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ABSTRACT 

Categorization is a process that allows organisms to classify and respond to individual 

elements of any given experience based on their shared similarities, and to generalize their 

behavioural output to novel stimuli that share the same features. 

In this set of experiments we explored the underlying neural dynamics of visual 

categorization in mice by developing a virtual reality task using an automated touchscreen operant 

conditioning box. By gradually incrementing the number of exemplars available in a pairwise 

object recognition task, mice learned to discriminate between virtual objects that belong to 2 main 

categories. We also tried to determine if the neural activity in the mouse prefrontal cortex, a region 

which has been associated with category representations in primates, reflected the acquisition of 

this new information. In order to do this we used in-vivo 2-photon calcium imaging to record the 

neural activity of a cohort of mice at different time points. 
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Chapter 1 

 

ABSTRACT 

In order to create a rich internal model of the world, and make predictions about the 

properties of objects or the outcomes of specific events, the brain needs to be able to encode the 

statistical regularities in the environment. The information can then be stored in long term memory 

in order to create a generalized body of knowledge that captures the categorical structure of the 

external world. In this chapter I will elaborate on how the brain might organize the information 

stored in long term memory through the process of categorization, and focus on the theoretical and 

physiological accounts that have provided valuable insights on this topic, particularly in the case 

of visual categorization. Lastly, I will outline the two main hypothesis that motivated the set of 

experiments described in the following chapters. 
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General Introduction 

1. Semantic Memory and Generalization 

Biological and artificial systems rely on the ability to store information on a relatively 

permanent basis in order to learn. This information then needs to be structured in a way which 

allows for the extraction of patterns that a biological or artificial agent can correlate with past 

experiences, in order to orient its behaviour or output, and create predictions about the world. In 

other words, what initially starts as a detailed record of specific events and their spatial and 

temporal contexts (often referred to as episodic memory), needs to be restructured, in order to 

create an adaptive internal model of generalized knowledge, also known (at least in the human 

literature) as semantic memory (Marr, 1970; McNaughton, 2010; Tulving, 1972).  

Early endeavours in semantic memory modeling in the late 60’s and early 70’s, as well as 

the experimental work that followed, conceptualized the structure of semantic memory as a 

collection of interconnected and hierarchically organized mental structures, akin to the concept of 

“schema”1 (Collins & Quillian, 1969, 1970; Quillian, 1966, 1967; Rumelhart & Norman, 1973; 

Rumelhart & Ortony, 1977). For example, in order to determine the truth of a sentence such as “a 

                                                           
1 The term “schema” stems from the Greek word schēmat or schēma, which means “figure”, and was initially used by 

Immanuel Kant in his “Critique of Pure Reason”, before it became widespread in the field of cognitive psychology. 

In psychology, the term was initially introduced in the 1920’s by French psychologist Jean Piaget and later popularized 

by Frederic Bartlett (Bartlett, 1932; Nevid, 2007; Piaget, 1923). The concept has mutated slightly over the years; while 

traditional psychology approaches define schemas as abstract knowledge structures that organize and categorize 

information in the human mind, more recent neurobiological approaches might refer to schemas as networks of 

interconnected neocortical representations, comprised of prior knowledge (Gilboa & Marlatte, 2017; Van Kesteren, 

Ruiter, Fernández, & Henson, 2012). 
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robin can fly”, humans use their long term memory which contains representations about such 

concepts. According to Quillian (Quillian, 1966, 1967), these memories could be organized in two 

different ways. The first asserts that each bird that flies (e.g. robin, canary, eagle, etc.) is stored in 

long term memory along with the fact that it can fly; the second one implies that the inference 

about a specific type of bird that flies (e.g. a robin), is based on the generalization that birds can 

fly, and since a canary is a bird, the condition for it to be capable of flying is satisfied (Collins & 

Quillian, 1969). 

This led Quillian to propose a hierarchical model for storing semantic information in a 

computer. In this model, a given word had stored with it an array of pointers with a specific 

configuration to other words in memory which, in turn, represented the words meaning. This model 

conceptualized knowledge as being structured in a hierarchy based on ordinary experience, 

whereby major concepts such as animals and plants could be divided into smaller subdivisions, 

such as birds and flowers, since these correspond to more specific concepts within the 

superordinate category. This type of semantic memory model was known by different names such 

as “semantic network model” or “connectionist model” and became widely used as a tool for 

investigating the structure of generalized knowledge. This was not only the case  in human studies, 

which relied on reaction times when subjects were presented with a series of words and their 

attributes, but also in Artificial Intelligence (A.I) research (Collins & Quillian, 1969, 1970; Meyer, 

1970; Quillian, 1967; Rips, Shoben, & Smith, 1973; Rumelhart & Norman, 1973; Rumelhart & 

Ortony, 1977; Schaeffer & Wallace, 1969; E. E. Smith, 1967).  

A semantic memory model developed by Rumelhart and Todd (1993), was later used in 

another theoretical account made by McClelland, McNaughton and O’Reilly (1995), called 

“Complementary Learning Systems Theory” (CLST) (McClelland, McNaughton, & O’Reilly, 
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1995; Rumelhart & Todd, 1993). In this conceptual learning model, the network was given a set 

of inputs in the form of concept-relation pair propositions, such as “robin can”, in order to activate 

the nodes corresponding to the capabilities of a robin as an output. This network could learn these 

relationships by first propagating the activation forward to produce an output, then comparing 

these results with the desired ones, and finally adjusting each connection weight in the network in 

a gradual manner, in order to minimize error over several iterations. Initially (by construction) the 

concepts had distributed and almost indistinguishable representations, but after 200 epochs the 

difference between animals and plants was apparent, and after 500 iterations the network was 

capable of distinguishing among subsets of those categories such as birds and fish in the case of 

animals, or flowers and trees in the case of plants. The concept representation in the network 

assumed a sparse and hierarchical structure, as similar concepts formed clusters which were clearly 

identifiable. The key point here, is the gradual adjustment of the weights after each presentation 

of a specific concept, which allows the network to learn the structure of the domain incrementally 

(McClelland, 2013; McClelland & Goddard, 1996; McClelland et al., 1995). 

It’s important to note, however, that, regardless of the similarities between the results 

obtained with this type of neural network architecture and the model initially proposed by Quillian, 

the fundamental processes that determine how information is represented are quite different. While 

Quillian’s model relies on explicit hierarchical links which denote the relationships between 

concepts and attributes by simply traversing between them, in the Rumelhart network used by 

McClelland et al., (1995) the hierarchical structure emerges in an implicit manner, through 

similarities among concepts, via pattern completion (McClelland, 2010). In other words, the 

general properties and abilities of each concept are derived from the associations between different 

patterns which represent each of those concepts. This creates not only an efficient way to retrieve 
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information, but also to learn new concepts, because it relies on category-general properties instead 

of concept-specific properties, which are based on minor aspects that distinguish them. And this, 

is one of the most important insights that stems from this work - the network was able to extract 

the broad structure of the inputs it received and therefore generalize to novel ones. 

Without the ability to generalize over sets of inputs, the world would seem fragmented, 

and the variability in any given event would not only be overwhelming but also impossible to 

process. However, by grouping and associating different experiences and the individual elements 

that comprise them into functional categories, the brain is able to recognize and respond in an 

appropriate manner to both familiar and novel stimuli (Conaway & Kurtz, 2017; Seger & Miller, 

2010; Seger & Peterson, 2013; Tversky & Itamar, 1978).  

In the words of David Marr “the world tends to be redundant in a particular way” and “the 

brain runs on this redundancy.” (Marr, 1970, p. 163). 

 

2. Categorization 

The ability to categorize is an invaluable survival skill, which allows animals to learn the 

commonalities between different elements in the environment (Ashby & Maddox, 2005; Richler 

& Palmeri, 2014). 

For example, a specific type of berry or mushroom could be categorized as edible or poisonous 

based on its features, but also on the basis the consequences of ingesting them, and generalizing 

the outcomes of such action to other similar berries or mushrooms can be a highly adaptive skill. 

Without the ability to categorize, decision making itself would be nothing more than gambling on 

the outcomes, and could have fatal consequences (Cohen & Lefebvre, 2015; Iordan, Greene, Beck, 

& Fei-Fei, 2016; Nosofsky, 1988; Seger & Miller, 2010; Seger & Peterson, 2013). This means that 
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categorization requires the brain to adapt to stimulus variability in different dimensions, while 

disregarding other irrelevant features and sources of random noise in the perceptual system 

(Gauthier & Tarr, 2016; Seger & Peterson, 2013; Townsend & Ashby, 1986). This is what 

ultimately allows for the clustering of similar stimuli in what is often referred as a “perceptual 

space” or “psychological similarity space” (Conaway & Kurtz, 2017; Op de Beeck, Wagemans, & 

Vogels, 2003; Tversky, 1977; Tversky & Itamar, 1978). In other words, categorization is a process 

that relies on the perceived features of a given stimulus and the subjective weight that those same 

features acquire when processed by different regions in the brain. 

Over the years, the field of visual category learning not only has been leading the discussion 

on this topic, but it has also been the most prolific in terms of theoretical and experimental output. 

For the most part, researchers have focused primarily on the nature of stimulus representations (i.e. 

object features and feature variability), the theoretical models which try to explain the mechanisms 

behind categorization (i.e. different types of categorization and criteria for category membership), 

and the neurophysiological basis of this process.  

I will address each of these points in detail in the following sections and conclude with the 

basic hypotheses being tested in this set of experiments.  

 

2.1 Stimulus representations 

In terms of sheer computation, the main problem the visual system has to deal with, is the 

massive level of variability of any visual scene (DiCarlo, Zoccolan, & Rust, 2012; Nikos K. 

Logothetis & Sheinberg, 1996; Poggio & Riesenhuber, 2000; Rolls & Milward, 2000). At every 

moment, the distinct visual elements are subject to changes in light conditions, morphology and 

different types of affine transformations such as rotations or scaling (Gross, 2008). Furthermore, 
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the visual elements that comprise a given scene can differ from each other along multiple 

dimensions. Objects can vary in terms of more global properties such as shape (Folstein, Gauthier, 

& Palmeri, 2012; Folstein, Palmeri, & Gauthier, 2013; Freedman, Riesenhuber, Poggio, & Miller, 

2003; Goldstone & Steyvers, 2001; Gureckis & Goldstone, 2008; Jiang et al., 2007), simple 

dimensions such as the size or brightness (Goldstone & Steyvers, 2001), or more complex 

dimensions which involve specific object components (Biederman, 1987; Erez, Cusack, Kendall, 

& Barense, 2016; Nosofsky, 1986; Richler, Wilmer, & Gauthier, 2017; Sigala & Logothetis, 

2002).  

Depending on the type of behavioural task used, object dimensions are often referred as 

being separable if the variability observed on irrelevant dimensions (i.e. dimensions which are 

thought to play a lesser role in identifying a given object) doesn’t hinder performance during 

categorization tasks (Folstein et al., 2012; Op de Beeck et al., 2003; Richler et al., 2017). However, 

this separability between dimensions is not always possible. A good example is the extreme 

difficulty in differentiating between brightness and saturation, since variations in one of these 

dimensions can lead to perceived differences in the other one.  

The context and purpose of categorization is also a fundamental part of the process, and 

unfortunately one which is often overlooked due to the nature of the experimental paradigms.  In 

order to exclude any bias related to previous knowledge about a set of visual stimuli, researchers 

often use visual stimuli which bear little to no resemblance to real world objects (Hauffen, Bart, 

Brady, Kersten, & Hegdé, 2012; Kromrey, Maestri, Hauffen, Bart, & Hegdé, 2010; Okamura, 

Yamaguchi, Honda, Wang, & Tanaka, 2014; Tafazoli, Di Filippo, & Zoccolan, 2012; G. Wang, 

Obama, Yamashita, Sugihara, & Tanaka, 2005; Zoccolan, Oertelt, DiCarlo, & Cox, 2009). On the 

one hand, this is indeed a suitable way of assessing the ability of the visual system to group objects 
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based on dimensions which were specifically manipulated by the experimenter. However, this also 

raises questions about the real world applicability of such paradigms, since one cannot exclude the 

behavioural significance of real world objects as one of the (if not the) most important factor(s) in 

categorization (Peelen & Downing, 2017). Having said this, it is easy to find studies which use a 

multitude of visual stimuli in order to study this phenomenon, ranging from 2D to 3D objects, and 

encompassing anything from clouds of dots, computer generated objects such as “greebles”, faces 

of human and non-human primates, among many others (Curby, Hayward, & Gauthier, 2004; Erez 

et al., 2016; Folstein et al., 2012; Freedman, Riesenhuber, Poggio, & Miller, 2002; Gauthier & 

Tarr, 1997; Goldstone & Steyvers, 2001; Kriegeskorte, Mur, Ruff, et al., 2008a; Palmeri & 

Nosofsky, 2001; Richler et al., 2017; Shepard, Hovland, & Jenkins, 1961; Todd Maddox, Gregory 

Ashby, & Bohil, 2003). 

Another way of differentiating among objects, is by selectively attending to their 

components, a strategy that might be particularly useful when distinguishing between similar 

exemplars or when information from other dimensions is not available2 (Erez et al., 2016; Sripati 

& Olson, 2010; Ullman, Vidal-Naquet, & Sali, 2002). In other words, the need to use any available 

visual information to quickly identify a given object becomes an essential survival tool for animals, 

which need to recognize whether a specific visual cue can be related to a predator or prey. The 

terms “diagnostic regions” or “diagnostic features”, are often used by researchers interested in the 

problem of object recognition (OR), and refer to the regions or specific features that are used in 

order to identify a given image/object (Gosselin & Schyns, 2001; Nielsen, Logothetis, & Rainer, 

2006). In one study, Nielsen et al., (2006) compared the strategies that humans and Rhesus 

monkeys used in order to discriminate between sets of natural images. In this task both monkeys 

                                                           
2  For example low lighting conditions can render information related to colour virtually irrelevant, and the same can 

be said when the more global object dimensions such as their shape or size are partially or totally occluded. 
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and humans had to show that they could associate an image that was presented for hundreds of 

milliseconds with one of 3 dots that were presented in a computer screen afterwards (Nielsen et 

al., 2006). After reaching peak performance the images were partially occluded with bubbles, a 

technique first used by Goselin and Shynes (2001) in which an opaque mask punctured by 

randomly located circular windows is overlapped with the image (Gosselin & Schyns, 2001; 

Karimi-Rouzbahani, Bagheri, & Ebrahimpour, 2017; Nielsen et al., 2006; Royer, Blais, Gosselin, 

Duncan, & Fiset, 2015). The results showed robust differences between in the diagnostic feature 

size, with monkeys relying on features that covered around 7% of the images while humans used 

diagnostic regions covering 51% on average. Similarly, in a 2015 study, Rosselli et al., showed 

that when rats had to discriminate between easily distinguishable objects they relied on more stable 

and view-invariant features, but when the discrimination between objects was harder they tended 

to rely on a wide variety of specific view-dependent diagnostic features, which differed between 

animals (Rosselli, Alemi, Ansuini, & Zoccolan, 2015). 

In essence, these findings seem to indicate that, in order to discriminate between different 

dimensions, the visual system needs to privilege certain features more than others; that is to say, 

the visual system needs to ascribe a heavier weight to specific features. As such, visual stimuli 

which share invariant features in any given dimension can be perceived as being similar. 

 

2.2 Theoretical Models of Categorization 

Over the years, several models of categorization have been proposed, but by far the ones 

which have received more attention, and have succeeded in explaining the results of several 

experiments are known as “reference point models” (Conaway & Kurtz, 2017). These models have 

their roots in the associative learning tradition, as they firmly place the process of category learning 
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as a form of stimulus generalization. According to the reference point framework, subjects make 

category judgements based on the subjective evaluation of similarity between a target object and 

the existing information in the subject’s knowledge database (Ashby & Maddox, 2005; Homa, 

Sterling, & Trepel, 1981; J. D. Smith & Minda, 1998a). However, the main difference between the 

two main models within this framework, is in how the comparison process unfolds, and what the 

target stimulus is being compared against. 

