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Abstract

In this paper, we examine the structure of vertex- and edge-transitive strongly regular
graphs, using normal quotient reduction. We show that the irreducible graphs in this family
have quasiprimitive automorphism groups, and prove (using the Classification of Finite
Simple Groups) that no graph in this family has a holomorphic simple automorphism group.
We also find some constraints on the parameters of the graphs in this family that reduce to
complete graphs.
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1 Introduction
There has recently been considerable success in using normal quotient reduction to anal-
yse the structure of several families of edge-transitive graphs, including distance-transitive
graphs [21], graphs that are s-arc-transitive [18, 19], and graphs that are locally s-arc-
transitive [7, 8]. In the first two classes the graphs are also vertex-transitive. This paper
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initiates a study of strongly regular graphs that are vertex- and edge-transitive, using normal
quotient analysis.

Vertex- and edge-transitive strongly regular graphs were first studied by D. G. Higman
in his ground-breaking work on rank 3 groups and graphs [10, 11, 12]. They formed a criti-
cal special case that led to his theory of coherent configurations [13]. Some years later Neu-
maier [17] proved some significant structural results about such graphs when their eigen-
values satisfy a particular inequality. The structures of other families of vertex-transitive
strongly regular graphs have been studied by a variety of authors, cf. [1, 2, 14, 15, 16].

A strongly regular graph (srg) with parameters (n, k, λ, µ) is a regular graph with n
vertices, valency k, such that each pair of adjacent vertices lies in λ triangles, and each
pair of non-adjacent vertices (if such exist) is joined by µ paths of length 2. In particular
we regard the complete graph Kn as a (somewhat degenerate) strongly regular graph with
parameters (n, n−1, n−2, 0). To simplify the language in this paper, we use the following
terminology throughout.

Definition 1.1. We refer to a vertex- and edge-transitive strongly regular graph as a ve-srg.

Requiring strongly regular graphs to be vertex- and edge-transitive may seem a very
stringent condition. However, several important and well-known families of graphs are
contained within the class of ve-srgs, making them clearly worthy of study. Notably, Paley
graphs, Kneser graphs whose vertices correspond to the 2-element subsets of a set of ele-
ments, and more generally, rank 3 graphs are all ve-srgs. Some infinite families of ve-srgs
that are not rank 3 can be found in [3].

It is worth noting that the condition of vertex-transitivity in a ve-srg is implied by the
rest of the structure.

Lemma 1.2 ([17]). A connected edge-transitive strongly regular graph, is also vertex-
transitive.

Despite this, the action of a particular group may or may not be transitive on the vertices
of the graph, even if it is transitive on the edges. We therefore specify vertex-transitive
actions where they are used throughout this paper.

We begin our study by showing that normal quotient reduction (as defined in Section
2) applies properly to ve-srgs. That is, we show that each normal quotient of a ve-srg Γ
is itself a ve-srg. To ensure that the reduction works properly, we do not require that the
group N used in the reduction be normal in the full automorphism group of the graph, but
we do require that it be nontrivial, intransitive, and normal in a subgroup of Aut(Γ) that
is both vertex- and edge-transitive. For this reason, a graph that is irreducible must either
be complete, or have the property that every vertex- and edge-transitive subgroup of its
automorphism group is quasiprimitive (see Definition 2.6).

This reduction sets up our strategy for determining the structure of ve-srgs: we aim to

1. show that every connected ve-srg can be reduced to an irreducible ve-srg by taking a
succession of normal quotients;

2. characterise and as far as possible determine the irreducible ve-srgs: graphs that
cannot be further reduced using normal quotient reduction;

3. use what we learn about the irreducible ve-srgs, and the normal quotient structure, to
study the structure of arbitrary ve-srgs.
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In Section 2 we discuss normal quotient reduction and in particular we establish (1). In the
final three sections of this paper we begin with some minor results on (3), and then achieve
some more significant progress on (2).

In Section 3, we consider the structure of ve-srgs that reduce to the trivial case of the
complete graph under normal quotient reduction. We completely characterise the structure
of ve-srgs that reduce to either K2 or K3, and find constraints on the parameters of ve-srgs
that reduce to one of the larger complete graphs.

In Section 4, we study the family of cartesian products Kb�Kb. We show that these
graphs are ve-srgs, and that graphs in this intriguing family reduce to the complete graph
Kb if and only if b is a prime power, and are otherwise irreducible.

In Section 5, we show that of the 8 families of quasiprimitive groups, one (holomorphic
simple groups) can never arise as the automorphism group of a ve-srg (see Corollary 5.10).
This result uses the Classification of Finite Simple Groups.

While the word “connected” appears in many of the results, it is almost unnecessary;
a disconnected strongly regular graph is a disjoint union of cliques of some fixed order,
whose structure we completely understand.

2 Normal quotient reduction
Graph Notation: A graph Γ consists of a set V (Γ) of vertices and a subset E(Γ) of
unordered pairs of vertices called edges. An automorphism g of Γ is a permutation of
V (Γ) that leaves E(Γ) invariant. We denote the image of a vertex x under g by g(x). For
a subgroup H of the automorphism group Aut(Γ) of Γ, we denote the orbit of x under H
by Hx = {h(x) |h ∈ H} and we say that Γ is H-vertex-transitive or H-edge-transitive if
H is transitive on V (Γ) or E(Γ) respectively. We extend this usage to possibly unfaithful
actions: for example, if H acts as a vertex-transitive group of automorphisms of Γ with
kernel N , then we will often say that Γ is H-vertex-transitive, rather than (H/N)-vertex-
transitive.

In this section, we consider the possibility that Γ, a ve-srg, has a normal quotient.
We look at a vertex-transitive subgroup G ≤ Aut(Γ), and suppose that there exists some
nontrivial normal subgroup N of G that is intransitive in its action on the vertices of Γ. In
some cases, we may also require that G be transitive on the edges of Γ.

Definition 2.1. Let Γ be a graph and G a vertex-transitive subgroup of Aut(Γ). Suppose
that there is some groupN such that 1 6= N /G, andN is intransitive in its action on V (Γ).

The quotient graph, ΓN , is the graph whose vertices are the orbits of N , with an edge
between two distinct vertices Nx and Ny in ΓN , if and only if there is an edge of Γ between
x′ and y′, for some x′ ∈ Nx and some y′ ∈ Ny.

Sometimes, the original graph will have a nice covering structure with respect to the
quotient graph.

Definition 2.2. As before, let Γ be a graph, G ≤ Aut(Γ) a vertex-transitive subgroup of
the automorphism group, and N an intransitive normal subgroup of G. Suppose that for
each pair {B,B′} of adjacent N -orbits, each vertex in B is adjacent to exactly ` vertices
in B′ (so ` is a constant that does not depend on the choice of {B,B′}). Then we say that
Γ is an `-multicover of ΓN .

