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ABSTRACT 

This thesis investigates the ecology of wetlands and associated classification in 

prairie and boreal environments of Alberta, Canada, using remote sensing technology to 

enhance classification of wetlands in the province. Objectives of the thesis are divided 

into two case studies, 1) examining how satellite borne Synthetic Aperture Radar (SAR), 

optical (RapidEye & SPOT) can be used to evaluate surface water trends in a prairie 

pothole environment (Shepard Slough); and 2) investigating a data fusion methodology 

combining SAR, optical and Lidar data to characterize wetland vegetation and surface 

water attributes in a boreal environment (Utikuma Regional Study Area (URSA)). 

Surface water extent and hydroperiod products were derived from SAR data, and 

validated using optical imagery with high accuracies (76-97% overall) for both case 

studies. High resolution Lidar Digital Elevation Models (DEM), Digital Surface Models 

(DSM), and Canopy Height Model (CHM) products provided the means for data fusion to 

extract riparian vegetation communities and surface water; producing model accuracies of 

(R2 0.90) for URSA, and RMSE of 0.2m to 0.7m at Shepard Slough when compared to 

field and optical validation data. Integration of Alberta and Canadian wetland 

classifications systems used to classify and determine economic value of wetlands into 

the methodology produced thematic maps relevant for policy and decision makers for 

potential wetland monitoring and policy development.    
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1.0 Overview of Wetlands and Wetland Regulation 

1.1 Introduction 

Wetlands are areas of land that hold water, either temporarily or permanently, and 

contain waterlogged and altered soils with water tolerant (hydrophytic) vegetation 

adapted for life in saturated soil conditions (Government of Alberta 2013). These areas 

play a crucial role in replenishing and storing groundwater, functioning as natural water 

reservoirs that prevent flooding and reduce erosion, as well as filtering and purifying 

water. Wetlands, especially in boreal regions, also store substantial amounts of carbon 

and methane, and have exceptional biodiversity that provides habitat for roughly 1/3 of 

Canada’s species at risk (Stewart & Kantrud 1971; Warner & Rubec 1997, DUC 2011, 

Government of Alberta 2013). Therefore, wetland ecosystems provide many ecosystem 

services and have marked environmental, social, and economic impacts.  

Wetlands have become one of the world’s most threatened ecosystems and 

continue to decline in quantity and health due to the effects of climate change, 

anthropogenic activities, and land cover change (Mitsch & Gosselink 2000, Daily 1997). 

The global extent of wetlands, or the Wetland Extent Trends (WET) index estimates 

wetland have declined between 64-71% in the 20th century, (30% between 1970-2008), 

and continue to rapidly degrade and decline in area (Dixon et al. 2016). Therefore, 

directly affecting wet area extents, riparian extent, hydrological regimes, biodiversity, and 

the functioning of wetland ecosystems (DUC 2011, Russi et al. 2013). Costanza et al. 

(2014) analyzed the global monetary loss associated with degrading wetland ecosystem 

services and area from 1997-2011. Over this time, monetary losses due to changes in 

swamps and floodplains were estimated to be US$ 2.7 trillion in ecosystem services per 

year, while changes in marshes and mangroves were estimated at US$7.2 trillion per year.  
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Even in water rich countries such as Canada, which has 1.2 million square 

kilometers of wetlands (25% of the world’s total) (de Groot et al. 2013), decline and 

degradation of these ecosystems has become a grave concern. In the province of Alberta, 

approximately 70% of wetlands found in the settled areas of the province no longer exist, 

mainly due to agricultural drainage and rapid urban development (Government of Alberta 

2013, de Groot et al. 2013). In less populated boreal regions, warmer temperatures and 

reduced precipitation trends are causing drying of wetland surface and groundwater, 

resulting in changes to hydrology and vegetation (e.g., Roulet 2000; Stow et al. 2004; 

Klein et al. 2005; Riordan et al. 2006; Smith et al. 2014). While policy makers have 

sufficient scientific information to understand the need to take steps toward conservation, 

the global extent of wetlands is immense. One of the technologies that can provide cost 

and time effective solutions to mitigate these problems is remote sensing. Remote sensing 

can be defined as the collection of data about an object from a distance (Jensen 2007). 

This includes mechanical devices such as cameras and laser sensors attached to aircraft 

and satellites. 

  Satellite and airborne remote sensing of surface water allows for large scale 

monitoring of wetland environments, especially isolated Northern wetland environments, 

by detecting and measuring spatial variations in inundation areas to estimate stage or 

discharge (eg. Smith et al. 1996, Pietroniro et al. 1999, Zhang et al. 2004, Brackenridge et 

al. 2005, Brackenridge et al. 2007).  
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1.2 Wetlands in Alberta 

Wetlands come in many sizes and forms, generally developing where the water 

table is at or near the surface allowing water to settle on the land surface promoting 

development of soil conditions for hydrophytic vegetation (National Wetlands Working 

Group 1998). Canada has over 150 million hectares of wetlands, occupying 

approximately 14% of the land area of Canada, which is estimated to be 24% of the 

wetlands in the world (Government of Canada 1991, Pole Star Geomatics Inc. 1996, 

Environment Canada 2016). Most Canada’s wetlands are found in the boreal regions, 

where rates of boreal forest disturbance in 2008 were found to be approximately 78%, 

and among the highest in the world (Komers and Stanojevic 2013). Boreal wetlands are 

which are predominantly comprised of shallow ponds, treed fens and bogs on poorly 

drained organic soils. With increasing disturbance and changing hydrological patterns, 

accurate, high resolution classification of these boreal wetlands is required for 

understanding rates of boreal wetland change, many of which have yet to be accurately 

identified or mapped, therefore there is a need to characterize baseline wetland areas for 

the boreal region. Many wetlands, especially in boreal regions, evapotranspiration may 

exceed precipitation, are sensitive to warming and drying trends that affect the hydrology 

of a wetland and subsequently the vegetation successive cycles and diversity (Devito et 

al. 2005, Petrone et al. 2007). Drying trends in many northern regions of Canada and the 