In 1968, Posner and Keele proposed a model called “Prototype theory”, which assumes 

that categorization is a processes whereby the target stimulus is compared against a category 

prototype, which can be defined as the central tendency or average, of multiple observations of a 

given category (Posner & Keele, 1968, 1970). This means that the process of categorization is one 

of pure abstraction of the features that comprise a given set of stimuli, which ultimately creates a 

mental representation that serves as a template. In 1970, Posner and Keele also argued that the 

prototype pattern, unlike any other pattern that is derived from it, was resistant to decay; something 

which was later corroborated in several other studies (Homa & et al, 1973; Homa & Vosburgh, 

1976; Posner & Keele, 1970; Rosch, 1973, 1975; Rosch & Mervis, 1975; Strange, Keeney, Kessel, 

& Jenkins, 1970) 

About a decade later, a new model called Exemplar Theory was proposed (Estes, 1986; 

Medin & Schaffer, 1978; Medin & Schwanenflugel, 1981; Nosofsky, 1986, 1988). According to 

this model, the generalization which underlies the categorization process is based on the specific 

exemplars which have been stored during learning, and retrieved depending on the perceived 

similarity to the object or pattern being categorized. In this way, there is an assumption that each 

category is represented by its individual exemplars, which means that it does not need to rely on 

any kind of abstraction. Exemplar models have in fact enjoyed great success in explaining the 
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results obtained in different tasks. Their ability to fit human performance has been particularly 

effective, especially when expanded in order to include concepts such as selective attention and 

error driven learning such as in the GCM or ALCOVE models (Kruschke, 1992; Medin & 

Schwanenflugel, 1981; Nosofsky, 2011).  

Later, in a series of experiments Smith and Minda (1998) have also hypothesised that both 

strategies - one which relies on the abstraction of a prototype and one which relies on specific 

exemplars - could be adopted depending on the type of task, the type of pattern being categorized 

(ill-defined categories vs well defined), and the number of patterns or items used in the 

categorization tasks (J. D. Smith & Minda, 1998).  

It’s also noteworthy, that the performance of both prototype and exemplar based models, 

seems to be highly correlated with the perceived typicality3, as shown by studies involving 

virtually constructed face stimuli (Davis & Poldrack, 2014; Iordan, Greene, Beck, & Fei-Fei, 

2016b; Nosofsky, 1988; Rosch & Mervis, 1975; Rosch, Simpson, & Miller, 1976; Sigala & 

Logothetis, 2002) 

Other categorization models include Decision Bound Model, which conceptualizes 

categories as being represented in terms of a boundary that separates them in a continuous 

perceptual/psychological space, or Rule Based Models, which posits that category learning can be 

formalized based on specific (sometimes verbalized) rules (Busemeyer & Myung, 1992; Casale, 

Roeder, & Ashby, 2012; Snyder & Munakata, 2010). 

Since their inception, these models have been hybridized in order to accommodate different 

behavioural tasks and specific parameters which might influence performance, and we now have 

                                                           
3 Typicality refers to how typical a given exemplar is, of its superordinate category. Humans tend to respond more 

quickly to an exemplar that is more representative of a specific category (e.g. a robin is a bird) than to a more 

atypical one (e.g. a penguin is a bird) (Iordan et al., 2016; Rosch et al., 1976). 
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a plethora of models which can combine reference point and rule based approaches such as 

RULEX or ATRIUM (Erickson & Kruschke, 1998b; Nosofsky, Palmeri, & McKinley, 1994); 

SUSTAIN (Love, Medin, & Gureckis, 2004) which is based on clustered representations where 

some clusters can represent the central tendency or prototype, while others represent single 

exemplars; or even DIVA (Kurtz, 2007), which relies on principal component analysis (PCA) and 

an autoencoder artificial neural network. 

 

 

Figure 1.1. The two major theoretical models of visual categorization. A) Prototype 

Theory suggests that a new exemplar is compared against the category prototype, which is 

defined as the central tendency of multiple observations. B) Exemplar Theory posits that 

visual categorization relies on the direct comparison between the new object and the 

individually stored exemplars. 
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Overall, these models have permeated the study of human category learning for the past 50 

years, and have provided valuable insights on a very complex process. However, the inner 

workings of categorization have received considerably less attention. This in part due to the fact 

that some authors have approached this problem from a uniquely human point of view, and on the 

other hand to the fact that the it’s not always easy for different research fields to converge on 

empirical grounds. But over the last 20 years we’ve witnessed a significant progress in our 

understanding of how the brain learns to categorize and the specific neuronal blueprint associated 

with this complex process. 

 

2.3 Neurophysiological Basis of Visual Categorization 

The rapid extraction of regularities and the subsequent discrimination of its constituent 

elements is one of the most important tools for the survival of any animal species. In most 

mammals this remarkable ability is due to the way their visual system is structured, and how its 

functional organization enables an internal representation of a given visual scene to 

emerge. This representation can then be compared with previous stored ones and ultimately used 

to make decisions about the visual elements that have been perceived. All of this happens in a 

fraction of a second, and not only does it have to be fast, but it also has to be tolerant to changes 

in the environment that can potentially hinder the generalization between experiences. 

Any attempt to decipher the neuronal dynamics of any cognitive process is invariably tied 

to the neuroanatomy of the brain, and the process of visual categorization is no exception. The idea 

of two separate processing streams of visual information can be traced back to early papers on the 

golden hamster visual system (Schneider, 1969). This apparent dissociation between a visual 

pathway that is mainly responsible for processing the location or the identification of a stimulus 
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have been reported in different species and although inter-regional communication 

between both pathways exists, converging lines of evidence seemed to indicate that they are 

responsible for very different aspects of processing visual scenes (Ettlinger, 1990; Kravitz, Saleem, 

Baker, Ungerleider, & Mishkin, 2013). In a seminal paper published in 1969, Gerald Schneider 

hypothesized that the identification of a given stimulus would take place along the genicolustriate 

pathway, a circuit that seems to be phylogenetically more recent than the retinotectal pathway 

which seems to be involved in visuo-spatial processing and oculomotor tasks (Lehky, Kiani, 

Esteky, & Tanaka, 2014; Schneider, 1969).  

This basic idea was then further elaborated in a seminal paper by Mishkin and Unglerleider 

(1982), where the authors proposed a “where” versus “what” distinction for has become known as 

the dorsal and ventral visual streams (Mishkin and Ungerleider, 1982). This model has been 

updated over the years, and in a more recent paper it has been suggested that the dorsal visual 

stream can be further divided into three different pathways: (1) the parieto-preforntal, (2) the 

parieto-premotor and (3) the parieto-medial temporal pathways. Each of these pathways is believed 

to support different functions that play an important role in visual guided actions, spatial working 

memory and visuo-spatial processing (Kravitz, Saleem, Baker & Mishkin, 2011). 

Further evidence from non-human primate research pointed in the same direction. In a 

study conducted by Weizkratz and Saunders (1984), lesions in the inferior temporal cortex (ITC) 

of monkeys critically impaired the animal’s ability to generalize across different viewpoints in a 

3-D shape recognition task, while lesions in posterior parietal cortex didn’t seem to have any effect 

in this task (Goodale & Milner, 1992; Weiskrantz & Saunders, 1984). 

The ventral visual stream comprises what is known as the occipito-temporal network, 

which is a set of bidirectional connections between regions in charge of processing visual 
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information along the rostro-caudal axis. These connections range from early visual areas in the 

occipital cortex such as V1, V2, V3 and V4, up to different temporal lobe regions such as the 

posterior temporal cortex (TEO) and the anterior temporal cortex (TE) in the ITC, which are 

considered to be at the apex of the cortical visual hierarchy in the primate brain. This set of regions 

seem to process visual information in a hierarchical fashion, with cells in the ITC responding to 

increasingly more complex stimuli compared to the relatively basic features that can elicit a 

response in early visual areas (Desimone, Thomas, Gross, & Bruce, 1984; D. H. Hubel & Wiesel, 

1959; D. Hubel & Wiesel, 1964). Additionally, the receptive field properties of ITC neurons seem 

to rely on the integration of a broader information spectrum, with clusters of cells that can respond 

to full objects instead of simple elements and with an increased invariance to changes in light 

conditions, translations, rotations, color or size (Kravitz et al., 2013). And since neurons in the ITC 

cortex can respond to complex visual stimuli, and are sensitive to diagnostic features that allow 

for a more view-invariant identification of objects, they seem to have all of the appropriate features 

for a role in visual categorization (Booth & Rolls, 1998; Gross, 2008; Kobatake, Wang, & Tanaka, 

1998; Nikos K. Logothetis & Sheinberg, 1996; Perrett, Rolls, & Caan, 1982; Sigala & Logothetis, 

2002; Tanaka, 1996; Yasushi Miyashita, 1988). 

One of the most remarkable studies to highlight the role of the ITC in the visual 

categorization process was done by Kiani and collaborators in 2007 (Kiani, Esteky, Mirpour, & 

Tanaka, 2007). In this study, the group decided to train three rhesus monkeys (macaca mulatta) in 

a simple fixation task, while recording the activity of single neurons (one cell at a time) in the ITC, 

as the monkey’s visualized >1000 images of real world objects over multiple sessions.  A neuron 

was regarded as category selective if the responses to the different category exemplars were 

significantly larger than to any other category. Concurrently, the population response was 
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determined by arranging the average response of every neuron to the image set in vectors which 

were then normalized. 

Their results showed that the categorical structure of the images was represented by 

distributed patterns of activity over the recorded cell population (674 cells), with the population 

code showing clearly defined clusters that corresponded to animate and inanimate objects. Within 

the animate objects category, smaller clusters for primate and non-primate faces, which then could 

be divided into human and non-human primate faces, were also observed. The presence of cells 

that were selective for bodies of humans, non-human primates, birds and four-limb animals was 

also noteworthy, as well as the presence of cells that were more selective towards lower animals 

such as reptiles, insects and fish, resulting in a tree of interdependent population activity clusters. 

However, it should be noted that the animals were not naïve and had been exposed to many 

animals and inanimate objects before, as they were raised in both human houses and zoos before 

the experiments took place. Furthermore, the fact that the data was collected over multiple sessions 

can also imply a learning component due to repeated exposures to the same set of stimuli, even if 

they were shown in a pseudorandom fashion each session. 

The aforementioned results were corroborated in a different study conducted by the same 

group, where the authors compared the ITC response patterns in both monkeys and humans when 

they were presented the same set of images (Kriegeskorte, Mur, Ruff, et al., 2008). While the 

human subjects were presented 92 pictures in an event related fMRI experiment, the monkeys had 

their neuronal activity recorded using tungsten electrodes, as described in Kiani et al., (2007). To 

this effect, the authors decided to focus instead in comparing the response patterns elicited by the 

images for each subject within each of the 2 experimental groups and generating a representational 



17 

 

dissimilarity matrix for each species (for a review on their category identification methods see 

Kriegeskorte, Mur, & Bandettini, 2008).  

The results seemed to align with the findings reported by Kiani et al., (2008), with defined 

category sub-clusters that corresponded to animate and inanimate objects identified in both groups 

as well. Whereas the categorical information pertaining to inanimate objects (particularly man-

made objects) was less defined, especially in the monkey ITC, the categorical structure related to 

animate objects, and in particular faces and body parts appeared to be remarkably well preserved 

across species. 

This being said, the results reported by Kriegeskorte et al., (2008) should be interpreted 

with some caution since the recording techniques and data collection used in each experimental 

group were quite different. Even though a lot of progress has been made in terms of comparing 

monkey and human brain activity with fMRI, the differences in terms of both spatial and temporal 

resolution of each recording technique is by no means negligible.  

Nevertheless, previous studies had already shown that neurons along the IT seem to be 

highly selective to both human and non-human primate faces, with some cells firing only when a 

particular viewpoint is presented or when certain elements or features are present in a given 

configuration (Desimone et al., 1984; N. K. Logothetis, Pauls, Bülthoff, & Poggio, 1994; Wallis 

& Rolls, 1997). We now know that there is in fact a network of 6 interconnected regions along the 

primate ITC that are responsible for processing faces, with neurons that can encode for either left 

of right profiles (view-specific) and others that present a more view-invariant preference (Freiwald 

& Tsao, 2010). The aforementioned clusters of ITC neurons that encode for faces, body parts or 

scenes, seem to have very defined functions in both humans and monkeys, with some even 

suggesting that the consistency of their location can be attributed to an evolutionary based 
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selectivity for important visual elements, which relies on an efficient way of encoding information 

and an inter-regional communication mechanism that resemble small world, or hierarchical 

modular networks4 (Hilgetag & Goulas, 2016; Telesford, Joyce, Hayasaka, Burdette, & Laurienti, 

2011; Uhlhaas et al., 2009; Watts & Strogatz, 1998). 

The ITC is also interconnected with medial temporal lobe regions (MTL) such as the 

perirhinal cortex (PRh); an association region that combines projections from multiple sensory 

areas in order to form a multimodal representation of objects as well as the specific features of a 

given environment, and then projects to the hippocampus (HPC) both  directly through a network 

of relatively sparse connections to CA1, and via lateral entorhinal cortex (LEC) as well (Agster & 

Burwell, 2013; Brown & Aggleton, 2001; Burwell, 2001; Burwell & Amaral, 1998; Cloke, Jacklin, 

& Winters, 2015; Furtak, Wei Shau-Ming, Agster, & Burwell, 2007; Winters & Reid, 2010; 

Winters, Saksida, & Bussey, 2008). This information related to category membership is then sent 

to another major hub in the process of visual categorization – the prefrontal cortex (PFC) – through 

direct and indirect pathways which ultimately converge in this association region (De Curtis & 

Paré, 2004; Maurer, Burke, Diba, & Barnes, 2017; Webster, Bachevalier, & Ungerleider, 1994). 

 

3. The Prefrontal Cortex 

3.1 Functional Neuroanatomy 

The term prefrontal (or pre-frontal) was first used in 1884, in a publication by David Ferrier 

and Gerald Yeo, and it was initially defined as the anterior two-thirds of the frontal convolutions 

in the primate brain (Ferrier, 1886; Ferrier & Yeo, 1884). After Brodmann’s seminal studies 

                                                           
4  Small world networks were first described by Watts and Strogatz in 1998, and refer to highly clustered networks 

with small path lengths which maximize the overall connectivity while minimizing the number of connections 

(Watts and Strogatz, 1998). 
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(Brodmann, 1909), the prefrontal cortex became almost uniquely associated with primate species 

and was often referred as “frontal granular cortex” or by the less common Latin term regio frontalis 

(Uylings, Groenewegen, & Kolb, 2003; Uylings & Van Eden, 1991). A definition predicated on 

the fact, that in the primate brain, the PFC is located rostral to the agranular pre-motor cortex, 

whereas the rodent frontal cortex is completely agranular and therefore considered 

phylogenetically more primitive (Seamans, Lapish, & Durstewitz, 2008; Uylings et al., 2003; 

Zaitsev et al., 2009).  

From an evolutionary perspective, the prefrontal cortex has been the most controversial 

cortical region to define and to compare across species, since it has always been considered one of 

the hallmarks of human cognition due to its role in some of the most characteristic aspects of 

human behaviour (Fuster, 2001; Goldman-Rakic, 1984; Preuss, 1995). In the vast body of literature 

concerning this region, one can usually find references to its specific functions under the umbrella 

of cognitive control, top-down modulation, executive functions or inhibitory control; terms that 

often refer to very different aspects of brain activity, which are contingent on specific goals and 

relevant behavioural drives. 

In primates the PFC can be broadly divided into 3 different parts. In the ventral-dorsal axis 

we find: (1) the orbitofrontal cortex, which corresponds to Brodmann’s areas 13, 47 and the 

inferior part of areas 10 and 11; (2) the medial and cingulate prefrontal cortex, which encompasses 

areas 12, 24, 32, and the more medial parts of areas 8, 9 10 and 11; and (3) the dorsal and lateral 

(often referred as dorsolateral) prefrontal cortex, which corresponds to area 46 and the lateral 

portion of areas 8,9,10 and 11. These areas have subsequently been the subject of more detailed 

histochemical and immunohistochemical analysis which revealed a mosaic of 22 different 

subregions (Carmichael & Price, 1994; Seamans et al., 2008). 
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Conversely, the rodent PFC (here limited to mice and rats) is often divided into the medial 

prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC), two topologically distinct regions 

that then can be divided further into several subregions. Among the mPFC subregions we can 

identify 3 main areas with noticeable differences in terms of laminar organization and involvement 

in specific cognitive functions. These 3 subregions evolved from both archicortical and 

paleocortical moiety and they are usually referred as: (1) the infralimbic cortex; (2) the prelimbic 

cortex; and (3) the anterior cingulate cortex (Pandya & Yeterian, 1990). 