Notice that if Γ is an `-multicover of ΓN , then ` must divide the valency of Γ. We now
make some observations about the structure of the quotient graph.
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Lemma 2.3. Let Γ be a connected ve-srg, with G ≤ Aut(Γ) acting transitively on the
vertices. Let 1 6= N /G, for some intransitiveN , and let ΓN be the corresponding quotient
graph. Then

1. ΓN is connected,

2. ΓN is vertex-transitive, and

3. ΓN has diameter at most the diameter of Γ.

Moreover, if G is edge-transitive, then

4. ΓN is G-edge-transitive,

5. all edges of Γ join vertices in distinct N -orbits, and

6. Γ is an `-multicover of ΓN , for some divisor ` of the valency of Γ.

Proof. As (1), (2), (3), and (4) are well-known and their proofs are straightforward, we
omit them here.

Property (5) follows immediately from (1) and (4).
(6) Let {Nx,Nx′} be an arbitrary edge of ΓN , and suppose that there are edges from

x to exactly ` vertices in Nx′. Since the action of N is transitive on Nx and fixes every
N -orbit setwise, it follows that every vertex in Nx must have edges to exactly ` vertices
in Nx′. So there are `|Nx| edges between the two N -orbits. Since G acts transitively on
the vertices and N / G, |Nx| = |Nx′|, so considering the action of N on Nx′ shows that
every vertex in Nx′ has edges to exactly ` vertices in Nx. Now if {Ny,Ny′} is another
edge of ΓN , the fact that ΓN is G-edge-transitive forces every vertex in Ny to be adjacent
to exactly ` vertices in Ny′.

We also deduce that the quotient graph is strongly regular, if the original graph is.

Lemma 2.4. Let Γ be a connected ve-srg, with G ≤ Aut(Γ) transitive on the vertices
and the edges. Let 1 6= N / G, for some intransitive N , and let ΓN be the corresponding
quotient graph. If Γ is complete, then no such quotient is possible; otherwise, ΓN is a
connected ve-srg.

Proof. We use (n, k, λ, µ) to denote the parameters of Γ.
That ΓN is connected and vertex- and edge-transitive follows from Lemma 2.3(1, 2 and

4).
If Γ is complete, then any edge-transitive group G is 2-homogeneous on the vertices

of Γ (that is, transitive on the unordered 2-sets). All transitive 2-homogeneous groups are
primitive (see [5], page 35), so all of their nontrivial normal subgroups are transitive. Thus
when Γ is complete, there is no nontrivial vertex-intransitive normal subgroup N in G. We
may therefore assume that Γ has diameter 2, as strongly regular graphs have diameter at
most 2.

If ΓN is complete, then it is strongly regular, and we are done. So we may also assume
that ΓN has diameter 2 (by Lemma 2.3(3), its diameter is at most 2).

Since ΓN is edge-transitive, each of its edges must lie in a constant number of triangles.
This establishes the parameter λ′ of ΓN .

Since ΓN is vertex-transitive, it is clear that ΓN is regular, of degree k′ (say).
Now we wish to show that the number of 2-paths between nonadjacent vertices of ΓN

does not depend on the choice of the nonadjacent vertices. Let Nx and Ny be nonadjacent
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vertices of ΓN . We count the number of 2-paths in Γ between the sets Nx and Ny, in two
different ways.

First we set up some notation for our counting. Let b denote the number of vertices of
Γ in each orbit of N . By Lemma 2.3(6), Γ is an `-multicover of ΓN for some divisor ` of
the valency of Γ.

Now, the number of 2-paths in Γ between Nx and Ny can be counted as b choices for a
vertex x1 ∈ Nx to start the path, times b choices for a nonadjacent vertex y1 ∈ Ny to end
the path, times µ 2-paths between x1 and y1, since Γ is strongly regular.

Alternatively, the number of 2-paths in Γ between Nx and Ny can be counted as b
choices for a vertex x1 ∈ Nx to start the path, times µ′Nx,Ny choices for a set Nu that is
mutually adjacent to Nx and Ny, times ` choices for a vertex u1 ∈ Nu that is adjacent to
x1, times ` choices for a vertex y1 ∈ Ny that is adjacent to u1.

These two ways of counting the same thing, show us that

b2µ = bµ′Nx,Ny`
2.

Since none of b, µ and ` depends on the choices of Nx and Ny, we have that µ′Nx,Ny =
bµ/`2 must not depend on the choices of Nx and Ny, either. Thus the number of 2-paths
between nonadjacent vertices of ΓN does not depend on the choice of the nonadjacent
vertices.

We have shown that a normal quotient of a connected ve-srg, is itself a connected ve-
srg.

Corollary 2.5. Let Γ (not a complete graph), G, N , and ΓN be as in Lemma 2.4, and let
the parameters of Γ be (n, k, λ, µ). As in the proof of Lemma 2.4, let b be the length of the
orbits of N , and let ` be such that Γ is an `-multicover of ΓN .

Then the quotient graph ΓN has parameters (n′, k′, λ′, µ′), with

1. n′ = n/b;

2. k′ = k/`;

3. λ′ = [`λ+ (b− `)µ]/`2; and

4. µ′ = bµ/`2 unless ΓN is complete.

Proof. The values of n′ and k′ come directly from the definitions of quotient graphs and
`-multicovers. The value of µ′ comes from the proof of Lemma 2.4, and a very similar
counting argument (double-counting paths of length 2 in Γ between adjacent N -orbits)
produces the given value for λ′.

Notice that if Γ is a graph that cannot be further reduced using this normal quotient
reduction then either Γ is complete, or Γ has no groupG of automorphisms that is transitive
on both the vertices and the edges and that has a subgroupN such that 1 6= N /G is vertex-
intransitive. The following definition is therefore very important.

Definition 2.6. A transitive permutation group is said to be quasiprimitive if every non-
trivial normal subgroup is transitive.
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Thus, the “irreducible” connected ve-srgs are the complete graphs, together with the
graphs for which every vertex- and edge-transitive group of automorphisms is quasiprimi-
tive.

It might be thought that the requirement of edge-transitivity is artificial; it certainly
creates some noteworthy awkwardness in at least two ways. Firstly, the complement of a
connected ve-srg will be strongly regular, vertex-transitive and often connected, but edge-
transitivity is unlikely. Secondly, we will see later with the example of the cartesian prod-
uct Kb�Kb that there may be ve-srgs with normal quotients that are also ve-srgs, but even
though both the graph and the quotient are edge-transitive, the reduction can only be made
by taking a normal subgroup of a vertex-transitive subgroup of the automorphism group,
not by taking a normal subgroup of a vertex- and edge-transitive subgroup of the automor-
phism group. However, it seems to be very difficult to determine much information about
these graphs if we drop the requirement that G be edge-transitive.

