
MINMAX SINK LOCATION PROBLEM ON DYNAMIC CYCLE NETWORKS

RAJIB CHANDRA DAS
Bachelor of Science, Chittagong University of Engineering and Technology, 2014

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Rajib Chandra Das, 2018



MINMAX SINK LOCATION PROBLEM ON DYNAMIC CYCLE NETWORKS

RAJIB CHANDRA DAS

Date of Defence: December 12, 2018

Dr. Robert Benkoczi
Supervisor Associate Professor Ph.D.

Dr. Shahadat Hossain
Committee Member Professor Ph.D.

Dr. Saurya Das
Committee Member Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.



Dedication

To my mom who sacrificed her whole life to build up mine.

iii



Abstract

We address both 1 and k sink location problems on dynamic cycle networks. Our 1-sink

algorithms run in O(n) and O(n logn) time for uniform and general edge capacity cases, re-

spectively. We improve the previously best known O(n logn) time algorithm for single sink

introduced by Xu et al. [Xu et al. 2015] with uniform capacities. When k¿1, we improve

two results [Benkoczi et al. 2017] for both with uniform and arbitrary capacities by a fac-

tor of O(logn). Using the same sorted matrices optimization framework originally devised

by Frederickson and Johnson and employed by [Benkoczi et al. 2017], our algorithms for

the k-sink problems have time complexities of O(n logn) for uniform, and O(n log3 n) for

arbitrary capacities. Key to our results is a novel data structure called a cluster head forest,

which allows one to compute batches of queries for evacuation time efficiently.

iv



Acknowledgments

I am very much grateful to my thesis supervisor, Dr. Robert Benkoczi for his unconditional

boundless support. I am blessed that most of the times I received his insightful suggestions

and inspirations to concentrate more on my research. I want to thank him for everything he

did for me. I would like to thank the other members of my thesis committee, Dr. Shahadat

Hossain and Dr. Saurya Das for spending their valuable time to read my thesis proposal

and the final thesis. I would also like to thank all of my office colleagues. I am thankful to

Polash, who cooked me food while I was writing my research paper and this thesis.

Last but not least, I am very much indebted to my family members, I can never repay

them for the support they have provided throughout my studies.

v



Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Flow and properties of Sinks . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Sink location problem definition . . . . . . . . . . . . . . . . . . . 12
2.2.3 Congestion and evacuation time . . . . . . . . . . . . . . . . . . . 12

2.3 Basic concepts of evacuation . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 An optimal algorithm for 1 sink location problem . . . . . . . . . . . . . . 20

3 The Cluster Head Forest 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Properties of the CHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 CHF construction for uniform capacities . . . . . . . . . . . . . . . . . . 23

3.3.1 CHF construction for an example path . . . . . . . . . . . . . . . . 26
3.4 Cluster Head Forest for arbitrary capacities . . . . . . . . . . . . . . . . . 28

3.4.1 CHF construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Using the CHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 For a single query . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Using of CHF for a set of queries . . . . . . . . . . . . . . . . . . 36

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Sink Location on Cycle Networks 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Single sink problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 The multiple sink Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 The feasibility test . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



CONTENTS

5 Optimization 48
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Sorted matrix approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Parametric search approach . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusion 51
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 54

vii



List of Tables

1.1 Tabular representation of previous results . . . . . . . . . . . . . . . . . . 5
1.2 Summary of our contribution in this thesis . . . . . . . . . . . . . . . . . . 6

2.1 Evacuation time for all vertices in clockwise direction . . . . . . . . . . . . 17
2.2 Evacuation time for all vertices in counter clockwise direction . . . . . . . 18
2.3 Minimum evacuation time in either direction for all vertices . . . . . . . . . 18

5.1 Summary of complexities in different tasks . . . . . . . . . . . . . . . . . 49

6.1 Current state of optimal sink location problem in general graph . . . . . . . 52

viii



List of Figures

2.1 The flow of vertex vp (resp. vp+1) is towards the sink s1 (resp. s2) . . . . . 11
2.2 Evacuation when s is at: (a) v+j ; and (b) v−i . . . . . . . . . . . . . . . . . 12
2.3 Evacuation when s is at: (a) v+j+1; and (b) v−i−1 . . . . . . . . . . . . . . . . 13
2.4 Example path networks with : (a) single edge, and (b) two edges. . . . . . . 15
2.5 (a) A cycle network. (b) For splitting edge ei = (vi,vi+1), the corresponding

path network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 An example cycle network, C . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 An example path obtained from given cycle C, by splitting edge, e2 = (v2,v3) 18

3.1 CHF construction on a path P[u1,uq] . . . . . . . . . . . . . . . . . . . . . 23
3.2 Cluster sequence diagram: (a) base case and (b) general case . . . . . . . . 24
3.3 (a) Merging two clusters (b) two clusters (subtrees) adding by an edge in

the CHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 (a) The cluster sequence for the sink at u−1 before incorporating the supply

from ui; (b) cluster sequence after clusters Cl+1,Cl, . . .Cp have merged; (c)
the corresponding CHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 An example path network, P[u1,u3] . . . . . . . . . . . . . . . . . . . . . 26
3.6 Sequence diagram for an example path: (a) base case, (b) second iteration,

and (c) last iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Cluster head forest construction steps for: (a) base case, (b) two disjoint

clusters at 2nd iteration, and (c) final CHF . . . . . . . . . . . . . . . . . . 27
3.8 Sections in different kind of clusters. In the first two clusters C1 and C2, they

have one and two sections respectively. Cluster C3 consists of k sections. . 28
3.9 Sections flattened at middle of the sequence. . . . . . . . . . . . . . . . . . 30
3.10 critical capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.11 Because of the reduced capacity ci, cluster Cl needs to be flattened. (a) the

white areas between AE and MN can be filled by the gray parts of rectangle
EFGH of cluster Cl; (b) after merging the resultant cluster sequence . . . . 31

3.12 The CHF for aribitrary case at ith iteration . . . . . . . . . . . . . . . . . . 32
3.13 Determination the value of δ . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 A path P[v1,v2n−1] with length 2n−1, where n is the number of vertices of
the given cycle and vn+i = vi . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 A path obtained from Cycle C by splitting edge en . . . . . . . . . . . . . . 40
4.3 Feasible solution: all vertices are covered by a sink. . . . . . . . . . . . . . 42
4.4 Feasible solution: all vertices are covered by a sink, where r < k. . . . . . . 44
4.5 Last sink is the decision maker about the test . . . . . . . . . . . . . . . . . 44
4.6 An infeasible solution because V [v j+1,vn] are uncovered. . . . . . . . . . . 46

ix



Chapter 1

Introduction

Facility location problem (FLP) asks for the location of facilities so that we can meet the

specific objectives such as minimizing transportation cost and the distance between cus-

tomer and facilities etc. Besides transportation cost, we have to consider the cost of placing

facilities. There are different kinds of FLP. The minmax problem, for instance, explores

the placement of the facility with the objective to minimize the maximum distance from a

customer to the nearest facility.

There is another type of location problem known as sink location problem (SLP). Fire

escape arrangement, earthquake or tsunami evacuation plan are the classical applications of

this problem. Unlike the FLP in sink location problem we have to take in account new con-

straints, capacity (uniform or arbitrary) on every edge denoting the number of supplies can

enter an edge in one unit time and transit time per unit distance. If all the edge capacities

are equal, then the problem is called the uniform otherwise arbitrary or general edge capac-

ity problem. If the capacity of an edge is comparatively smaller than the vertex supplies,

then the supplies take more time to cover the edge. In [14] Hamacher and Tjandra showed

that the sink location problem could be represented by a network whose vertices represent

the initial location of supplies (evacuees) and the edges represent the possible evacuation

routes. This network is called the dynamic graph network, which was first introduced by

Ford and Fulkerson [10] in 1958.

Dynamic networks can be represented in discrete and continuous model. When all the

input values are given as an integer (resp. as a real number) then the model is called the dis-

1



1. INTRODUCTION

crete (resp. continuous) model. In [3], Baumann, and Skutella showed that dynamic graph

networks could be used for evacuations model. In the evacuation problem [14, 18], where

the weights (i.e., evacuees) of each vertex are discrete and the sinks has infinite demands.

We can represent the total number of people in a building as the supplies (evacuees) of a

vertex in the network. The edges can represent the roads, and the sinks are the evacuation

buildings as described in [1]. The outcome is to determine the optimal locations for evac-

uation buildings so that everyone can reach a sink as best as possible by minimizing the

evacuation time.

In [17], Kariv, and Hakimi proved that for a general graph the k−center problem is NP-

hard. In the center problem, to compute the evacuation time we only need to determine the

maximum distance from the vertices to the nearest facilities. We notice that in our minmax

sink location problem if the edge capacities are too large, then it can be reduced to the

k−center problem. So, we can also prove that the general k−sink problem is NP-hard. To

solve the k−sink location problem for restricted topology networks (e.g., dynamic paths

and trees), the efficient way is to find the vertices for which the supplies of other vertices

get congested. If the supply of a vertex requires more time to move to the sink because of

the small edge capacity than the supplies from other vertices, then the congestion occurs.

When the edge capacities are the same for all edges, it is easy to find out the exact location

where congestion occurs. This problem is known as sink location problem with uniform

edge capacity. On the contrary, the sink location problem with different edge capacities (or

arbitrary capacities) is way more difficult.

In this thesis, we study the sink location problem on dynamic cycle networks for both

uniform and arbitrary capacities. A simple cycle is a trail of edges and vertices if and only

if starting vertex and ending vertex is identical and other edges or vertices should not be

traversed more than once. We improve the time complexity of existing algorithm for both

the 1 and k sink location problems in cycles. For a cycle, given a sink and a vertex, there

are two paths (clockwise and counter-clockwise) the supply can reach the sink. Here, the

2



1.1. LITERATURE REVIEW

big challenge is to find the right path for the supply from a vertex travels towards a sink.

To solve the sink location problem on the dynamic in other simple networks (path and tree)

the common complication (details in the following section) is finding the vertex for which

the congestion occurs. In the cycle network, this congestion can also happen. Specifically,

we need to know as fast as possible about the congestion in a cycle network. In this thesis,

we assume the flow of the supply is confluent, that means every vertex has maximum one

outgoing edge. As a result, we can observe that on a cycle network with 1-sink, there exists

an edge which will not carry flow, which we call a split edge.

Definition 1.1. (Split edge). The edge not traversed by any flow in a single sink location

problem on a cycle called the split edge.

After splitting an edge, we can solve the path problem by the most efficient existing

algorithm. However, the big question is to find out a particular splitting edge in an efficient

way for which the evacuation time is optimal. We call this specific edge an optimal splitting

edge.

Definition 1.2. (Optimal Splitting Edge). A specific splitting edge for which the evacua-

tion completion time is minimum is called the optimal splitting edge.

Therefore, throughout this thesis, we explore how to efficiently find the optimal splitting

edge and solve the sink location problem on cycle network for a discrete model with no

more than the time complexity of the existing path algorithm.

1.1 Literature Review

In the literature, there are a handful of interesting articles on sink location problems

have been published for different dynamic networks with both uniform and general edge

capacities. Most of the previous results are exists for the special graphs such as paths and

trees which are graphs without cycles. Very few articles are available for placing sink on

cycle networks. Table 1.1 represents the survey results on previous research.