This being said, given the connectivity patterns, cytoarchitecture and the involvement in 

higher cognitive functions often ascribed exclusively to anthropoid primates, the existence if a 

homologous region in rodents became a polarizing topic among neuroanatomists, with early 

accounts (Rose & Woosley, 1948) identifying the prefrontal cortex solely on the basis of the 

afferents it receives from the medial dorsal nucleus of the thalamus (MD)  (Preuss, 1995; Rose & 

Woosley, 1948; Seamans et al., 2008; Uylings et al., 2003; H. J.J.M. Van De Werd, Rajkowska, 

Evers, & Uylings, 2010; Henri J.J.M. Van De Werd & Uylings, 2014). But despite the somewhat 

controversial comparisons between species, the current view in terms of anatomical homologies 

suggest that: (1) the infralimbic region in rodents roughly corresponds to Brodmann area 25; (2) 

the prelimbic region can be seen as a more primitive version of the primate dorsolateral cortex  

(area 46)  in terms of its overall functions, but in anatomical terms it seems to be more closely 

related to the ventromedial PFC (area 32); and finally, the rodent anterior cingulate cortex would 

correspond to area 24 in the primate brain (Seamans et al., 2008; Uylings & Van Eden, 1991; Henri 

J.J.M. Van De Werd & Uylings, 2014). 

The connectivity within the dorsal and ventral subdivisions of the rodent mPFC seem to be 

quite robust, contrasting with the more sparse connections that exist between them. But the 
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differences between these mPFC sub-divisions, can also be observed in their connections with 

other cortical as well as subcortical areas (Condé, Maire‐lepoivre, Audinat, & Crépel, 1995; 

Datiche & Cattarelli, 1996; Heidbreder & Groenewegen, 2003). The PFC possesses a remarkably 

vast array of cortical as well as subcortical connections, which makes it one of the final destinations 

for information arriving from different streams. Its connections can be seen as far as the spinal 

cord (Van Eden & Buijs, 2000), and several brainstem nuclei. Equally important are the direct 

connections between the mPFC and neuromodulatory systems, such as: (1) the dopaminergic 

innervation which predominantly stems from the ventral tegmental area (VTA) and to a lesser 

extent from the substantia nigra pars compacta (David B. Carr & Sesack, 2000; Thierry, Blanc, 

Sobel, Stinus, & Glowinski, 1973); (2) the serotoninergic projections from the raphe nuclei that 

reach the infralimbic and ventral prelimbic cortices (Heidbreder & Groenewegen, 2003; Harry 

B.M. Uylings et al., 2003); (3) the efferents of cholinergic neurons arriving from the nucleus 

basalis magnocellularis and the mesopontine laterodosral tegmental nucleus responsible for 

heightening arousal in the mPFC (Lamour, Dutar, & Jobert, 1984; Ragozzino & Kesner, 1998); 

and finally (4) the noradrenergic projections that reach the mPFC arriving from the locus 

coeruleus, which modulate the levels of other neurotransmitters such as dopamine in both the 

prelimbic and infralimbic cortex (Morrison, Molli Ver, Grzanna, & Coyle, 1979; Öngür & Price, 

2000; Tronel, Feenstra, & Sara, 2004). Besides the aforementioned regions, the mPFC also has 

connections with other important subcortical regions that play a vital role in different brain 

functions such as the hypothalamus, thalamus, the amygdala and the basal ganglia. Through the 

extensive efferent connections to the latter, the mPFC plays an important role in decision making, 

anticipating the outcomes and valence of one's actions, and even in participating in motor output 

functions (Heidbreder & Groenewegen, 2003). The array of connections with these regions 
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supports important aspects of prefrontal functions such as the homeostatic regulation of processes 

related to basic drives, attention, level of motivation, emotional appraisal and even social 

behaviour (Fuster, 2000, 2001; Riga et al., 2014). 

There is also considerable evidence that the mPFC plays a major role in memory 

stabilization on a time scale that can range from seconds to weeks, as well as in the process of 

memory retrieval. It’s no surprise then, that the mPFC receives strong projections from the 

hippocampus, particularly from ventral hippocampus and subiculum. The received inputs might 

be reciprocated via indirect connections arriving at the HPC through the nucleus reunions of the 

thalamus (NR) and the PRh – lateral entorhinal cortex (LEC) pathway (Agster & Burwell, 2009; 

M. C. Anderson, Bunce, & Barbas, 2016; Brod, Lindenberger, Werkle-Bergner, & Shing, 2015; 

Euston, Gruber, & McNaughton, 2012; Euston & McNaughton, 2006; Godsil, Kiss, Spedding, & 

Jay, 2013; Hallock, Wang, & Griffin, 2016; Hernandez et al., 2017; Jarovi, Volle, Yu, Guan, & 

Takehara-Nishiuchi, 2018; Peters, David, Marcus, & Smith, 2013; Richards et al., 2014; Tripathi, 

Schenker, Spedding, & Jay, 2016; Xia et al., 2017). 

Even though the PFC, and in particular the mPFC, is also involved in the early stages of 

information encoding (Bero et al., 2014; Kitamura et al., 2017; Lesburguères et al., 2011), this 

region is mostly known for its pivotal role in the processes of memory consolidation, and retrieval 

of remote memories (Euston, Gruber, & McNaughton, 2012b; Euston, Tatsuno, & McNaughton, 

2007; Hebscher & Gilboa, 2016; Milivojevic, Vicente-Grabovetsky, & Doeller, 2015). The level 

of engagement of the PFC appears to be correlated with a slower component of memory 

consolidation that occurs concomitantly with a progressive disengagement (for some types of 

memory) from temporal lobe regions such as the hippocampus, an effect which seems to be 

particularly dependent on post encoding sleep (Gais et al., 2007; Takashima et al., 2006; Tse et al., 
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2011; Wolbers & Buchel, 2005 but see J. Q. Lee, Zelinski, McDonald, & Sutherland, 2016; 

Sutherland, Sparks, & Lehmann, 2010; Sutherland & Lehmann, 2011). This was made evident in 

a now seminal study by Euston and collaborators (2007), where it was shown that during sleep, 

the rat mPFC replayed task-related spatiotemporal patterns of neural activity that were compressed 

by a factor of 6 to 7 (Euston et al., 2007). In a follow up paper, the same group also demonstrated 

that reactivation of those same neural patterns was correlated with the density of down-to-up state 

transitions, and were mostly associated with K-complexes and low voltage spindles; two 

distinctive electrophysiological features of the complex interplay between hippocampus and cortex 

during slow wave sleep (SWS) that are presumed to support memory consolidation (Johnson, 

Euston, Tatsuno, & McNaughton, 2010).  

 

3.2 The Role of the Prefrontal Cortex in Visual Categorization 

Due to the vast network of cortical fibers that converge in this region, the PFC cortex and 

its subdivisions are in a position to compare multimodal information arriving from both dorsal and 

ventral cortical streams (Condé et al., 1995; Heidbreder & Groenewegen, 2003; Room, Russchen, 

Groenewegen, & Lohman, 1985; Sakagami & Pan, 2007; Sakagami, Pan, & Uttl, 2006; Sakagami 

& Tsutsui, 1999).  

In primates, the ventrolateral prefrontal cortex (VLPFC) receives information primarily 

from the ventral visual pathway, which mediates object recognition. On the other hand, the 

dorsolateral prefrontal cortex (DLPFC) receives projections from the dorsal stream regions in 

order to determine the spatial configuration of objects in the environment. This information can 

then be classified based on the emotional valence and other motivational aspects and used in order 
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to initiate the motor planning of goal directed actions (Pan & Sakagami, 2012; Sakagami & Pan, 

2007; Sakagami et al., 2006). 

The specific role of the PFC in visual categorization was addressed in a series of 

experiments by Freedman and collaborators (Freedman, Riesenhuber, Poggio, & Miller, 2001; 

Freedman et al., 2002, 2003).  In these studies, the authors developed a variation of the Delayed 

Match to Sample task (DMS) called Delayed Match to Category (DMC), and used a three-

dimensional morphing system to produce a set of images that belonged to 2 different categories: 

cats and dogs. These 3D images were generated through linear combinations of every possible 

arrangement between them, which allowed the researchers to define the category boundary based 

on the amount of “cat” or “dog” features that any given exemplar displayed. The goal of these 

experiments was to record the activity of dlPFC neurons in rhesus monkeys, while the animals 

decided whether a sample and a testing image belonged to the same category, and how the neural 

activity would reflect those same choices. 

The results showed that the monkeys could accurately classify between objects (about 90% 

of the time), even when their physical appearance was close to the category boundary (60:40 cat-

dog and vice versa), furthermore the recorded dlPFC neurons also showed a remarkable category 

selectivity as well. In the first paper, Freedman and colleagues observed that out of a total of 395 

dlPFC neurons, 253 of those (64%) were active during the sample and/or delay interval, with 

roughly one-third of those (82/253) exhibiting category selective responses regardless of the 

degree of dog or cat features within the category boundaries (Freedman et al., 2001). 

In a more recent paper by the same group, Roy et al., (2010) generated the morphing images 

by varying the percentage of two dog and two cat prototypes. This resulted in both within and 

between category morphing spectrums, with the images now being blended along six morph lines 
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instead of one. With this new set of images, the authors defined two categorization schemes with 

orthogonal boundaries that were then used to train the monkeys at different time points, and 

subsequently evaluated their performance during the recording sessions when the animals had to 

switch between the two schemes (Roy, Riesenhuber, Poggio, & Miller, 2010). Interestingly, they 

found that the same images, depending on the category scheme, were represented by largely 

different neuron population in the PFC. Most neurons (29.3% or 157 out of 536) showed category 

sensitivity for only one category scheme but not both, while a relatively small number of neurons 

were category sensitive to both category schemes (7.1% or 38 out of 536). 

The degree of specialization and generalization was addressed in a following study by 

Cromer et al., (2010), where the authors expanded the original morphing task to include another 

set of images, in this case, besides the cat versus dog category (one single morphing spectrum), 

the monkeys had to learn to distinguish between two types of cars - sedans versus coupes (Cromer, 

Roy, & Miller, 2010). The purpose behind this 2x2 category task, was to see if neurons would 

show a more general type of encoding where individual neurons could respond to more than one 

stimulus set, or, if their activity would be very specific to one set, similar to the findings reported 

by Roy and collaborators. Their results showed that many PFC neurons (44% or 104 out of 236) 

were “multitasking”, and showed a significant difference in their average firing rates for both 

category distinctions. But just like in previous studies, Cromer and colleagues also found neurons 

that were mostly category specialists (i.e. responding either to Cars or Animals, but not both).  One 

possible explanation for the increased number of multitasking neurons lies in the structure of the 

task itself. Even though the results reported by Roy et al., (2010) seemed to contrast with previous 

reports on the multitasking abilities of PFC neurons (Duncan & Miller, 2002), the fact that 2 

different category schemes, with the same fixed number of images were in direct competition 
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might explain the level of independence in neural representations. According to the authors, it is 

possible that neuronal specialization is driven by high cognitive demands such as when the same 

set of images is categorized in 2 different ways. On the other hand, when the categories are 

independent from each other, or not in direct conflict, the same neurons can be recruited to encode 

category information by either displaying an increase or a decrease in their average firing rates.  

Different oscillatory patterns within PFC subregions such as the dlPFC and the vlPFC, 

during an abstract categorization task have also been reported. It appears that the level of activity 

in these two regions was contingent on the level of stimulus abstraction; with gamma oscillations 

in the vlPFC more engaged in lower levels of stimulus abstraction and dlPFC beta oscillations 

becoming more prominent with higher levels of abstraction (Wutz, Loonis, Roy, Donoghue, & 

Miller, 2018). Similarly, category learning seems to be accompanied by an increase in beta 

synchrony between the PFC and the striatum during correct trials (Antzoulatos & Miller, 2014), 

with the striatum exerting a stronger influence on the PFC. The anatomical loops between the basal 

ganglia (BG)  and the PFC can facilitate the establishment of a functional circuitry that would 

enable the selection of the appropriate motor programs in the BG, based on the category 

information encoded in the PFC (Antzoulatos & Miller, 2011, 2014; Miller & Buschman, 2007; 

Uhlhaas et al., 2009). In addition, the striatum also seems to be able to predict the behavioural 

response before the PFC in the initial stages of a dot-based categorization task, when learning is 

more reliant on stimulus-response associations (S-R). The explanation for this phenomenon might 

lie in faster plasticity mechanisms within the striatum circuitry that could then facilitate the slower 

learning rate of the PFC (Antzoulatos & Miller, 2011, 2014; Meyers, Freedman, Kreiman, Miller, 

& Poggio, 2008). Concurrently, this dynamic between the STR and the PFC gradually shifted as 
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the number of category exemplars increased, possibly reflecting the important role the PFC plays 

in category abstraction (Antzoulatos & Miller, 2014). 

 

4. Purpose of this project 

The main focus of this project was to determine how the dynamics of neuron ensembles change 

after the acquisition of substantial semantic knowledge, specifically, how the generation of 

categorical representations was reflected within specific regions in the neocortex. This project 

addresses two of the main postulates of Complementary Learning Systems Theory by McClelland 

et al. (1995).  

 

Hypothesis 1: Neural representations of related concepts share a high degree of similarity 

between them and become hierarchically clustered. 

 

Not much is known in terms of how the accumulation of semantic knowledge might affect 

the patterns of connectivity and the underlying neural interactions in different cortical regions, 

particularly in higher order association regions such as the mPFC.  

One of the main assumptions of CLST states that as the cortex gradually adapts its weight 

matrix to accommodate new knowledge (McClelland, 2013; McClelland et al., 1995), the 

representations category exemplars are expected to cluster, similar to what has been reported by 

Kriegeskorte et al., (2008). This being said, I hypothesise that in the mPFC, the neural activity 

patterns elicited by exemplars from the same category will be highly correlated, as opposed to 

when the category exemplars belong to different categories, which are expect to be more 

orthogonal. 
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Hypothesis 2: As experiences of certain stimuli become integrated, mice will form sparse 

conjunctive representations of specific stimuli in higher modules of the cortical hierarchy. 

 

One of the main underlying questions on how the brain represents similar as well as 

dissimilar experiences is related to the type of coding scheme. In order to encode a multitude of 

stimuli and their respective associations, the neural representations must minimize interference 

and redundancy without compromising the idiosyncratic aspects of each experience, in addition, 

the brain must maximize the amount of information that can be stored and ensure that the storage 

capacity in any given region is not exceeded, otherwise information would be lost or irretrievable 

(Földiak, 2002; McNaughton, 2010; Olshausen & Field, 2004; Rolls, 2016).  

In order to efficiently encode the acquired categorical knowledge, higher modules of the 

cortical hierarchy (i.e association regions) seem to develop the ability to encode higher order 

conjunctive features (Kriegeskorte, Mur, Ruff, et al., 2008; Nikos K. Logothetis & Sheinberg, 

1996). By taking advantage of the common or redundant properties across category exemplars, 

high order regions can get away with using a small set neurons and fewer spikes, without 

compromising the amount of information. Since there will be many category exemplars to store, 

and each might have a unique representation, a sparse code can be particularly useful in terms of 

preventing categories from interfering with each other. 

Sparse coding has been hypothesized in several theoretical and experimental papers to 

optimize the number of different activity patterns in associative networks, making it an efficient 

way of encoding information (Marr, 1970, 1971; Rolls & Treves, 1990; Treves & Rolls, 1991). A 
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sparse representation or sparse coding can refer to 2 different but often related concepts – lifetime 

sparseness (or lifetime kurtosis) and population sparseness (Willmore & Tolhurst, 2001).  

In lifetime sparseness a given neuron is silent most of the time, but displays high firing 

rates only when specific stimuli are presented or at certain time-points. Lifetime sparseness is 

usually calculated using kurtosis, the fourth moment of a distribution which measures its 

“peakedness”. It has been observed at different stages of the cortical hierarchy in several animal 

species and it’s commonly used computational models as well (Barlow, 1972; Field, 1987; Graham 

& Field, 2007; Olshausen & Field, 2004; Perez-Orive, 2002; Vinje & Gallant, 2000). 

On the other hand, in population sparseness there’s a large set of neurons available with 

only a small subset of them active at any particular time, therefore minimizing the number of units 

that are involved in the representation of a given event or in response to an external stimulus. This 

has been proposed as the most efficient way of storing information, somewhere in between the 

overly sparse or localist coding scheme which hinders generalization, and a fully distributed one, 

which requires a higher number of neurons and although robust, it is also more prone to 

interference between patterns as well as energetically expensive This means that a highly efficient 

code is one that is both highly selective and that increases the number of independent associations 

while minimizing the number of modifiable synapses used during encoding (Földiak, 2002; Marr, 

1970, 1971; Ohiorhenuan et al., 2010; Rolls, 2016; Treves & Rolls, 1991; Wixted et al., 2014) . 