We will consider first the degenerate case of graphs for which some normal quotient is
a complete graph, and therefore irreducible.

3 Complete graphs as normal quotients
In this section, we consider the degenerate case in which some normal quotient of a ve-srg
is a complete graph. We analyse the structure of the original graph in this case.

We will be using the same hypotheses repeatedly in this section, so to shorten the
statements of the results, we state these hypotheses here.

Hypothesis 3.1. Let Γ be a connected ve-srg with parameters (n, k, λ, µ), and G ≤
Aut(Γ) acting transitively on the vertices and on the edges. Let 1 6= N / G, for some
intransitive N , and let ΓN be the corresponding quotient graph. Furthermore, let b denote
the number of vertices in each orbit of N ; m the valency of ΓN ; and ` = k/m the number
of edges from x to Ny whenever Nx and Ny are adjacent in ΓN .

Lemma 3.2. Under Hypotheses 3.1, if ΓN = K2, then Γ is a complete bipartite graph.

Proof. Let Nx and Ny be the two vertices of ΓN . By Lemma 2.3(5), every edge of Γ has
one endvertex in Nx and the other in Ny, so Γ is bipartite.

Since Γ is strongly regular, it has diameter at most 2. Since two vertices in opposite
sets of the bipartition must be at an odd distance, any two such vertices must be at distance
1. Thus, Γ is a complete bipartite graph.

This result does not generalise, but we can draw some conclusions about the parameters
of ve-srgs with a complete normal quotient.

Proposition 3.3. Under Hypotheses 3.1, if ΓN = Km+1 for some m ≥ 1, then

1. (b− 1)µ = `m(`− 1) and in particular ` ≥ 2,

2. (b− `)µ = `(`m− `− λ),

3. µ(`− 1) = `(`+ λ−m), and

4. ` | µ,

Furthermore, if Γ is not the complete multipartite graph K(m+1)[b], then

5. µ ≤ (m− 1)`.
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Proof. By Lemma 3.2, the result holds for m = 1. So in what follows, we may assume
m ≥ 2. By Lemma 2.3(5), every edge of Γ lies between orbits, so Γ is multipartite.

We count the number of 2-paths that start at a fixed vertex v, and end in Nv, in two
ways. First, with v fixed, there are b − 1 ways to choose a vertex v′ ∈ Nv, to be the
terminal vertex of the 2-path. Since v and v′ are in the same N -orbit, they are nonadjacent
by Lemma 2.3(5), so there are µ different 2-paths from v to v′ to choose amongst. This
makes (b− 1)µ 2-paths in all. Alternatively, again with v fixed, we can choose an adjacent
vertex w in k = `m ways. For each such choice, we can choose any of the ` − 1 vertices
of Nv that are not v but that are adjacent to w, to complete the 2-path. Thus, we conclude
that

(b− 1)µ = `m(`− 1). (3A)

This is the first of our desired conclusions. Furthermore, since N 6= 1, we have b > 1, and
by Lemma 2.4, Γ is not complete, so Γ has diameter 2, meaning µ 6= 0. Thus Equation 3A
forces ` ≥ 2.

With a fixed starting vertex v, we count the number of 2-paths that start at v and end
at some vertex u 6∈ Nv for which v and u are not adjacent (if there is no such vertex u,
our count will produce 0). Fixing v, there are m orbits of N that do not contain v, and
since ΓN = Km+1, each of these contains b − ` vertices that are not adjacent to v that
serve as choices for the terminal vertex u of our 2-path. For each choice of u, there are µ
2-paths from v to u from which we may choose. Thus, the number of 2-paths is m(b− `)µ.
Alternatively, again with v fixed, we can choose an adjacent vertex w in k = `m ways. For
each such choice, there are `m − ` vertices that are adjacent to w but not in Nv; however,
λ of these vertices are actually adjacent to v also (recall that none of the vertices in Nv
are adjacent to v by Lemma 2.3(5)), so in total `m(`m − ` − λ) is the number of 2-paths
starting at v and terminating in some u 6∈ Nv that is not adjacent to v. We conclude that

m(b− `)µ = `m(`m− `− λ),

and dividing through by m,

(b− `)µ = `(`m− `− λ), (3B)

our second conclusion.
Now we take Equation 3A and subtract Equation 3B, to obtain

µ(`− 1) = `(`+ λ−m),

our third conclusion. Furthermore, since ` and ` − 1 are coprime, this forces ` | µ, our
fourth conclusion.

Finally, suppose that Γ is notK(m+1)[b], and fix two nonadjacent vertices v, u in distinct
blocks (such vertices exist since Γ is not complete multipartite). The first vertex v has
(m− 1)` neighbours in blocks other than Nu. Since any 2-path between the vertices must
go through a third block (by Lemma 2.3(5)), the number µ of 2-paths between v and u
cannot be more than (m− 1)`. This is the last of our desired conclusions.

In the case where Γ is not complete multipartite, then, we have (among other things)
that ` | µ, but µ ≤ (m− 1)`. It would seem to be interesting to determine how these rela-
tionships between µ and ` affect the graph Γ, and for which values of µ relative to ` there in
fact are strongly regular, connected, edge-transitive graphs. We begin by considering one
extreme of the relation: the case where µ = (m− 1)`.
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Proposition 3.4. Under Hypotheses 3.1, if ΓN = Km+1 for some m ≥ 2 and µ = (m −
1)`, then Γ ∼= Kb[b] − bKb, the complete b-partite graph with b vertices in each part, with
the edges of b vertex-disjoint copies of Kb deleted, and b = `+ 1 = m+ 1.

Proof. The graph Γ cannot be K(m+1)[b] since for that graph µ = m`. Therefore Propo-
sition 3.3(1) gives (b − 1)µ = `m(` − 1), so (b − 1)(m − 1) = m(` − 1). Thus
b− 1 = (1 + 1

m−1 )(`− 1) ≤ 2(`− 1), so b ≤ 2`− 1.
Fix a vertex v. If b > ` + 1, then there are at least two vertices u and w in some

other block, both of which are nonadjacent to v. Since µ = (m − 1)`, both u and w must
have exactly the same neighbours as v in the remaining m − 1 blocks, to create µ 2-paths
between v and u, and µ 2-paths between v and w. Since these µ mutual neighbours also
create µ 2-paths between u andw, it must be that u andw have no mutual neighbours in the
block containing v. But since each has ` neighbours in the block containing v, and there
are a total of b ≤ 2`− 1 vertices in that block, the pigeon-hole principle forces u and w to
have at least one mutual neighbour in the block containing v, a contradiction. We can thus
conclude that b ≤ ` + 1. In fact, since b ≥ ` by definition of `, and b = ` would give a
complete multipartite graph, we can conclude that b = `+ 1.