3



1.1. LITERATURE REVIEW

Benkoczi et al. [4] solved the p−center problem on cycle networks that runs in O(n logn)

time, where n is the number of vertices on the given cycle. The authors also studied the

multiple sink location problems on dynamic cycle networks and designed an O(n log2 n)

and O(n log4 n) time algorithms for finding the optimal k−sinks in dynamic flow cycle net-

works with uniform and general edge capacities, respectively. For any given cycle network,

by splitting an arbitrary edge of the cycle, the authors generated a path. They doubled the

path by combining two copies of the obtained path. To solve the multiple center or sink

location problems the authors perform the feasibility test which decides for any given num-

ber of facilities whether the supply of every vertex can be served by a facility or not within

a given time. Regarding the sink location problem, the authors introduced Capacity and

Upper Envelopes tree (CUE tree), whose leaves are the vertices of the path. At every node

of the CUE tree, the leftmost vertex of that node, the rightmost vertex of that node, two

weight functions, and two capacity functions was stored. To compute the evacuation time

for a given path, one needs to know about the congestion. In this regard, the CUE tree

provides all the necessary information to determine the congestion more efficiently.

Higashikawa et al. [16] studied the multiple sinks (k−sink) location problems in a dy-

namic path network when the edge capacities are uniform. The authors computed the op-

timal cost for two criteria, the minimum of maximum cost and minimum of total cost. To

calculate the optimal cost, at first the authors illustrated their model for solving the 1-sink

location problem and then extended it to the k−sinks problem. They have formulated a

recursive function to solve the main problem: locating k−sinks in a path. At every sub-

problem, they have used 1−sink algorithm. The authors used a (k−1)-dimensional vector

denoting the (k−1) divider which divides all supplies (evacuees) between two consecutive

sinks into two separate groups. The supplies to the left (resp. right) of the divider evacuate

to the left (resp. right) sink. The authors solved the multiple sink location problems on

dynamic path networks in O(kn) time.

4



1.1. LITERATURE REVIEW

Table 1.1: Tabular representation of previous results

Net-

works

No. of

Sink

Edge

Capacity
Running Time

Ref

k = 1 uniform O(n logn) [19]

Tree arbitrary O(n log2 n) [19]

k > 1 uniform O(max{k, logn}kn log3 n) [8]

arbitrary O(max{k, logn}kn log4 n) [8]

k = 1 uniform O(n) [16]

arbitrary O(n logn) [1]

O(kn) [16]

uniform
• O(n+ k2 log2 n) when k is o(

√
n

logn)

• O(n logn) when k is Ω(
√

n
logn)

[7]

Path k > 1 O(nk log2 n) [1]

arbitrary
• O(n logn+k2 log4 n) when k is o(

√
n

logn)

• O(n log3 n) when k is Ω(
√

n
logn)

[7]

k > 1 uniform O(n log2 n) [4]

Cycle arbitrary O(n log4 n) [4]

Bhattacharya et al. [7] improved the algorithms for placing multiple sinks on dynamic

5



1.2. CONTRIBUTION OF THIS THESIS

flow path networks. The authors studied both uniform and general edge capacity cases.

The authors stored all necessary information to determine the congestion in the CUE tree

and extracted the information efficiently in demand. In this paper, multiple sink location

problems have been solved by testing the feasibility. To optimize their proposed algorithm

the authors used two different frameworks (details in chapter 5) and obtained O(n logn) and

O(n+ k2 log2 n) time algorithms when all edges have the same capacity. For general edge

capacities, the authors presented two different results that run in O(n log3 n) and O(n logn+

k2 log4 n).

1.2 Contribution of this thesis

In this thesis, our main contribution is to propose a novel data structure which we call

Cluster Head Forest (CHF for short). In the preprocessing phase, we construct the CHF

with the necessary information about congestion. The CHF allows us to answer a query

for computing the evacuation time for any given subpath as well as a set of queries. The

real power of the CHF comes to solve a batch of queries in an efficient manner. To solve

the multiple sink location problems, we perform the feasibility test. Using our CHF, more

efficiently we can test the feasibility.

Table 1.2: Summary of our contribution in this thesis

No. of sink Optimization framework Edge capacities Running time
k = 1 NA Uniform O(n)

NA General O(n logn)
Parametric Search Uniform O(n+ kn logn)
Parametric Search General O(n logn+ kn log2 n)

k > 1 Sorted Matrix Uniform O(n logn)
Sorted Matrix General O(n log3 n)

Table 1.2 represents the summary of our results. For the first time, we propose a single

sink location problem on cycle networks with general edge capacities. Besides this, we

improve all known algorithms for dynamic cycle network that have been studied so far. We

6



1.3. ORGANIZATION OF THE THESIS

solve 1 and k-sink location problems in cycle networks with the same time complexity as

the currently best algorithms for path networks. The comparison with our results and the

existing algorithms are as follows:

1. We show that 1−sink location problem on cycle networks with uniform capacities

can be solved in O(n) time. Our result improves the algorithm developed by Xu and

Li [21] when the edge capacities are same, whose time complexity is O(n logn).

2. We solve the multiple sink location problems on cycle networks with uniform edge

capacities in O(n logn) time. We improve the very recent algorithm which is pro-

posed by Benkoczi et al. [4]. Their algorithm can run in O(n log2 n) time.

3. We provide an O(n log3 n) time algorithm for locating a k−sink on cycle networks

with arbitrary capacities, whereas the previously best-known algorithm as presented

in [4] requires O(n log4 n) time.

To obtain our claimed results, we use our proposed data structure that allows us to per-

form a faster feasibility test for finding the multiple sinks on the path. The above discussion

summarizes that we improve all known algorithms by a factor of logn and propose a new

algorithm for the single sink location problem with arbitrary edge capacities.

1.3 Organization of the thesis

We organized the thesis as follows.

In the following chapter, we define our model, discuss preliminary concepts and the

terms that are used throughout the thesis. We also describe the procedure to generate a path

from the given cycle by splitting an edge. Then we focus on how to determine the optimal

splitting edge which helps us to find out the minimum evacuation time.

In chapter 3, we introduce our proposed novel data structure. We construct cluster head

forests for both uniform and non-uniform edge capacities. How can our forests solve the

sink location problems more efficiently is also discussed in this chapter.

Chapter 4 presents single and multiple sink location algorithms for both uniform and

7



1.3. ORGANIZATION OF THE THESIS

general edge capacities. When the edge capacities are arbitrary, we are the first who propose

an algorithm for solving the single sink problem on cycle. When the number of sinks k > 1,

our algorithm can run in the same complexity of the existing path algorithm. We also show

that our algorithms improved some previous results.

In chapter 5, we provide several algorithms using two existing optimization frameworks.

One is better than others based on the given value of k.

Finally, we conclude the thesis with the future research directions and summarizing our

research.

8



Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we define our model and essential terms that are used throughout the

thesis. We also discuss the necessity of our proposed data structure to overcome the time

complexity of the trivial algorithm. Section 2.2 comprises the definition of our proposed

model, necessary notations and terms that will be used in the following chapters. In the

next section, we include the elementary discussion about evacuation completion time. In

section 1.1, we discuss a brute force algorithm for placing sink on a cycle network. This

chapter concludes with providing an algorithm for the 1−sink location on a cycle that leads

us to design a new data structure to solve the algorithm more efficiently.

2.2 Model definition

Let N = (C = (V,E), l,w,c,τ) be our proposed dynamic network that comprises cycle

C, which consists of vertices V = {v1,v2,v3, . . . ,vn} and edges E = {e1,e2, . . . ,en} where

ei = (vi,vi+1); we let li be the positive length of edge ei, li ∈ R+; wi represents the weight

(= supply) of vertex vi with positive value, wi ∈ R+; ci is the edge capacity of ei (uniform

or arbitrary capacity, defined in chapter 1), which is the maximum limit of supply that can

enter an edge per unit time; we denote τ as the transit time per unit distance, τ ∈ R+.

As we assume the vertices are indexed from 1 to n, i.e., v1,v2, . . . ,vn. So, we can

find a vertex with its index. The set of vertices V denoted as v1 ≤ v2 ≤, . . . ,≤ vn. For

any two points (x,y) ∈ C, we mean that these two points can be anywhere on the cycle

9



2.2. MODEL DEFINITION

C. Let V [x,y] denote the set of vertices between vx and vy. If x ≤ y, then V [x,y] consists

of vx,vx+1, . . . ,vy−1,vy; otherwise, if x > y, V [x,y] = vy,vy+1, . . . ,vn−1,vn,v1, . . . ,vx−1,vx.

Similarly, by P[x,y] we mean the subpath from x to y induced by V [x,y]. We let d(x,y) to be

the length from point x to y, when x≤ y. If y≤ x, then the distance from y to x is determined

by d(y,x). Thus, d(x,y) and d(y,x) are not necessarily be equal. The total order to the set

of points P on the edges of the cycle can be represented as P∈C, in such a way that if point

a ∈ P[x,x+1] and b ∈ P[y,y+1], then a≤ b if x+1≤ y.

Let a point x lies on edge ei ∈ E. We mean the point x can be located anywhere from

vertex vi to vi+1 thus the sum of the distances from the vertices vi and vi+1 to the point x

is equals to the edge length li. In other words, we can define the distance from x to the

endpoints so that the edge length is preserved. The distances from vertex vi to the point

x and vi+1 to x are d(vi,x) and d(x,vi+1), respectively. So, mathematically we can write,

d(vi,x)+ d(x,vi+1) = li. Similarly, we let c(x,y) stands for the minimum capacity from x

to y. So, the capacity from vi to x and from x to vi+1 is same as of ei, which is ci. For

i = 1,2, . . . ,n, we let v+i (resp. v−i ) be a point on edge ei (resp. ei−1) which is just right

(resp. left) of vertex vi.

We let W [vi,v j] be the sum of supplies (= weights) of vertices from V [vi,v j]. We cal-

culate this weight array in preprocessing stage by spending linear time so that we can get

the sum of weights in constant time for any given starting and ending vertex. If the number

of vertices on the given cycle is n, then consider a path P[v1,v2n] (i.e., v1, . . . ,vn,v1, . . . ,vn

where vn+i = vi). We can compute the array as follows [7]

W [i] = ∑
v j∈V [v1,v j]

w j for 1≤ i≤ 2n (2.1)

then for any arbitrary interval from vi to v j we can determine the sum of weights,

W [vi,v j] =W [ j]−W [i−1], when i≤ j.

10



2.2. MODEL DEFINITION

2.2.1 Flow and properties of sinks

In our proposed model, we assume a sink node holds all the properties that we described

above for a point. That means a sink s cannot be on the vertices only, but it can be placed

on the edges too, s ∈C. We also assume that supply of a particular vertex cannot be split,

i.e., all supplies of a vertex will evacuate to the same sink. If a sink is placed on vertex,

then we call it the sink vertex. The supply of sink vertex will be evacuated instantly (in

time 0) because the supplies do not need to move anywhere for evacuation. A sink is the

safest place for all suppliers who want to access it. A sink has an infinite capacity to hold

all supplies come to evacuate. The supplies coming from clockwise and anti-clockwise

directions of a sink can easily reach without any interruption by each other. However, note

that the supplies moving in the same direction can be disrupted, in details will be discussed

in the following sub-section.

vpvi vp−1 vp+1 vj

s1 s2

flow flow

Figure 2.1: The flow of vertex vp (resp. vp+1) is towards the sink s1 (resp. s2)

We also assume that the flow of supply is confluent, that means the evacuees of all

vertices start their journey simultaneously to a sink such that every vertex has maximum

one outbound edge. Consider a subpath P[vl,vr] with two sinks s1 and s2 as depicted in

Fig. 2.1. For any cycle vertex vh ∈V [vi,v j] the flow is confluent, meaning the supply of vh

will travel either towards s1 or s2. Let vp evacuates at s1, then the supply of vertices V [vp,vi]

must move in the counter clockwise direction for evacuating to the sink s1. Similarly, if vp+1

moves to the sink s2, the supplies of V [vp+1,v j ] also evacuate to s2.