USA have been observed over the past 30 years, where changes in ground and surface 

water hydrology have been observed, thereby increasing vegetation succession (Kettridge 

et al. 2013) in some years and altering wetland growth patterns (Stow et al. 2004, 

Riordano et al. 2006, Petrone et al. 2007, Smith et al. 2014).  
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The prairie pothole region of West-Central North America encompasses an area 

approximately 715,000km2 extending from Central Alberta, Canada south to the state of 

Iowa, USA. Prairie potholes are a result of glacial retreat during the last ice age, 

approximately 12,000 years ago (Winter, 1989). Wetlands within depressions created by 

the glacial retreat are highly variable in size and permanency, but are generally 

characterised as having less than 1m water depth at peak volume. The anthropogenic 

pressures of oil and gas industry, urban expansion, and to a greater degree, highly 

productive and diverse agriculture, all hydrologically affect the wetlands situated in the 

prairie pothole region of Alberta. Many of the wetlands in the prairie pothole region are 

often viewed as isolated (or closed) basins that only connect within a hydrological system 

during wet conditions, where the depression reaches bank-full conditions and begins to 

spill into adjacent depressions. This is described by Winter and Labaugh, (2003), as the 

“fill and spill” mechanism. Efficient monitoring of wetland hydrological mapping on 

large temporal and spatial scales using remote sensing techniques has proven to be 

challenging in the prairie pothole region, particularly seasonal and often ephemeral 

wetlands. 

As a wetland basin fills with spring snowmelt or precipitation runoff, it promotes 

growth of dormant vegetation. Flora of a prairie wetland is a function of its water regime 

and salinity where water depth and duration determines distribution and composition of 

species (Kantrud et al. 1989). Wetlands which are only flooded briefly in the spring are 

dominated by grasses, sedges and forbs and characterised as seasonal or temporary 

wetlands. In wetland basins deep enough to have standing water throughout the entire 

year, and through drought conditions, the central zone will be dominated by mid to tall 

emergent species. Within a wetland zone, it may take a year or more to adjust to changing 
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environmental conditions or physical disturbance, which results in abnormal zonation 

patterns that are most evident after changes in water level (Kantrud et al. 1989). Many of 

the wetlands in the prairie pothole region of Alberta are ephemeral, meaning they last for 

only a short period of time, and are found in terrain affected by the water table near, at, or 

above the ground surface for a short period. As a result, ephemeral prairie ponds and 

wetlands can be difficult to properly classify compared to wetlands that are more 

permanent due to the dynamic vegetation cycles and soil conditions caused by frequent 

water stage changes.  

 A typical wetland environment can be divided into five vegetation zones based on 

the topography in and surrounding the wetland (Figure 1.1). These zones include upland, 

shrub-land, wet meadow, emergent, and submergent, each having distinct vegetation 

communities, which are a function of the ground water level. Therefore, vegetation zones 

and species composition in many wetland environments are subject to change seasonally 

and annually, which relates to the type (classification) of wetland.           

 

Figure 1.1. Typical vegetation zones of a wetland in Alberta showing the transition from 

upland woody vegetation to hydrophytic submergent vegetation based on Stewart and 

Kantrud (1971, 1989) wetland descriptions.  
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1.3 Wetlands and Classification in Alberta, Canada 

The province of Alberta, located in Western Canada, has a population of over 4 

million people and an area of approximately 661,000 square kilometers. Roughly 20 per 

cent of Alberta’s surface area is covered by wetlands, more than 90 per cent of which are 

peatlands (Government of Alberta 2013, 2014). Natural regions in the province include: 

grassland, parkland, boreal forest, foothills, Rocky Mountain, and Canadian shield 

ecosystems. Each region has distinct types of wetlands that can be divided into five broad 

types: bogs, fens, marshes, swamps, and open-shallow water––most of which have unique 

biological characteristics and dynamic seasonal water extents (Stewart & Kantrud 1971, 

National Wetlands Working Group 1997, Government of Alberta 2015). Prior to June 

2015, wetland classification and function was largely based on Stewart and Kantrud 

(1971), which describes in detail different types of prairie pothole wetlands, specifically 

vegetation, as indicators of wetland type and permanency. The Stewart and Kantrud 

classification system was used widely throughout Alberta in both ‘green’ (crown) and 

‘white’ (private) lands to determine what appropriate action should be taken for wetland 

preservation when industrial and urban developments impact wetlands. Wetland policy 

and classification in Alberta was modified in June 2015 to incorporate additional 

literature. This new classification system considers wider varieties of wetland forms that 

includes the importance of vegetation structure, and water permanence on wetland 

biodiversity, hydrology, and biological processes. As a result, Stewart and Kantrud 

(1971), Ducks Unlimited (Smith et al. 1997), Alberta Wetland Inventory (AWI) (Halsey 

et al. 2004), the field ecosites guides to Alberta (Beckingham 1996; Beckingham and 

Archibald 1996), and the Canadian Wetland Classification System (CWCS, National 
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Wetlands Working Group 1997), have all been incorporated into the new Alberta 

Wetland Classification System (AWCS 2015). 

There are five broad classes of wetlands in the AWCS; marshes, swamps, bogs, 

fens (bog and fen are forms of peatland), and shallow open waters (Figure 1.2). These 

five different types (classes) are divided into form (vegetation), salinity, water 

permanence (relating to classes described in Stewart and Kantrud 1971, not applicable to 

Fen or Bog), and alkalinity (peatlands only) (Table 1.1). 

