(n)

be the image of C under the projection (restriction map) Φn : G→ G(n). Assume that

∑
n≥1

µ2(n)#C(n)
[Kn : Q]

< ∞.

Then, we have

∑
n≥1

µ(n)#C(n)
[Kn : Q]

=

(
1−µ(D) ∏

p|2D

#C(p)
[Kp : Q]−#C(p)

)
∏

p

(
1− #C(p)

[Kp : Q]

)
,

where [Kp : Q] = p(p2−1)(p−1).

5.2 Artin Type Problems in Kummer Family for Primes in Arithmetic

Progressions

In this section, we consider extensions of the results of Section 4.1 to the case of primes

in a given arithmetic progression. The definitions of the notations that are not defined here

are as Section 4.1.

Let f > 1 be a fixed positive integer and ` be a positive integer coprime to f . We let

σ` ∈ Gal(Q(ζ f )/Q) be the automorphism sending ζ f to ζ`f . For integer n≥ 1, let

c`(n) =


1 σ`

∣∣
Kn∩Q(ζ f )

= idKn∩Q(ζ f ),

0 otherwise.
(5.6)
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We are interested in finding a product formula for the summation

∑
n≥1

g(n) · c`(n)
[Kn(ζ f ) : Q]

, (5.7)

where g is a real multiplicative function. As we will see, such sums appear naturally when

we study some Artin type problems for primes in arithmetic progressions.

In order to study the above sum, for any n≥ 1, we consider the homomorphisms

Φn : G→ G(n)×Gal(Q(ζ f )/Q)

such that Φn maps σ ∈ G to the pair of its projection in G(n) and its restriction on Q(ζ f )

via its projection on G( f ). We note that the homomorphism Φn factors via Gal(Kn(ζ f )/Q),

i.e., the diagram

G G(n)×Gal(Q(ζ f )/Q)

Gal(Kn(ζ f )/Q)

Φn

τ1 τ2

commutes. Here τ1 is the composition of the projection map to G(n f ) with the restriction

to Gal(Kn(ζ f )/Q), and τ2 is the restriction map on each of its components. Hence, Φn =

τ2 ◦ τ1 and Φ−1
n (idG(n),σ`) = τ

−1
1 ◦ τ

−1
2 (idG(n),σ`). By [14, Section 2], if σ`

∣∣
Kn∩Q(ζ f )

= id,

then we have τ
−1
2 (idG(n),σ`) = {σ} for a unique σ ∈ Gal(Kn(ζ f )/Q). Thus,

νG(Φ
−1
n (idG(n),σ`)) = νG(τ

−1
1 (σ)) = νG(gkerτ1) = νG(kerτ1) (5.8)

for some g ∈ G such that τ1(g) = σ. Therefore, by Theorem 2.14, we have

νG(Φ
−1
n (idG(n),σ`)) =


1

[Kn(ζ f ):Q]
σ`

∣∣
Kn∩Q(ζ f )

= id,

0 otherwise.
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Hence, the summation in (5.7) is equal to

∑
n≥1

g(n)νG(Φ
−1
n (idG(n),σ`)). (5.9)

Let A = {
(

1 0
b d

)
;b ∈ Ẑ and d ∈ Ẑ×} be the profinite group described in Section 4.1. We

claim that

νG(Φ
−1
n (idG(n),σ`)) =

νA(r(Φ−1
n (idG(n),σ`)))

νA(r(G))
. (5.10)

To prove the claim note that if σ`

∣∣
Kn∩Q(ζ f )

6= id, then both sides are equal to zero. Hence,

let σ`

∣∣
Kn∩Q(ζ f )

= id. In this case, by (5.8), we have νG(Φ
−1
n (idG(n),σ`)) = νG(kerτ1) and

νA(r(Φ−1
n (idG(n),σ`))) = νA(r(gkerτ1)) = νA(r(g)r(kerτ1)), where τ1(g) = σ. Since νA is

translation invariant, then the claimed identity is equivalent to

νG(kerτ1) =
νA(r(kerτ1))

νA(r(G))
.