11



2.2. MODEL DEFINITION

2.2.2 Sink location problem definition

Using the analysis from [6], let F (X) is the set of all confluent flows, where X is another

set of k−sinks to be located on the given cycle and k≤ n. We denote by Θ(F) the evacuation

time for a flow F ∈ F (X). We let Θ(X) be the evacuation time for all the sinks of a set

X ,Θ(X) = minF∈F (X)Θ(F). Then the k−sink location problem can be defined as

Problem 2.1. [6] Given a dynamic cycle network N = (C, l,w,c,τ), where C = (V,E) is a

cycle graph, and an integer k ≤ n, find a set X∗ ⊆ N of points on the network which may

include the edges of the network, so that |X |= k and

Θ(X∗) = min
X⊆N

Θ(X), where Θ(X) = min
F∈F (X)

Θ(F).

2.2.3 Congestion and evacuation time

We need to determine the evacuation time for P[vp,vn], where 1 ≤ p ≤ n. Given the

evacuation time of P[v,vn] with sink on v−i , we can obtain the evacuation time of P[vi,v j]

with the same sink for any j between i and n. See Fig. 2.2a. We assume the sink s is at v+j

and vi evacuates to s along path P[vi,v j]. So, as per our above discussion about flow, we

can say that all supplies from vi to v j move to s for evacuation. To determine the evacuation

completion time we need to make sure that every vertex supply can reach the sink. If

any supply is disrupted by the other vertices supply that also goes to the same direction

to evacuate then the congestion occurs. Let vh be that most distant vertex for which the

congestion takes place, where i ≤ h ≤ j. The vertices from V [vi,vh−1] have to wait on

the intermediate vertex vh until the supply of vh evacuate completely. We call the vertices

V [vi,vh] generate a cluster and the vertex vh is the cluster head.

vi vi+1 vj vi vi+1 vj
(a) (b)

vh vhs s

Figure 2.2: Evacuation when s is at: (a) v+j ; and (b) v−i

12



2.2. MODEL DEFINITION

Definition 2.2. (Cluster). If the supplies of a set of vertices have to wait at a transitional

vertex before moving to a sink, then the set of vertices including the ‘transitional vertex’ is

called the cluster.

Definition 2.3. (Cluster head). A cluster head is the vertex of a cluster C whose demand

does not have to wait for evacuating to some sink. In other words, the supply of the cluster

head of a cluster will be the first to reach a sink.

vi vi+1 vj vi vi+1 vj
(a) (b)

vh vhs svj+1 vi−1

Figure 2.3: Evacuation when s is at: (a) v+j+1; and (b) v−i−1

Now we discuss another example where the sink moves. Let consider the Fig. 2.3a be

the next step of Fig. 2.2a, meaning the current sink position is at v+j+1 in Fig. 2.3a. We

already determined the cluster and cluster head for the subpath P[vi,v j] when the sink was

at v+j . After moving the sink to the next edge, we need to determine whether the cluster

information would be the same as it was before or should update. If the supply of vertex

vh needs to wait at v j+1 then the previous cluster head vh should be updated with v j+1;

otherwise, the cluster and cluster head information would remain same. Similarly, we can

move the sink at v−i−1 as in Fig. 2.3b and determine the cluster information as above.

So now we can calculate the evacuation time for V [vi,vh] by the following equation [7]:

θL(s, [vi,vh]) = d(vh,s)τ+
W [vi,vh]

c(vh,s)
for s = v+j (2.2)

Here, d(vh,s) (resp. c(vh,s)) is the distance (minimum capacity) from the cluster head to

the sink s, τ is the transit time per unit distance and W [vi,vh] is the sum of weights from

vertex vi to the cluster head vh. We denote by θL(s, [vi,vh]) the left time (or L-time) for

evacuation to a sink s and the supplies are coming from the left side of this sink.

13



2.3. BASIC CONCEPTS OF EVACUATION

Now consider Fig. 2.2b, where the sink is at v−i . By the similar way we can determine

the cluster and cluster head and in this case, the evacuation time is

θR(s, [vh,v j]) = d(s,vh)τ+
W [vh,v j]

c(s,vh)
for s = v−i (2.3)

So, as per above discussion, we call θR(s, [vh,v j]) is the right time (or R-time).

Lemma 2.4 ([1, 15]). Given a subpath P[vi,v j] of a dynamic path network P and a sink

s ∈ P[vi,v j],Θ(s, [vi,v j]) is represented by the following formula:

Θ(s, [vi,v j]) = max
{

max
vh∈V [vi,s]

θL(s, [vi,vh]), max
vh∈V [s,v j]

θR(s, [vh,v j])

}
(2.4)

2.3 Basic concepts of evacuation

For a cycle C, if we are given a sink and a split edge, then the cycle can be represented

as a path. We can compute the evacuation time of a cycle using the existing path algorithm

as follows.

Fig. 2.4 illustrates two example path networks consisting of one and two edges, respec-

tively. In Fig. 2.4a, let a sink s be placed on vertex v1. As per our model definition, the

weight of v1 can evacuate instantly as it is the sink vertex. Therefore, we have only one

vertex v2 to consider for evacuation and needs to travel the distance l = d(v2,v1). The first

unit of supply takes τl time to travel from v2 to sink s (as assumed on v1). We assume the

capacity of edge e1 = (v1,v2) = (v2,v1) is c that means maximum c amounts of supply can

enter the edge per unit time. The total amounts of unit that needs to move is, w2
c , where w2

is the weight of vertex v2. After first unit of supply entering into the edge, the second unit

supply can enter the edge and so on. So, the total time requires for evacuating to the last

unit of supply can be computed by R−time equation (2.3), that is, θR(s, [v2,v1]) = τl + w2
c .

14



2.3. BASIC CONCEPTS OF EVACUATION

c, l, τ c2, l2c1, l1v1 v2 v1 v2 v3

s s

(a) (b)

x

(l1 − x)

Figure 2.4: Example path networks with : (a) single edge, and (b) two edges.

Now, let us consider a bit complex path as in Fig. 2.4(b) consists of three vertices

v1,v2,v3 and edges e1 = (v1,v2), and e2 = (v2,v3). We also let a sink s be placed on edge e1,

which is x unit of distance apart to the right from v1. So, we can write d(v1,s)+d(s,v2)= l1.

In this case, the supplies from both the left and right side of the sink s travel for evacuating

at s.

For the supply at v1 (resp. v2), needs to move x (resp. (l1− x)) distance to the right

(resp. left) for getting the sink s. As we discussed for single edge network, the evacuation

time can be determined by the L−time (resp. R-time) equation (2.2) (resp. equation (2.3)),

which is θL(s, [v1,s]) = τx+ w1
c1

(resp. θR(s, [s,v2]) = τ(l1− x)+ w2
c1

).

The supply of v3 needs to cover l2 and (l1− x) distance to reach the sink. At first,

the supply of v3 has to come at vertex v2 by spending τl2 +
w3
c2

unit of time and then from

v2 to the sink s it takes another τ(l1− x) + w3
c1

time. Therefore, the total time requires,

θR(s, [s,v3]) = τ(l2 + l1− x)+ w3
c(s,v3)

.

But if the supply from v3 arrives at v2 before w2 has left completely towards the sink s,

that means τl2 < w2
c1

, then congestion will be occurred at v2. As a result, the supply coming

from v3 needs to wait at v2. Then we say vertices v2 and v3 together form a cluster and in

this case, vertex v2 is the cluster head of the cluster.

In that situation, total weight at v2 is (w2 +w3) and the total evacuation time does not

depend on τl2 anymore. So, the total time to reach the sink for last unit of supply from v3

is,

θR(s, [v3,s]) = τ(l1− x)+
w2 +w3

c(s,v3)

15



2.3. BASIC CONCEPTS OF EVACUATION

The similar calculation can be applied for a more extended path network.

Let we are given a cycle C as shown in Fig. 2.5a and asked to find out the optimal

solution for placing a sink. Our idea is to split all edges of the cycle network one by one.

For the simplicity, let split an edge ei ∈ E for which the path P[vi,vi+1] is generated as in

Fig. 2.5b. For any split edge, the flow determines the path in the cycle and using the path

algorithm we identify an optimal sink for that specific path. Then, the optimal split edge

corresponds to the minimum value, so a brute force cycle algorithm calculates the solution

by using the path algorithm O(n) times for every split edge.

v1
v2

vi−1

vi

vi+1

vn
e1
l1

ei−1

li−1
li

ei

lnen

vi+1 vi+2 vn v1 v2 vi−1 vi

(a) (b)

Figure 2.5: (a) A cycle network. (b) For splitting edge ei = (vi,vi+1), the corresponding
path network.

Now, we discuss with an example how to determine the optimal splitting edge. Fig. 2.6

illustrates an example cycle network. We are given a network consisting of six vertices

(v1,v2, ...,v6) and their corresponding weights are 5,2,4,3,7,9 respectively. There are also

six edges (e1 = (v1,v2),e2 = (v2,v3), and so on) and the edge lengths are 6,8,12,5,2,3

accordingly.

16



2.3. BASIC CONCEPTS OF EVACUATION

5

2

4

3

7

9

v1

v2

v3

v4

v5

v6

6

8

12 5

2

3

Figure 2.6: An example cycle network, C

Let us assume the sink is on v1. For the simplicity of our discussion we consider the

capacity for all edges are c = 1 and the transit time τ = 1. Using equations (2.2) and (2.3)

let compute the evacuation time of v2 for both directions to reach the sink s placed at v1

θL(1, [2,1]) = 6×1+
2
1
= 8

θR(1, [2,1]) = 30×1+
2
1
= 32

Where, θL(1, [2,1]) and θR(1, [2,1]) denote the evacuation time for clockwise and counter

clockwise direction from v2 to v1 (the sink).

Similarly, for all vertices we compute the evacuation times and store them in two dif-

ferent arrays. Table 2.1 and Table 2.2 represent the evacation time for every vertex [v2,v6]

to the clockwise and counter clockwise directions, respectively.

Table 2.1: Evacuation time for all vertices in clockwise direction

Vertex: 2 3 4 5 6

Evacuation time: 8 18 29 38 42

17



2.3. BASIC CONCEPTS OF EVACUATION

Table 2.2: Evacuation time for all vertices in counter clockwise direction

Vertex: 2 3 4 5 6

Evacuation time: 32 26 13 12 12

So, now for every vertex we have two different evacuation times. We determine the

larger one and store them in Θ(1, [v2,v6]). For example, vertex v3 has the evacuation time

in counter clockwise direction 26 and in clockwise order 18. So, we store the evacuation

time which we get for anti clockwise direction into the Θ(1, [v2,v6]). In this technique we

will find the following values for Θ(1, [v2,v6]). See Table 2.3.