By Proposition 3.3(1) with b = ` + 1, we obtain µ = m(` − 1). By assumption, then,
(m − 1)` = m(` − 1), which forces m = ` = b − 1. We also have µ = `(` − 1) and
λ = (`−1)2 (from Proposition 3.3, parts (1) and (3)). These parameters force the structure
that we have claimed, as we will show in the next paragraph.

Towards a contradiction, suppose that for some vertex v, the set of non-neighbours of v
that are not in Nv is not an independent set of vertices. Then there are two non-neighbours
of v, u and w (say), that are adjacent, and u, v and w are all in different blocks. Now, since
each of u and w has ` = b − 1 neighbours in each of the blocks that do not contain u or
w, they must have either ` or ` − 1 common neighbours in each of these blocks. Since
there are `− 1 such blocks, and they have a total of (`− 1)2 mutual neighbours, they must
have exactly ` − 1 mutual neighbours in each of these blocks. But since both u and w are
non-neighbours of v, they have ` mutual neighbours in the block Nv, a contradiction.

It is not hard to verify that the graphs Kb[b] − bKb form an infinite family of connected
ve-srgs that are not complete multipartite, and that have complete normal quotients.

Interestingly, a consequence of the preceding result is that there is only one ve-srg that
is not complete tripartite and has K3 as a normal quotient.

Corollary 3.5. Under Hypotheses 3.1, if ΓN = K3, then either Γ ∼= K3[b], or b = 3 and
Γ ∼= K3[3] − 3K3.

Proof. Here we have m = 2. We assume that Γ is not K3[b].
Since m = 2, Proposition 3.3(4) and (5) give ` | µ (so ` ≤ µ), and µ ≤ `. Thus

µ = (m− 1)` = `. Now Proposition 3.4 completes the proof.

At the other extreme lies the possibility that µ = `. Here there is another infinite family
of connected ve-srgs: the graphs Kb�Kb. As there is quite a bit to say about these graphs,
we will discuss them in a separate section, shortly.

Meanwhile, putting additional standard facts about strongly regular graphs together
with the results of Proposition 3.3, we can produce a bit more information about the possi-
ble parameters of other ve-srgs Γ that reduce to complete graphs. By the eigenvalues of Γ
we mean the eigenvalues of its adjacency matrix (see [9]).
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Proposition 3.6. Under Hypotheses 3.1, if ΓN = Km+1, then either Γ is a complete
multipartite graph, or the eigenvalues of Γ are

k, θ = m− r, and τ = −`,

where ` = k/m and r = µ/`. Furthermore, the multiplicities of the eigenvalues θ and τ
are

mθ =
m`(m+ 1)(`− 1)
r(m− r + `)

,

mτ =
m(m− r + 1)(m`+ r −m)

r(m− r + `)
,

so these values must be integers.
The parameters for Γ are(

(m+ 1)(m`−m+ r)/r,m`, (`− 1)r +m− `, r`
)
.

Proof. We assume that Γ is not complete multipartite, and deduce the given formulae for
the eigenvalues, their multiplicities, and the parameters of Γ. Standard results (cf. [9], p.
220) on strongly regular graphs give the formulas

θ = (λ− µ+
√

∆)/2 and τ = (λ− µ−
√

∆)/2,

where ∆ = (λ−µ)2 + 4(k−µ). Solving for λ in Proposition 3.3(3) gives λ = (`− 1)r+
m − ` (which is the value given above for the third parameter of Γ). Substituting this into
the formula for ∆ gives ∆ = (m+ `− r)2. The values given for θ and τ are an immediate
consequence of combining these results.

Similarly, standard results on strongly regular graphs give

mθ =
(n− 1)τ + k

τ − θ
and mτ =

(n− 1)θ + k

θ − τ
.

Solving for b in Proposition 3.3(1) gives b = (m`−m+r)/r, and we know n = (m+1)b.
This yields the given value for n in the parameters of Γ, completing the calculations of the
parameters. Using this value for n in the formulas formθ andmτ completes the result.

While we have determined some information about ve-srgs that reduce to the complete
graph, and have determined some special cases, there is much still to be explored here.

4 The family Kb ��� Kb

In this section, we consider the infinite family of graphs consisting of cartesian products
of two copies of a complete graph. These graphs are also known as Hamming graphs with
diameter 2, or as b × b-grid graphs. First we show that these graphs are all connected
ve-srgs. Then we show that while all have Kb as a normal quotient relative to a vertex-
transitive subgroup of automorphisms, the family is divided into two infinite subfamilies.
The graphs Γ in the first subfamily have an edge-transitive group G of automorphisms
and a nontrivial normal subgroup N of G, such that ΓN = Kb. In the other subfamily,
every edge-transitive group of automorphisms is quasiprimitive, so graphs in the second
subfamily are irreducible.

We define Γ = Kb�Kb as the graph with vertices the pairs (i, j) with i, j ∈ Zb, such
that (i, j) and (i′, j′) form an edge if and only if i = i′ or j = j′ (but not both).
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Proposition 4.1. Let Γ = Kb�Kb. Then Γ is vertex- and edge-transitive and strongly
regular with parameters (b2, 2b− 2, b− 2, 2).

Furthermore, Γ is a b-partite graph with parts of cardinality b. In fact, Kb is a nor-
mal quotient of Kb�Kb relative to a vertex-transitive subgroup of Aut(Γ), and Γ is a
2-multicover of this quotient.

Proof. It is well-known and easy to show that Γ is vertex- and edge-transitive. The number
of vertices is b2 and the valency is 2b − 2. Every edge is in a unique Kb, either formed
by the b vertices with the same first coordinate, or by the b vertices with the same second
coordinate. No edge is in any other triangles. This establishes that λ = b− 2.

If (i, j) and (i′, j′) are not adjacent, then j 6= j′ and i 6= i′. The only vertices adjacent
to both of these vertices, are (i, j′) and (i′, j). This establishes that µ = 2 and that Γ is
indeed strongly regular.

Choose the diagonal sets
{
{(i, i + j) : i ∈ Zb} : j ∈ Zb

}
as the partition sets. Then

it is clear that Γ is b-partite with parts of cardinality b, and each vertex is joined to exactly
two vertices in each partition set apart from the one containing it.

Let G be Zb × Zb in its action by left multiplication on the vertices of Γ. Then G is a
subgroup of Aut(Γ) that acts transitively on the vertices. Furthermore, as G is abelian, the
subgroup N = {nx : x ∈ Zb}, where nx(i, j) = (i + x, j + x), is normal in G, and the
N -orbits are the partition sets mentioned above. Thus ΓN ∼= Kb and Γ is a 2-multicover of
ΓN .