This identity holds since the left-hand side is 1/[G : kerτ1] and the right-hand side is

(1/2[r(G) : r(kerτ1)])/1/2. This proves the desired identity (5.10).

For each n, next define the homomorphism

ϕA,n : A→ A(n)× (Ẑ/ f Ẑ)×,

where A→ A(n) is the projection map and A→ (Ẑ/ f Ẑ)× is the composition of det with the

projection map Ẑ×→ (Ẑ/ f Ẑ)×. Consider the subset H(n) = {(I2×2(Z/nZ), `)} ⊂ A(n)×

(Ẑ/ f Ẑ)×, where I2×2(Z/nZ) is the identity matrix and ` is the image of ` in (Ẑ/ f Ẑ)×. We

claim that

r(Φ−1
n (idG(n),σ`)) = ϕ

−1
A,n(H(n))∩kerχ. (5.11)

To prove the claimed identity, let σ∈Φ−1
n (idG(n),σ`). Hence, r(σ)∈ kerχ = r(G). Also, as
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σ maps to idG(n), the first component of ϕA,n(r(σ)) becomes I2×2(Z/nZ) since the diagram

G G(n)

A A(n)

r rn

commutes. Note that σ` maps to ` via the isomorphism Gal(Q(ζ f )/Q)∼= (Ẑ/ f Ẑ)×. Hence,

the second component of ϕA,n(r(σ)) is ` since the diagram

G Gal(Q(ζ f )/Q)

A (Ẑ/ f Ẑ)×

r '

commutes. Thus, r(Φ−1
n (idG(n),σ`))⊂ ϕ

−1
A,n(H(n))∩kerχ.

Next let α ∈ ϕ
−1
A,n(H(n))∩ kerχ. Then, since α ∈ kerχ, there exists σ ∈ G such that

r(σ) = α. By the above commutative diagram, since r(σ) = α ∈ ϕ
−1
A,n((I2×2(Z/nZ), `)),

the first component of Φn(σ) is idG(n) as rn is injective. The second component is σ` since

we have Gal(Q(ζ f )/Q) ∼= (Ẑ/ f Ẑ)×. Thus, ϕ
−1
A,n(H(n))∩kerχ ⊂ r(Φ−1

n (idG(n),σ`)). This

proves the claimed identity (5.11).

Now, by (5.10) and (5.11), we have

∑
n≥1

g(n)νG(Φ
−1
n (idG(n),σ`)) =

1
νA(r(G)) ∑

n≥1
g(n)νA(ϕ

−1
A,n(H(n))∩kerχ).

Note that A∼= ∏p Ap and νA = ∏p νAp . Suppose

∑
n≥1
|g(n)|νA(ϕ

−1
A,n(H(n))∩kerχ)< ∞.

Let

ϕpk : Ap→ A(pk)× (Zp/ fZp)
×,
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where the first component is the projection and the second component is the composition of

the determinant with the map sending to modulo f . Let g̃ and g̃p be as defined in Theorem

5.1. Thus, if
∫

A g̃dνA 6= 0, then by applying Theorem 5.1 for B = A× (Ẑ/ f Ẑ)×, H =

{(I2×2(Ẑ), `)}, and H(n) = {(I2×2(Z/nZ), `)}, we have

∑
n≥1

g(n)νG(Φ
−1
n (idG(n),σ`)) =

(
∏

p

∫
Ap

g̃pdνAp

)(
1+∏

p

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

)
. (5.12)

In order to evaluate the above integral, we first need to find the measure νAp(ϕ
−1
pk (H(pk)))

for all k ≥ 0. We consider cases.

Case (a): If p - f , then (Zp/ fZp)
× ∼= {1}. Hence, in this case ϕpk : Ap→ A(pk)×{1} ∼=

A(pk). Thus, by Theorem 2.14, νAp(ϕ
−1
pk (H(pk))) = 1/#A(pk).

Case (b): If pe ‖ f and ` 6≡ 1 mod p, then for α ∈ ϕ
−1
pk (H(pk)) with k > 0, the commutative

diagram

Ap Z×p

A(pk) (Zp/ fZp)
× ∼= (Z/peZ)×

(Z/pkZ)× (Z/pZ)×

det

det

sends α to 1 mod p and at the same time sends α to ` 6≡ 1 mod p which is a contradiction.