Table 2.3: Minimum evacuation time in either direction for all vertices

Vertex: 2 3 4 5 6

Evacuation time: 32 26 29 38 42

As we can see, the minimum value in Θ(1, [v2,v6]) is 26 and comes for v3 when the

supply of v3 moves to the sink in the counterclockwise direction. From the definition of

confluent flow in sub-section 2.2.1, we can ensure that all vertices V [v3,v6] will move to-

wards the sink in a counter-clockwise direction and vertex v2 only move to the clockwise

direction. Edge e2 will not be used, meaning, in this case, the split edge is, e2. So, from our

given cycle C by splitting edge e2 we form the following path.

v3 v4 v5 v6 v∗1 v2

s12 5 2 3 6

Figure 2.7: An example path obtained from given cycle C, by splitting edge, e2 = (v2,v3)

So, for the sink location at v1 and the split edge ei we can determine the evacuation time

Θ(v1,(vi,vi+1) using the equations (2.2) and (2.3) as described in [9]. For the single sink

location problem on path P[vi,vi+1] the algorithm requires O(n) time, where n is the number

of vertices on the path. Then we split the next edge ei+1 for the same sink location. As per

18



2.4. AN OPTIMAL ALGORITHM FOR 1 SINK LOCATION PROBLEM

our model definition, there are n edges in the cycle. So, we determine a total n number

of evacuation times. The edge attaining the minimum value determines the optimal cost

for placing single sink in the cycle network we call this edge the optimal splitting edge for

that sink location. We move our sink in the next vertex v2 and determine similarly another

optimal splitting edge and so on. We observe that, if the sink location moves in counter-

clockwise direction then the split edge either moves along the anti-clockwise direction or

would be in the same position. Among all of these optimal splitting edges, the minimum

would be our optimal evacuation time and the sink location for which we get this minimum

is the optimal sink location.

As we mentioned earlier that the sink could be placed on edges too, so we need to

compute the optimal evacuation time and sink location. In this case, we assume the sink

is on edge e1 then the evacuation time for the supplies who moves clockwise direction is

Θ(s, [v1,s]) and for the anti-clockwise direction is Θ(s, [s,v1]) for any splitting edge. We

can find the optimal splitting edge by the above procedure. To find out the exact position

of sink we know that the evacuation time for clockwise and counter-clockwise is equal.

Otherwise, on one side the evacuation time would be greater than the other side, which is

not an optimal case. So we can write a formal relationship that applies to all cases.

Θ(s, [vi,s]) = Θ(s, [s,vi+1]) (2.5)

Then we move our sink on the next edge e2 and apply the same process to compute the

evacuation time and sink location and so on.

Lemma 2.5. The brute force algorithm for placing a sink on cycle takes O(n2) time.

Proof. In the brute force algorithm we determine the evacuation time when the sink moves

every vertex one by one. For every sink position, to find out the splitting edge, we spend

O(n) time. Then for every splitting edge, we compute the evacuation time to evacuate on

the sink which requires another O(n) time. So, the whole algorithm runs in O(n2) time.

19



2.4. AN OPTIMAL ALGORITHM FOR 1 SINK LOCATION PROBLEM

2.4 An optimal algorithm for 1 sink location problem

In the previous section, we analyze the brute force approach for placing a single sink on

cycle which runs in polynomial time. We believe that the steps of the brute force algorithm

can be implemented in amortized linear time by an appropriate data structure.

Our idea of the optimal algorithm is; first we first split any arbitrary edge ei and con-

struct a path. Then using the algorithm from [9], we compute the optimal solution for the

1−sink problem on the path. Now, we move the leftmost vertex to the end of the path and

treat it as a new path. We notice that the optimal sink for the new edge must be located to

the right of the previous position. Again, the supplies in the right side of the sink do not

change dramatically, just only a new vertex has been added. All we need is to know the

cluster head information for the newly joined vertex. If we spend more than constant time

to find out the cluster head information, then our algorithm cannot run in O(n) time. To this

end, we propose a data structure to store the cluster head information called cluster head

forest (CHF for short) which we can use to obtain the evacuation time for the sub-paths in

constant time for uniform capacities and amortized O(logn) time for general edge capaci-

ties. In the next chapter, we are going to introduce our CHF. The power of this data structure

is to process batches of queries efficiently. The algorithm has two phases: preprocessing

and sink placement. In the first phase we construct the CHF, and in the next stage, we place

the sink in an optimal location on the path.

20



Chapter 3

The Cluster Head Forest

3.1 Introduction

In this chapter, we introduce our proposed data structure which plays a central role in

our claimed results. In graph theory, a forest is a collection of trees (possibly undirected)

and a tree is a group of nodes connected by directed (or undirected) edges. We represent

the cluster head (see definition 2.3) information for a given path by the topology of the

forest. That is why we named our data structure as the cluster head forest (CHF). The CHF

is constructed for both uniform and non-uniform edge capacities in this chapter. We denote

by Ci and Si the clusters and sections of a cluster, respectively throughout this chapter.

Recall that in chapter 2 we assume S is the set of k-sinks. These are two different notations

they do not have any relation with each other.

For the simplicity, first, we consider creating a CHF for uniform capacity in section 3.3.

Before that, properties of the CHF is discussed in section 3.2. For better understanding, we

also construct a CHF for an example path. In section 3.4, we show how to extend the CHF

for uniform capacity to the arbitrary capacity case. We also discuss two complications that

need to be handled for general edge capacities. Section 3.5 comprises using of the CHF for

answering both a single query and a set of queries.

The cluster head forest (CHF), represented by F , which we define for a path graph. Let

us given a path P[u1,uq] as shown in Fig. 3.1 and we want to determine the evacuation time

for any arbitrary pair (i, j) with 1≤ i≤ j ≤ q, when the sink s is on edge ei−1 = (ui−1,ui).

To do this, we need to find out a specific cluster that contains the supply of vertex u j. In

21



3.2. PROPERTIES OF THE CHF

other words, we need the cluster head information of the farthest cluster from sink s that

has the supply of u j. Once we obtained the cluster head uh, we can compute the left and

right evacuation time using equations (2.2) and (2.3), respectively.

3.2 Properties of the CHF

• Every vertex on the given path P[u1,uq] is also present in the forest as a CHF node.

We use the term nodes to refer to the nodes of the CHF, to distinguish them from the

vertices that are on path P.

• We construct the CHF for a path u1,u2, . . . ,uq and the direction of the evacuation flow

is from right to left, i.e., uq,uq−1, . . . ,u1.

• We consider positions u−i for all ui, and all of the supply between ui and un evacuate to

u−i . We observe that when the sink moves along an edge, the clusters cannot change.

The reason behind this observation is that the clusters from the sequence for u−i+1

still have to travel through the same edges and with a new edge. Because of the new

supply of ui or the reduced capacity of edge ei−1 two or more clusters can merge. So,

for any given subpath P[ui,u j] evacuating to u−i we can find the cluster containing u j

from the cluster sequence for the sink location of u−i . To determine the cluster head

of that specific cluster, we can start walking from u j towards ui.

• In the CHF, at each node, we store the cluster head information. The subtree rooted

at the node represents the cluster head.

• When we obtain the sequence for sink u−i recursively from the cluster of u−i+1, if two

clusters merge, in the CHF we make the subtree of the cluster farthest from the sink

a child of the cluster head of the cluster to the sink. All descendants of a subtree Ti,

where i ∈ {1, . . . ,n} belongs to the same cluster and the root ρ of that subtree Ti is

the cluster head.

22



3.3. CHF CONSTRUCTION FOR UNIFORM CAPACITIES

• In Our CHF construction process if we traverse the path from right to left (resp. right

to left), then the index of the root is lower (resp. higher) than any other node index of

a subtree. Similarly, the rightmost child of a subtree Ti contains the maximum index.

(For arbitrary case, edges of the CHF trees need to be labeled with the sink location

on the path)

3.3 CHF construction for uniform capacities

To create a cluster head forest, we traverse the path denoted u1,u2, . . . ,uq, from right

to left, i.e., from uq to u1 where q is the total number of vertices on the given path. See

Fig. 3.1. As defined in [6], we can visualize this construction process by typical cluster

diagram or sequence diagram. Now, consider the following cases:

u1 u2 ui ui+1 uj uj+1 uq−1 uq

Figure 3.1: CHF construction on a path P[u1,uq]

• Base Case: Let the sink s be at u−q (recall that by u−i , we denoted a point on edge ei−1

that is arbitrarily close to ui). We first check whether the leftmost cluster merges with

the other clusters or not. If they do not merge, we are done; otherwise, we merge

and check the conditions with the next cluster, and so on. In this sink position, we

have only one vertex uq in the right of s. Supply of vertex uq evacuates to the sink s

without any delay for the supplies of other vertices. For this reason, there is only one

cluster C1 and uq is the cluster head. See Fig. 3.2a. The evacuation completion time

is wq/c, where wq and c denote the supply of vertex uq and the capacity of edge eq−1,

which is uniform for all edges, respectively. Therefore, the CHF consists of a single

node q.

23



3.3. CHF CONSTRUCTION FOR UNIFORM CAPACITIES

C10

F
lo
w

ra
te

(c
)

wq

c time (t)

uq

(a)

ClCl−1C1

αl−1

time (t)0

F
lo
w

ra
te

(c
)

αl (cluster head of Cl)

α1

(b)

Figure 3.2: Cluster sequence diagram: (a) base case and (b) general case

• General Case: Suppose, the sink s is at u−i+1, ei = (ui,ui+1) and the cluster sequence

consists of clusters Cl, . . . ,C1 when cluster Cl has cluster head αl , shown in Fig. 3.2b.

We now update the CHF by incorporating the node i. Let s is at u−i . We compute the

evacuation time for all supplies from ui, . . . ,uq to the sink.

Here we have to consider two scenarios:

(a) If τlp > wp+1/c, where p ∈ {i,q− 1}, i.e., no congestion occurs at ui. In other

words, the cluster of ui will not merge with the other clusters. Therefore, a new

independent cluster will be added to the sequence. For the simplicity, let the newly

formed cluster is C, where α = ui is the cluster head.

α2 α1 α1

C1C2 C1

(a)

C1

α1

C2

α2

(b)

Figure 3.3: (a) Merging two clusters (b) two clusters (subtrees) adding by an edge in the
CHF

(b) If τlp ≤ wp+1/c, where p ∈ {i,q− 1}, i.e., the supply already present at ui has

not left towards the sink s completely, but the supply from previous clusters arrive at

ui in the meantime. Then we can say that a new cluster is formed by joining some of

24



3.3. CHF CONSTRUCTION FOR UNIFORM CAPACITIES

the clusters from C1, . . . ,Cl with the cluster head ui. The total weight of the cluster

needs to be determined, meaning we have to find out which clusters from subpath

[ui+1,ui] merge with the cluster, C. As we already know the congestion occurs at

ui, it implies that at least clusters C and C1 merge. So we join them together. Once

a cluster C merged with C1, they will remain combined throughout the entire path

traversing. For instance, see Fig. 3.3a. In the CHF, we represent these two clusters by

adding an edge between them. For example, consider Fig. 3.3b which is a cluster tree

in the forest and the parent node is α1. Similarly, we examine the congestion between

clusters C and Cr, where h ∈ {1, . . . , l}. The number of such checking at an iteration

i can be at most (q− i), where q is the total number of vertices on the given path. We

continue this joining process until a cluster does not need to wait for evacuation. In

Fig. 3.4a, Cp−1 is such cluster. Once we got the cluster Cp−1, our merging process

for the ith iteration is done.

αl αp αp−1

τ li1

0
t

W [i,αp−1−1]
c

i

αl
αp

αp−1

(c)

(a)

(b) i

. . .

. . .
. . .

Figure 3.4: (a) The cluster sequence for the sink at u−1 before incorporating the supply from
ui; (b) cluster sequence after clusters Cl+1,Cl, . . .Cp have merged; (c) the corresponding
CHF

Similarly, we assume a sink is at the left of every vertex up ∈ (u1,uq) and perform

merging process as discussed above. Finally, we generate a cluster head forest as drawn in

Fig. 3.4c.