In the first set of experiments we exposed a cohort of mice to several exemplars of object 

categories using a virtual reality setup, and addressed their ability to distinguish between them. In 

the second part, along with the exposure to the virtual object categories, the neural activity was 

also recorded at different time points using in-vivo 2-photon calcium imaging.  
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Chapter 2 

 

ABSTRACT 

Categorization is a process whereby individual experiences and single instantiations are 

unified by their commonalities into functional groups. In this paper we describe a novel visual 

categorization task for mice using an automated touchscreen operant conditioning chamber. By 

gradually incrementing the number of exemplars available in a pairwise object recognition task, 

mice learned to discriminate between virtual objects that belong to 2 different categories, one 

rewarded and one non-rewarded. This further allowed the animals to maintain the same level of 

performance when two new sets of objects from the initial categories were introduced all at once. 

Similar results were also observed even when the non-rewarded category was switched to a 

completely new one. Taken together our results suggest that through this incremental goal-directed 

task, mice can easily incorporate information into distinct visual categories associated with specific 

outcomes in a relatively short amount of time and to generalize the behavioural response to new 

exemplars. 
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A novel visual categorization task for mice using a touchscreen operant conditioning 

chamber. 

 

Introduction 

The ability to detect invariance between individual elements across different environments 

is crucial for survival. Grouping different types of stimuli reduces the vast complexity of any given 

environment by decreasing the number of elements for which a similar behavioural response can 

be selected (Cohen & Lefebvre, 2005; Gauthier & Tarr, 2016; Hélie, Turner, & Cousineau, 2018). 

This parcellation of the external world into distinct categories allows the brain not just to process 

information faster, by decreasing information load, but also to generalize the same behavioural 

output when encountering inputs that share similarities between them (Iordan et al., 2016a; Rosch 

& Mervis, 1975; Seger & Miller, 2010).  But categorization is not merely a passive process that 

creates abstractions from individual perceptual elements; it is an active inference mechanism, 

indissociable from the functional aspects and valence of the elements being categorized, as well 

as with the outcomes associated with them (Peelen & Downing, 2017; Richler & Palmeri, 2014; 

Seger & Peterson, 2013). 

The study of categorization has been at the core of different academic disciplines for many 

years and has spawned a plethora of theories, models and experimental works that approached the 

problem from different angles. This resulted in a heterogeneous body of knowledge that has 

allowed our understanding of this process to become increasingly complex (Kriegeskorte, Mur, & 

Bandettini, 2008; Kriegeskorte, Mur, Ruff, et al., 2008; Lindh, Sligte, Assecondi, Shapiro, & 

Charest, 2019; Seger & Miller, 2010). Although categorization can be studied in relation to 
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different sensory modalities, most of the scientific literature in the field of experimental 

psychology and behavioural neuroscience have focused on the concept of visual categorization in 

order to better understand the basic processes behind category learning.  

Even though there is a considerable variability between tasks, types of stimuli and 

theoretical models that have been proposed, most studies have relied on either human or non-

human primates (Freedman et al., 2001; Homa et al., 1981; Kriegeskorte, Mur, Ruff, et al., 2008; 

Nosofsky, 1988; Rosch, 1973; J. D. Smith, Redford, & Haas, 2008; Strange et al., 1970); with 

some notable exceptions such as pigeons (Cook & Smith, 2006; Güntürkün, Koenen, Iovine, 

Garland, & Pusch, 2018; Herrnstein & Loveland, 1964; Troje, Huber, Loidolt, Aust, & Fieder, 

1999; Wasserman, Kiedinger, & Bhatt, 1988), dogs (Range, Aust, Steurer, & Huber, 2008), or 

even honeybees (Benard, Stach, & Giurfa, 2006).  

Surprisingly, the most widely used class of mammals in scientific research – rodents – has 

been ignored for the most part when it comes to study the visual system.  Due to their poor visual 

acuity, and the less sophisticated neural architecture of their visual system (when compared to 

primates), rodents have been regarded as unsuitable when it comes to study complex visual 

processes such as object recognition or categorization (Artal, De Tejada, Tedó, & Green, 1998; 

Balkema & Pinto, 1982; Lashley, 1930).  However, over the last decade, rodents, and in particular 

mice, have become increasingly popular when it comes to study the general properties of the visual 

system.  

The rodent and primate visual system share many similarities despite the former lacking of 

important visual features such as a foveal pit, having fewer cone cells, lacking ocular dominance 

columns and having a small number of visual areas. Notably, the rodent brain retains key aspects 

of the primate brain’s functional architecture, with: (1) functional modules that correspond to a 
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dorsal and ventral visual streams (Glickfeld, Andermann, Bonin, & Reid, 2013; Q. Wang, Gao, & 

Burkhalter, 2011; Q. Wang, Sporns, & Burkhalter, 2012), (2) a hierarchically organized cortical 

scaffold (Coogan & Burkhalter, 1993; Felleman & Van Essen, 1991; Laramée & Boire, 2015; 

Rockland & Pandya, 1979) and (3) a network architecture which resembles both small-world 

networks (typically found in primates), and scale-free networks (Oh et al., 2014; Sporns & 

Bullmore, 2014). 

On a more practical level, mice are also becoming increasingly popular as experimental 

subjects due to the widespread availability of transgenic lines as well as the molecular tools, which 

allow for in-vivo recordings and circuit labeling. In addition, the overall size of the mouse brain 

also allows for larger scale recordings, and they are also less expensive and relatively low 

maintenance when compared to other larger mammals (Huberman & Niell, 2011). Consequently, 

several studies have now shown that rodents can also be informative subjects with which to study 

high level visual processing in the brain. 

In a series of experiments conducted in rats, Zoccolan et al., (2009), Tafazoli et al., (2012) 

and Rosselli et al., (2015), demonstrated not only that rodents are suitable for object recognition 

experiments using touchscreens, but also that they possess a remarkable flexibility terms of 

switching between different strategies that would allow them discriminate between the presented 

objects based on their morphological features (Rosselli et al., 2015; Tafazoli et al., 2012; Zoccolan 

et al., 2009). For example, in their paper Rosselli et al., showed that when rats had to discriminate 

between easily distinguishable objects, they relied on a more stable and invariant strategy, but 

when the discrimination between objects was harder, they tended to rely on a wide variety of 

specific features from those same objects.  
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More recently, rodents have also been used in classification or categorization-like tasks. 

Brooks et al., (2013) and Vinken et al., (2014) have trained rats to discriminate over a series of 

pictures with different aspect ratios or movie sequences respectively. Creighton et al., (2019) used 

mice in a one-trial object category recognition (OCR) task. In this adaptation of the object 

recognition task (Ennaceur & Delacour, 1988), the authors exposed mice to real exemplars of two 

different categories during a sampling phase, and then assessed their ability to discriminate 

between an object of one of the categories previously presented, and one object from a novel 

category, in a “Y maze” task (Brooks et al., 2013; Creighton et al., 2019; Vinken, Vermaercke, & 

Op de Beeck, 2014). Mice preferred the object belonging to the novel category, which indicated a 

generalized recognition of the initial categories to which the animals had been previously exposed. 

In this study, I designed a behavioural task to test mice’s ability to categorize based on a 

pairwise discrimination protocol, using a touchscreen operant conditioning box (Bussey, Muir, 

Everitt, & Robbins, 1997; Kim, Kwak, Yu, & Kaang, 2016; Markham, Butt, & Dougher, 1996; 

Mitchnick et al., 2018; Talpos, Winters, Dias, Saksida, & Bussey, 2009). However, instead of 

training mice with a fixed set of virtual objects, I decided to create a task that would allow the 

gradual incorporation of new objects into the existing datasets, as the animals learn to discriminate 

between them, so that the brain could slowly adapt to the variability between exemplars 

(McClelland et al., 1995; Seger & Peterson, 2013)  

 

Materials and Methods 

Subjects 

A total of 12 adult C57/BL6 mice (Jackson Laboratories, 23 – 35 g, 3 – 8 months old; 4 

males, 8 females) were used in this study. The animals were single housed in standard mouse 
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cages, with a room temperature of 24 °C under a 12 h light/dark cycle with the lights on at 7:30 

AM and free access to food and water before the beginning of the behavioural training. The 

procedures were in accordance with the guidelines established by the Canadian Council on Animal 

care and with the protocols approved by the Animal Welfare Committee of the University of 

Lethbridge.  

Mice were water deprived throughout the duration of the behavioural training. During this 

period mice were given a daily ad libitum access to water for 30 minutes in their home cages 30 

minutes after the last training session, and their weight was maintained to at least 85% of the 

baseline value (average weight during the 3 days prior to the beginning of the training sessions).  

 

Touchscreen Operant Conditioning Box 

Mice were trained in a custom built automated operant chamber (230 x 230 x 230 mm) 

with a computer tablet (Samsung Galaxy Tab A: SM-T350; 208.28 x 137.16 x 8.2 mm; Android 

5.0) for the virtual object presentation. The reward consisted of a drop of sucrose water (10% 

concentration) that was delivered through a silicone tube, which was connected to a metal tube 

positioned below the computer tablet's screen. The reward delivery was controlled by a pinch valve 

that would open every time a correct response was made, delivering approximately 2.5 µl each 

time. The synchronization between the touchscreen and the valve was achieved through an 

Arduino Mega 2560. The wall where the Arduino, the pinch valve, the reward tube and the 

computer tablet were inserted is removable (front window: 150 x 164 mm, with a divider 

measuring 150 x 5 x 5 mm), which means that it can be used outside the operant conditioning box 

and adapted to different behavioural paradigms. 
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Figure 2.1. Custom-built touchscreen operant condition box. A) Operant conditioning box with 

the removable wall where the computer tablet is inserted. B) Picture taken during one of the 

sessions. 

 

 

Virtual Reality objects 

Most of the virtual reality (VR) objects were purchased at Unity Asset Store (Unity 

technologies), while others were virtually rendered from real objects using Autodesk’s (Autodesk, 

inc.) single-camera photogrammetry software 123D Catch (discontinued). The VR objects were 

then modified using 3DS Max (Autodesk, inc), compiled and then finally rendered using Unity 

(Unity technologies).  

The VR object categories were selected based on three criteria. First, the objects had to 

possess a degree of visual similarity within each category in terms of their overall shape. Second, 

although visual similarity is a requirement in order to belong to a given category, we ensured that 

the VR objects pertaining to a given category possessed distinctive features between them, such 

as the perceived texture, object components or colour. Third, the chosen categories should have a 
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high degree of visual dissimilarity between them. In short, we tried to maximize the intra-category 

visual similarity and the inter-category visual dissimilarity (fig. 1). I decided to use 3 main 

categories with 22 objects in total: ball, car and prism (columns, bottles, buildings), and a fourth 

one – dinosaur (bipedal) - comprised of only 5 objects, which we used as a control category. I also 

tried to keep the aspect ratio between objects belonging to a given category relatively stable (Ball: 

x̄ = 45 mm x 45 mm; Car: x̄ = 67.5 mm x 25 mm; Prism: x̄ = 19.5 mm x 98 mm; Dinosaur: x̄ = 68 

mm x 40 mm). Finally, the virtual objects were then positioned on each side of the screen against 

a black background during the pairwise discrimination task. 

 

 

 

Fig 2.2. Virtual reality objects used in the behavioural task. A) Exemplars of the different 

categories as they appear in the computer tablets. Before the beginning of the pre-training phase, 

one of the three categories (prism, car and ball) is selected as the S+ category and one as the S- for 

each mouse. All of the categories are permutated between animals with the exception of the control 

category (Ctrl) which is comprised of a fixed group of objects (dinosaurs) that will subsequently 

be used as the last testing set in stage 8 and will only serve as a substitute for the initial S- category 

for every mouse. B) The touchscreen categorization task design. After the pre-training sessions 

where mice learn the basic rules of the pairwise discrimination task, they are gradually introduced 

new objects belonging to two given categories during the training sessions in order to facilitate 

generalization. Their ability to discriminate is then evaluated with 2 different testing sets, one 

comprised of completely new sets of objects from the previously defined categories, and another 

one where a completely new S- category (Ctrl category) was introduced. 
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Experimental design 

The touchscreen categorization task is based on the touchscreen pairwise discrimination 

task described in previous studies (Horner et al., 2013; Mar et al., 2013; Nithianantharajah et al., 

2015). In this task mice are required to make a choice between two images/virtual objects 

appearing on each side of the screen divider, by touching the surface where the objects are 

displayed. 

Before pairwise discrimination sessions, the mice need to be shaped, which means that they 

must undergo some form of pre-training. The pre-training sessions were divided into four stages 

that would allow the animals to habituate to the specifics of the required task. 

Habituation: The mouse was placed in the chamber for 10 and 20 min in the first and 

second day, respectively (stage 1 and 2). The screen was turned off and there was no tone nor 

reward. In the third day the mouse was introduced to the reward. After the animal was placed into 

the chamber, a 3 kHz pure tone was played every 10 sec to signal reward availability in the tube, 

and it continued irrespective of the reward collection. This phase took 2 sessions in 2 different 

days with the duration of the first session set to 20 min and the second one to 40 min. 

Object presentation: In stage 3 mice were introduced to two VR objects (e.g. car 1 and 2) 

that belong to one of the defined categories (S+). These were presented one at a time in a 

pseudorandom fashion, in either the left or right side of the screen, and they were paired with a 

tone and a reward. The reward was always delivered at this stage, regardless of the animal’s input. 

The screen was cleared after 30 sec, followed by a 10 sec. inter-stimulus interval (ISI) before a 

new trial started, with the total duration per session set for 60 min or 30 trials.  
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The rewarded and non-rewarded categories (S+ and S-) were permutated between mice to 

ensure that the accuracy of the discrimination was not exclusive to a specific pair of categories 

(e.g. mouse 1: car versus ball; mouse 2: ball versus car, etc.) 

Touchscreen interaction: This is the stage where the animal must learn the association 

between touching the screen where the object is presented, and collecting the reward. No reward 

is delivered if other parts of the screen were touched and as in the previous stage, the session ended 

after either 60 min or 30 correct trials, but from this stage onwards there was no time limit for the 

object display. In the next stage, the animals were introduced to a small time-out on commission 

of an error. If the screen is touched anywhere besides where the object belonging to the S+ category 

is displayed, a 1.5 kHz pure tone  and a white screen were presented for 5 seconds, and no reward 

was delivered; this condition was followed by the normal 10 sec ISI. The total duration of this 

stage depended on how fast the animals could reach the passing criterion, which was defined as 

80% of correct responses (24/30) for two consecutive sessions. 

Training Sets (stages 5, 5.1, 5.2, 5.3 and 6): After successfully completing pre-training, 

mice begin the training phase, which is divided into 5 different stages (fig. 2) that were designed 

to allow the animals to become familiarized with the categories and their respective objects in a 

gradual manner. From this point onward, training takes place twice a day, 2 sessions in the morning 

and afternoon respectively. 

Stage 5 starts with the same 2 exemplars from the S+ category that were presented during 

pre-training plus 2 new objects that belong to an S- category. These stimuli are presented in a 

pseudorandom fashion on either the right or left side of the screen. The animals must make a choice 

by touching the screen where either the S+ or the S- object is displayed (e.g. S+ a or b versus S- a 

or b). If mice touched the object from the S- category a 1.5 KHz pure tone was presented with no 
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reward delivery, followed by a 5 sec time out and normal 10 sec ISI. As in the previous pre-training 

stage the passing criteria was defined as 80% correct trials per session for 2 consecutive sessions. 

I then added one more object to each category for the next three stages of the task (stages 5.1, 5.2 

and 5.3), allowing the animal to associate the new objects that are gradually added to the previous 

ones. In the last stage of the training phase however (stage 6), unlike the previous ones, I accessed 

the ability of mice to generalize the same response to seven new objects that were added to the 

previous five, all at once. In this stage mice had a total of 12 S+ and S- objects that they need to 

correctly discriminate before moving to the testing sets. 

Testing set 1 (Stage 7): Here, the previous 24 virtual objects (12 from each category) were 

removed, and in their place 5 new objects from both S+ and S- were presented. The animals had 

never seen any of these objects before, which means that they had to rely on the morphological 

similarities between them and the previous ones in order to reach the passing criteria. If mice had 

developed an S+ and S- category representation during the training sessions, they would have been 

able to maintain a similar level of performance with the new sets. 