Thus, we have νAp(ϕ
−1
pk (H(pk))) = 0 if k > 0. For k = 0, we have

ϕp0 : Ap→ A(p0)× (Zp/ fZp)
× ∼= {1}× (Z/peZ)×.

Hence, we only need to check the condition on (Zp/ fZp)
×. Thus, in this case

νAp(ϕ
−1
p0 (H(p0)))= νAp(`

′ ker(Ap→ (Z/peZ)×))= νAp(ker(Ap→ (Z/peZ)×))= 1/φ(pe),
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where `′ is a preimage of ` via Ap→ (Z/peZ)×.

Case (c): If pe ‖ f and pt ‖ `− 1, then we have several cases which we study here. If

0≤ k ≤min(e, t), then we have the following commutative diagram:

Ap Z×p

A(pk) (Zp/ fZp)
× ∼= (Z/peZ)×

(Z/pkZ)×

det

det

Hence, if 0≤ k ≤min(e, t), then

νAp(ϕ
−1
pk (H(pk))) =

φ(pk)

φ(pe)#A(pk)
.

Note that νAp is a probability measure. Thus, using the conditional probability for α ∈ Ap

that maps to I2×2(Z/pkZ) and ` mod(Z/peZ)×, we get νAp(ϕ
−1
pk (H(pk))) = 1/pe−k#A(pk)

which is the same as the above formula. More precisely, assume that the condition on ` in

(Z/peZ)× is given. Hence, we need matrices of the form
(1 0

x `

)
such that x ≡ 0 (mod pk)

to satisfy the identity condition on A(pk). Thus, the probability of the identity condition on

A(pk) given the condition on ` in (Z/peZ)× is 1/pk.

If e≤ t and e < k, then we have the commutative diagram:

Ap Z×p

A(pk) (Zp/ fZp)
× ∼= (Z/peZ)×

(Z/pkZ)×

det

det

Hence, if α ∈ Ap maps to I2×2(Z/pkZ), then it maps to `≡ 1 mod pe by the above commu-
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tative diagram. Thus, if e≤ t and e < k, then

νAp(ϕ
−1
pk (H(pk))) =

1
#A(pk)

.

For two remaining cases, i.e., t < k ≤ e and t < e < k, the conditions are not compatible on

(Z/pkZ)×. Hence, for the other cases, we have νAp(ϕ
−1
pk (H(pk))) = 0.

Using the above information on νAp(ϕ
−1
pk (H(pk))), we conclude that if p - f , then

∫
Ap

∑
k≥0

g(pk)1
ϕ
−1
pk (H(pk)) = ∑

k≥0
g(pk)νAp(ϕ

−1
pk (H(pk)))

= 1+ ∑
k≥1

g(pk)

#A(pk)
.

(5.13)

If pe ‖ f and p - `−1, then

∫
Ap

∑
k≥0

g(pk)1
ϕ
−1
pk (H(pk)) = ∑

k≥0
g(pk)νAp(ϕ

−1
pk (H(pk)))

=
1

φ(pe)
.

(5.14)

If pe ‖ f and pt ‖ `−1 with 1≤ e≤ t, then

∫
Ap

∑
k≥0

g(pk)1
ϕ
−1
pk (H(pk)) = ∑

k≥0
g(pk)νAp(ϕ

−1
pk (H(pk)))

=
e

∑
k=0

g(pk)φ(pk)

φ(pe)#A(pk)
+ ∑

k>e

g(pk)

#A(pk)
.

(5.15)

If pe ‖ f and pt ‖ `−1 with 1≤ t < e, then

∫
Ap

∑
k≥0

g(pk)1
ϕ
−1
pk (H(pk)) = ∑

k≥0
g(pk)νAp(ϕ

−1
pk (H(pk)))

=
t

∑
k=0

g(pk)φ(pk)

φ(pe)#A(pk)
.