25



3.3. CHF CONSTRUCTION FOR UNIFORM CAPACITIES

3.3.1 CHF construction for an example path

Now, we discuss with an example to generate the CHF from a path. Fig. 3.5 illustrates

a path network which is consisting of three vertices (u1,u2,u3) and their corresponding

weights are 12,3,5, respectively. There are two edges, e1 = (u1,u2) and e2 = (u2,u3) with

lengths 2 and 4, respectively.

u3u2u1

5312 2 4
c = 1 τ = 1

Figure 3.5: An example path network, P[u1,u3]

According to the base case of the CHF construction, let the sink s is at u−3 (i.e., ε distance

left from u3). For the simplicity of our discussion, let ε = 0.5, both edges have the same

capacity, c = 1, and the travel time per unit distance is τ = 1. So, using equation (2.3) we

determine the evacuation time for u3, θL(u−3 , [u3,u−3 ]) = 5.5. Therefore, in CHF there is

only one node u3 as shown in Fig. 3.7a and the sequence diagram is in Fig. 3.6a.

C10

F
lo
w

ra
te

(c
)

w3

c
time (t)

α1 = u3

(a)

C10

F
lo
w

ra
te

(c
)

time (t)

α2 = u2

C2

(b)

C10

F
lo
w

ra
te

(c
)

time (t)

α1 = u1

(c)

Figure 3.6: Sequence diagram for an example path: (a) base case, (b) second iteration, and
(c) last iteration

In the next iteration, let the sink s at u−2 . We compute the evacuation times for the

supplies of u2 and u3 are θL(u−2 ,([u2,u−2 ]) = 3.5 and θL(u−2 , [u3,u−2 ]) = 9.5, respectively.

As θL(u−2 , [u2,u−2 ]) < θL([u3,u−2 ]), so there will be no congestion. We show the cluster

sequence of this iteration in Fig. 3.6b. Hence, in CHF, there will be two disjoint nodes u2

and u3 as shown in Fig. 3.7b.

26



3.4. CLUSTER HEAD FOREST FOR ARBITRARY CAPACITIES

u3

(a)

u2 u3

(b)

u1

u2 u3

(c)

Figure 3.7: Cluster head forest construction steps for: (a) base case, (b) two disjoint clusters
at 2nd iteration, and (c) final CHF

Final iteration would be moving the sink s is at u−1 . So, there is a new cluster C with

cluster head α = u1. We calculate the evacuation times for (u1,u2,u3) are 12.5,5.5, and

11.5, respectively. As we cam see the evacuation time for evacuees of u1 is the largest

among the times. So, congestion occur at u1, which implies that at first cluster C and C1

get merge into cluster C. In CHF, we connect the node u1 and u2 by an edge and represent

them as a tree where the parent is u1. Now we have two cluster C and C2. Similarly, we

compute the evacuation time for C and C2, are 15.5 and 11.5. Again congestion occurs and

C joins with C2. So, there is only one cluster C with cluster head u1. See Fig. 3.6c. In CHF,

we add them up with an edge. We sketch the full cluster head forest in Fig. 3.7c.

Lemma 3.1. A cluster head forest, F , can be constructed from a dynamic flow path network

in O(q) time for uniform capacities, where q is the number of vertices on the given path.

Proof. We construct the CHF by moving a sink at the left of every vertex. We traverse the

whole path from uq to u1. So there are q iterations. At every iteration, in the CHF exactly

one new node will be added. Then we check whether the newly added cluster can merge

with another or not. For the positive answer of the checking, they will be added by an edge

in the CHF. For one iteration, several checking may be needed. However, we check clusters

at only once. Our observation is that once two clusters merge, they remain merged. Since

we perform a check for every and every cluster that we merge, we have O(n) verification

steps. In the CHF there are at most q nodes. Therefore, we say that CHF can be constructed

in linear time.

27



3.4. CLUSTER HEAD FOREST FOR ARBITRARY CAPACITIES

3.4 Cluster Head Forest for arbitrary capacities

At first, we define some terms that are used throughout the CHF construction process

for general edge capacities. In section 2.2, we defined the notions of cluster and cluster

head. Now consider the following definitions

Definition 3.2. (Section). A section is the subinterval of constant rate. In other words, the

largest slice of a cluster with same flow rate is called a section.

S1 S2 S3
S4 S5 S6 Sk

C1 C2 C3

α1 α2

time
0 t

c

F
lo
w

ra
te

Gap

α3 (cluster head of C3)

Figure 3.8: Sections in different kind of clusters. In the first two clusters C1 and C2, they
have one and two sections respectively. Cluster C3 consists of k sections.

Definition 3.3. (Simple cluster). A cluster that contains only one section is called the

simple cluster. In Fig. 3.8, cluster C1 is a simple cluster.

Definition 3.4. (Staircase cluster). If a cluster has two or more sections with different

flow rate then we call it as a staircase cluster. Sections of this kind of cluster are arranged

in descending order (i.e. the leftmost section has the largest flow rate). In Fig. 3.10, we

represent the arrival rate of supply at the chosen sink. The arrival rate varies with time,

therefore clusters C2 and C3 are staircase clusters.

Definition 3.5. (Gap). A gap or the empty space between two adjacent clusters is defined

as a maximal interval of zero flow rate [5]. In Fig. 3.8, the gap is the space between cluster

C1 and C2.

28



3.4. CLUSTER HEAD FOREST FOR ARBITRARY CAPACITIES

3.4.1 CHF construction

Our idea to construct the CHF for arbitrary capacities is the same as for uniform capac-

ities. We start to compute cluster sequence with the case i = q, then i = q− 1 and so on.

We continue this computing for all sub-intervals P[ui,uq] when the sink is at u−i . Because

of the general edge capacities, the cluster sequence consists of sections with different flow

rate.

Properties 3.6. In the arbitrary capacity case, the cluster sequence consists of sections with

non-increasing flow rate if the sections are ordered according to increasing start time.

Proof. For the different edge capacities, the height of simple clusters would also be differ-

ent. When two simple clusters with different flow rate get to merge, they combinedly form

a staircase cluster. The left cluster has more height that is why it needs more time to evacu-

ate, and in the meantime, the supplies from the right clusters have arrived. Similarly, when

a simple cluster merges with a staircase cluster with two sections and then there should be

a staircase cluster with three sections where the leftmost sections have more height, and it

has the smallest start time.

General case: Recalling the general case of CHF construction for uniform capacity.

Suppose, the sink is at u−i+1 and the clusters Cl, . . . ,C1 with cluster head αl, . . . ,α1, respec-

tively, are present in the cluster sequence, where αl = i+1.

We now move the sink at u−i . For these settings, let the supply of ui generates a new

cluster Cl+1 to the cluster sequence. It is possible that sections with higher rate need to be

flattened and therefore clusters a merge at the front because of the weight of vertex ui, but

also anywhere because sections can get flattened for a smaller capacity ei−1. See Fig. ??

29



3.4. CLUSTER HEAD FOREST FOR ARBITRARY CAPACITIES

(a)
(b)

ci−1ci

0 0t tC1 C2 C3 C1 C2

Figure 3.9: Sections flattened at middle of the sequence.

We need to find out as soon as possible which clusters merge because of the supplies

of ui, and which merge because of the capacity ei−1. We can determine these events by the

notion of critical capacity.

Definition 3.7. (Critical capacity). The critical capacity is the maximum capacity at which

two adjacent sections (or a section and a gap) of different flow rate can merge.

ci

0 tC1 C2

t5

h1

h2

w1

w2

t1 t3 t4t3 t6t2
C3

h = 0

S1
S2

S3
S4

Figure 3.10: critical capacity

To compute the critical capacity of sections S2 and S3 of Fig. 3.10, let the height (flow

rate) and weight pairs of S2 and S3 are (h1,w1) and (h2,w2), respectively. So, the critical

capacity should be less than h1 but higher than h2. Therefore, the critical capacity would be

(h1−φc)
w1

h1
= (h2 +φc)

w2

h2
(3.1)

Where, h1 > h2 and φc denotes the critical capacity. Let w1
h1

= ∆1 and w2
h2

= ∆2 then the

30



3.4. CLUSTER HEAD FOREST FOR ARBITRARY CAPACITIES

equation (3.1) can be rewritten as

φc =
w1−w2

∆1 +∆2
(3.2)

If there is a gap between two sections (e.g. in Fig. 3.10, consider the section S1 and S2 )

the right term of (3.1) will be zero because a gap is equivalent to a section with zero rate,

h2 = 0. Similarly, we determine the critical capacity for every pair of adjacent sequences

for the cluster sequence of P[ui+1,n], and Then we can process this cluster sequence to

obtain for P[i,n] as follows:

First, we examine the weight of ui and compute the critical capacity φc between ui and

the first section from the sequence of P[ui+1,n]. We insert the determined φc into a max-

heap, H , which consists of the critical capacities for every two consecutive sections or one

section and a gap.

G H

EF
N

MA Cp−1CpCl Cl−1

ci−1

t0

(a)

Cp−1

ci−1

tCi0 A

E N

M

(b)

Figure 3.11: Because of the reduced capacity ci, cluster Cl needs to be flattened. (a) the
white areas between AE and MN can be filled by the gray parts of rectangle EFGH of
cluster Cl; (b) after merging the resultant cluster sequence

In the second step of the iteration, we pop up the root of the heap, H . As we are using

max-heap, that means the root has the maximum value of critical capacity in the heap,

we denote this highest critical capacity value by φcmax . So, now we have to consider two

scenarios based on the value of ci−1 and φcmax .

• Scenario 1: No action is required.

If(ci−1 ≥ φcmax), i.e., if the capacity of edge ei−1 (since our sink is at u−i ) is greater

31



3.4. CLUSTER HEAD FOREST FOR ARBITRARY CAPACITIES

than the maximum critical capacity then all clusters Cl+1, . . . ,C1 can move to the sink

without any disruption. Then we move our sink at u−i−1 for a new iteration.

i

αl

αp

αp−1

(c)

. . .
. . .

ei−1 ei−1

Figure 3.12: The CHF for aribitrary case at ith iteration

• Scenario 2: Flattening required

Otherwise i.e., if(ci−1 < φcmax). The maximum critical capacity value φcmax tells us to

flatten the section(s) for which we get the corresponding φcmax . That means, merging

the corresponding sequences and updating the set of critical capacities because now

we have a new merged section and the critical capacity of this new section must

replace the critical capacity of the previous unmerged section. This maximum φc

can be at any place of the sequence. Let the section of Cl and the gap, for example,

have the φcmax . In that case, cluster Cl needs to be flattened because the supplies of

this cluster can not move to the sink with its actual capacity, at best they could flow

with φcmax rate. In other words, the supplies of Cl will be spilled over to the rest of

the sequence. See Fig. 3.11a. We let the supplies of rectangle EFGH filled the all-

white areas between the line AE and MN. More particularly, the sum of the white

areas in the AEMN rectangle equals the area of EFGH. We flattened the cluster Cl

and the new height of Cl would be AE = MN = ci−1. Because of this flattening let

assume clusters Cl, . . . ,Cp−1 and some portions of cluster Cl merged, as illustrated in

Fig. 3.11b. How many clusters merge for one flattening can be determined as follows,

if W [ui,ur]
c(ui−1,ur)

≥ τd(ui,ur), then we two clusters merge, when l ≤ r≤ p. We sequentially

32



3.4. CLUSTER HEAD FOREST FOR ARBITRARY CAPACITIES

check whether a section needs to merge with cluster Cl or not. Once two clusters got

merge it will remain merged throughout the traversing the path, that means we are not

computing clusters merging more than O(n). Here clusters merge, so we incorporate

a new node in CHF i and make it as a parent of cluster nodes αl, . . . ,αp. We connect

every child with parent i by an edge and label all edges as ei−1. Look at Fig. 3.12.