Testing Set 2 (Stage 8): The final testing set consists of 5 entirely new S+ objects and the 

introduction of a new S- category, to which I called “control category” (Ctrl). This category is 

comprised of 5 bipedal dinosaurs and was the same for all mice regardless of their starting S+ and 

S- categories. This is clearly the most difficult stage of the task, not only due to the fact that the 

animals are not familiar with the morphology of these new objects, but also because rodents also 

tend to be drawn towards novelty (Winters et al., 2008). 

After each session the data was automatically stored in a .CSV file and analysed using 

MATLAB R2018b and GraphPad Prism version 9.0.0. 
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Fig 2.3. Experimental timeline 1. The touchscreen categorization task can be divided in 3 main 

phases: pre-training (stages 1 and 2: habituation; stage 3: object presentation; stage 4: touchscreen 

interaction), training (stages 5.1, 5.2, 5.3 and 6), and testing (stages 7 and 8). 

 

Results 

All of the animals used in this study were able to learn the categorization task. Even though 

there were individual differences in the amount of time that was necessary for them to learn the 

task, the individual learning curves converged into a specific pattern for the most part (Fig. 4). The 

initial exposure to the pairwise discrimination task, where any of the two objects from the S+ and 

S- category were presented seemed to present a bigger challenge than the subsequent ones where 

new objects were being added to the sets from previous stages. However, as soon as the mice 

extracted the basic rule of the task during that initial stage, they had no problems in generalizing 

the behavioural output to newer exemplars. On the other hand, when the S- category was replaced 

by the Ctrl category, most mice had a significant decrease in their performance, with some animals 

reaching chance level responses (15 out of 30 correct trials), which resulted in more sessions spent 

in stages 5 and 8 in order to reach the passing criteria (stage 5: x̄ = 10.17; stage 5.1: x̄ =3.25; stage 

5.2: x̄ =3.08; stage 5.3: x̄ = 3.08; stage 6: x̄ =2.08; stage 7: x̄ = 2.16; stage 8: x̄ = 7.75). 

 Nevertheless, after a few sessions, all mice reached the passing criterion of 80% correct 

trials and were able to accurately discriminate between the control category and the rewarded one. 
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Fig 2.4. Performance in the touchscreen categorization task. A) Average number of trials to 

reach the passing criterion for all mice. B) Learning curve of one of the mice tested in the 

categorization task. The learning curve starts from the last stage of the pre-training phase (blue 

shaded area). The red and yellow shaded areas represent the time the animal spent in the two testing 

sets, stage 7 and 8 respectively. The dashed red line indicates the passing criterion of at least 80% 

correct trials for two consecutive sessions. C) Average learning curve of all animals during the 

training phase (Stages 5, 5.1, 5.2, 5.3 and 6). Error bars represent the SE across days. Since mice 

finished the task at different time points, fewer animals are still undergoing behavioural 

training/testing as time progresses, which explains why the error bars disappear after day 10, since 

only 1 animal went past that point. 

 

To assess the disparity between the average number of mistakes in each of the training 

stages, an analysis of variance was conducted. The analysis yielded a significant variation among 

the errors in each stage, W (6, 131.4) = 27.58, p < .001, with a significant difference between the 

average number of mistakes between stage 5 and all of the subsequent stages (p < 0.001, Welch 

ANOVA with Dunnett T3 post hoc test). However, there were no differences in the average 

number of mistakes between stages 5.1, 5.2, 5.3 and 6, indicating that after the initial learning 

stage of the pairwise discrimination, the number of mistakes remained relatively low, even when 

several new objects were introduced at once. 

Next, the number of errors in the two testing sets was compared in order to evaluate the 

changes in the task performance between them. The number of mistakes incremented substantially 
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when the unrewarded category was switched for a new one. A Mann-Whitney test indicated that 

the distributions in stage 7 (Mdn = 4) and stage 8 (Mdn = 7) differed significantly (U = 655.5, n1 = 

30, n2 = 117, p < .0001 two-tailed). The sharp decrease in response accuracy during stage 8 was 

actually comparable to the number of mistakes in stage 5 (fig 3 (B)), the initial stage of the training 

set (Mann-Whitney U = 6480, n1 = 122, Mdn1 = 8; n2 = 117, Mdn2 = 7, p = .217, two-tailed). These 

results indicate that such manipulation brings the animals to a level of performance almost as low 

as in the period where the task is completely new.  The starting S+ category didn’t seem to have 

any effect on the average number of errors in stage 8 (Welch ANOVA W(2, 62.02) = 3.02, p = 

0.071), and out of the 12 mice tested, only two didn’t show any decrease in the performance in 

that same stage, and kept the correct response rate above 80%.  
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Fig 2.5. Number of errors steadily decrease with more exemplars of the same initial 

categories but increase sharply as a new S- (Ctrl) category is introduced. A) Difference in the 

average number of errors during the training stages (chance level = 15 errors: mean ± SEM in each 

stage, *** p < .001). B) Box plot of the total number of errors in the two testing sets (line: median; 

box: 25th and 75th percentile; whiskers:  minimum and maximum values, ***p < .0001). C) Violin 

plot showing the average number of errors during the last testing set when the Ctrl category (the 

new S-) is introduced, based on the initial S+ category, which depending on the mouse can be 

“ball”, “prism” or “car”. D) Total number of errors in the initial stage of the training set and the 

last stage of the testing set (line: median; box: 25th and 75thpercentile; whiskers:  minimum and 

maximum values). No significant difference was found between the distributions of the two 

groups. 
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Discussion 

The overall goal of these experiments, was to develop a task that allowed for the gradual 

incorporation of categorical knowledge about different sets of objects, and in particular, to test 

how robust the generalization within the S+ category is, despite the introduction of different S- 

categories and their respective exemplars. 

Based on the results I obtained, it’s important to emphasize that the number of objects 

presented throughout the task didn’t diminish the animals’ ability to discriminate between 

categories, as long as they were added incrementally in the initial stages. And although the 

exposure to more exemplars of each category contributed to the improvement in the overall 

performance, suggesting a generalization of the objects morphologic features, it’s also possible 

that this improvement was mostly due to the continuous training on the contingency. Therefore, a 

wiser assessment of the reported results should mostly focus on the robustness of the responses to 

the S+ category exemplars, regardless of what was presented as the S- category. 

It’s also noteworthy that mice were able to extend the behavioral response to completely 

new sets of objects such as the ones presented in stages 7, but most of them showed some initial 

difficulties in adapting when a new unrewarded category was introduced in stage 8. One possible 

explanation for decrease in performance is the fact that rodents tend to be naturally driven towards 

novelty, and even though there was no change in either the rewarded category or the rules of the 

task, this tendency could explain the sharp initial contrast with the previous stages. 

One could outline the basic rule of the pairwise discrimination in this task as: “When any 

of the elements that comprise A and B are present, (e.g. A1, B1; A2, B2…An, Bn) choose the ones 

that predicts reward (e.g. A subset). This means that when B is replaced by a new category C, the 

mouse needs to adapt the rule so that now, any other object besides the ones that comprise A (not 
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just B), will not predict a reward and therefore should not be touched. Due to the nature of the task 

used here, where objects are presented in pairs, the categorization process implies a rule whereby 

the alternative choice to A leads to an outcome (no reward + time out), and therefore is part of the 

categorization process itself, as the set of exemplars against which A and the respective associated 

outcomes are compared. 

These aforementioned assumptions are deeply related to the nature of categorization per 

se, and over the years several models have been proposed. From reference point approaches such 

as Prototype and Exemplar models  (Estes, 1986b; Homa et al., 1981; Lamberts, 2000; Medin & 

Schaffer, 1978; Nosofsky, 1986; Reed, 1972; Rosch, 1973), to Decision Boundary or Rule-based 

models (Ashby & Maddox, 1994; Lockhead, 1966; Salatas & Bourne, 1974; Townsend & Ashby, 

1986; Wright & Katz, 2007). Mixed or hybrid models such as RULEX (Nosofsky et al., 1994), 

ATRIUM (Erickson & Kruschke, 1998a), SUSTAIN (Love et al., 2004) and DIVA (Kurtz, 2007) 

have also gained considerable attention, either by mixing aspects of different models or by 

conceptualizing them in a spectrum. 

Nonetheless, it is important to mention that these models have been tested using different 

stimuli, with different properties in different tasks. Anything ranging from dot patterns, Gabor 

patches, simple shapes, and abstract or real world objects has been used and tested in either human 

or non-human subjects (Folstein et al., 2012; Freedman et al., 2002; Goldstone & Steyvers, 2001; 

Palmeri & Nosofsky, 2001; Shepard et al., 1961; Todd Maddox et al., 2003). This extreme 

variability in experimental setups has resulted in some rather inconclusive results in terms of fitting 

an overarching theoretical framework for category learning, which further showcases the difficulty 

in defining these processes in both theoretical and empirical grounds (Folstein et al., 2012). 
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One could argue that in our task, the animal’s ability to categorize might be explained by 

more than one strategy, by relying on both object features and a specific set of rules determined 

by the pairwise discrimination task. However, I cannot infer about the specific type of strategy or 

categorization mechanism used by these mice, since I didn’t set up this particular task to test any 

of the foregoing models, nor their accuracy in describing the way these animals learned to 

categorize. 

I also wanted to develop a virtual reality categorization task that could potentially be used 

in conjunction with neural recording techniques such as in-vivo 2-photon calcium imaging. And 

although the task, in its current form, was designed for using an automated operant conditioning 

box, it can easily be modified and adapted to other experimental paradigms where a choice between 

2 items and their associated outcomes needs to be made; similar to what has been reported in 

previous studies (Andermann, Kerlin, & Reid, 2010; Komiyama et al., 2010; Mayrhofer et al., 

2019). 

To summarize, I think that the behavioural task presented here is well suited for accessing 

the process of visual categorization in rodents by gradually incorporating new exemplars of each 

category. In addition, this task can also be adapted for use in combination with any in vivo 

recording technique in order to further inquire the neural substrate of these mechanisms. 
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Chapter 3 

 

ABSTRACT 

The ability to categorize different stimuli based on shared features a fundamental principle 

of cognition. It has been suggested that such process recruits different brain regions which might 

play a unique role depending on the task rules, object features, category boundaries or even the 

overall context. One of such areas is the primate dorsolateral prefrontal cortex (dlPFC), a region 

which has been shown to encode category relevant information. However, not much is known 

when it comes the mouse brain and the specific role its different regions play in visual 

categorization. In this chapter, I describe a set of experiments that were conducted in order to 

assess the neural correlates of visual categorization in the mouse medial prefrontal cortex, the 

homologous region to the primate dlPFC, using 2-photon calcium imaging. Our goal was to 

determine if there were any changes the network dynamics related to the gradual acquisition of 

categorical information, both at the single neuron level and at the population level.  
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Visual categorization in the mouse Medial Prefrontal Cortex 

Introduction 

Animals form internal representations of the world in which they navigate, and recalibrate 

those same internal representations as they learn with each new experience. Our internal model of 

the world is therefore shaped through a type of information encoding that allows for the extraction 

of basic properties and regularities in the environment that can be generalized across different 

experiences. This accumulation of generalized knowledge and its statistical and categorical 

structure is what allows the brain to make predictions about the possible outcomes of specific 

events and thus, orient behavior. 

A theoretical account on how information is encoded and organized in the brain was made 

by McClelland, McNaughton and O’Reilly in 1995, in a conceptual learning model called 

“Complementary Learning Systems Theory” (McClelland et al., 1995).  In the original paper the 

authors tried to investigate some of the main mechanisms behind memory consolidation and 

knowledge acquisition using an Artificial Neural Network model first introduced by Rumelhart 

and Todd (Rumelhart & Todd, 1993). This network was trained using a set of specific propositions 

regarding several concepts or categories, in order to learn relationships between them over a 

specified number of iterations. Initially (by construction) the internal representations were highly 

distributed and didn’t seem to follow any pattern of similarity; however as learning progressed, 

those representations started to display more structured patterns in terms of the concept 

relationships. The population activity became sparser and the selectivity of the responses 

increased, resulting in category representations that were further apart. 

But how does the brain learn to create categories, and what regions are involved in this 

complex process of abstraction? Over the past few decades several studies have shown that the 
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ability to categorize depends on different regions which are responsible for different aspects of the 

overall process (Freedman et al., 2001; Kriegeskorte, Mur, Ruff, et al., 2008; Pan & Sakagami, 

2012; Seger & Miller, 2010). One such region is the PFC, a major hub in the cortical hierarchy 

that receives inputs from several regions involved the process of memory consolidation, object 

recognition and categorization, such as the HPC and the PRh and the ITC; it also shares reciprocal 

connections with an array of other cortical and subcortical regions responsible for a variety of 

sensory, motor and cognitive functions (Brod et al., 2015; D B Carr & Sesack, 2000; Cowen & 

McNaughton, 2007; Euston, Gruber, & McNaughton, 2012; Szabo et al., 2006).  

The role of the primate PFC  (in particular the lPFC or dlPFC) in the process of 

categorization has been the subject of several studies that showcased its ability to distinguish 

between sets of visual stimuli and group them based on shared sensory features, or according to 

more abstract rules (Wutz et al., 2018). 

In a series of seminal experiments, Freeman and collaborators trained monkeys in a 

variation of the classical delayed match to sample (DMS) paradigm where they used a three-

dimensional morphing system to create a set of stimuli that would fall into 2 main categories – 

dogs and cats (Freedman et al., 2001, 2002, 2003). These morphed images were linear 

combinations between the exemplars of these 2 categories, and by blending them the authors 

created a continuum where the most extreme exemplars of each category would sit on opposite 

sides of the spectrum. The results of these experiments showed that monkeys could effectively 

distinguish between the 2 categories, and a substantial portion of lPFC (approximately 1/3 of the 

randomly selected neurons), was category responsive. Interestingly, not only were the monkeys 

able to distinguish between exemplars that were close to the category boundary (e.g. 60% dog and 

40% cat and vice versa), but there was a sharp difference in the selective responses of lPFC neurons 
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to each category, regardless of how close the stimulus was to the boundary. The results in these 

and other experiments by the same group in more recent years (Cromer, Roy, & Miller, 2010; 

Meyers et al., 2008; Roy et al., 2010), point towards an ability to create abstract representations 

and generalize information carried out by the PFC, which can then be used to select the appropriate 

response according to the task demands.   

The present set of experiments was designed to address two of the main CLST predictions: 

(1) as experiences of certain stimuli become integrated, mice will form sparse neuronal 

representations of specific stimuli in higher modules of the hierarchy such as the PFC; and (2) 

neural representations of related experiences share a high degree of similarity and are less 

orthogonal when compared with unrelated or novel experiences. 

In order to address these questions, I trained three mice to discriminate between different 

object categories in an automated touchscreen conditioning box, mentioned in the previous 

chapter. I then recorded the neural activity at different time points during learning, with in vivo 2-

photon Ca2+ imaging using a microprism implanted in the mPFC (Low, Gu, & Tank, 2014), a 

region that is generally viewed as the homologous to the primate dlPFC.  

 

Materials and methods 

All animal procedures were conducted in accordance with the guidelines established by the 

Canadian Council for Animal Care and were approved by the Animal welfare Committee of the 

University of Lethbridge. 

Three female Ras-CRE Ai162D (TIT2L-GC6s-ICL-tTA2, Jackson laboratories) transgenic 

mice (19 – 23 g, 2 – 4 months old at the time of surgery) were used in this study. This transgenic 

mouse model was specifically chosen due to its strong GCaMP6s expression along midline cortical 

regions, a feature that seems to be lacking the widely used Thy-1 GCaMP6s. However, the overall 
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GCaMP expression throughout the brain is also quite heterogeneous across animals and in some 

mice I observed a very small number of neurons (< 20). The entire process ended up being quite 

challenging due to the variability of the GCaMP6 expression, especially since this could only be 

observed after the necessary post-surgical recovery time. 

 

Surgical procedure 

Mice were administered dexamethasone (0.2 mg/kg, intramuscular) followed by 0.5 ml of 

a mixture  of 5% atropine and dextrose (3 μg ml−1 , subcutaneous) before being anesthetized with 

isoflurane (1%–1.5%, O2: 0.5-1 L/min). A subcutaneous injection of Lidocaine (7 mg/kg) was 

administered under the incision site with the animal’s body temperature maintained at 37°C by an 

infrared heating pad.  

The surgical procedure for the placement of the microprism was based on the one reported 

by Low et al., (2014), who were the first group to successfully implant a microprism in the mPFC. 