Remark 4.2. We can also obtainKb as a normal quotient by takingG to be Sb×Sb, which
again is vertex-transitive but not edge-transitive, and N = Sb × 1. However in this case Γ
is not a multicover of ΓN , since the partition sets this time contain edges of Γ.

Unfortunately, an unexpected artifact of our requirement that the subgroupG of Aut(Γ)
used in these results must be transitive on the edges as well as on the vertices, is that some,
but not all, of the graphs in this family actually reduce to the complete graph using our
normal quotient reduction scheme, even though both the original graphs in this family and
the quotients are edge-transitive.

Proposition 4.3. Let Γ be the cartesian product Kb�Kb. If b is a prime power, then there
is a vertex- and edge-transitive sugroup G ≤ Aut(Γ) with a normal subgroup N such that
ΓN ∼= Kb.

Proof. Let GF(b) denote the field of order b, and label the vertices of Γ by pairs (i, j) with
i, j ∈ GF(b) such that (i, j) and (i′, j′) form an edge if and only if i = i′ or j = j′ (but
not both).

Let nx(i, j) = (i+x, j+x) for every i, j, x ∈ GF(b), and letN = {nx : x ∈ GF(b)}.
Then N ≤ Aut(Γ). The orbits of N are the b transversals {(i + x, x) : x ∈ GF(b)}, one
for each value of i. Also, as in the proof of Proposition 4.1, N is a normal subgroup of
a vertex-transitive subgroup of Aut(Γ), and ΓN = Kb. It remains to be shown that there
exists some subgroup G of the normaliser of N in Aut(Γ), such that G is both vertex- and
edge-transitive.

Let gr,s,s′(i, j) = (ri + s, rj + s′) for every i, j, s, s′ ∈ GF(b), and for every r ∈
GF(b)∗. Let G′ = {gr,s,s′ : s, s′ ∈ GF(b), r ∈ GF(b)∗}. Let δ(i, j) = (j, i) for every
i, j ∈ GF(b), and let G = 〈G′, δ〉. Then it is straightforward to see that N / G and
G ≤ Aut(Γ).
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We claim that G acts transitively on the vertices and edges of Γ. By varying s and s′

with r = 1, it is clear that G acts transitively on the vertices of Γ. The group generated by
the automorphisms gr,0,0 together with δ fixes the vertex (0, 0) and acts transitively on its
neighbours, so G does indeed act transitively on the edges of Γ.

Our next series of results shows that in fact, the graphs Kb�Kb reduce to Kb only if b
is a prime power, and that otherwise, these graphs are irreducible.

Lemma 4.4. Let Γ be the cartesian product Kb�Kb. If G ≤ Aut(Γ) acts transitively on
the vertices and the edges, then the orbits of any nontrivial intransitive normal subgroup
of G must:

1. be independent sets in Kb�Kb;

2. have length b; and

3. yield a complete normal quotient ΓN ∼= Kb.

Proof. Let N be a nontrivial intransitive normal subgroup of G. Then the N -orbits in
V (Γ) form blocks of imprimitivity for the action of G. Since G is edge-transitive and Γ
is connected, there cannot be any edges between vertices that lie in the same (nontrivial)
block of imprimitivity of G. This establishes that since N is intransitive, the orbits of N
are independent sets (partial transversals) of Kb�Kb.

Since N is nontrivial, its orbits must have length greater than 1. Let (x, y) and (x′, y′)
be distinct vertices in one orbit of N . These two vertices are not adjacent and so x 6=
x′, y 6= y′. Since this orbit is an independent set, (x, y′) is in a different N -orbit, and these
orbits are clearly adjacent in ΓN . Furthermore, since N (x, y) is independent, (x, y) and
(x′, y′) are the only vertices of N (x, y) with first entry x or second entry y′, respectively,
and hence they are the only vertices of N (x, y) which are adjacent to (x, y′). Since Γ is
an `-multicover of ΓN , this means that ` = 2. Now, if N (x, y) has length less than b, then
there is some j ∈ GF(b) such that no vertex of N (x, y) has second entry j. Hence (x, j)
is not in N (x, y), and has exactly one neighbour (x, y) in N (x, y), contradicting ` = 2.
Thus, the orbits N (x, y) must have length at least b. As they are independent sets, they
have length exactly b, and must contain exactly one pair from each row and each column.
It follows that the normal quotient ΓN is a complete graph Kb.

Proposition 4.5. Let Γ be the cartesian product Kb�Kb. Let G ≤ Aut(Γ) act transitively
on the vertices and the edges of Γ. If b is not a prime power, then G is quasiprimitive.

Proof. The automorphism group of Kb�Kb is Sb o S2 (the wreath product of Sb and S2),
and is generated by B = Sb × Sb, together with δ, where δ((i, j)) = (j, i). Notice that
B / Aut(Γ); in fact, B has index 2 in Aut(Γ). Furthermore, each row and column of Γ is
a block of imprimitivity for B, so for any subgroup of B, it is reasonable to talk about the
action on the rows and on the columns of Γ.

LetG be a subgroup of Aut(Γ) that acts transitively on the vertices and edges of Γ, and
let G′ = G ∩ B. Since G is edge-transitive, G cannot be contained in B. So G′ has index
2 in G. Furthermore, the action of G′ is 2-homogeneous on the rows and on the columns
of Kb�Kb.
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Let N / G, with N nontrivial and intransitive, and let N ′ = N ∩ G′. As N ′ is the
intersection of two normal subgroups of G, we have N ′ / G. The remainder of the proof
breaks down into two cases, depending on whether or not N ′ = 1.

Case 1. N ′ = 1. Then N ∩G′ = 1, so |N | = 2 and G = G′N . Hence G = G′ ×N . Let
n ∈ N with n 6= 1. Now n ∈ G \B, so n = δ(σ, τ), where (σ, τ) ∈ B. Since |N | = 2 we
have

1 = n2 = δ(σ, τ)δ(σ, τ)
= δ2(τσ, στ)

which forces τ = σ−1.
Now

n(i, σi) = δ(σ, σ−1)(i, σi)
= δ(σi, i)
= (i, σi)

so for every i, (i, σi) is a fixed point of n and hence a fixed point of N = {1, n}. But the
orbits ofN are blocks of the transitive groupG, so all have the same length, a contradiction.

Case 2. N ′ 6= 1. Then N ′ is a nontrivial, intransitive subgroup of G. By Lemma 4.4(1 and
2), the orbits of N ′ on the vertices of Γ have length b and are independent sets, so consist
of one vertex from each row. Therefore, the orbits ofN ′ in its action on the rows must have
length b; that is, N ′ is transitive on the rows. Similarly, N ′ is transitive on the columns.