This labelling denote that i is the parent of these children as long as the sink is on the

edge ei−1 or to the left (i.e., ei−2,ei−3 and so on) of ei−1. So, in general, we can say

that, if any two clusters merge at any location of the sequence we add a new node in

the CHF and make one of them as a parent of these clusters, would be the parent. The

cluster head which has a lower index would be the parent node, and the other cluster

head would be the children. For every child, we draw a connection to the parent and

label the edge with the sink position for which two clusters merge.

In this case, we merged some full clusters Cl, . . . ,Cp−1 and the first section of Cp.

But some supplies also spilled over S2 of Cp. So technically this S2 of Cp is now

the second section of the newly formed big cluster Ci. The revised cluster sequence

diagram is shown in Fig. 3.11b. So now for tracking the section(s) of a cluster, we

store the following tuple of information at the cluster head of Ci, which is αi

(si,h′,T ′,δ)

Here,

si denotes the sink location at ith iteration.

T ′, represents the flow time where the next section begins. h′ denote the flow rate,

and δ is the portion of the supply of a vertex that flows with rate ci. When cluster

Cl merges with some clusters and the rate drops from ci−1 to the height of Cl . We

can determine the area of section i with height ci. Suppose, the area of Ci is Wi

satisfies W [i,q−1] <Wi <W [i,q]. So, cluster Cl contains vertex q, and now cluster

33



3.4. CLUSTER HEAD FOREST FOR ARBITRARY CAPACITIES

Cl together with q is part of the new staircase cluster with head i. So, in this case, δ

is the part of vertex uq.

When two or more clusters merge, we update the information accordingly. To update

the information we can easily get the value of the tuple. The sink location si is the

position on edge for that particular iteration. The flow rate h′ is the minimum capacity

or height from the sink location to the particular section. We can find the δ using ??.

Let the S2 of Ci is the supply of any vertex uh. According to our description, we

determine the tuple values to store in the αi as follows

(a) si is the edge ei.

(b) We can find the flow rate or height of the section by using a balanced tree in-

troduced by [7]. Bhattacharya et al. introduced the critical capacities and upper

envelope tree (CUE tree). By implementing a CUE tree, at every node of this

tree, we store the left and right capacity functions which can tell us the minimum

capacity between two points in logn time.

(c) Let T ′ = x, we solve x by the following equation

Ai = xh1 +(T − x)h2 (3.3)

Where,

Ai is the total area (supplies from vertex ui to uh) of the cluster Ci.

Ti is the total transit time for Ci, which is τd(uh,ui).

h1 and h2 is the height or flow rate of sections one and two respectively.

34



3.5. USING THE CHF

A(T1, h1)

B(T2, h2)

wδ

t < T1 t > T2

Figure 3.13: Determination the value of δ

(d) To find out δ, consider the Fig. 3.13

So, between t < T1 and t > T2, we perform binary search. We know the total area

of the cluster and the vertex supply of uh. Using (??), we can easily find out the

wδ

We get the next maximum value from the existing heap and perform above one of the

two scenarios and so on. For a particular sink position, we continue this process until the

first scenario executes.

Lemma 3.8. For a given dynamic flow path network with general edge capacities, a cluster

head forest F with a tuple of information can be constructed in O(n logn) time, where n is

the number of vertices on the given path.

Proof. To construct the CHF for the arbitrary capacity case, after determining the critical

capacity (as discussed above) we insert them into a max-heap, and in later we pop the max-

imum value from the heap. This ‘insertion’ and ‘pop’ operations take logn time, separately.

The other operations can be solved in amortized linear time as we did for uniform capac-

ities. Therefore, we can claim that the construction of CHF for a path with general edge

capacities takes O(n logn) time.

35



3.5. USING THE CHF

3.5 Using the CHF

3.5.1 For a single query

For any given subpath P[ui,u j] to determine the evacuation time Θ(u−i , [ui,u j]) all we

need is to know the information about the head of the cluster C that contains the supply of

vertex u j. Let the cluster C represent as a tree Ti with root ρ = uh. We start traversing the

CHF from node j towards the root ρ until we encounter an edge with an index less than

i or we reached the root ρ. Let h be the node where we stop. Then h is the head of the

cluster containing j. Now we can find the transit and waiting time constantly to compute

evacuation time using (2.3), as follows

θR(u−i , [ui,uh]) = d(uh,u−i )τ+
W [u j,uh]

c

In arbitrary case, we also traverse the CHF in the same as we described above for the

uniform case. However, in this case, we stop further traveling when we find out that the edge

is not labeling with the sink position of lower index than ei−1. Then using the following

equation, we can compute the evacuation time.

θR(u−i , [ui,uh]) = d(uh,u−i )τ+
W [u j,uh]

c(uh,ui+1)

In another case, if j belongs to a staircase cluster, then we need to find out the weight very

carefully because the height and the weight of the sections are different. Recall that in the

CHF construction process we stored a tuple of information in the head of every staircase

cluster. Based on that information we can determine the weight. We can find the weight of

any section by multiplying the flow time with the height.

3.5.2 Using of CHF for a set of queries

There are two types of set of queries. In one type we let the position of the starting a

query i same, but we increase the ending position j of the queries or the vice versa. In the

36



3.5. USING THE CHF

other type, we decrease either the starting or ending position of the queries. We formalize

these queries as follows

• Head_fixed_tail_increase (i = i′ and j = j′+1)

• Head_increase_tail_fixed (i = i′+1 and j = j.)

• Head_fixed_tail_decrease (i = i′ and j = j′−1)

• Head_decrease_tail_fixed (i = i′−1 and j = j′.)

Now we explain this process with numerical values in the context of the above discus-

sion. We enumerate every pair of vertices to generate a batch of queries, 1 ≤ i ≤ j ≤ q.

To solve a batch of queries, we start with a query (2,2) when the sink s is at u−2 . We

solve the query using the process we discussed for a single query. As we are willing to

compute a set of queries, it is worthwhile to maintain two pointers i∗ and j∗ that indicates

positions of vertex ui and u j in the CHF, respectively. Similarly, we solve the queries,

(2,3), . . . ,(2,q),(3,3), . . . ,(3,q) and so on. For a specific position of i, we are increasing

the j values sequentially. If j∗ reaches to the rightmost child of a tree, then in the following

move j∗ jumps into the next tree to the right. Thus, we do not visit the same node or edge

twice for a specific position of i.

We also move the position of i one by one, and the queries are (3,3), . . . ,(3,q). For

every change of i∗ in increasing order, we reinitialize the location of j with i∗, i.e., i ∈

{2, . . . ,q} and j ∈ {i, . . . ,q}. Similarly, we can use the CHF for the second type of set of

queries. However, in this case, the only complication is that the cluster can break down

because of moving the sink from one place to another. Recall that when we add a tree in the

CHF, we meant the sink is left of the root of that tree, which was the cluster on the path. So

while we are moving the i to the right, then the cluster can break. However, in O(1) time

we can find out whether any node presents in a subtree or not.

Lemma 3.9. If the CHF is available, we can answer a batch of queries in O(q) time, where

q is the vertices of the path.

37



3.6. CONCLUSION

Proof. In above, we represented four separate types of queries. In these four cases, either

we increase or decrease the position of j of any query (i, j), or we change the sink location.

For every query, we need to use the process to answer the single query. To determine the

result of a single query requires O(q) time. When we increase or decrease the position of j,

we can answer the query in O(1) time based on the previous calculation. Similarly, we can

also compute the query in O(1) time when the sink position increases or decreases.

3.6 Conclusion

In this chapter, we introduced our proposed data structure. We discussed the CHF

construction process for both uniform and arbitrary capacities. Two challenges that one can

face to use the CHF for answering queries also discussed. We also defined the properties

of the CHF. For the redundant description, we omit to discuss the using of CHF for the

arbitrary case because it would be the same as the uniform case with an extra logn factor.

We showed how to answer a single query as well as a set of queries efficiently by using our

CHF.

38



Chapter 4

Sink Location on Cycle Networks

4.1 Introduction

In this chapter, we present all of our algorithms for solving the sink location problem

in dynamic cycle networks. First, we discuss the 1-sink problem. The convenient way to

solve the multiple sink location problem is performing the feasibility test. For a given value,

the feasibility test decides whether a problem instance is feasible or not and we discuss it

elaborately in sub-section 4.3.1.

Throughout this chapter we consider a path P[v1,v2n−1]. We split an edge of the given

cycle and construct a path with length (2n− 1) by combining two sets of vertices of the

given cycle. We label the vertices of generating path as v1,v2, . . . ,vn,vn+1,vn+2, . . . ,v2n−1,

where vn+i = vi Fig. 4.1 illustrates the resultant path.

v1 v2 vi vn vn+1 vn+2 vn+i v2n−1

P [vn, v2n−1]

P [v2, vn+1]

P [v1, vn]

Figure 4.1: A path P[v1,v2n−1] with length 2n−1, where n is the number of vertices of the
given cycle and vn+i = vi

39



4.2. SINGLE SINK PROBLEMS

4.2 Single sink problems

For the simplicity of discussion, let we split the edge en of given cycle C and produce

the path P[v1,vn]. We start our algorithm placing sink s on en−1 (or v−n ). Now we have

supplies at the left and right side of the sink s. To find out the evacuation time for this

setting we need to know the cluster head information that contains the supply of v1 and

vn for computing the L-time and R−time, respectively. In this regard, we use CHF for

answering this queries as we described in subsection 3.5.1. Once we got the cluster head

information by using equations (2.2) and (2.3) we can decide in which side of the sink has

more supplies. We need to move our sink towards the larger value of these two evacuation

times. To do that, we move our sink on the next edge to the left (in this case en−2). Using

Head_fixed_tail_increase and Head_increase_tail_fixed queries (as described in

subsection 3.5.2) we can find out the cluster head information for moving the sink. We

continue this process until finding the exact position where the L−time and R−time are

equal. Let ei be our optimal sink location and the time needs to calculate evacuation time

for this position is our optimal evacuation time for splitting the edge en as illustrated in

Fig. 4.2.

v1 v2 vi−1 vi vi+1 vi+2 vn−1 vn

s

θL(s, [v1, vi]) θR(s, [vi+1, vn])

Figure 4.2: A path obtained from Cycle C by splitting edge en

As we discussed earlier, we need to split every edge and compute the evacuation time

for each splitting. For this reason, we rotate the leftmost vertex v1 to the end that generate a

new path P[v2,V1] (see Fig. 4.1) and also move the sink onto the edge ei+1. By two simple

checks, we can determine whether the cluster head changes for a new path or not. Now we

make queries for (i = v2, j = vi+1) for left side of s and (i = vi+2, j = vn) for right side of

the sink s to the CHF for getting the cluster head. Again, we compute the optimal evacua-

40



4.2. SINGLE SINK PROBLEMS

tion time for this splitting. Similarly, we determine the n number of evacuation times and a

minimum of them is our final optimal evacuation time for the given path. We formalize our

proposed algorithm for placing 1−sink on cycle networks in algorithm 1.