(5.16)

We now summarize the above observations. For p | f , letting e to be the largest exponent
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of p dividing f and for p | gcd( f , `− 1), letting t to be the largest exponent of p dividing

`−1, we get, by (5.13), (5.14), (5.15), and (5.16),

∏
p

∫
Ap

g̃pdνAp

= ∏
p- f

(
1+ ∑

k≥1

g(pk)

#A(pk)

)
∏

p|gcd( f ,`−1)

(
min(t,e)

∑
k=0

g(pk)φ(pk)

φ(pe)#A(pk)
+ r ∑

k>e

g(pk)

#A(pk)

)
∏
p| f

p-`−1

1
φ(pe)

,

(5.17)

where r = 1 if e≤ t and r = 0 otherwise.

Next, we need to study the correction factor

1+∏
p

∫
Ap

g̃pχpdνAp∫
Ap

g̃pdνAp

.

Recall that D is the discriminant of K. If p - 2D, then by Theorem 3.5.(iii), χp is trivial,

and
∫

Ap g̃pχpdνAp∫
Ap g̃pdνAp

becomes one. Hence, we need to find
∫

Ap
g̃pχpdνAp for each prime p |

2D. We note that if ϕ
−1
pk (H(pk)) is empty, then 1

ϕ
−1
pk (H(pk))χp = 0. Moreover, elements of

ϕ
−1
pk (H(pk)) map to ` mod f via Ap→ (Zp/ fZp)

× ∼= (Z/peZ)×. Thus, for odd p, χp is the

constant map
(

`
p

)
on ϕ

−1
pk (H(pk)) since the diagram

Ap (Z/pZ)× µ2

A(pe)

(Z/peZ)×

(
·
p

)

det

(5.18)

commutes for odd prime p.

Let p | 2D. We consider cases.

Case (1): If p - f , then (Zp/ fZp)
× ∼= {1} is trivial. Hence, similar to Corollary 3.6, we
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have ∫
Ap

g̃pχpdνAp = ∑
k≥c

g(pk)

#A(pk)
, (5.19)

where c = 1 if p is odd and for prime 2, we have c = 1 if D is odd, c = 2 if 4 ‖ D, and c = 3

if 8 ‖ D.

Case (2): If p | f and p - `− 1, then p is odd since f and ` are coprime. Hence, by (5.14)

and (5.18), we have

∫
Ap

g̃pχpdνAp =
∫

Ap

(
∑
k≥0

g(pk)1
ϕ
−1
pk (H(pk))

)
χpdνAp

=
∫

Ap

1
ϕ
−1
1 (H(1))χpdνAp

=

(
`

p

)
1

φ(pe)
.

(5.20)

Case (3): If p is odd, pe ‖ f , and pt ‖ `−1, then by (5.15), (5.16), and (5.18), we have

∫
Ap

g̃pχp =

(
`

p

)(min(t,e)

∑
k≥0

g(pk)φ(pk)

φ(pe)#A(pk)
+ r ∑

k≥e

g(pk)

#A(pk)

)
, (5.21)

where r = 1 if e≤ t and r = 0 otherwise.

Case (4): Let 2e ‖ f and 2t ‖ `−1. If D is odd then χ2 = ψ2 and for any k ≥ 1 the diagram

A2 A(2)∼= µ2

A(2k)

χ2=ψ2

commutes. Hence, χ2 is trivial on 1
ϕ
−1
2k (H(2k)) for k ≥ 1. For k = 0, we have ϕ1 : A2 →

{1}× (Z/2eZ)×. If e = 1, then ϕ
−1
1 (H(1)) = A2. Hence, χ2 is non-trivial on ϕ

−1
20 (H(20)).
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If e≥ 2, then the diagram

A2 (Z2)
×

A(2e) (Z2/ fZ2)
× ∼= (Z/2eZ)×

A(2)∼= µ2

det

commutes. Note that both
(1 0

0 `

)
and

(1 0
1 `

)
map to `. Thus, χ2 is non-trivial on ϕ

−1
20 (H(20)).

Hence, in Case (4), if D is odd, by (5.15) and (5.16), we have

∫
A2

g̃2χ2dνA2 = ∑
k≥1

g(2k)νA2(ϕ
−1
2k (H(2k)))

=
min(e,t)

∑
k=1

g(2k)φ(2k)

φ(2e)#A(2k)
+ r ∑

k>e

g(2k)

#A(2k)
,

(5.22)

where r = 1 if e≤ t and r = 0 otherwise.