Marsh Wetland Swamp 

Peatland (Bog & Fen) Shallow Open-Water Wetland 

Figure 1.2. Wetland classes found throughout Alberta in prairie, mixedwood, and 

boreal environments. a) depicting a typical marsh environment with flooded vegetation 

and open water; b) swamp with woody vegetation and distinct riparian zone transitions; c) 

peatland environment in northern Canada with numerous bogs; d) large, alkaline shallow-

open water wetland with abrupt vegetation boundaries and dynamic water extent changes.  
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Table 1.1. The five types of wetlands found in Alberta with corresponding characteristics 

and associated Stewart and Kantrud (1971) permanency classification for Marsh, 

Shallow-Open Water, and Swamp wetlands. 

Wetland 

Class 

Vegetation Form S&K (1971) Water 

Permanence 

Salinity Acidity-Alkalinity 

Bog 1-Wooded, 

Coniferous 

2-Shrubby 

3-Graminoid. 

- Freshwater Acidic 

Fen 1-Wooded, 

coniferous 

2-Shrubby 

3-Graminoid 

- Freshwater to 

slightly 

brackish 

1 -poor (pH < 5.5) 

2-moderate rich (pH 

5.5-7) 

3-extreme rich (pH 

>7.0) 

Marsh Graminoid Temporary (II) 

Seasonal (III) 

Semi-permanent (IV) 

Freshwater to 

brackish 

- 

Swamp 1-wooded 

coniferous 

2-wooded, 

mixedwood 

3-wooded, 

deciduous 

4-shrubby 

Temporary (II) 

Seasonal (III) 

1-Freshwater 

to slightly 

brackish 

2-moderately 

brackish to 

sub-saline 

- 

Shallow 

Open 

Water 

Submerged and/or 

floating aquatic 

vegetation, or bare 

Seasonal (III) 

Semi-permanent (IV) 

Permanent (V) 

Intermittent (VI, Saline) 

1-Freshwater 

to moderately 

brackish 

2-

combinations 

of sub-saline, 

freshwater and 

slightly 

brackish 

- 

 In Alberta marshes are the dominant wetland type. The dominant plant community 

zone in marshes is determined by the plant community found in the deepest portion of a 

wetland (Stewart & Kantrud 1971). Therefore, marsh and shallow open water wetlands 

may not exhibit the wetland type every year due to varying weather or anthropogenic 

drainage conditions. As such, data from numerous months or years must be used in the 

classification of these wetland types (Government of Alberta 2015). Marshes are divided 

into seven different types based on vegetation zones (Figure 1.3). Each of these 

vegetation zones are subject to highly variable water levels and therefore vegetation 
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growth and succession. Fen zones are occasionally found along the margins of brackish, 

saline ponds and lakes on gently sloped terrain where ground water is on or near the 

ground surface, represented by a normal emergent vegetation phase and an open water 

phase that gradually merges with other vegetation zones (Stewart & Kantrud 1971). 

These alkali fen zones can also be found in conjunction with temporary and seasonal 

wetlands that experience frequent agricultural tilling or prolonged drought conditions. 

Rich fens are alkali, whereas poor fens are acidic and generally seen most commonly in 

boreal regions. 

 

Figure 1.3. Marsh wetland classifications and spatial relation of associated wetland 

riparian zones of prairie pothole wetlands. Adapted from Stewart & Kantrud 1971. 

While there are seven marsh wetland classes, the most common marsh 

environments in the prairie pothole region of Alberta are temporary, seasonal, semi-

permanent and permanent (Table 1.2). Vegetation and soil characteristics are generally 

the best wetland class indicators, but the hydroperiod of these four marsh wetland types is 
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quite indicative of how permanent the wetland is both seasonally and annually, and 

dictates vegetation vigor and biodiversity (Stewart & Kantrud 1971, 1989, Government of 

Alberta 2015).    

Table 1.2. Four commonly found marsh environments based on the Stewart and Kantrud 

(1971) wetland classification system, with corresponding hydroperiod and vegetation 

characteristics. 

Wetland Type 

(S&K) 

Hydroperiod Plant Community Zone 

Temporary (II) Surface water present for short 

period of time after snowmelt or 

heavy rainfall 

Wet meadow 

Seasonal (III) Surface water present throughout 

growing season, typically dry by 

end of summer 

Shallow wetland 

Semi-permanent 

(IV) 

Surface water is present for most 

or all of the year, except in 

drought conditions 

Deep wetland 

Permanent (V) Surface water present throughout 

the year 
Open water 

 Climatic cycles affecting water level fluctuation are typically accompanied by 

changes in vegetation (Galatowitsch et al. 1996). Basing wetland classification on a single 

visit, or on information collected from a single year or time of year, provides only a single 

climatic snapshot of a wetland, which fails to reflect its dynamic processes (Government 

of Alberta 2015). Perhaps one of the most important aspects of wetland classification is 

understanding and anticipating how wetlands change seasonally, especially in the 

growing season, which reflects most of the vegetation growth and dynamic water level 

rise.  One of the more quantitative methods for understanding wetland change and the 

impacts of changing climate and disturbance on wetlands is to monitor surface water 

extents, where vegetation growth in each zone is related to surface water extent during the 

growing season. 

The length of growing season is measured in frost free days starting from the 

estimated seeding date (10 days after the average daily temperature is above 5°C), until 
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fall frost (minimum daily temperature is 0°C) or until October 31st, whichever comes 

first. This provides a measure of the period during which plant growth can occur 

uninterrupted by frost and provides a way to compare growing conditions within the 

province (Chetner 2003). 

Quantifying changes in wetland ecosystems can be difficult and logistically 

complex, but is necessary to monitor wetland change and make informed conservation 

decisions (Chasmer et al. 2016). Globally, changes in the surface-water extent over the 

past 15 to 30 years are highly variable among regions, including instances of shrinkage 

and expansion observed within a single watershed (Prigent et al. 2012, Pekel et al. 2016). 