Algorithm 1: Minmax 1−sink on cycle algorithm

1 Input: C = (V, E), v[i] = vertices, e[i] = edges , i ∈ {1,2, ...,n};

2 Output: An optimal sink location; Optimal evacuation time of the solution;

3 Split any arbitrary edge en = (vn,v1) of the given cycle C and generate a path,

P(v1,vn). Here, for the simplicity of our discussion, we choose en to cut, we split

every edge to find out the optimal answer for the given cycle.

// Sink placement phase

4 for i ∈ {1, ...,n} do

5 Let the sink s be at v+i Make a query for the left side of s to the CHF and

compute the L-time.

6 Similarly, calculate the R-time.

7 if (L− time > R− time) then

8 move the sink one edge to the left

9 Repeat the computation of line 5 to 7 for new sink location

10 else

11 Find the exact location of sink s by solving equations (2.2) and (2.3)

12 Rotate vi to the end of rightmost vertex and construct a new path P[vi,vi−1]

Complexity analysis. The for loop in line 4 executes O(n) iterations. We initialize a query

inline 5 and 6, that gives us the cluster head information in O(1). So, our algorithm requires

O(n) to determine the optimal sink location on the cycle.

Lemma 4.1. Suppose the cluster head forest, F , is available for dynamic cycle network

with uniform edge capacities, we can solve the 1−sink problem in O(n) time.

41



4.3. THE MULTIPLE SINK PROBLEMS

Proof. In our sink location problem, in the pre-processing phase, we construct the CHF by

spending O(n) as in lemma 3.1. We showed in the proof of correctness of algorithm 1 that it

runs in linear time. Therefore, our 1-sink location problem algorithm finds out the optimal

sink location in O(2n)≈ O(n)

Similarly, for an arbitrary case using Lemma 3.8, we can prove the following lemma

as we spend O(n logn) time in both preprocessing and answering queries to the CHF for

cluster head information.

Lemma 4.2. Given a dynamic flow cycle network with arbitrary edge capacities, if CHF, F ,

is available, the optimal 1-sink location and evacuation time can be computed in O(n logn)

time.

4.3 The multiple sink Problems

We perform t−feasibility test for solving the multiple sink location problem for both

uniform and general edge capacity case.

4.3.1 The feasibility Test

Definition 4.3. (The t−feasibility test). We consider a problem instance is t−feasible if

and only if every vertex supply can evacuate to a sink within time t and the total number of

the sink should be less or equal k.

v1 v2

β11 β12 β(k−1)1 β(k−1)2

vnvhs1 sk−1vi vi+1 vj vj+1

βk2βk1

sk

Figure 4.3: Feasible solution: all vertices are covered by a sink.

Figure 4.3 illustrates such a path P[v1,vn] consists of n vertices, where left and right cir-

cular arcs represent the boundaries for sinks. A closed boundary denotes a subpath P[vi,v j],

42



4.3. THE MULTIPLE SINK PROBLEMS

which includes one of the each nearest left (βi1) and right (βi2) arc with respect to sink si.

Here, the left (resp. right) border of sink si is denoted as βi1 (resp. βi2). By boundary/border

we mean, all supplies within the range [βi1 to βi2] will evacuate in sink si within time t. In

every subpath P[vi,v j] only one sink should be available. In total, we have 2k−boundaries

for k−sink: one left and one right boundary for every sink. If every vertex of the path

belongs to any closed boundary then the multiple sink location problem is t−feasible oth-

erwise infeasible.

We start to perform the feasibility test assuming the leftmost boundary is at vertex v1

and then find the edge ei containing the first sink s1 so that the evacuation time for all

supplies from v1 to s1 equals to time t. Then from s1 we determine the right boundary β12.

We categorize our feasibility test in the following two stages. Step by step explanation for

boundary selection and t−feasibility test are as follows:

• Step 1: (Original step)

We start the original step by assuming the left boundary β11 of first sink s1 is just left

of vertex v1. Now we determine the sink location as far as possible from v1. To do

that, we place our sink s1 on just right after v1 (i.e., v+1 ) and compute the L−time for

the supply of vertex v1. If the supply can move to s1 within time t then we move the

sink to the just right of next vertex (v+2 ) and calculate the L−time again and so on.

After few repetitions, let consider our sink is at (v+h ) and either some supplies can not

move to the sink within time t or all left supplies can evacuate within exact time t. In

first case, we place our sink on edge (eh = [vh−1,vh]). We try to place sink as right as

possible by solving the equation (2.2), where θL = t then we find the distance d(v1,s).

In later case, the sink will be on v+h , which is ε distance to the right of vh. Now as the

sink is available on the path we have to find the right boundary β12. Unlike the above

process for placing sink now we need to consider all vertex supplies from the right

side for evacuation to the sink s1. Let consider s1 is on vh or edge eh, we compute the

evacuation time for all vertices vp ∈ [vh+1,vn]. If the supply of vp can not move to

43



4.3. THE MULTIPLE SINK PROBLEMS

sink within time t then the β12 will be vp−1.

v1 v2

β11 β12 βr1 βr2

vnvhs1 srvi vi+1 vn−1

Figure 4.4: Feasible solution: all vertices are covered by a sink, where r < k.

Similarly we place k−sinks and determine their boundaries. Algorithm 2 explains

the procedure for placing a sink when starting vertex v1 and time t is given. If all

supplies in the networks can evacuate in any sink within time t then the problem is

feasible. In fact in two ways the feasibility test can be positive. If we need to place

exact k−sinks or strictly less than k−sinks to cover all vertex supplies then in both

cases the path is feasible. Consider Fig. 4.3 where exactly k−sinks are placed and

the Fig. 4.4 where all supplies can reach one of the r−sinks, r < k. Until now we

actually describe the feasibility test for a path [7] that requires O(n) time. If it is not

feasible then immediately we can not claim that the feasibility test is negative because

it might be our splitting edge of the cycle C was not correct. Therefore, we need to

split another edge and so on as described in step 2.

v1 v2

β11 β12 β(k−1)1 β(k−1)2

vnvhs1 sk−1vi vi+1 vj vj+1

Figure 4.5: Last sink is the decision maker about the test

• Step 2 :

Now we move the β11 to the left of the next vertex (e.g., v2,v3, ...) of previous itera-

tion(s). We do not want to overwrite the boundary names of the original step. So, let

βk
i1 and βk

i2 are the left and right boundaries for sink si, where k denotes the iteration

number. In every iteration, we find the first sink location and then the right boundary

for sink s1 and so on by the similar manner as we described in Step 1.

44



4.3. THE MULTIPLE SINK PROBLEMS

Algorithm 2: t−feasibility(v1,k, t)

1 Input: v1 = Starting vertex, t = time.

2 Output: ‘Yes’ for feasible solution, otherwise ‘No’

/* We store sink locations in s[i] and boundaries in b[i]. */

3 for i ∈ {1, . . . ,n} do

4 Place the sink s on just right after vi. So, x[i] = v+i

5 Compute L-time for all left evacuees

6 if (L-time> t) then

7 Optimal sink location, s[i] = vi−1 + ε; Break;

8 else if ( L-time= t) then

9 Optimal sink location, s[i] = vi + ε; Break;

/* We assume the left boundary βi1 for the sink si is on just

left of v1. Now We determine the right boundary βi2. */

10 for i′ ∈ {x[i], . . . ,n} do

11 Place the boundary βi′2 on just right after v′i. So, β′i2 = (v′i + ε)

12 Compute R-time for all right evacuees

13 if (R-time> t) then

14 Boundary location, b[i′] = vi′−1 + ε; Break;

15 else if ( R-time= t) then

16 Boundary location, b[i′] = vi′+ ε. Break;

17 if (length of x[i]≤ k) then

18 return ‘Yes’

19 else

20 return ‘No’

For any sink si, if we have βl
i j (lth iteration) = βi j (original step), then, the boundaries

will be the same as in the original step, except that now we have an extra sink to

45



4.3. THE MULTIPLE SINK PROBLEMS

cover the portion from βk2. That means, we can reach the rightmost boundary βk2 of

original step by placing (k−1) sinks in the current iteration. We can check whether

the supplies of the uncovered area can reach the extra sink within time t or not. If

not, we do not need to continue moving the split edge because the uncovered portion

only gets larger.

v1 v2

β11 β12 βk1 βk2

vnvhs1 skvi vi+1 vj vj+1

Figure 4.6: An infeasible solution because V [v j+1,vn] are uncovered.

Let, the uncovered vertices were v j+1, . . . ,vn as illustrated in Fig. 4.5. In other words,

the supply of these vertices could not evacuate to any sink. In that case, we test

whether the subpath P[v j+1,vn] can be solved by placing kth sink of this iteration or

not. If the test result is ‘yes’ then the whole problem is feasible, otherwise not. See

Fig. 4.6 for an infeasible solution.

Lemma 4.4. If the cluster head forest, F , is available we can perform the feasibility test

for uniform capacities in O(n) time, where n is the vertices of the given path.

Proof. We already proved that the CHF construction requires linear time for uniform ca-

pacities as in Lemma 3.1. We showed in step 1 of our feasibility test algorithm that it can

run in O(n) time. Similarly, we argue that step 2 can also be done in linear time. So, overall

our proposed t−feasibility test needs O(n) time.

Similarly, by Lemma 3.8 and in the consequence of Lemma 4.4 we can also prove the

following Lemma.

Lemma 4.5. For any given dynamic path with n-vertices, suppose the cluster head forest,

F , is available. We can test its feasibility for arbitrary capacities in O(n logn) time.

46



4.4. CONCLUSION

4.4 Conclusion

In this chapter, we presented the single sink algorithms for uniform and arbitrary ca-

pacities. We also discussed the feasibility test algorithm in details with various cases and

figures. Then based on the feasibility test we claimed two lemmas for above mentioned

both types of edge capacities.

47



Chapter 5

Optimization

5.1 Introduction

The goal of this chapter is to optimize the algorithms that we obtained in the previ-

ous chapter. Here, we discuss two different optimization frameworks and present several

algorithms for both uniform and general edge capacities.

5.2 Sorted matrix approach

In section 3.5, we discussed how to compute a batch of queries using the CHF. Recall

that we enumerated every pair of integers i and j such that 1≤ i≤ j ≤ 2n to determine the

evacuation time. We store the result of these queries in a 2n×2n sorted matrix M2n×2n by

the following way as in [7]

M[i, j] =


OPT (n− i+1, j) if (n− i+1)≤ j

0 otherwise.
(5.1)

Where, OPT (i, j) denotes the optimal evacuation time for placing single sink on a sub-

path P[vi,v j]. In a sorted matrix [11], the elements in each row and column are sorted in

either increasing or decreasing order. So, for any arbitrary pair (i, j) entry in M[i, j] ex-

ists for which the evacuation time is optimal for the whole path. In this regard, Benkoczi

et al. [4] discussed to solve the k-sink location problem on cycle using the sorted matri-

ces framework introduced by Frederickson and Johnson [12, 13] that implies the following

48



5.3. PARAMETRIC SEARCH APPROACH

Lemma

Lemma 5.1. [12, 13] Suppose h(n) is the complexity of pre-processing phase, g(n) is the

computational time to obtain a specific element in the matrix, and the feasibility test can

be done in f (n) time. Then we can solve optimal k−facility location in O(h(n)+ ng(n)+

f (n) logn) time.