Suppose that for some n ∈ N ′, the action of n fixes row i setwise. Then for any column
j, n((i, j)) = (i, j) since the orbits of N ′ are independent sets (by Lemma 4.4(1)). Thus
n fixes every column setwise. Similarly, since n now fixes column j, n fixes every row
setwise. This shows that the action of N ′ is faithful and regular on the rows. Then, since
N ′ / G′ and G′ is 2-homogeneous on the rows, it follows that N ′ is elementary abelian,
and in particular b is a prime power.

This shows that G cannot have a nontrivial, intransitive normal subgroup if b is not a
prime power. By definition of quasiprimitivity, G must be quasiprimitive if b is not a prime
power.

Combining the preceding results yields the following information about this family of
graphs.

Corollary 4.6. Let Γ be the cartesian product Kb�Kb. There exists a vertex- and edge-
transitive group G ≤ Aut(Γ) with a nontrivial, vertex-intransitive, normal subgroup N if
and only if b is a prime power. Moreover in this case each such subgroup N corresponds
to a complete normal quotient ΓN ∼= Kb.

Proof. If b is a prime power, the existence of the groups G and N follows from Proposi-
tion 4.3, and the fact that each intransitive N corresponds to a complete normal quotient
ΓN ∼= Kb follows from Lemma 4.4(3). If b is not a prime power, the quasiprimitivity of G
from Proposition 4.5 shows that no such N exists.

Juxtaposing the fact thatKb is always a normal quotient ofKb�Kb relative to a vertex-
transitive group G, with the fact that G can be edge-transitive if and only if b is a prime
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power, illustrates the complex behaviour of these Cartesian products. Our results show
that either these graphs are themselves irreducible, or they reduce to a complete graph Kb

(which is irreducible) under normal quotient reduction.

5 Irreducible graphs and holomorphic simple groups
By our reduction method, if a graph that is not complete is to be irreducible, then ev-
ery group of automorphisms that acts vertex- and edge-transitively on the graph must be
quasiprimitive.

According to Praeger’s characterisation of quasiprimitive groups [19], they fall into one
of the following families:

1. holomorphic simple groups;

2. affine groups;

3. almost simple groups;

4. simple diagonal action groups with one minimal normal subgroup;

5. compound holomorphic groups;

6. compound diagonal action groups;

7. product action groups; and

8. twisted wreath action groups.

While some of these groups do act as automorphism groups of ve-srgs (such as affine
groups acting on the Paley graphs, and certain simple group actions on ve-srgs), we will
devote the remainder of this paper to proving that holomorphic simple groups cannot arise
as vertex- and edge-transitive automorphism groups of ve-srgs. This result is stated in
Corollary 5.10.

We recall the definition of homomorphic simple groups. Let T be a nonabelian simple
group and W = T o Aut(T ). The group W has a natural action on the set T , where
the subgroup T of W acts by left multiplication and the subgroup Aut(T ) of W acts
by automorphisms. With this permutation representation, W is a primitive subgroup of
Sym(T ). We note that the stabilizer of the point 1T in W is Aut(T ). Any subgroup G of
W containing T o InnT is said to be a holomorphic simple group. In this case, the group
G is quasiprimitive (it is actually primitive), with exactly two minimal normal subgroups,
T and M = CG(T ). Furthermore, T ∼= M and T o InnT = T ×M .

Remark 5.1. If a holomorphic simple group G (as above) has a vertex-transitive action on
a graph Γ, then (by definition of quasiprimitive) T and M act transitively on the vertices
of Γ. In fact, T and M act regularly on the vertices of Γ (the subgroups T and M of G are
the left and right regular permutation representations of the simple group T ). Thus Γ is a
Cayley graph on T (or on M ).

This remark shows that if G is a holomorphic simple group acting vertex-transitively
on Γ, we can identify the vertices of Γ with the elements of the simple group T .

Again, we have a series of hypotheses that we will be using in many of the results in
this section, so we collect them here.
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Hypothesis 5.2. Let Γ be a connected ve-srg with parameters (n, k, λ, µ), and with G ≤
Aut(Γ) acting transitively on the vertices and on the edges. Suppose that G is a holomor-
phic simple group, with minimal normal subgroups T andM . Identify the vertices of Γ with
the elements of T , according to Remark 5.1. Let H = G1T , the stabiliser of the identity,
and let S be the connection set of the Cayley graph Γ. Let y = gcd(|H : InnT |, |T | − 1).

We need to consider what the connection set of such a Cayley graph might look like.
The following result is a special case of Proposition 1 of [20], but as the proof is short we
include it here.

Lemma 5.3. Under Hypotheses 5.2, either S is an orbit of H , or for every s ∈ S there is
no h ∈ H such that h(s) = s−1. In the latter case, S is the union of two orbits B and B−1

of H .

Proof. Suppose s, s′ ∈ S so that {1T , s} and {1T , s′} are edges of Γ. Since G is edge-
transitive, there is either some h ∈ H such that h(s) = s′, or some g ∈ G such that g maps
s to 1T and 1T to s′. But as G = HT , if g = ht with t ∈ T and h ∈ H , we must have
t = s−1 and h takes s−1 to s′. Thus, s′ is in the same H-orbit as either s or s−1.

Now we can find an upper bound on the order of the centraliser of any element in the
connection set.

Lemma 5.4. Under Hypotheses 5.2, we have Γ 6∼= Kn, y ≥ 5, y is odd and not divisible
by 3, and

1. if S consists of a single H-orbit, then for any element s ∈ S,

|CH(s)| ≤ (y + 1)|H : InnT |;

2. if S is the union of two H-orbits, then for any element s ∈ S,

|CH(s)| ≤ 2(y + 1)|H : InnT |.

Proof. Suppose that Γ ∼= Kn. Since G is edge-transitive, G must be 2-homogeneous on
V (Γ) (that is, transitive on unordered pairs of vertices). However, all finite 2-hogeneous
groups are primitive of affine or almost simple type (see [5, Theorems 4.1B and 9.4B]).
Since G is holomorphic simple we conclude that Γ 6∼= Kn.

By Lemma 5.3, the elements of S form either one orbit B = B−1 (since S is inverse-
closed) of H , or two orbits B,B−1. Let k = |S|. Then if we fix s ∈ S, we have either
S = {h(s) : h ∈ H} or S = {h(s) : h ∈ H} ∪ {h(s−1) : h ∈ H}, and h(s) = s if and
only if h ∈ CH(s). Thus for any s ∈ S, we have k = |H : CH(s)| if S is a single H-orbit,
or k = 2|H : CH(s)| if S consists of two H-orbits.