Persistence of surface water is affected by both human and climatic factors (Vorosmarty 

et al. 2000), where most continental regions show a net gain in surface water attributed to 

reservoir construction, whereas net loss is more geographically concentrated to North 

America, the Middle East, and Central Asia.  Long-term climate studies show frequency 

and severity of drought conditions, where climate change is implicated (Lutz et al. 2014), 

resulting in a net loss of surface water being observed in certain regions (MacDonald et 

al. 2010, Pekel et al. 2016). 

Efficient environmental mapping and monitoring of wetlands and wetland 

hydrology on large temporal and spatial scales using remote sensing techniques has 

proven challenging in the prairie pothole region, particularly due to the dynamic wet area 

extent of the shallow and often ephemeral wetlands. Therefore, there is a need to develop 

remote sensing methods to quantify wetland physical and functional changes on broad 

temporal and spatial scales to appropriately identify wetland types (classify), and monitor 

open water and riparian changes to preserve wetland environments 
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1.4 Thesis Objectives 

The main objectives of this research are to examine how Lidar, optical and radar 

data can be combined using data fusion techniques to assist in the production of high 

resolution wetland classification models and geospatial layers in Alberta, Canada.  

The work is divided along two case study objectives:  

1) Examine use of C-band (HH) SAR intensity decibel thresholding for surface water 

extraction in a prairie pothole environment, to develop a time series for marsh and 

shallow-open water wetland hydroperiod classification. Surface water extent and 

permanence is evaluated in accordance with the current Alberta Wetland Classification 

System (2015).  

2) Developing a decision-tree data fusion wetland classification methodology for boreal 

wetlands based on hydroperiod and associated riparian vegetation community attributes 

using multi-temporal, multi-mode data from Lidar (Optech Titan), Synthetic Aperture 

Radar (RADARSAT-2, single & quad polarisation), and optical (SPOT) sensors with 

similar acquisition dates. Wetland classification follows a combination of criteria 

according to the Alberta Wetland Classification System, and the Canadian Wetland 

Classification System. 
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1.5 Thesis Organisation 

This thesis is divided into five chapters. Chapter two discusses technical details of 

Optical, Light Detection and Ranging (Lidar), and Synthetic Aperture Radar (SAR) 

remote sensing sensors relevant to research at both Shepard Slough and Utikuma Region 

Study Area (URSA) study sites. A review of literature including image filtering, 

classification and surface water extraction is also discussed. Chapter three presents 

threshold water extraction of prairie pothole marsh wetlands at Shepard Slough using 

SAR time series to examine surface water permanence and wetland hydroperiods. 

Chapter four presents decision-tree driven Lidar/SAR/optical data fusion for boreal 

wetland classification at URSA. Chapter five concludes the thesis, summarising the major 

findings and discussing the relevance of the research to current wetland policy in Alberta, 

providing potential directions for future research. The study examines two end member 

regions that represent a large portion of wetlands in Alberta.  
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2.0 Remote Sensing Technical Details and Wetland Applications 

2.1 Remote Sensing of Wetlands 

Remote sensing is defined as the acquisition of data about an object without 

touching it, using imaging sensors from a distance (Jensen 2005). Remote sensing is a 

valuable technology that can provide cost and time-effective solutions to mitigate the 

logistical, spatial and temporal difficulties associated with monitoring of large areas. 

Wetlands are among the most difficult ecosystems to characterize using remote sensing 

data due to their high spatial heterogeneity and temporal variability (Wickham et al. 

2004, Wright & Gallant 2007, Bourgeau-Chavez et al. 2009, Klemas 2011). Sizes and 

shapes of wetlands are highly variable and depend on numerous environmental and 

climatic factors. Diversity of plant species, growth rates and physical structure (eg. 

open water, submerged, floating, emergent, woody shrubs, and forest) are also highly 

spatially variable.  

Monitoring and inventory of wetland using satellite remote sensing has many 

advantages and is distinctly advantageous due to repeat coverage capabilities that can 

monitor wetlands seasonally or yearly. In addition, remote sensing is cheaper than field 

methods, covers very large areas and may (in the case of Landsat, Advanced Very High-

Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer 

(MODIS), and air photos), have a long-term record for which changes and long-term trends in 

wetlands can. Remote sensing technologies can supply the following information: (1) 

extent of wetlands, (2) identify the wetland ecosystem type, (3) characterise the general 

wetland land cover type, (4) identify sub-mergent and emergent wetlands, and (5) 

hydrological regime details using multiple spectral analysis of remote sensor data. 
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 The use of high spatial resolution digital image data in the classification of 

riparian structure as part of terrestrial ecosystem monitoring, should be actively pursued, 

with further research focused on advancing segmentation and object-oriented 

classification approaches to improve classification accuracies (Johansen et al. 2007, 

Moffet and Gorelick 2013). Wetland classification can be difficult because of confusion 

with other wetland classes in the same spatial area, as well as spectral confusion with 

other land cover classes among different types of wetlands. Multi-spectral data shows 

only marginally improved classification of wetland when defining broad classes of 

wetlands, treed wetlands and upland forests. However multi-temporal data improves the 

classification of wetlands in localised biodiversity as a spectral response, especially in 

combination with supplementary data such as soil data, ecological data, and elevation and 

topography data derived from ground validation Lidar data (Ozesmi and Bauer 2002; 

Chasmer et al. 2014).  

Water levels and extents also fluctuate daily, seasonally, and annually, which 

confounds spectral classification. Furthermore, many wetland plant species are 

spectrally similar to one another, which makes separation of unique signatures difficult 

(Wright & Gallant 2007, Bourgeau-Chavez 2009). Larger scale, accurate monitoring 

and classification of wetland type is fundamental for understanding and quantifying the 

changing wetland environments in order to make informed political decisions regarding 

wetland management, preservation and inventory (Verpoorter et al. 2014, Chasmer et al. 