Table 5.1: Summary of complexities in different tasks

Tasks Uniform Arbitrary

Feasibility test, f (n) O(n) O(n logn)

Selecting M[i, j], g(n) O(logn) as in [7] O(log3 n) as in [7]

Pre-processing, h(n) O(n) O(n logn)

Table 5.1 represents the complexities of CHF construction, feasibility test and finding a

particular value in the sorted matrix for optimizing our algorithms. Note that, we determine

the value of g(n) from the analysis of [7], where the authors showed that they can find a

particular element in a sorted matrix in logn time. Then we have the following theorem by

Lemma 5.1

Theorem 5.2. The k−sink problem in dynamic flow cycle networks with uniform edge ca-

pacities can be solved in O(n logn) time

In the general edge capacity case, taking the values from the table 5.1 then the Lemma

5.1 thus implies

Theorem 5.3. Given a dynamic flow cycle networks with general edge edge capacities we

can be solve the k−sink problem in O(n log3 n) time

49



5.4. CONCLUSION

5.3 Parametric search approach

Lemma 5.4. [2] If the feasibility can be tested in α(t) time, then the k−sink can be found

in O(h(n)+ kα(n) logn) time, h(n) is the preprocessing time.

By Lemma 3.8 we showed that our CHF construction requires h(n) = O(n logn) time,

and the feasibility test takes α(n) = O(n logn) time. Therefore, Lemma 5.4 gives us

Theorem 5.5. Given a dynamic flow cycle network with n vertices, we can obtain the opti-

mal k−sink in O(n logn+ kn log2 n) time.

When the edge capacities are uniform, based on Lemma 3.1 the preprocessing time is

h(n) = O(n) and then applying Megiddo’s main theorem in [20] to Lemma 4.4, we get

Theorem 5.6. Given a dynamic flow cycle network with uniform edge capacities, we can

find an optimal k− sink in O(n+ kn logn) time, where n is the number of vertices on the

cycle.

Based on the number of sinks we can quickly decide which framework will provide the

better result. If the number of the sink tends to the given number of vertices, then it is better

to use the sorted matrix approach; otherwise the parametric search approach.

5.4 Conclusion

In this chapter, we discussed two best-known frameworks: sorted matrix and parametric

search frameworks. These two frameworks give us four different running times for multiple

sink location problems on the cycle with uniform and general edge capacities.

50



Chapter 6

Conclusion

6.1 Introduction

In this chapter, we first summarize our thesis. Section 6.2 consists of the gist of different

chapters. Then in section 6.3, we sketch the future research direction.

6.2 Summary of the thesis

In this thesis, we studied the sink location problem on cycle networks. We consid-

ered dynamic flow networks and proposed algorithms for both uniform and general edge

capacities.

In chapter 2, we defined our network model and discussed preliminaries and terms that

we used throughout the thesis. We depicted a small two edge network for providing the

elementary concepts. We also presented our sink location algorithm template to determine

the optimal sink location on the edges and vertices in this chapter.

Chapter 3 is about our proposed data structure. We first generated the Cluster Head

Forest(CHF) for uniform edge capacity then extended for solving the problem with general

capacities. We depicted how to use our CHF in order to determine the evacuation time.

Our CHF can provide an answer for a query with an arbitrary starting and ending point as

well as batches of queries. We also showed that the Cluster Head Forest has the potential

to solve a set of queries more efficiently

In chapter 4, sink placement on cycle is discussed. We presented a single and multiple

sink location algorithm for uniform edge capacity. When the edge capacities are general,

51



6.3. FUTURE SCOPE

we also provided two algorithms of the similar kind as uniform capacity.

We optimized our proposed algorithms in chapter 5. We used parametric search and

sorted matrix approaches as the optimization framework. The later is the most standard

framework for optimization.

6.3 Future Scope

We believe our contribution in this thesis is significant for further research in other

network topologies and as well as in different types of location problems.

Our result will lead to solve the same sink location problem in more complex topolo-

gies such as unicycle, cactus graph to obtain better results. In a connected graph if there are

any two simple cycles have at most one vertex in common, then the graph is called cactus

graph. Again, a unicycle graph is a special kind of cactus when there is only one cycle in

the graph. Unlike our defined cycle network in unicycle graph, some branches can be hang-

ing from the vertices of the cycle. The hanging branches can be treated as tree networks.

Using our results with existing most efficient tree networks [8], sink placement problem in

unicycle networks can be solved. Once the results for unicycle graph is available then the

problem for a cactus network can also be solved. Thus, our research can extend to solve the

sink location problem in different topologies. Table 6.1 represents the current state of sink

location problem in the general graph.

Table 6.1: Current state of optimal sink location problem in general graph

Graph name Uniform capacity Arbitrary capacities
1−sink k−sink 1−sink k−sink

Cycle1 O(n) • O(n logn),
and

• O(n +
kn logn)

O(n logn) • O(n log3 n), and

• O(n logn+ kn log2 n)

Unicycle open open open open
Cactus open open open open

1We proposed in this thesis the above cycle results and all of them are described in chapter 4 and 5.

52



6.5. CONCLUSION

For solving the other kinds of sink location problems, the min-sum objective, for exam-

ple, our proposed data structure can be used to design a powerful algorithm for determining

the evacuation cost more efficiently.

We also believe it is possible to obtain a particular element in spending O(log2 n) time

from a series of sorted matrices. Then the time complexity of our proposed algorithm for

arbitrary capacities can be improved by a logn factor.

6.4 Publication

We submitted the parts of our research [6] that we conducted for this thesis on the

same topic in 11th International Conference on Algorithms and Complexity (CIAC-2019).

Click here to read the full paper (accessible only from the e-mail address of University of

Lethbridge). Due to space constraints, we could not discuss the arbitrary capacity case in

the paper. We have a plan to submit the paper to a journal with the detailed information.

6.5 Conclusion

In this last chapter of the thesis, we summarize our discussion of preceding chapters.

We also presented the current state for solving the sink location problem in the general

graph and with clear remarks, we showed the areas that are still open for research. We

argued that our proposed data structure can be used to obtain results for other topologies.

53

https://drive.google.com/file/d/10fESpWer0yKpKWId94wHnePBhrP3EzY1/view?usp=sharing


Bibliography

[1] Guru Prakash Arumugam, John Augustine, Mordecai J Golin, Yuya Higashikawa,
Naoki Katoh, and Prashanth Srikanthan. Optimal evacuation flows on dynamic paths
with general edge capacities. arXiv preprint arXiv:1606.07208, 2016.

[2] Guru Prakash Arumugam, John Augustine, Mordecai J Golin, and Prashanth Srikan-
than. A polynomial time algorithm for minimax-regret evacuation on a dynamic path.
arXiv preprint arXiv:1404.5448, 2014.

[3] Nadine Baumann and Martin Skutella. Solving evacuation problems efficiently–
earliest arrival flows with multiple sources. In Foundations of Computer Science,
2006. FOCS’06. 47th Annual IEEE Symposium on, pages 399–410. IEEE, 2006.

[4] Robert Benkoczi, Bhattacharya Bhattacharya, Ante Ćustic, Sandip Das, and Tsune-
hiko Kameda. Facility location problems in cycle networks. Japan conference on
discrete and computational geometry, graphs, and games, pages 139–140, 2017.

[5] Robert Benkoczi, Binay Bhattacharya, Yuya Higashikawa, Tsunehiko Kameda, and
Naoki Katoh. Minsum k-sink problem on dynamic flow path networks. In Interna-
tional Workshop on Combinatorial Algorithms, pages 78–89. Springer, 2018.

[6] Robert Benkoczi and Rajib Das. Minmax sink location problem on dynamic flow
cycle networks. Submitted to CIAC-2019.

[7] Binay Bhattacharya, Mordecai J Golin, Yuya Higashikawa, Tsunehiko Kameda, and
Naoki Katoh. Improved algorithms for computing k-sink on dynamic flow path net-
works. In Workshop on Algorithms and Data Structures, pages 133–144. Springer,
2017.

[8] Di Chen and Mordecai J Golin. Minmax centered k-partitioning of trees and
applications to sink evacuation with dynamic confluent flows. arXiv preprint
arXiv:1803.09289, 2018.

[9] Siu-Wing Cheng, Yuya Higashikawa, Naoki Katoh, Guanqun Ni, Bing Su, and Yin-
feng Xu. Minimax regret 1-sink location problems in dynamic path networks. In In-
ternational Conference on Theory and Applications of Models of Computation, pages
121–132. Springer, 2013.

[10] Lester R Ford Jr and Delbert Ray Fulkerson. Constructing maximal dynamic flows
from static flows. Operations research, 6(3):419–433, 1958.

54



BIBLIOGRAPHY

[11] Greg N Frederickson. Optimal algorithms for tree partitioning. In SODA, volume 91,
pages 168–177, 1991.

[12] Greg N Frederickson and Donald B Johnson. Finding kth paths and p-centers by
generating and searching good data structures. Journal of Algorithms, 4(1):61 – 80,
1983.

[13] Greg N Frederickson and Donald B Johnson. Generalized selection and ranking:
sorted matrices. SIAM Journal on computing, 13(1):14–30, 1984.

[14] Horst W Hamacher and Stevanus A Tjandra. Mathematical modelling of evacuation
problems: A state of art. in: Pedestrian and Evacuation Dynamics, Springer Verlag,
pages 227–266.

[15] Yuya Higashikawa. Studies on the Space Exploration and the Sink Location under
Incomplete Information towards Applications to Evacuation Planning. PhD thesis,
Kyoto University, 2014.

[16] Yuya Higashikawa, Mordecai J Golin, and Naoki Katoh. Multiple sink location prob-
lems in dynamic path networks. Theoretical Computer Science, 607:2–15, 2015.

[17] Oded Kariv and S Louis Hakimi. An algorithmic approach to network location prob-
lems. i: The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.

[18] Satoko Mamada, Kazuhisa Makino, and Satoru Fujishige. Optimal sink location prob-
lem for dynamic flows in a tree network. IEICE transactions on fundamentals of
electronics, communications and computer sciences, 85(5):1020–1025, 2002.

[19] Satoko Mamada, Takeaki Uno, Kazuhisa Makino, and Satoru Fujishige. An
O(n log2 n) algorithm for the optimal sink location problem in dynamic tree networks.
Discrete Applied Mathematics, 154(16):2387–2401, 2006.

[20] Nimrod Megiddo. Combinatorial optimization with rational objective functions. In
Proceedings of the tenth annual ACM symposium on Theory of computing, pages 1–
12. ACM, 1978.

[21] Yinfeng Xu and Hongmei Li. Minimax regret 1-sink location problem in dynamic
cycle networks. Information Processing Letters, 115(2):163–169, 2015.

55


	Contents
	List of Tables
	List of Figures
	Introduction
	Literature Review
	Contribution of this thesis
	Organization of the thesis

	Preliminaries
	Introduction
	Model definition
	Flow and properties of Sinks
	Sink location problem definition
	Congestion and evacuation time

	Basic concepts of evacuation
	An optimal algorithm for 1 sink location problem

	The Cluster Head Forest
	Introduction
	Properties of the CHF
	CHF construction for uniform capacities 
	CHF construction for an example path

	Cluster Head Forest for arbitrary capacities
	CHF construction

	Using the CHF
	For a single query
	Using of CHF for a set of queries

	Conclusion

	Sink Location on Cycle Networks 
	Introduction
	Single sink problems
	The multiple sink Problems
	The feasibility test

	Conclusion

	Optimization
	Introduction
	Sorted matrix approach
	Parametric search approach
	Conclusion

	Conclusion
	Introduction
	Summary of the thesis
	Future Scope
	Publication
	Conclusion

	Bibliography