If 4 ‖ D and e≥ 2, then χ2 = ψ2 ·χD,2, where χD,2 is the non-trivial character mod 8 of

conductor 4. Thus, similar to the previous case, χ2 is non-trivial on ϕ
−1
20 (H(20)). Moreover,

for k ≥ 1, similar to (5.18), we have the commutative diagram:

A2 (Z/4Z)× µ2

A(2e)

(Z/2eZ)×

(−4
. )

det

Hence, χ2 is the constant map
(−4

`

)
on ϕ

−1
2k (H(2k)) for k ≥ 1. Thus, by (5.15) and (5.16),

we have ∫
A2

g̃2χ2 =

(
−4
`

)(min(t,e)

∑
k≥1

g(2k)φ(2k)

φ(2e)#A(2k)
+ r ∑

k≥e

g(2k)

#A(2k)

)
, (5.23)

where r = 1 if e ≤ t and r = 0 otherwise. If e = 1, then (Z2/ fZ2)
× ∼= (Z/2Z)×. Hence,
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ϕ
−1
2k (H(2k)) = ker(A2→ A(2k)). Thus,

∫
A2

g̃2χ2dνA2 =
∫

A2

(
∑
k≥0

g(2k)1
ϕ
−1
2k (H(2k))

)
χ2dνA2

=
∫

A2

(
∑
k≥0

g(2k)1ker(A2→A(2k))

)
χ2dνA2.

Therefore, by the proof of Corollary 3.6, similar to Case (1), we have

∫
A2

g̃2χ2dνA2 = ∑
k≥2

g(2k)

#A(2k)
. (5.24)

If 8 ‖ D and e≥ 3, then similar to (5.18), we have the commutative diagram:

A2 (Z/8Z)× µ2

A(2e)

(Z/2eZ)×

(±8
. )

det

Hence, χ2 is the constant map
(±8

`

)
on ϕ

−1
2k (H(2k)) for k ≥ 1. Moreover, for k = 0, χ2 is

non-trivial on ϕ
−1
20 (H(20)). Thus, by (5.15) and (5.16), we have

∫
A2

g̃2χ2 =

(
±8
`

)(min(t,e)

∑
k≥1

g(2k)φ(2k)

φ(2e)#A(2k)
+ r ∑

k≥e

g(2k)

#A(2k)

)
, (5.25)

where r = 1 if e≤ t and r = 0 otherwise. If e = 1, similar to the case 4 ‖ D and e = 1, we

have ∫
A2

g̃2χ2dνA2 = ∑
k≥3

g(2k)

#A(2k)
. (5.26)

Finally, if e = 2, we will show that χ2 is non-trivial on ϕ
−1
2k (H(2k)) for k = 0,1,2, and it is

trivial on ϕ
−1
2k (H(2k)) otherwise. Let k = 0. If ` ≡ 1 (mod 4), then both

(
1 0
b 1

)
and

(
1 0
b 5

)
in A(8) map to ` which shows χ2 is non-trivial. Similarly, if ` ≡ 3 (mod 4), then both
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(
1 0
b 3

)
and

(
1 0
b 7

)
in A(8) map to ` which shows χ2 is non-trivial. Thus, χ2 is non-trivial on

ϕ
−1
20 (H(20)). For k = 1, the same matrices as above with b = 0 show that χ2 is non-trivial

on ϕ
−1
2 (H(2)). For k = 2, the same matrices as above with b = 0 show that χ2 is non-trivial

on ϕ
−1
4 (H(4)) if ` = 1. Since A2 → (Z/4Z)× factors via A(4), if ` 6= 1, then ϕ

−1
4 (H(4))

becomes empty.