2016). Satellites are therefore the most commonly used remote sensing platform to map 

large wetland ecosystems and (Ozesmi & Bauer 2002).  
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2.2 Remote Sensing for Water Mask Generation 

Remote sensing provides methods to quantify changes to these areas over broad 

spatial areas within the last century, where changes can be tied to ecosystem function 

using in situ validation methods. Therefore, there is a need to develop remote sensing 

methods to quantify wetland physical and functional changes on broad temporal and 

spatial scales to appropriately identify wetland types (classify), and monitor open water 

and riparian changes to preserve wetland environments. Water resource assessments, 

flooding and wetlands benefit from accurate water mask mapping and monitoring got 

characterizing wetland condition. Accurate delineation and classification of open water 

wetland and watercourse riparian areas is an important aspect of remote sensing 

applications in hydrology (eg. Marsh et al. 2009, Brisco et al. 2011, Brisco 2015, Crasto 

et al. 2015, ). Water resources monitoring, ecological studies, and infrastructure 

management are greatly enhanced by remote sensing applications with spatial and 

temporal data such as Lidar (Light detecting and ranging), SAR (Synthetic Aperture 

Radar), optical (SPOT, LANDSAT, RapidEye), all of which can be used for water 

masking (Ozesmi & Bauer 2002, Sawaya et al. 2003, Brisco et al. 2009, Ferguson et al. 

2009, Maxa & Bolstad 2009, Crasto et al. 2015). Beyond wetlands, water masks are also 

important for understanding water resources, ecology, and risk/disaster management, all 

of which benefit from accurate, spatial and temporal water area surface maps. 

Direct mapping of surface water elevation and area changes with radar and Lidar 

sensors have also been examined (eg. Alsdorf 2000, Alsdorf et al. 2003, Frappart et al. 

2005, Frappart et al. 2006, White et al. 2014, Brisco et al. 2015, 2017), suggesting that 

both water extent, and vegetation associated with flooding, can be accurately described. 

Hodgson et al. (1987) also indicate that wetlands are best defined using remote sensing 
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imagery acquired in the spring, when the water table is high and shows the most contrast 

between land and water. 

The best wavelength for discrimination of water from land is in the near-infrared 

and middle-infrared regions at wavelengths between 740-2500nm (Jensen 2007). Water 

bodies will appear dark because nearly all the incident radiant flux is absorbed by the 

water, in contrast to land, which appears bright due to reflection from vegetation and bare 

soil in these wavelengths (Jensen 2007). The automatic extraction of waterbodies from 

satellite images is well documented. One such method, for example, is the Normalized 

Difference Water Index (NDWI) used to extract water based on the ratio of the difference 

between the green and the NIR bands divided by the sum of those two bands (Mcfeeters, 

1996).  

Water masks are geographical layers that can be derived from many types of 

remote sensing data that indicate areas of water versus land. Different approaches are 

taken when extracting water masks, which is dependent on the type of sensor being used. 

Optical satellite-based open water classification is an established technique (Sawaya et al. 

2003), and, under appropriate conditions, could provide an excellent comparative dataset 

for Lidar-based approaches by combining spectral, textural, and topographic information 

that has increased the classification accuracy for the majority vegetation structural classes 

(Johansen et al. 2007). Optical passive methods rely on reflectance over water, 

predominantly the absorption of multispectral wavelengths, whereas radar and Lidar rely 

on directional scattering that occurs away from the sensor, or from direct specular 

reflectance back to the sensor. Surface texture properties are also important when 

extracting water masks, as the surface properties interact directly with emitted energy of 

the sensors. Therefore, water can be identified by its spectral reflectance in optical data, 
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whereas the amount of reflectance from a body of water is used for Lidar or radar data 

water mask extraction (Brisco et al. 2014, Chasmer et al. 2014, Crasto et al. 2015). While 

both methods differ, and are reliant on sensor specific information, the combination of 

water masks from the different sensors can be capitalised upon in data fusion (integration 

of multiple types and sources of data), enhancing the accuracy of final products and 

useful for validation purposes. Synthetic Aperture Radar (SAR) is recognised as an 

important source of data for monitoring surface water, and is therefore used for many 

wetland and flood applications. SAR is not subject to sunglint, can penetrate through 

cloud and smoke cover, and can collect data at night, making it a reliable source of data 

for monitoring water bodies (Brisco et al. 2008, 2009). 

2.3 Optical Sensors 

Aerial photography is one of the earliest and simplest remote sensing technologies 

that developed significantly during the early 1900’s with the advent of World War I 

reconnaissance missions. Before airplanes, cameras were attached to balloons and 

pigeons, or set up on high oblique angles from mountaintops. Aerial photographs are 

generally either oblique (side-looking) or vertical (looking straight down) dependent on 

the orientation of the camera relative to the ground (Jensen 2007). The camera systems 

are passive optical sensors, commonly sensitive to light from 0.3µm to 0.9µm 

wavelengths covering the visible, ultraviolet (UV) and near-infrared (NIR) that use lenses 

to form an image in the focal plane. Panchromatic film is sensitive to UV and visible 

portions of the spectrum, producing black and white images which are the most common 

type of film used for aerial photography due to the high resolution of image and contrast 

between objects within the image. Air photo interpretation (feature identification) and 
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photogrammetry (precise locations and height) are the two main interpretation methods of 

aerial photography. The strength of aerial photography is the vast temporal record of high 

quality images that are useful for change detection studies, such as wetland delineation 

(Scarpace et al. 1981, Barrette et al. 2000), and historic imagery can be acquired often at 

little or no cost. Where images in a flight line are taken sequentially with 50-60% overlap 

between images, two images can be placed side by side and viewed stereoscopically in 3 

dimensions, using a stereoscope. This practice is used to gain depth and terrain 

information enhancing interpretation of the scene, enabling extraction of features such as 

perched lakes or tree line in mountainous regions, and vegetation structural attributes. 

These aerial photographs are often useful supplementary information for temporal studies 

using more sophisticated sensors as a source of validation. 