In order to access the mPFC, I used a right angle microprism (1.5 mm side length, BK7 glass; 

Tower Optical Corporation) with an aluminum coating and a dielectric overcoat protection on the 

prism hypotenuse to enable internal reflection. The prism was then bonded to the center of a 

circular glass window (3.0 mm diameter coverslip, BK7 glass; Warner Instruments) using UV 

curing optical adhesive (Norland #81).  

The craniotomy coordinates varied between 2.0 – 2.5 mm in the anterior to bregma, and 1 

– 1.5 mm posterior to bregma. The target coordinates for the microprism placement were 

somewhere between 0.7 and 1 mm anterior to bregma, with the prism placed with its front face 

along the midline, pressed against the wall of the contralateral hemisphere. Brain vasculature, and 

in particular the most anterior branches of the superior sagittal sinus were also used as a reference 
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in order to place the microprism in the appropriate region. But similar to what was reported by 

Low et al., (2013) these coordinates were subject to slight adjustments as the brain vasculature can 

differ significantly among animals. 

The microprism and coverslip compound was implanted in the most anterior part of the 

craniotomy and attached  to the skull using tissue adhesive (Vetbond, 3M). A custom-built titanium 

headplate was then fixed to the skull (Metabond, Parkell) with a rubber ring attached along its 

perimeter, which allows for the immersion medium (dH2O ) used in the 2-photon recordings to be 

retained and also to act as an additional light shielding mechanism.  Mice were then allowed to 

recover for 2 weeks before the first imaging session. 

 

Two-photon Imaging 

I used a Thorlabs Bergamo II multiphoton microscope for data acquisition in all of the 

experiments. A Ti: Sapphire pulsed laser (Coherent) was set to an excitatory wavelength of 920 

nm (~ 80 – 120 mW laser power measured at the sample) in order to penetrate the brain tissue and 

excite the fluorophores. This was achieved through a laser scanning controlled by Galvo-Resonant 

X-Y mirrors through a 16x water immersion objective (NA = 0.8, Nikon). 
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Figure 3.1. Cranial window and neurons detected using 2-photon calcium imaging. A) Top 

view of the cranial window and microprism implant. B) Neurons detected in one of the sessions 

from mouse nr. 1 after the preprocessing stage. 

 

The emitted fluorescent signals were detected and amplified by a GaAsP photomultiplier 

tube (Hamamatsu) and digitized at a sampling rate of 19 Hz to a resolution of 800px x 800px.The 

imaging samples were collected from an 835 µm × 835 µm field of view (FOV) over layers II and 

III of the left prelimbic (PrL) cortex and the rostral portion of the anterior cingulate cortex (ACC) 

at depths between 100 – 200 μm.  Before the beginning of each experiment a strip of Velcro was 

wrapped around the objective. The Velcro was then lowered slightly bellow the rubber ring in 

order to shield the sample from the light emitted by any external source, and in particular, the 

computer tablet (Samsung Galaxy Tab A: SM-T350; Android 5.0) used in these experiments. 
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Figure 3.2. Experimental setup for the imaging sessions. The removable wall of the computer 

tablet was positioned in front of the mice with one object appearing at a time, on the right side of 

the screen, contralateral to the hemisphere where the imaging occurred. 

 

Experimental design 

Figure 2.3 shows the experimental timeline for the 3 mice. In this set of experiments, I used 

the same behavioural task described in detail in the previous chapter (mouse nr.1: Ball v.s Prism; 

mouse nr.2: Prism v.s Car; mouse nr.3: Car v.s Prism). The only difference in the experimental 

design was the assessment of the neural activity as the mice learned to distinguish between the 

predefined categories. The recording sessions took place at specific time points during learning. 

The purpose behind this design was to observe the changes in the mPFC network as the animals 

learned to distinguish between an incrementing number of object exemplars and how the activity 

at both single neuron level and at the neural population level would reflect that same learning 

process. 

A preliminary imaging session took place 2 weeks after surgery. The goal of this session 

was to assess the fluorescence expression and the overall number of neurons. If the number of 

available cells was too low (< 50) the animal was excluded for the study. This step is particularly 
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important since small tears in the brain’s microvasculature when implanting the microprism can 

occlude areas within the region of interest (ROI) for several weeks.  

The baseline session took place one or two days after the initial assessment of the recording 

region and it was the first time the animals were exposed to the virtual reality objects. During each 

imaging session the animal was head-restrained on a fixed platform while passively viewing a set 

of 60 virtual objects that belonged to the categories defined in chapter 1, plus 4 objects that didn’t 

belong to any category ( spheres = 16; cars = 16; prisms = 16; dinosaurs = 7; misc. = 5). The 

duration of the whole recording session was set to 15 min, where the stimulus would be presented 

for 5 seconds, followed by a 10 second ISI. The synchronization between the photosensor and the 

computer tablet where the objects were displayed was achieved through and Arduino Mega 2560 

using a custom built code that would generate a .CSV file at the end of each session. This file 

contained the timestamps of the microscope pulses and the appearance of different objects on the 

screen.  

 

Figure 3.3. Experimental timeline 2. A baseline imaging session took place before the 

beginning of the pre-training phase when the animals were still naive. A second imaging session 

took place after the completion of the training phase, when the animals had already been exposed 

to several category exemplars. The final imaging session took place after the completion of stage 

8, where the control category was introduced. 
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Data analysis 

Image preprocessing 

The image registration and the estimation of ROIs (regions of interest) was conducted 

automatically using the Suite-2P software (Pachitariu et al., 2016), as described in previous studies 

from our lab (Chang et al., 2020; Esteves et al., 2021; Mao, Kandler, McNaughton, & Bonin, 

2017). The ROIs were then inspected through graphical user interface that allowed for a manual 

curation of the results and the raw fluorescence traces were determined for each ROI. Neuropil 

contamination was estimated and subtracted from the surround of the ROI’s, and the baseline 

fluorescence was estimated by the ∆F/F ratio (Bonin, Histed, Yurgenson, & Clay Reid, 2011). In 

order to infer the neuron firing rates for each ROI the ∆F/F time courses were then deconvolved 

using the constrained non-negative matrix factorization method (Pnevmatikakis et al., 2016). The 

data were subsequently analysed using the deconvolved time courses in MATLAB versions 

R2018a and R2019a (MathWorks).  

 

Peri-Stimulus Time Histogram (PSTH) 

The mean firing rate of neuron i as a function of time from stimulus onset fi(t) was 

calculated as: 

𝑓𝑖(𝑡) =  
1

𝑁𝑡∆
 ∑ ∑ 𝑛𝑖(𝜏, ι)

∆

ι=1

𝑁𝑡

𝜏=1

 

  

Where Nt is the number of trials, ∆ is the width of the time bin t and ni is the time-course 

vector of the deconvolved firing rates for neuron i. The deconvolved time-courses was circularly 

shuffled 1,000 times to obtain a null distribution of PSTH. Neurons whose response curve either 

exceeded the 95th percentile or fell short of the 5th percentile of the shuffled responses over 
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continuous time segments longer than two seconds were classified as stimulus-receptive neurons 

(SRN). I conducted the same analysis over the trials of individual categories to identify neurons 

that expressed significant response specificity for particular categories. 

To measure the consistency of an individual neuron’s response across trials, a reliability 

coefficient was computed. Reliability is taken as the Pearson correlation coefficients obtained from 

the neuronal response time vectors between pairs of trials of the same category (a total of  
(𝑇−1)𝑇

2
 

comparisons for T trials). Subsequently, this sample distribution was tested against the null 

hypothesis of r = 0 using a one-sample Wilcoxon Signed Rank test.  Neurons with median Pearson 

coefficients higher than the null hypothetical distribution at α = 0.05 were considered as category 

specific. Previous studies that evaluated the stability of the representations across trials by Pearson 

correlation did so by comparing the even vs odd trials (Salz et al., 2016). Here, to account for 

biases introduced by small trial numbers, I evaluated all pairs of trials. 

 

Characterization of Population and Lifetime Sparseness 

Treves and Rolls (1991) defined population sparseness as: 

𝑠 =  
𝐸[𝑅]2

𝐸[𝑅2]
= (

1

𝑁
 ∑ 𝑟𝑖

𝑁

𝑖=1

)2/
1

𝑁
 ∑ 𝑟𝑖

2

𝑁

𝑖=1

 

Where ri is the firing rate of neuron i in response to a stimulus for N neurons. Using this 

equation, I computed the population sparsity with ri as the mean population vector over the 5 

seconds of stimulus presentation for distinct object categories.  

I used the same equation to measure lifetime sparseness by simply replacing the mean 

population vector (𝑟𝑖) for the averaged activity vector of every individual neuron during the 5 

seconds of stimulus presentation. 
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The population activity was decoded using an independent Bayesian decoder (Esteves et 

al., 2021; Mao et al., 2018). In brief, for every time bin, we estimated the probability of the animal 

viewing an exemplar of a specific category given the population response of all imaged neurons. 

I used stratified K-fold cross validation (K = 5) to estimate the accuracy of decoding. Trials 

were partitioned into five equal-sized subsamples so that, at each iteration, a fifth of the trials was 

used for testing, while the remainder of the trials were used for training. While trials were randomly 

drawn, the proportions of each category were approximatively the same in each partition. Accuracy 

was reported as the mean over the five iterations. Alternatively, leave-one-out cross validation 

(LOO-CV) was used, and in this case, the confusion matrix was obtained by cumulating the results 

over all trials. 

 

Pr(𝑐|𝑛) =  
Pr(𝑛|𝑐) Pr (𝑐)

Pr (𝑛)
 

Where Pr(c|n) is the probability of category “c” given the population firing rate vector “n”. 

Assuming that the deconvolved firing rates of neurons obey a Poisson distribution we have: 

Pr(𝑛|𝑐) =  ∏ Pr (𝑛𝑖|𝑐)

𝑁

𝑖=1

=  ∏
(𝜏𝑓𝑖(𝑐))𝑛𝑖

𝑛𝑖!

𝑁

𝑖=1

 exp (−𝜏𝑓𝑖(𝑐)) 

=  ∏(
(𝜏𝑓𝑖(𝑐))𝑛𝑖

𝑛𝑖!

𝑁

𝑖=1

)exp(−𝜏 ∑ 𝑓𝑖(𝑐))

𝑁
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𝑃𝑟 (c|n)  =  𝐶 (𝜏, 𝑛) 𝑃𝑟 (𝑐)(∏(𝑓𝑖(𝑐)𝑛𝑖

𝑁

𝑖=1

)exp (−τ ∑ 𝑓𝑖(𝑐))

𝑁

𝑖=1

  

Where fi(c) is the mean deconvolved fluorescence of neuron i as a function of category c, 

and ni is the time-course vector of mean activity within time bins of length τ. C(τ,n) is the 
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normalization factor that depends on τ and the population firing rate vector n, and that sets the sum 

of Pr(c|n) to 1. 

Results 

Most of the neurons which were classified as stimulus-receptive fired at different time 

points during the stimulus presentation and not necessarily at the onset of the stimulus as one might 

have expected. Others had their activity increase prior to the stimulus presentation, which indicates 

that its activity was not category-dependent, and even if there is any “category preference” 

embedded in their firing rates, such information is not evident, since I didn’t find a single neuron 

that reliably fired at each presentation of a given category, one of the hallmarks used to determine 

if a neuron was category selective in previous studies (Meyers et al., 2008; Pan & Sakagami, 2012). 

Figure 3.4. Single neuron PSTH. Normalized activity of 5 representative neurons from mouse 

nr. 1, for all trials (top row), and for individual trials of the same category of objects (rows 2 

through 6). The vertical axis represents the number of trials and the horizontal axis represents time 

(-1 sec. to 14sec) with the dashed green line indicating the onset of the stimulus.  
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Figure 3.5. Neuron Population PSTH. Neurons’ average normalized activity for all categories 

(first column) and individual categories of objects (columns 2 through 6). Neurons were classified 

based on the selectivity of their response towards individual categories (see Methods). The vertical 

axis represents the number of neurons and the horizontal axis represents time (-1 sec. to 14sec) 

with the dashed white line indicating the onset of the stimulus. On the top row the neurons are 

organized according to their peak activity, which means the organization changes in each panel, 

whereas the bottom row shows the neurons always in the same order. Only neurons that expressed 

significant response tuning towards the respective categories are plotted. Data showing the same 

animal and recording session as in figure 3.1. 

 

Bayesian Classifier 

As mentioned in the previous section, I decided to build a Bayesian classifier in order to 

ascertain whether the neural activity reflected the viewed objects category membership and if there 

was any distinctive pattern emerging during the stimulus presentation.  

The overall accuracy of the Bayesian decoder was quite low, and I was unable to estimate 

which object was being presented based on the neural activity alone, even when I leave all but one 
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trial for our testing set (LOO-CV) (figure 2.6). Given that the stimuli were not uniformly sampled 

across the categories, but instead biased in favour of “Ball”, “Prism” and “Car”, chance level was 

not 20%. Rather, the sampling distribution was approximately 11.6%, 26.6%, 26.6%, 26.6% and 

8.3% for the categories “Dinosaur”, “Ball”, “Prism”, “Car” and “Miscellaneous” respectively. 

In the case of mouse nr. 1, the mean ranks corresponding to the dinosaur category and the 

miscellaneous category are significantly different from the mean rank of the prism category. 

However, this might be the result of the overrepresentation of the 3 main categories, since there 

was no difference between the mean ranks of the ball and prism and car category (Kruskal-Wallis 

one-way ANOVA on ranks: χ2 (4)= 17.32, p = 0.0017). Similar results were found in the data 

acquired from mouse nr. 2, where we found a statistically significant difference in the mean ranks 

of the ball category and the miscellaneous category for mouse nr. 2 (Kruskal-Wallis one-way 

ANOVA on ranks: χ2 (4)= 11.55, p = 0.021), and for mouse nr. 3 as well, where the mean ranks 

corresponding to the dinosaur and miscellaneous category were significantly different from the 

mean rank of the prism category (Kruskal-Wallis one-way ANOVA on ranks: χ2(4)= 19.29, p = 

0.0007). 

When I analyzed the decoder accuracy just for the three main categories each animal was 

exposed to (fig 2.6 B and D), I observed that, with the exception of mouse nr. 2, the difference 

between the accuracy in regards to the S+ and S- categories when compared to the Ctrl category 

was statistically significant (mouse nr. 1: Kruskal-Wallis one-way ANOVA on ranks: χ2 (2)= 8.82, 

p = 0.0121; mouse nr.2: Kruskal-Wallis one-way ANOVA on ranks: χ2 (2)= 1.85, p = 0.3956; 

mouse nr.3: Kruskal-Wallis one-way ANOVA on ranks: χ2 (2)= 10.2, p = 0.0061), even if the 

overall accuracy was still quite low. 
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Figure 3.6. Accuracy of Bayesian decoding as obtained through Leave-One-Out cross-

validation for individual object categories. On the left (A and C), scores for individual 

categories are reported irrespective of valence for all animals (n = 3 mice; Kruskal-Wallis one-

way ANOVA on ranks: χ2 (4) = 18.21; *p<0.05 **p<0.01 ***p<0.001) and for mouse nr. 1 
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respectively. On the right (B and D) object categories are grouped by the S+, S- and control 

categories for all animals (n = 3 mice; Kruskal-Wallis one-way ANOVA on ranks: χ2 (2)= 1.32) 

and for mouse nr.1 respectively. Box plots centre line: median, box limits: first and last quartiles, 

whiskers: data range excluding outliers. E) Confusion matrix chart for the Bayesian decoder 

accuracy for mouse nr. 1. The rows of the confusion matrix correspond to the true class, whereas 

the columns correspond to the predicted class. The diagonal and off-diagonal values show the 

correctly and incorrectly classified objects respectively. The row-normalized summary shows the 

percentages of correctly and incorrectly classified objects for each true class, whereas the column-

normalized summary displays the percentages of correctly and incorrectly classified objects for 

each predicted class.  