For k ≥ 3, if t = 1, then ϕ
−1
2k (H(2k)) is empty. Since if α ∈ ϕ

−1
2k (H(2k)), then by the

commutative diagram
A2

A(2k) (Z/4Z)×

α maps to 1 (mod 4) which is a contradiction with t = 1. Otherwise the identity condition

on A(2k) implies the condition on ` in (Z/4Z)×. Thus, χ2 is trivial on Φ
−1
2k (H(2k)) =

ker(A2→ A(2k)). Therefore, in the case that 8 ‖ D and e = 2, if t > 1, then

∫
A2

g̃2χ2dνA2 = ∑
k≥3

g(2k)

#A(2k)
, (5.27)

and
∫

A2
g̃2χ2dνA2 = 0 otherwise.

We now summarize the above observations. For p | f , letting e to be the largest exponent

of p dividing f and for p | gcd( f , `− 1), letting t to be the largest exponent of p dividing

`−1, we get, by (5.19), (5.20), (5.21), (5.22), (5.23), (5.24), (5.25), (5.26), and (5.27),

∏
p|2D

∫
Ap

g̃pχp = ∏
p|2D
p- f

(
∑
k≥1

g(pk)

#A(pk)

)
∏
p|2D

p| f , p-`−1

((
`

p

)
1

φ(pe)

)
∏
p|2D

p|gcd( f ,`−1)

Cp, (5.28)

where for odd primes p, we have

Cp =

(
`

p

)(min(t,e)

∑
k=0

g(pk)φ(pk)

φ(pe)#A(pk)
+ r ∑

k>e

g(pk)

#A(pk)

)
,

where r = 1 if e ≤ t and r = 0 otherwise. For prime 2, we have the following cases by
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applications of Case (4):

Case (i): If D is odd, then

C2 =
min(t,e)

∑
k=1

g(2k)φ(2k)

φ(2e)#A(2k)
+ r ∑

k>e

g(2k)

#A(2k)
,

where r = 1 if e≤ t and r = 0 otherwise.

Case (ii): If 4 ‖ D and e≥ 2, then

C2 =

(
−4
`

)(min(t,e)

∑
k=1

g(2k)φ(2k)

φ(2e)#A(pk)
+ r ∑

k>e

g(2k)

#A(2k)

)
,

where r = 1 if e≤ t and r = 0 otherwise.

Case (iii): If 4 ‖ D and e = 1, then

C2 = ∑
k≥2

g(2k)

#A(2k)
.

Case (iv): If 8 ‖ D and e≥ 3, then

C2 =

(
±8
`

)(min(t,e)

∑
k=1

g(2k)φ(2k)

φ(2e)#A(pk)
+ r ∑

k>e

g(2k)

#A(2k)

)
,

where r = 1 if e≤ t and r = 0 otherwise.

Case (v): If 8 ‖ D and e = 1, then

C2 = ∑
k≥3

g(2k)

#A(2k)
.

Case (vi): If 8 ‖ D, e = 2, and t > 1, then

C2 = ∑
k≥3

g(2k)

#A(2k)
.
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Case (vii): If 8 ‖ D, e = 2, and t = 1, then

C2 = 0.

We summarize the above results in the following theorem.

Theorem 5.3. Under the notations and assumptions of this section we have

∑
n≥1

g(n) · c`(n)
[Kn(ζ f ) : Q]

= A · (1+E),

where

A = ∏
p- f

(
1+ ∑

k≥1

g(pk)

#A(pk)

)
∏

p|gcd( f ,`−1)

(
min(t,e)

∑
k=0

g(pk)

φ(pe)pk + r ∑
k>e

g(pk)

#A(pk)

)
∏
p| f

p-`−1

1
φ(pe)

with r = 1 if e≤ t and r = 0 otherwise, and

E = ∏
p|2D
p- f

(
∑k≥1 g(pk)/#A(pk)

1+∑k≥1 g(pk)/#A(pk)

)
∏
p|2D
p| f

Ep,

where

Ep =

(
`

p

)
if p is odd, and for E2 we have the following cases:

Case (i): If D is odd, then

E2 =
∑

min(t,e)
k=1

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

∑
min(t,e)
k=0

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

,

where r = 1 if e≤ t and r = 0 otherwise.
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Case (ii): If 4 ‖ D and e≥ 2, then

E2 =

(
−4
`

)∑
min(t,e)
k=1

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

∑
min(t,e)
k=0

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

 ,

where r = 1 if e≤ t and r = 0 otherwise.