LANDSAT (USGS/NASA) and SPOT (Centre national d'études spatiales 

(CNES)) are both optical sensors and the major satellite systems that was widely used for 

wetland studies beginning in the 1980’s and continue to provide the means for multi-

temporal water studies including: Haack and Messina (1997), Pietroniro et al. (1999), 

Goward et al. (2006), Feyisa et al. (2014), Yamazaki et al. (2015), Mueller et al. (2016). 

SPOT was first launched in 1986 and was the first satellite focused on earth resources to 

have pointable optics, increasing the stereoscopic image capabilities more a wide range of 

environmental applications such as water and land resource management. Early SPOT 

studies include: Rutchey and Vilchek (1994 & 1999), Forgette and Shuey (1997). Landsat 

TM band 5 is the most useful band for identifying wetlands due to its ability to 

discriminate between vegetation and differences in surface soil moisture. Whereas bands 

3, 4, when combined with band 5 provide the best combination of bands to detect 

wetlands (Ozesmi & Bauer 2002). While Landsat is an older satellite (comprised of 8 
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satellites), and one of the first satellite systems used for wetland mapping, the wavelength 

of Landsat bands can be found similarly in other modern sensors such as SPOT and 

RapidEye (Planet Labs) (Table 2.1). The ranges of electromagnetic radiation vary to some 

degree between sensors, but also between Landsat series satellites. Optical remote sensing 

can range in spatial resolution, but typically higher pixel resolution is found on more 

recent systems as the technology has advanced. 

Table 2.1. Typical spectral bands (blue, green, red, NIR), and some unique bands 

(Red Edge, SWIR) with associated wavelengths, of SPOT, LANDSAT, RapidEye and 

Worldview optical satellite systems, with respective pixel resolutions. 

 Sensor Wavelength (nm) 

Band SPOT 

6-7 

Landsat-

7 

RapidEye Worldview 

3-4 

Blue 455-525 450-520 440-510 450-510 

Green 530-590 520-600 520-590 510-580 

Red 625-695 630-690 630-685 655-690 

Red Edge - - 690-730 705-745 

NIR 760-890 770-900 760-850 780-920 

SWIR - 1550-

1750 

- 1195-2365 

Resolution (m) 6 30 5 0.30 to 1.24 

RapidEye (Planet Inc. (USA)) is a constellation of five multispectral earth 

observation satellites launched in 2008. These satellites have the capacity to provide large 

area images with frequent visit time, at relatively high spatial resolution (5-6.5m) that 

includes the Red Edge band (690-730nm) (Table 2.1), which is sensitive to changes in 

chlorophyll content (Tyc et al. 2005), and allows better estimation of the ground cover 

and vegetation (Haboudane et al. 2002, Vinal and Gitelson, 2005). While RapidEye data 

is primarily used for agricultural purposes, Tetteh et al. (2015) show RapidEye imagery is 

also suitable for water identification, accomplished by isolating certain bands, similar to 
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methods used with other optical sensors (green and NIR), with an overall accuracy of 

95% and 0.889 kappa value.  

Worldview 3 and 4 (DigitalGlobe Inc.) are constellation earth observation 

satellites launched in 2014 and 2016 respectively. Worldview has enhanced resolution 

(0.30m panchromatic, 1.24m MS) and a <1-day revisit time aimed to offer precise images 

for change detection, and detecting and monitoring disasters. Worldview 4 has 29 bands 

for enhanced mapping of snow, clouds and atmospheric penetration, as well as typical 

spectral bands (Table 2.1). New and enhanced applications for the high resolution and 

wide range of bands includes land classifications, bathymetry and feature 

extraction/change detection, with superior haze penetration reducing the amount of 

atmospheric interference (Lane et al. 2014). Lane et al. (2014) achieved an overall 

classification accuracy of 86.5% and 0.85 Kappa coefficient for 22 classes of aquatic 

and wetland habitats using a hybrid unsupervised approach. While the use of 

Worldview data is well documented, water and land classification studies (Chasmer et al. 

2016) is less documented compared to other optical sensors.  

Optical sensors have been utilised in many remote sensing studies investigating 

feature extraction and change detection in wide variety applications and landscapes. 

Wetland studies generally use a combination of sensors to increase accuracy of wetland 

classification, specifically optical data, where accuracies are increased in combined with 

other optical or active sensors (Lidar, Radar) in data fusion, and have over 40 years of 

continuous acquisitions. While optical data such as LANDAT and SPOT have been used 

widely to map wet areas and accurately delineate water body boundaries, atmospheric 
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effects such as haze, clouds and smoke which can be problematic when trying to 

construct long-term monitoring programs over large areas (White et al. 2015).          

2.4 Light Detecting and Ranging (Lidar) 

Lidar is an active satellite, airborne, or in-situ sensor that provides topographic 

and bathymetric (dependent on sensor) information that can be used to determine wetland 

basins and water level at a certain time. Discrete pulse, scanning airborne Lidar systems 

can attain a return spacing of less than 1m and is increasingly being collected and used for 

wetland studies due to the high resolution and wealth of topographic information that can 

be extracted, such as slope, aspect and elevation.  Common Lidar systems used for 

topographic mapping, emit laser pulses in near-infrared at a wavelength of 1064nm due to 

ND YAG (neodymium-doped yttrium aluminium garnet) crystal availability, and ease of 

manufacture (Wehr and Lohr 1999, Boland et al. 2004). For bathymetric mapping blue-

green lasers centered at approximately 532 nm (achieved through frequency doubling) are 

used due to increased water penetration capabilities (Mikhail et al. 2001).  