Now, let d be the number of orbits of InnT on B. Since InnT is normal in H , and H is
transitive on B, it follows that H permutes the InnT -orbits in B transitively. In particular,

d | |H : InnT | (5A)

and all InnT -orbits on S have the same length; let k′ be that length. Then for any s ∈ S,
we have k′ = | InnT : CInnT (s)|, and dk′ = |B| = |H : CH(s)|.
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Standard results on strongly regular graphs include

k(k − λ− 1) = µ(|T | − k − 1). (5B)

(cf. [9] (10.1), p. 219). This means either

dk′(k − λ− 1) = µ(|T | − k − 1)

or
2dk′(k − λ− 1) = µ(|T | − k − 1)

(depending on whether S consists of one or two H-orbits). As k′ | |T | and k′ | k, we
have gcd(k′, |T | − k − 1) = 1, so gcd(k, |T | − k − 1) = gcd(k, |T | − 1) must divide
both k/k′ ∈ {d, 2d}, and |T | − 1. In fact, all nonabelian simple groups have even order, so
gcd(k, |T | − k − 1) always divides d and |T | − 1. Hence, (5B) yields

(|T | − k − 1) | gcd(d, |T | − 1)(k − λ− 1). (5C)

In particular, |T | − k − 1 ≤ gcd(d, |T | − 1)(k − λ− 1).
Now, k − λ− 1 ≤ k − 1, so

|T | ≤ (gcd(d, |T | − 1) + 1)k − gcd(d, |T | − 1) + 1 ≤ (gcd(d, |T | − 1) + 1)k.

Hence,
k ≥ |T |/(gcd(d, |T | − 1) + 1).

If k = |H : CH(s)|, that is, if S is an H-orbit, we see that

|CH(s)| ≤ |H : InnT |(gcd(d, |T | − 1) + 1),

and part (1) is proved. If k = 2|H : CH(s)|, then similarly we obtain part (2).
Finally, we show that y ≥ 5 and that y is not divisible by 3.
In the special case that y = 1 we have gcd(d, |T |−1) = 1 so (5C) yields (|T |−k−1) |

(k − λ − 1). Since µ ≤ k (the number of 2-paths between two vertices cannot be greater
than the valency of each vertex), (5B) forces k = µ. But this would mean that each vertex
at distance 2 from the vertex 1T has exactly the same neighbours as the vertex 1T . Now,
it is not hard to see that the set of all vertices that have exactly the same neighbours as 1T ,
forms a block of imprimitivity of Aut(Γ). Therefore, as G is primitive, we get that there
are no vertices at distance 2 from the vertex 1T , in which case Γ is complete, which is a
contradiction. So y > 1.

Since |T | is even for every nonabelian simple group, y is odd and in particular y 6= 2, 4.
Suppose that y = 3. Then |T | is coprime to 3. The only nonabelian simple groups whose
orders are not divisible by 3 are the Suzuki groups. So, T = 2B2(q) for some q = 22a+1.
Now

|T | = q2(q2 + 1)(q − 1) ≡ 1 · 2 · 1 ≡ 2 (mod 3).

Thus 3 - |T | − 1 for any nonabelian simple group T , so y 6= 3. Thus y ≥ 5, and 3 - y.

In the next result, we quickly dispose of the possibility that the nonabelian simple group
T is isomorphic to an alternating or sporadic simple group. The remainder of the paper will
be devoted to eliminating the possibility that T is isomorphic to a finite simple group of
Lie type. We include the Tits group (2F4(2))′ in the list of sporadic groups, as (2F4(2))′ is
not properly a simple group of Lie type.
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Theorem 5.5. Under Hypotheses 5.2, the group T is not an alternating or a sporadic
group.

Proof. For every alternating or sporadic group T , we have |OutT | ∈ {1, 2, 4}. Thus we
must have |H : InnT | ∈ {1, 2, 4}. The order of every simple group is even, so y = 1. But
this contradicts Lemma 5.4.

Now we begin to deal with finite simple groups of Lie type. Our first step involves
presenting a general lower bound on the order of the centralisers in all of these groups.

Remark 5.6. To state the following lemma so as to include the Ree and Suzuki groups,
the notation that we use for some of the finite simple groups of Lie type is not the most
common. As the notation is not completely standard, we feel at liberty to do this. We
denote a simple group of Lie type by rLn(t), where L = A, . . . , G is the Lie type, n is the
rank, r is the order of the graph automorphism of the corresponding Dynkin diagram and
t is the size of the field where the group is defined. For instance, 2A2(q2) is the unitary
group of order q3(q2 − 1)(q3 + 1)/ gcd(3, q + 1).

Lemma 5.7. For any simple group T = rLn(t) of Lie type and any element x of the
group T , we have |CT (x)| ≥ (t1/r−1)n/d, where d is the order of the diagonal multiplier
(see [4, page xvi, Table 6]).

Proof. Let G be the connected simple algebraic group of rank n, of Lie type L, of adjoint
isogeny type and over the algebraic closure of the field Ft of order t. Let σ be the Lang-
Steinberg endomorphism of G with fixed point group Gσ such that T ⊆ Gσ . Let x be an
element of T . By Lemma 3.4 in [6], we have that |CGσ (x)| ≥ (t1/r − 1)n. Now, since T
has index d in Gσ , we have that |CT (x)| ≥ |CGσ (x)|/d ≥ (t1/r − 1)/d. This completes
the proof.

Before proving the main result of this section, we prove a lemma about simple groups
of Lie type that we will use in our main proof.

Lemma 5.8. Let T = rLn(t), where t = pa for some prime p, and ŷ = gcd(|OutT |, |T |−
1). If T is not a Ree or a Suzuki group, then ŷ | (a/r). If T is a Ree or a Suzuki group, then
ŷ | a.

Proof. The order of the automorphism group of T can be found in [4] page xv and is
tabulated in Table 5. In particular |OutT | = dfg, where d is the diagonal multiplier, f is
the order of the field automorphisms and g is the order of the graph automorphisms of the
Dynkin diagram (modulo field automorphisms). By inspection, d, g divide the order of T
and f = a. Also, by inspection of Table 5 in [4], we have that r divides |T | and a if T is
not a Ree or a Suzuki group. Therefore the lemma follows.

Theorem 5.9. Under Hypotheses 5.2, the group T is not a finite simple group of Lie type.

Proof. Assume T = rLn(t), where t = pa for some prime p. Let d be the diagonal
multiplier of T . We note that by Lemma 5.4 and Lemma 5.8 (and Hypotheses 5.2), we
have that a/r ≥ gcd(|OutT |, |T | − 1) ≥ 5 if T is not a Ree or a Suzuki group and
similarly a ≥ gcd(|OutT |, |T | − 1) ≥ 5 if T is a Ree or a Suzuki group.