Case (iii): If 4 ‖ D and e = 1, then

E2 =
∑k≥2

g(2k)
#A(pk)

∑
min(t,e)
k=0

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

,

where r = 1 if e≤ t and r = 0 otherwise.

Case (iv): If 8 ‖ D and e≥ 3, then

E2 =

(
±8
`

)∑
min(t,e)
k=1

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

∑
min(t,e)
k=0

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

 ,

where r = 1 if e≤ t and r = 0 otherwise.

Case (v): If 8 ‖ D and e = 1, then

E2 =
∑k≥3

g(2k)
#A(pk)

∑
min(t,e)
k=0

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

,

where r = 1 if e≤ t and r = 0 otherwise.

Case (vi): If 8 ‖ D, e = 2, and t > 1, then

E2 =
∑k≥3

g(2k)
#A(pk)

∑
min(t,e)
k=0

g(2k)
φ(2e)2k + r ∑k>e

g(2k)
#A(2k)

,

where r = 1 if e≤ t and r = 0 otherwise.
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Case (vii): If 8 ‖ D, e = 2, and t = 1, then

E2 = 0.

Proof. By (5.9), (5.12), (5.17) and (5.28), the desired result holds.

Recall the arithmetic function τF (p) associated to a family F of Galois extensions of

Q as defined at the beginning of Section 4.1.2. Following the method of Hooley and its

extension by Felix and Murty to the Titchmarsh Divisor Problem for Kummer fields, we

expect to establish for Kummer family F , under the assumption of GRH, that

∑
p≤x

p≡` (mod f )

τF (p)∼

(
∞

∑
n=1

c`(n)
[Kn(ζ f ) : Q]

)
li(x),

as x→∞, where c`(n) is defined in (5.6). The following corollary of Theorem 5.3 provides

a product expression for this expected density.

Corollary 5.4. Assume the notations of Theorem 5.3. Recall that r = 1 if e ≤ t and r = 0,

otherwise. We have

∑
n≥1

c`(n)
[Kn(ζ f ) : Q]

= A · (1+E),

where

A = ∏
p- f

(
1+ ∑

k≥1

1
#A(pk)

)
∏

p|gcd( f ,`−1)

(
min(t,e)

∑
k=0

1
φ(pe)pk + r ∑

k>e

1
#A(pk)

)
∏
p| f

p-`−1

1
φ(pe)

and

E = ∏
p|2D
p- f

(
∑k≥1 1/#A(pk)

1+∑k≥1 1/#A(pk)

)
∏
p|2D
p| f

Ep,

where

Ep =

(
`

p

)
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if p is odd, and E2 is the same as the value of E2 in Theorem 5.3 for g(n) = 1.
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Chapter 6

Future Works

In this chapter, we outline a few directions for future research in topics related to this thesis.

In Chapter 4, for the Kummer fields, we fixed an integer a for which |a| was not a

perfect power. We can eliminate this restriction on a by considering the profinite group A

introduced in [15, Section 2]. In order to extend our results to all integers a (6= 0,±1), we

need to deal with the case that −a is a perfect square. Following [15], we name this case as

the twisted case. In the twisted case, the quadratic field K associated to the character χ is

not a subset of K2. We can modify our Theorem 3.5 by considering the condition K ⊂ K2m

for an integer m≥ 1 instead of K ⊂ K2. We are optimistic that with such modification, we

will be able to extend our results of Section 4.1 to integers a (6= 0,±1).

In Chapter 5, we computed the product expression of the Titchmarsh Divisor Problem

for primes in an arithmetic progression for the Kummer family. For family of division

fields attached to a Serre curve the product expression of the cyclicity problem for primes

in an arithmetic progression is computed in [3, Proposition 2.6.3]. To obtain an analog of

Theorem 5.3 for Serre curves we need to know which roots of unity are in each division

field Q(E[n]).

Finally, we can also consider Artin type problems related to near primitive roots, higher

rank primitive roots, simultaneous cyclicity of several Serre curves, etc. We can investigate

the possibility of applications of our general theorems in finding product expressions of

asymptotic constants in such problems.
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