Contemporary Differential Global Positioning System (DGPS) (Figure 2.1) 

technology uses (at least) two Global Navigation Satellite Systems (GNSS): GPS and 

GLONASS. The GNSS, a terrestrial static base station receiver, and a roving receiver 

located on an aircraft simultaneously record the position of the aircraft throughout data 

collection. GNSS data are post-processed with the known location of the base station to 

determine the exact location of the aircraft’s antenna during flight to an accuracy of ~5 

cm (Goulden and Hopkinson 2010). An Inertial measurement unit (IMU) measures the 

orientation of the Lidar antenna at the time a pulse is both transmitted and received by 

using three primary axes: x = in flight aircraft axis (roll axis); y = horizontally 
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perpendicular to x (pitch axis); z = vertical axis perpendicular to x (yaw or heading axis) 

(Hopkinson 2006).  

 

Figure 2.1. Typical components and instrument interaction in an ALS system (Wehr and 

Lohr 1999). 

The aircraft IMU contains three gyroscopes, which measure movement of the aircraft 

(orientation), as well as three accelerometers, which measure non-gravitational 

acceleration and vibration. The result is an output file detailing the aircraft position 

including latitude, longitude, and elevation relative to the ellipsoid, as well as sensor 

orientation including roll, pitch, yaw and heading––all of which are indexed by GPS time 

(Jensen 2007).  

Lidar data provides measurements of the 3D canopy, understory, and ground 

surface topography, which are important for understanding if any morphological changes 

have occurred in elevation (provided temporal data is available), derivation of vegetation 

structural characteristics, spectral characteristics, and for extracting water levels of 

standing water (Toyra et al. 2003, Chasmer et al. 2014, Crasto et al. 2014 and 2015, Irwin 

et al. 2017.). The morphology of the ground surface and vegetation structural 
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characteristics are important for hydrology, productivity, photosynthesis, greenhouse gas 

fluxes, and can be mapped using a digital elevation model (DEM) derived from Lidar 

data. There is a need to further explore automated Lidar-based and multi-temporal 

boundary delineation and water classification, especially as high-resolution, large area 

coverage data becomes increasingly available (Crasto et al 2015). The merit of using 

Lidar for hydrological research is the ability to map surface morphology at a high 

resolution, and under a wide range of land surface conditions (Hopkinson and Pietroniro 

2008; Hopkinson et al. 2011). The utility of Lidar for topographic and vegetation canopy 

representation is well established but more work is needed to evaluate the utility of Lidar 

over channel, lake, and wetland surfaces (Hopkinson et al. 2005; Hopkinson et al. 2011; 

Crasto et al. 2015). 

Contemporary Lidar systems emit pulses, referred to as the pulse repetition 

frequency (PRF) (Jensen 2007), at rates up to 1MHz. PRF has increased from <1KHz 

during the early 1990’s, to current systems that have a PRF ranging from 200 to 1000 

KHz; approximately three orders of magnitude in increased speed and data capture in 20 

years. Range measurements can be determined by the equation r=t/2 x c, where ‘r’ is the 

distance between the target and Lidar sensor, ‘t’ is round trip travel time of the pulse from 

emission to reflection to reception, and ‘c’ is the speed of light in air (~3x108 m s-1) 

(Boland et. al., 2004). Scanning units can be subdivided into the following key 

components described by Wehr and Lohr (1999): laser ranging unit, opto-mechanical 

scanner, control, and processing unit. Scans can either be uni- or bidirectional depending 

on the scanning mechanisms, allowing for an array of calibration options and scanning 

patterns. The scanning mirror unit is an integrated mechanism that measures the scan 

angle of the mirror controlled by a galvanometer controlling the amount of angular 
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motion of the mirror (Goulden and Hopkinson 2010). Mirrors inside the laser transmitter 

typically rotate in a sweeping motion perpendicular to the flight direction in order to 

blanket the surface of the Earth with a swath width field of view of up to 75° (Brovelli et 

al. 2004).    

Typical scanning mechanisms used for airborne Lidar survey include oscillating 

mirrors (bidirectional scan) producing parallel lines or arcs, nutating (swaying) mirrors 

(Palmer scan) producing an elliptical pattern, rotating polygon scanners producing 

parallel lines (unidirectional scan), and fiber scanners producing a parallel line scan 

(Figure 2.2.) (Wehr and Lohr 1999).  

 

Figure 2.2.  Scanning Mechanisms. a) oscillating mirror b) Palmer scan c) fiber scanner 

d) rotating polygon. Adapted from Wehr and Lohr (1999). 

 

 As the off-nadir scan angle (Ө) increases, so does the amount of vegetation foliage 

that must be penetrated in order for a pulse to be sent to and received from the ground, 

often resulting in multiple returns (Jensen 2007). Single return Lidar involves a single 

pulse that generally returns from the first near-ground object it encounters. This can be 

useful for deriving a bare-earth or a canopy height model, but doesn’t allow for derivation 

of 3-dimensional canopy structure information (Jensen 2007). Multiple returns are 

generated when the laser pulse encounters ground and above ground features, such as 
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vegetation, then scatters back to the receiver. Such occurrences are described as the 1st 

return from the incident laser pulse, intermediate returns from below the 1st return, and 

the last return, which is often from the ground (Figure 2.3). 

 

Figure 2.3. Illustration of 1st, 2nd, and last returns from airborne Lidar laser pulses 

interacting with a forested and grassy environment (adapted from Hopkinson 2006). 

 

Systematic errors and uncertainties occur in all data collection equipment, causing 

imprecise and inaccurate measurements. Therefore, determination of uncertainty in data 

collection is important to understanding the value and application of results. In order to 

estimate final observation uncertainty, individual sources of error from GNSS, IMU, laser 

scanner, and ranging components of the overall mapping system must be combined in an 

error propagation model (Goulden and Hopkinson 2010). This is achieved by 
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transforming the laser range observation to a coordinate system by transferring the range 

observation between three co-ordinate systems through time:  

1) Scanning Mirror Frame which has an axis to the mirror’s surface and parallel to 

the flight direction where the reference frame rotates with the scanning mirror 

corresponding to the observed range in the Z axis; 

2) Platform or Body Frame is a transformation of the one-dimensional range 

observation created by the scanning mirror frame where it has a Z axis in the 

direction of normal gravity, X axis in the aircraft heading direction, and Y axis to 

complete the system, therefore, is unaffected by roll, pitch and yaw of the aircraft;  

3) Topocentric Mapping Frame represents the coordinates of the point location on 

the ground. The height origin is set to the ellipsoid or geoid and the planimetric 

origin is set at the centre of a UTM zone and the equator. Transformation of a 

vector uses GPS data from the scanning mirror for comparison to other data sets 

(Schwarz et al. 1993). 