 

 

Similarity 

The correlation matrices corresponding to the baseline and endpoint sessions for the three 

mice also indicated that there were no discernible effects of the category learning process over 

time (Figure 2.7). In addition, the correlation between the neural representations of the 5 categories 

was non-significant for each animal, regardless of the particular session (mouse nr.1 baseline: 

Kruskal-Wallis one-way ANOVA on ranks: χ2 (2)= 3.5, p = 0.4784; mouse nr.1 endpoint: Kruskal-

Wallis one-way ANOVA on ranks: χ2 (2)= 3.63, p = 0.4581; mouse nr.2 baseline: Kruskal-Wallis 

one-way ANOVA on ranks: χ2 (2)= 3.29, p = 0.5111; mouse nr.2 endpoint: Kruskal-Wallis one-

way ANOVA on ranks: χ2 (2)= 3.39, p = 0.4951; mouse nr.3 baseline: Kruskal-Wallis one-way 

ANOVA on ranks: χ2 (2)= 3.34, p = 0.5029; mouse nr.3 endpoint: Kruskal-Wallis one-way 

ANOVA on ranks: χ2 (2)= 3.19, p = 0.5273) 

I tried to see if there was any correlation in terms of neural activity between the S+, S- and 

Ctrl category, and if there was any difference between those (figure 2.7). Only for mouse nr. 2 I 

was able to observe a difference between the S+ and S- correlation and the remaining groups (S+ 

vs S- median = 0.3823, S+ vs Ctrl median = 0.2579, S- vs Ctrl median = 0.2880; Kruskal-Wallis 

one-way ANOVA on ranks: χ2 (2)= 7.91, p = 0.0192). The other two mice didn’t show any 

difference between the correlations being tested (mouse nr.1: S+ vs S- median = 0.3616, S+ vs 



65 

 

Ctrl median = 0.2122, S- vs Ctrl median = 0.1328; Kruskal-Wallis one-way ANOVA on ranks: χ2 

(2)= 4.22, p = 0.1212; mouse nr. 3: S+ vs S- median = 0.4142, S+ vs Ctrl median = 0.2429, S- vs 

Ctrl median = 0.2661; Kruskal-Wallis one-way ANOVA on ranks: χ2 (2)= 1.34, p = 0.5117). The 

correlations observed for each animal, although moderately positive, don’t allow for any 

meaningful conclusion about the representations of the different categories the animals were 

exposed to, even when in terms of their specific valence. 

 

 

Figure 3.7. Similarity between response vectors during stimulus presentation for each 

category. Pearson’s correlation matrix for each animal (A) corresponding to the baseline and 

endpoint sessions respectively. B) Between category similarity of response vectors for each 

animal.  
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Sparseness 

The measure of population sparseness used in this analysis is based on the one proposed 

by Treves and Rolls (1991), where the sparseness of the code increases as the values approach 0. 

As we can see in figure 3.8 (A), it seems that there is no difference in the degree of 

population sparseness between the different categories, not even when grouped based on their 

valence, regardless of how low the overall values are (mice = 3: Kruskal-Wallis one-way ANOVA 

on ranks: χ2 (4)= 1.03, p = 0.9051; Kruskal-Wallis one-way ANOVA on ranks: χ2 (2)= 0.85, p = 

0.6525). 

However, it should be noted that we observed the same trend in the previous recordings, 

including the baseline session, where the animals had no previous exposure to the virtual objects 

or the behavioural task. 

I also decided to analyze the lifetime sparseness over time, by comparing the cumulative 

distribution function (CDF) of the first and the last imaging sessions during the 5 sec. of stimulus 

presentation for all mice. Even though when I take the results of every mouse, the CDF of the last 

session is larger than the one corresponding to the first session, which indicates sparser neuronal 

activity at a later time point (One-sided two-sample KS test: n = 378 neurons baseline; n = 458 

neurons endpoint; n = 3 mice; K = 0.1325, p < 0.001), this is most likely biased due to the results 

obtained by comparing the baseline and endpoint distributions of mouse nr. 3 (One-sided two-

sample KS test: n = 162 neurons baseline; n = 121 neurons endpoint; K = 0.202, p = 0.002) since 

there was no difference between the distributions of the other two mice (One-sided two-sample 

KS test; mouse nr. 1: n = 104 neurons baseline; n = 108 neurons endpoint; K = 0.1527, p = 0.076; 

mouse nr. 2: n = 112 neurons baseline; n = 256 neurons endpoint; K = 0.084, p = 0.315) 
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Figure 3.8. Population and lifetime sparseness doesn’t increase with the acquisition of 

categorical knowledge in the mPFC. A) Population sparseness during stimulus presentation for 

the individual object categories in the last recording session (n = 3 mice). B) Population sparseness 

during stimulus presentation in the last recording session grouped by the S+, S- and Ctrl categories 

(n = 3 mice). Data reported in the same manner as in 3.3. C) Cumulative distribution function for 

lifetime sparseness corresponding to baseline (blue) and endpoint (red) sessions for all mice on the 

left, and for each individual animal on the right.  
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Discussion 

The results of this study are insufficient to draw any conclusion about the learning process 

that took place during the behavioural categorization task, as I was unable to extract any 

information pertaining to the different categories, nor the specific objects being displayed on the 

screen. Furthermore, although a small portion of neurons seemed to display some preferences in 

terms of object categories, in most cases this activity preceded the onset of the visual stimulus, 

which doesn’t reveal much in terms of category specificity. It is also worth mentioning that there 

was no detectable degree of selectivity for object exemplars, that is, a given neuron could present 

some degree of selectivity for “ball 1” in the first trial, but not when the same object appeared in 

trial number ten for example. 

The Bayesian classifier used in order to create a probabilistic inference about the stimuli 

being presented also performed rather poorly, even when all but one trial was used as the training 

dataset. It should be noted that I tried different classifiers before using the one described in this 

chapter, but their accuracy was even lower. 

There was no tangible difference in terms of how similar or dissimilar the neural activity 

was when the animals were viewing different category exemplars. In fact, it’s fair to say that if 

there was no information about any undergoing learning process (i.e. the categorization task), I 

couldn’t tell the difference in terms of neural activity between the different imaging sessions. 

The sparseness of the neural code was also accessed both at the population level 

(population sparseness) and single neuron level (lifetime sparseness), and based on the results 

reported here, the population sparseness was quite low, even after the animals had been exposed 

to several object exemplars. Given that I observed similarly low values for sparseness (i.e a sparser 

population code) in previous recording sessions, this can lead to the conclusion that the activity in 
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the mPFC is probably sparse to begin with, an effect which might be even more amplified due to 

some recording noise when imaging through the microprism, and also the fact that during the 

preprocessing phase, only the most active neurons are automatically detected with our current 

Suite2P pipeline. This essentially means that the low number of active neurons is most likely a 

consequence of both the recording and preprocessing procedures and not a direct consequence of 

any particular experimental effect, especially since there’s no tangible difference between the 

different categories. 

As for the neuron’s lifetime sparseness, I did observe a statistically significant difference 

between the first and last imaging sessions when I combine the data from the 3 mice. However, 

when analyzed individually, only one mouse showed a significant difference in terms of the 

baseline and endpoint CDF. It’s also worth mentioning that when I conducted the same analysis, 

using the 5sec. window that preceded the object presentation, the difference between the 2 

distributions was still present, which might indicate that the stimulus presentation doesn’t have 

any effect on the neuronal responses per se. 

It is unlikely that different methods to analyse the data would’ve yielded different results. 

In fact before the data analysis methods described in this chapter were implemented, I tried 

different approaches that had been reported in previous publications and the results were arguably 

even more lackluster. 

On my first approach, I tried to use the PCA analysis method described by Lopes-dos-

Santos et al, (2011), where the authors used the theoretical bounds of the Marcenko-Pastur 

distribution in order to detect neuron ensembles (Lopes-dos-Santos, Conde-Ocazionez, Nicolelis, 

Ribeiro, & Tort, 2011). Even though this method was applied to multielectrode recordings in rats, 

it seemed that it could be applicable to calcium deconvolved traces by simply converting the 
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deconvolved matrix into a binary one. The main purpose behind this idea was the detection of 

neuron ensembles that could hypothetically be present when the animals were seeing objects 

belonging to the same category. However, the results obtained revealed a handful of small 

ensembles sometimes comprised of two or three neurons, many of them not related to any 

particular object (i.e when the same object appeared more than once, the neuron ensemble was not 

detectable) or object category. For this reason the method was discarded. 

I also tried to address the clustering of different category exemplars using an agglomerative 

hierarchical clustering algorithm, similar to what McClelland et al., (1995), Kiani et al., (2007) 

and Kriegeskorte et al., (2008) used in order to better visualize the relationship between the 

different categories. However, not only were the clusters obtained unrelated to category 

membership (i.e the population vectors for each trial for a given category were not clustered), but 

they also seemed to display the characteristics of a known clustering problem called “chaining”. 

This problem is commonly observed when using single-link (shortest distance) as the linkage 

method, but the case of the dataset used here it was apparent even when different methods such as 

complete–link (furthest distance) or average link were used. Since the distance metric used in this 

dataset was based on Pearson’s correlation (one minus the correlation between data points) and 

not on Euclidean distance, other linkage methods such as Ward’s method were not employed. This 

being said, it is unlikely that different results would’ve been obtained by implementing these slight 

modifications. 

All things considered, based on these results one cannot make any assertion about the role 

of the rodent mPFC in visual categorization. However, I believe that there are two major factors 

that can account for these lackluster results. 
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First, we should consider the context where learning occurred. The animals were trained in 

an operant conditioning box with a touchscreen tablet where the objects were displayed, which 

means that the learning process related to the virtual objects, as well as the nature of the pairwise 

discrimination task itself, become associated with a set of contextual cues present at the time of 

learning.  

It’s widely recognized that animals form spontaneous associations between objects and the 

context in which they are found (Barker & Warburton, 2020). This behavioural mechanism is 

thought to be supported by a network comprising several regions, chief among which are the HPC, 

PRh and PFC, with the latter being associated with top-down modulation through the PRh and 

lateral entorhinal cortex (lEC), of the hippocampal context-appropriate object representations (Bar, 

2004; Eichenbaum, 2017; Fenske, Aminoff, Gronau, & Bar, 2006). Recent studies have also shown 

that action-selective mPFC neurons display a high degree of context-dependent modulation, and 

suggest that the mPFC is responsible for creating a rich contextual representation that incorporates 

sensory cues as well as specific actions and even time (Hyman, Ma, Balaguer-Ballester, 

Durstewitz, & Seamans, 2012).  

Concurrently, perturbations in the PFC’s activity via muscimol injections can also 

negatively affect task performance in by hindering the flexibility of context-appropriate responses 

towards ambiguous objects (Lee & Lee, 2012). Similar results have been observed when bilateral 

PFC lesions in rats impaired the performance in both object-context and object-place-context tasks 

(Barker & Warburton, 2020). Equally relevant, given the design of our behavioural task, is the fact 

that neurons in the PFC encode for context-appropriate behavioural initiation during reward 

seeking, which is based on the response-outcome contingency of the task (Moorman & Aston-

Jones, 2015). 
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This means that, in the experiments described in the second chapter, there is a clear problem 

when it comes to the overall experimental setup. The animals were trained and imaged under very 

different circumstances, and with different sources of sensory stimulation which are inherent to 

the two experimental contexts. This can be quite problematic when it comes to assessing the 

network changes which derive from the cumulative experience of different category exemplars, 

since the contextual cues present at the time of learning were absent during the imaging phase, 

when the animals were tested. 

Second, one should consider the imaging setup as well. Whereas the behavioural task 

required a specific set of actions to be taken in order to learn the similarities between category 

exemplars, the imaging/testing phase didn’t require any action. The animals were passively 

viewing different objects appearing on the tablet’s screen while being head-fixed. This becomes 

quite problematic when it comes to the mPFC’s engagement in the categorization task. 

In one of the studies conducted by Freedman et al., (2003), the group decided to compare 

the response patterns in both ITC and lPFC using the already mentioned DMC task (Freedman et 

al., 2003). Interestingly, they observed that when the visual stimuli were presented in a task which 

didn’t require any input from the animals, the response patterns observed in the lPFC during the 

DMC task completely disappeared. This stands in sharp contrast to what was found in purely visual 

areas such as the ITC, as demonstrated by different studies (Dehaqani et al., 2016; Freedman et 

al., 2003; Kiani, Esteky, Mirpour, & Tanaka, 2007; Kriegeskorte, Mur, Ruff, et al., 2008; Lehky 

et al., 2014; Meyers et al., 2008). 

Ultimately, this finding seems to indicate that the category information encoded by lPFC 

is heavily dependent on task demands, and requires some level of engagement and goal oriented 
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behaviour. I will further elaborate on this topic when revisiting the role of the PFC in visual 

categorization in the next chapter. 
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Chapter 4 

General Discussion 

The purpose of this set of experiments was to understand the role of the mPFC in the 

process of visual categorization, and in particular, if two of the main findings described in a 

conceptual learning model proposed by McClelland et al. (1995), could be observed in biological 

systems (McClelland et al., 1995). In order to assess this, I decided to use mice as our animal 

model, and to develop a behavioural categorization task that would allow us to evaluate the ability 

of these animals to generate categorical representations of different virtual objects. The main 

purpose of this task was to allow for the gradual incorporation of different objects belonging to 

two distinct categories into their knowledge database.  

I then decided to evaluate the animal’s performance with two different testing sets, the first 

with completely new objects from the initial categories (stage 7) and the second with a completely 

new S- category, or Ctrl category (stage 8). The results showed that the mice were able to 

generalize between objects of the S+ category as learning progressed, and even when tested with 

a complete new set of S+ and S- objects (stage 7) the correct response rate was remarkably high. 

Lastly, in the second testing stage (stage 8), the initial S- category was replaced by a new one, with 

5 new objects. Even though there was a decrease in the performance, to levels comparable to the 

initial stage of training (stage 5), the mice gradually adapted to this new S- category and after a 

few sessions they reached the passing criteria (80% correct trials for two consecutive sessions). 

Thus, the data indicates that mice are able to form visual category representations, presumably 

based on sets of features that humans are also likely also to use; however, a possible caveat is that 

the mice might be using low level features such as aspect ratio in order to discriminate between 

the objects. One can speculate that there isn’t enough variability between exemplars, and therefore 
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an abstract representation based on pixel variability in one or more axes could account for the 

results obtained, especially given the limited visual acuity observed in mice. A possible solution 

for this problem, is to use abstract objects such as “Greebles” or “Geons” which have been used 

by different groups as mentioned in Chapter I. 

In the next set of experiments, I took a subset of the animals used in the behavioural task 

and examined the neural activity in the mPFC using in-vivo 2-photon calcium imaging. Our goal 

was to observe the neural dynamics in the mPFC, as the animals gradually learned to discriminate 

between the S+ and S- categories with different exemplars throughout the different stages of the 

behavioural task. However, as mentioned in the previous chapter, even though the three mice used 

in these experiments were able to reach the end of the categorization task, the analysis of the neural 

activity collected at different time points didn’t show any particular difference across sessions. 

And despite finding a very small set of neurons in each session which seemed to display some 

category preference, I also couldn’t find any category information in the population code.  

It would also be reasonable to assume that the results reported here, simply reflect the fact 

that the mouse mPFC, unlike the primate dlPFC, does not play a role in encoding category 

information. However, given the perceived flaws in the experimental setup used in these 

experiments, such conclusion cannot be drawn, at least until these issues are properly addressed. 

But even though I couldn’t provide a satisfactory answer to the questions I had initially 

proposed, I can find in the literature a glimpse of what the neural dynamics in the primate lPFC 

look like, and acquire some valuable insights about our two main hypotheses. 
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Hypothesis 1: Neural representations of related experiences share a high degree of similarity 

between them and become hierarchically clustered. 

 

Building on previous experiments performed in their lab, Cromer et al., (2012) decided to 

investigate which neurons acted as multitasking or category generalists, and how many were 

category specialists (Cromer et al., 2010). Using a variation of the DMC task, the group added 

another category distinction (coupes versus sedans) to the one used in previous studies (cats versus 

dogs). This study was already mentioned in the general introduction of this thesis, but in short, a 

multitasking/generalist neuron would respond to both animals and cars (e.g. responding to dogs 

and sedans) during the delay period, whereas a specialist neurons was expected to respond just to 

one category scheme (either animals or cars). The results of this new DMC task revealed that a 

significant portion of dlPFC neurons were selective for both category schemes, and that these 

neurons were also the most category sensitive. There is of course, a sharp contrast between these 

results and the findings previously reported by the same group, where by Roy et al., (2010), used 

a pool of cat and dog images comprised of two prototypes for each category, as opposed to just 

one; this allowed the experimenters to create two different category schemes using the same two 

categories (Roy et al., 2010). In this variation of the task, Roy and collaborators found that there 

was very little overlap in terms of category representations across lPFC neurons. In other words, 

if the competing categories have very similar exemplars, and therefore are more prone to be 

misclassified, the lPFC can employ a more orthogonal coding scheme in order to increase pattern 

separation and therefore minimize uncertainty. This essentially means that, based on the task 

demands, the PFC might employ a different coding scheme in order to distinguish between 

different categories.  
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On the other hand, when objects being categorized belong to two independent sets such as 

in Cromer et al., (2012), with a larger degree of separation terms of their overall features, the PFC 

can reuse the same pool of neurons in order to represent categorical information, which leads to 

more overlap between category representations across neurons. Thus, the difficulty of the task 

seems to play a bigger role in terms of determining how information is encoded in the lPFC; 

contrasting with a pure bottom up signal processing approach, which would lead us assume that 

the more similar the stimuli are, the more correlated their representations would be (Kiani et al., 

2007; Kriegeskorte et al., 2008). That is to say, neuronal specialization in the PFC occurs when 

the cognitive demands are high (e.g. using the same set of images with two different category 

schemes), whereas neuronal multitasking prevails when there is a marginal independence between 

the different categories. 