We use Table 5 of [4] extensively in the rest of the proof.
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Case 1. The simple group T is untwisted and has rank n at least 2.
We first assume that T is not An(t). From Table 5 in [4], we get |OutT | ≤ 24a.

Recall from Hypotheses 5.2 that y = gcd(|H : InnT |, |T | − 1) ≤ |OutT |. Then, using
Lemmas 5.4, 5.7 and 5.8 and the fact that d ≤ 4 for these groups (see Table 5 in [4]), for
s ∈ S we have

(pa − 1)n/4 ≤ |CH(s)| ≤ 2(24a)(y + 1) ≤ 2(24a)(a+ 1).

Since y ≥ 5 and 3 - y, this inequality is satisfied only if n = 2 and p = 2. But if
n = 2, p = 2, then d = 1, |OutT | ≤ 6a and the inequality

(2a − 1)2 ≤ |CH(s)| ≤ 2(6a)(a+ 1),

is never satisfied.
If T = An(t), then we have d = gcd(n + 1, pa − 1) and |OutT | = 2da. Now, using

Lemmas 5.4, 5.7 and 5.8, for s ∈ S we have

(pa − 1)n

gcd(n+ 1, pa − 1)
≤ |CH(s)| ≤ 4 gcd(n+ 1, pa − 1)a(a+ 1).

Since a ≥ 5, this inequality is never satisfied. (This is straightforward to check by dividing
into three cases: d ≤ pa − 1 for n ≥ 4; d ≤ 4, for n = 3; and finally d ≤ 3 for n = 2,
where if p = 2 and a is odd we have d = 1.)

Case 2. The group T is a unitary group.
Set T = 2An(t). By Table 5 in [4], we have d = gcd(n+1, pa/2+1) and |OutT | = da.

Now, using Lemmas 5.4, 5.7 and 5.8, for s ∈ S we have

(pa/2 − 1)n

gcd(n+ 1, pa/2 + 1)
≤ |CH(s)| ≤ 2 gcd(n+ 1, pa/2 + 1)a(a/2 + 1).

Since a/2 ≥ 5, this inequality is satisfied only if n = 2, p = 2, a = 10. But if T =
2A2(210), then |T | ≡ 2 (mod 5), and so gcd(|OutT |, |T | − 1) = 1 < 5, contradicting
Lemma 5.4. (The impossibility of satisfying this inequality with other values of n, p and
a is straightforward to check by breaking it down into three cases: d ≤ pa + 1 for n ≥ 4;
d ≤ 4 for n = 3; and finally d ≤ 3 for n = 2.)

Case 3. The simple group T is twisted with r = 2.
Because of Case 2, we may assume that T is not a unitary group. If T is not a Suzuki

or a Ree group (i.e. T is 2Dn(t) or 2E6(t)), then d ≤ 4 and |OutT | ≤ 4a. In particular,
by Lemmas 5.4, 5.7 and 5.8, we have

(pa/2 − 1)n

4
≤ |CH(s)| ≤ 2(4a)(a/2 + 1).

Since a/2 ≥ 5, this inequality is never satisfied.
If T is a Suzuki group or a Ree group (i.e. T is 2B2(2a), 2G2(3a), or 2F4(2a)), then

d = 1, a is odd and |OutT | = a. By Lemmas 5.4, 5.7 and 5.8, we have that

(pa/2 − 1)n ≤ |CH(s)| ≤ 2a(a+ 1).
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Since a ≥ 5, this inequality is satisfied only if p = 2, n = 2 and a = 5, 7 (i.e. T =
2B2(25), 2B2(27)). If T = 2B2(25), then |OutT | = 5 divides the order of T , therefore
gcd(|OutT |, |T |−1) = 1 < 5, contradicting Lemma 5.4. If T = 2B2(27), then |OutT | =
7 and |T | ≡ 6 mod 7, therefore gcd(|OutT |, |T | − 1) = 1 < 5, contradicting Lemma
5.4.

Case 4. The simple group T is the Steinberg triality group 3D4(t).
From Table 5 in [4], we have d = 1 and |OutT | = a. By Lemmas 5.4, 5.7 and 5.8, we

have
(pa/3 − 1)4 ≤ |CH(s)| ≤ 2a(a/3 + 1),

which is never satisfied for a/3 ≥ 5.

Case 5. The simple group T is untwisted of rank 1, and is not a unitary group.
This can only happen if T is the projective special linear group A1(t). The order of the

outer automorphism group of T is a gcd(2, pa − 1), which is a if p = 2, and 2a otherwise.
Now using Lemmas 5.4 and 5.7, for any s ∈ S, we have

pa − 1
d

≤ |CH(s)| ≤

{
2a(a+ 1) if p is even,
4a(a+ 1) if p is odd,

where d = 1 if p is even, and d = 2 if p is odd. Now a ≥ 5, so this inequality is only
satisfied when pa = 25.

If T = A1(32) = PSL(2, 32), we have |OutT | = 5, so |H : InnT | ∈ {1, 5}. By
Lemma 5.4, |H : InnT | ≥ 5. Therefore |H : InnT | = 5 and H = PΓL(2, 32). Again
by Lemma 5.4, |CH(s)| ≤ 30 if S consists of a single H-orbit, and |CH(s)| ≤ 60 if S is
the union of two H-orbits. Now, Lemma 5.7 gives |CH(s)| ≥ 31, so S must be the union
of two H-orbits, and by Lemma 5.3, the orbits must have the form B and B−1. There are
6 conjugacy classes of elements of PSL(2, 32) in PΓL(2, 32) for which the centralisers of
the elements have order at most 60. First, there is a single conjugacy class of elements
of order 11; since there is only one such class, it cannot be in S. Next, there are three
conjugacy classes of elements of order 31; each of these is the conjugacy class represented
by a matrix of the form [

x 0
0 x−1

]
,

which is conjugate in PSL(2, 32) to its own inverse, since they have the same eigenvalues.
Therefore, these three conjugacy classes are inverse-closed, so they cannot be in S. Finally,
there are two conjugacy classes of elements of order 33. The normaliser of a cyclic group
of order 33 is a dihedral group of order 66, where the involution inverts the element in
the cycle, so these conjugacy classes are inverse-closed, and again cannot be in S. Thus,
T 6= PSL(2, 32).

We summarise the results of this section in the following corollary.

Corollary 5.10. Let Γ be a connected ve-srg, with G ≤ Aut(Γ) acting transitively on the
vertices and the edges. Then G cannot be a holomorphic simple group.

Proof. This is an immediate consequence of Theorems 5.5 and 5.9, together with the Clas-
sification of Finite Simple Groups.
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