This invariably leads us to one of our main hypotheses, which was derived from findings 

reported by McClelland et al., (1995) in their CLST model. In their paper, the authors hypothesized 

that representations of similar concepts would be highly correlated as the network acquires more 

information and is able to extract the statistical regularities across different categories.  

If we analyse the aforementioned results from Miller’s lab (Cromer et al., 2010; Roy et al., 

2010) under this assumption, one can conclude that for a region such as the rhesus monkeys lPFC, 

this might not be the case. However, it should be noted that the CLST model didn’t make any 

predictions regarding specific cortical regions where such clustering between representations of 

similar concepts (or categories) would exist. Furthermore, the results reported by Kiani et al., 

(2007) and Kriegeskorte et al.,(2008) seem to align with the predictions made by CLST model. A 

possible explanation for this might be the fact that the ITC is the last purely visual area in the 

ventral visual stream, which encodes categories based on their shared features, whereas the PFC 
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receives inputs from an array of cortical as well as subcortical regions, which need to be weighed 

according to the task parameters  

 

Hypothesis 2: As experiences of certain stimuli become integrated, mice will form sparse 

conjunctive representations of specific stimuli in higher modules of the hierarchy. 

 

As we’ve seen in the previous chapter, based on the data collected in experiment II, one 

cannot conclude that the representations in the mouse mPFC, display any of the characteristics of 

a sparse coding scheme, and this applies to both population sparseness and lifetime sparseness. 

However, similarly to what I’ve described in regard to our first hypothesis, experiments 

conducted in Millers’ laboratory can provide some valuable insights into how category information 

is encoded in the homologous region of the rodent mPFC – the primate lPFC.  

In 2008, Meyers and collaborators also examined the coding schemes in both LPFC and 

ITC, to see if information was represented in a sparse/compact5 fashion or in a more distributed 

manner (Meyers et al., 2008). In order to do this, the authors trained a classifier with the best “k” 

neurons in each region (lPFC and ITC) and then tested the classifier using only these neurons. 

They defined the best “k” neurons as those with the smallest p-values on a t-test that was applied 

to all the dog trials versus all of the cat trials on their training dataset; this procedure was also 

conducted separately for each time bin they used. Out of the 256 neurons recorded, the authors 

were able to extract most of the information available for both ITC and PFC using the best 16 

neurons at all time points. In addition, during the decision period, they were able to retrieve most 

                                                           
5 In their paper, the authors used the term “compact” or “compactness” due to the strong association between firing 

rate and sparseness. This might also be related to the fact that in many publications, the concepts of population 

sparseness and lifetime sparseness are sometimes used interchangeably or even combined (Meyers et al., 2008; 

Willmore & Tolhurst, 2001). 
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of the information from the lPFC using only 8 neurons, with a decoding accuracy of 78.2% +/- 

1.2%. Remarkably, these neurons contained almost as much information as the whole population 

(79.4% +/- 1.7%). On the other hand, in the ITC the code was less sparse, with 64 neurons 

containing nearly all of the information available. Equally relevant, is the fact that excluding these 

64 neurons, didn’t lead to chance level accuracy by the classifier, a finding which point towards a 

considerable amount of redundant information contained in the remaining 192 neurons. 

Nevertheless, the same laboratory, in 2010 equated multitasking neurons with a less sparse, 

and more distributed coding (Cromer et al., 2010). This apparent mismatch between what both 

papers claim can perhaps be attributed to the common misunderstanding between population 

sparseness and lifetime or kurtotic sparseness (for an extensive review see Wilmore and Tolhurst, 

2001). While Meyers et al., (2008) point towards a population sparseness definition, Cromer et al., 

(2010) might be alluding to something more akin to lifetime sparseness. However, this 

interpretation is merely speculative, since the authors never clarified in any publication these 

seemingly contradictory statements. 

Taken together these findings imply an extremely sparse coding in the monkey lPFC during 

the decision period, and an overall sparse representation in both regions during the three periods 

of the task. Nevertheless, I cannot infer anything about the evolution of the network’s coding 

scheme as learning progressed, since the recordings were conducted after the extensive training 

period. 

 

1. Visual categorization: revisiting the role of the Prefrontal Cortex 

Neural correlates of visual categorization have been reported in several brain regions. This 

complex process of partitioning the visual elements of the external world according to their visual 
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similarity and/or their behavioural significance, relies on several of brain areas. These areas range 

from primary sensory cortex, in particular the visual cortices which process increasingly complex 

features of a given stimuli, to the hippocampus, and of course higher order processing regions such 

as the parietal cortex, inferior temporal cortex and the prefrontal cortex (Pan & Sakagami, 2012; 

Seger & Miller, 2010). Moreover, regions associated with stimulus valence such as the striatum 

and the midbrain dopaminergic neurons also collaborate in the process of category learning, which 

is often comprised of a decision making component as well (Antzoulatos & Miller, 2011; Seger & 

Miller, 2010; Seger & Peterson, 2013). All things considered, both the IT cortex and the PFC, in 

particular the lPFC, seem to play major roles when it comes to category learning. 

As mentioned in the introduction, the ITC is not only an important region for object 

recognition, with neurons exhibiting tolerance for several viewpoints of the same object (also 

known as view invariance), but its also heavily involved in the categorization of visual stimuli 

(Freedman et al., 2003; Kiani et al., 2007; Kriegeskorte, Mur, Ruff, et al., 2008; Nikos K. 

Logothetis & Sheinberg, 1996; Vogels, 1999a, 1999b). 

Vogels and collaborators (1999a, 199b) showed that monkeys were capable of 

discriminating tree from non-tree images in a classification task, and that the ITC neurons were 

actively encoding categorical information pertaining to the tree category (Vogels, 1999a, 1999b). 

The studies mentioned earlier in the general introduction, by Kiani et al., (2007) and Kriegeskorte 

et al., (2008) also revealed that while viewing a set of more than 1000 images, the population 

activity in the monkey’s ITC showcased a robust ability to classify images based on feature 

similarity. But even though the neurons in the ITC were capable of encoding category information, 

no single neuron responded to all exemplars of a given category in a similar manner. For example, 

many neurons which were responsive to human faces were mostly silent when the faces of other 



81 

 

primates were shown, and even those which showed selectivity for to human faces, didn’t respond 

to all human faces.  

Meyers and collaborators analysed the responses of 443 ITC and 525 lPFC neurons from 

two rhesus monkeys, from a set of previous experiments conducted by Freedman and collaborators 

(Freedman et al., 2003; Meyers et al., 2008). The researchers found that, in general, even though 

the ITC neurons encoded abstract category information, for the most part they seemed to encode 

detailed visual information. These results echoed the findings reported by Freedman et al., (2003), 

where the data suggested a greater involvement of the ITC in encoding the properties of images 

currently being viewed.  

On the other hand, the lPFC neurons seemed to attribute more weight to the behavioural 

relevance of the stimuli, given the current task demands, and in storing such information in 

working memory (Meyers, 2018; Meyers et al., 2008; Pan & Sakagami, 2012).  

Using a linear classifier, Meyers et al., (2008) managed to get a glimpse of how much 

detailed visual information was preserved regardless of the spike count variability from trial to 

trial, and between the different phases of the behavioural task. Interestingly, they observed that in 

both ITC and PFC, the information about the category of a stimulus presented during the sample 

phase (i.e. cat or dog), seemed to increase immediately before the onset of the decision phase, 

where the monkeys had to make a decision about the category membership of the sampled 

stimulus. Its also important to note that while neurons along the ITC possessed category 

information in each phase of the task (sample, delay and decision phases), the effect related to the 

overall ratio of abstract information relative to total category information was much more 

pronounced in the lPFC. Furthermore, Freedman et al., (2003) had already observed that before 

the initial training on the contingency, the neurons in the ITC didn’t show any ability to 
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discriminate between images close to the category boundary. Only after several sessions, did the 

neurons in the ITC start to display a sharper tuning for the specific features of the stimuli, and 

consequently, to the distance between the morphed images near the category boundary, which 

contrasted once again, with the lPFC neurons which were capable of representing the category 

boundary between the 2 categories.  

Another interesting finding from Freedman’s experiment was the fact that the category 

signal observed in the lPFC could be observed earlier in the task (sampling phase), compared to 

the ITC, in which category selectivity was only observed during the delay and decision phase. 

According to Pan and Sakagami (2010), this could mean that perhaps, the category information 

related to specific object features and the perceptual commonalities between them, could be sent 

from the ITC to the lPFC, which would then extract category information based on the current task 

demands and motivational state, and send that information back to the ITC (Pan & Sakagami, 

2012; Sakagami et al., 2006; Tomita, Ohbayashi, Nakahara, Hasegawa, & Miyashita, 1999). In 

spite of that, the importance of the lPFC in visual categorization was challenged by another group.  

In a study published in 2010, Minamimoto et al., decided to see if the lPFC was actually 

necessary for the process of visual categorization (Minamimoto, Saunders, & Richmond, 2010). 

In humans, category specific visual agnosia has been observed in patients with ITC damage, but 

not lPFC damage (Gainotti, 2000; Minamimoto et al., 2010). This led Minamimoto and 

collaborators to test the role of the lPFC in the process of visual categorization, using a modified 

version of a reward-delay task, which had been previously developed by the same group 

(Minamimoto, La Camera, & Richmond, 2009). In this experiment,  four monkeys were trained to 

associate a given category (dogs) with a higher amount of reward and another one (cats) with a 

smaller amount, and after four days of testing with these two categories, the animals were given a 
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bilateral lPFC lesion. The results showed that not only could the monkeys perform the same task 

after the bilateral lesion, using the same set of images, but could also learn to categorize novel 

images from the previous categories and even learn 2 new categorical distinctions (cars versus 

trucks). These results are diametrically opposed to the evidence accumulated over the years by 

other groups (Freedman et al., 2001, 2002, 2003; Jiang et al., 2007; Meyers et al., 2008), and they 

raise a lot of questions related to the process of stimulus generalization, and exactly what regions 

are essential for the process of visual categorization.  

A possible explanation for the results reported by Minamimoto et al., (2010), was proposed 

by Pan and Sakagami in 2012. In line with some of the main points outlined in a previous review 

paper by Buckley and Sigala (2010), the authors raised the possibility that the task used in 

Mimaminoto’s study could be accomplished without the involvement of the lPFC since it might 

be less-demanding in comparison to the type of tasks reported in previous studies (Buckley & 

Sigala, 2010; Pan & Sakagami, 2012). The main argument seems to revolve around the fact that 

the reward-delayed task used by Minamimoto and collaborators relies on a fast perceptual 

mechanism, which might be accomplished in the absence of the lPFC and its top-down influence, 

either by using different pathways or by purely relying on visual cues, which could theoretically 

be accomplished by the ITC alone.  

In 2009, Peelen and collaborators conducted an fMRi study, where they showed that, in a 

rapid categorization task, the PFC appeared to be silent, whereas the ITC was actively engaged 

when it came to detect the presence of people or cars in natural scenes (Peelen, Fei-Fei, & Kastner, 

2009). A possible explanation for these results lies in the fact that the type of fast visual processing 

required could be achieved via ITC and OFC connections without the involvement of the PFC. 

(Buckley & Sigala, 2010). Lastly, one should also consider that the lPFC lesioned monkeys might 
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find more complex tasks such as the ones which make use of morphed images, more difficult to 

learn, but for now we are still lacking the experimental evidence to make such assertion.  

All thing considered, the important role played by the lPFC in categorization has been 

demonstrated by the unique ability of its constituent neurons to represent the boundary between 

different categories in a morphing visual categorization task (Freedman et al., 2001, 2003; Meyers 

et al., 2008). Furthermore, it seems that the primate PFC as a whole is involved in representing not 

just perceptual categories, but also in grouping together objects or visual stimuli with no 

resemblance to each other, but which share the same context-dependent behavioural relevance 

(Pan & Sakagami, 2012; Seger & Miller, 2010). This means that the primate PFC and more 

precisely the lPFC, is capable of extracting important information across stimuli, while ignoring 

irrelevant dimensions, which can essentially be seen as a form of abstraction.  

Given the aforementioned results it is fair to assume that the ability to abstract across 

stimuli might also rely on the lPFC’s capacity to retain and/or access a long-term record of 

stimulus-reward associations. In turn, this feature can facilitate the emergence predictions about a 

positive or negative outcomes based on specific perceptual information, as well as the inputs 

stemming from the vPFC, OFC, HPC, AG, BG, STR, and even the dopaminergic afferents 

originating in the midbrain. Lastly, it’s also important to note that neurons in the lPFC can be 

responsive not only to the category exemplars, but also to rewards, making them category-reward 

specific (Pan, Sawa, Tsuda, Tsukada, & Sakagami, 2008). This is particularly relevant for tasks 

that rely on any kind of reward-based learning in order to probe the subjects’ ability to discriminate 

between different categories, since the type of category specificity observed at the neuronal level, 

or even the strength of the category response, might be directly linked to the existence of a reward 

signal that can amplify their ability to discriminate. 



85 

 

2. Conclusion and Future Directions 

Visual Categorization is a complex process that has been the subject of intense research 

since the second half of the 1960’s. For the most part researchers have focused on uncovering the 

mechanisms that might be in place when a categorical judgement is made, and the parameters 

which determine how things around us are categorized. But over the past 20 years, the focus within 

the field of Neuroscience has been in the specific regions involved in this complex process that 

relies on many different brain regions. The PFC has been particularly important in terms of 

providing insights about this process. This is mostly due to its unique connectivity with many 

cortical as well as subcortical regions which provide an impressive array of inputs that are then 

combined and reweighted according to specific goals. 

But although a considerable number of physiological studies have been conducted in 

human and non-human primates, there is much less information about the specific mechanisms 

behind visual categorization in other animal species. With the advancements in recording 

techniques developed for rodents, such as 2-photon calcium imaging, it made sense for us to 

explore the role of the mouse mPFC in this process, especially given the complete lack of studies 

that could bridge the gap between homologous regions between species and their specific role in 

categorization. And even though the 2-photon calcium imaging results reported here do not bring 

us closer to any meaningful understanding about the role of the rodent mPFC in visual 

categorization, I consider that this has been a valuable experience. The experiments reported in 

this thesis were essentially a first attempt at not only imaging the mPFC in mice (within our lab), 

but more broadly, at examining the neural mechanisms of category learning, and how the network 

dynamics change as more categorical knowledge is acquired over time. There were a lot of things 

that needed to be in place in terms of the overall logistics required to conduct these experiments, 
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and for a first attempt, I did gain some valuable knowledge, even in the absence of evidence for 

any of our specific hypotheses. 

There is still a lot to be done within the larger field of visual categorization, particularly 

when it comes to rodent research. Many important areas such as the HPC, the AG, the PRh, or 

even the different sub-regions of the PFC are still unknown variables when it comes to determining 

their contribution to this complex process and what sorts of information is represented within those 

areas.  

It’s quite possible that different areas weight the inputs they receive based on parameters 

such as purely visual information, previous encounters with a given object or set of objects as well 

any emotional valence associated with them, which might ultimately dictate how category 

information is represented in those same areas. This will require tasks that not only evaluate some 

of these different parameters but also recording techniques that can access different brain regions, 

ideally in a simultaneous manner similar to the ITC and PFC recordings mentioned throughout 

this thesis. This being said, one of the major shortcomings of those studies, lies precisely on the 

lack of information on how the network adapts its weight matrix as learning progresses, and as the 

subjects are exposed to more exemplars of the same categories. This is what will ultimately allow 

us to uncover how this form of semantic knowledge, how schematic representations arise, and 

therefore, how the brain learns to create a rich model of the world. 
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