This framework, development for testing uncertainty in Lidar observations, is 

useful because it can be employed to predict uncertainty prior to acquisition, and accounts 

for unavoidable and predicted error that can be corrected or expected in the dataset before 

extensive geo-processing (Goulden and Hopkinson 2010).  

A Digital Elevation model (DEM) represents the shape of a surface using a 

continuous mathematical model. Generally, two types of DEM can distinguish elevation 

as a function of latitude and longitude: digital surface model (DSM) expressing the 

Earth’s surface, and digital terrain model (DTM) expressing the ground surface with 

removed terrain cover such as canopy cover and vegetation. Mass points used in DEM 
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creation can be viewed individually, which is useful for identifying data voids, multiple 

flight lines, and effectively portraying last return data (Jensen 2007).  

Traditional wetland delineation requires resource-intensive on-site investigations 

of soils, vegetation, and hydrology. Lidar provides spatially distributed ground elevations 

that have a density appropriate for creating fine-scale topographic maps suitable for 

delineation applications (Jensen 2007). These maps can enhance the visualization of 

depressions and associated wetlands if the data are modeled. To be useful in hydrologic 

modelling, elevation data is typically interpolated into an even grid, or a DEM (Toyra et 

al. 2003). Wetland visualization is greatly enhanced in smoother models within one to 

three meters resolution, with the triangular irregular network providing the most accurate 

border. Mapping of depressions has many implications to both surface and subsurface 

hydrology. Closed depressions are landforms with no outlet point, whereby water either 

infiltrates into the soil or pools and becomes a wetland (Hayashi et al, 2003). These 

closed depressions are often viewed as errors, and are removed to eliminate barriers to 

hydrological connectivity, largely justified based on the assumption that the depressions 

are artifacts, therefore sources of error in a DEM (Jensen 2007). Lindsey and Creed 

(2004, 2005) suggest removing all closed depressions from a DEM is inappropriate 

because a DEM surface represents a combination of both artifact and actual depressions, 

that when removed may remove actual depressions that are important environmental 

features. Lindsey and Creed (2004) developed a method that identifies actual closed 

depressions using a stochastic based simulation, to estimate the likelihood of a real versus 

digital depression based on an iterative model where sources of error were randomly 

added to a DEM before filling depressions. This method enables the likelihood that a 

depression is a real feature by assuming the degree of error in topography of a normally 
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distributed and spatially autocorrelated DEM. The stochastic simulation based approach 

to depression identification requires little additional data and is applicable to all 

landscapes, accounting for uncertainty in the DEM data, and is able to identify if 

depressions contain water.  Traditional triangular irregular network (TIN)-based 

processing yields a DEM that can be used to accurately detect the edge of a depressional 

wetland within 1-3 meters (Maxa and Bolstad 2009), but with high resolution (<1m 

resolution) and bathymetric datasets (water surface and bottom topography), this accuracy 

can likely be improved upon.     

2.5 Synthetic Aperture Radar (SAR) Technical Details 

Radio detection and ranging (Radar) operates in the microwave portion of the EM 

spectrum, beyond the visible and thermal infrared regions. Operating in the microwave 

region of the spectrum improves signal penetration (decreases attenuation) especially in 

the atmosphere, providing many benefits for temporal studies. Radar is different from 

optical sensors in that it is an active, self-illuminating sensor that operates on the 

microwave spectrum, with the distinct advantage for remote sensing for two reasons: (1) 

radar systems can collect any time of day or night and under poor weather or atmospheric 

conditions; (2) backscatter (radar reflections) provide different information than optical 

sensors. Unlike optical, radar is sensitive to surface texture, particularly in studies 

discriminating the contrast or brightness between objects such as land and water (Hess et 

al. 1990, Rio and Lozano-García 2000; Alsdorf et al. 2001, Bourgeau-Chavez et al. 2001, 

Ozesmi & Bauer 2002, Brisco et al. 2013, White et al. 2015). 

 Most Radar systems operate between wavelengths of 2 and 100cm dependent on 

the purpose of the radar system (Table 2.2). Some bands have specific wavelengths that 
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are suited for a certain type of application or terrain, such as X-band which is commonly 

used for snow and ice monitoring, or L-band, commonly used in geologic applications 

(Jensen 2005). 

Table 2.2.  Typical radar bands and wavelengths with associated common applications. 

Band Wavelength Common Applications 

X-Band 2.4 - 3.75cm (12.5 - 

8ghz) 

Military terrain survey. Ice 

survey. 

C-Band 3.75 - 7.5cm (8 - 4ghz) Good medium for all 

applications. 

S-Band 7.5 - 15cm (5 - 2ghz) Land classification. 

L-Band 15 - 30cm (2 -1ghz) Geologic survey. 

P-Band 30 - 100cm (1 - 0.3ghz) Foliage extraction. 

Shorter wavelength X-band signals generally interact with the upper sections of 

vegetation, while the intermediate C-band penetrates further into the entire canopy, also 

interacting with the ground surface. The L-band is capable of penetrating throughout the 

vegetation and interacts with the surface beneath the vegetation (Hong et al. 2009). Since 

C-band interacts with both the vegetation and ground surface, it is widely utilised in 

flooded vegetation and wetland studies (Adam et al. 1998, Touzi et al. 2007, Brisco et al. 

2008, 2009, White et al. 2014, 2015). Radar polarisation is dependent on the direction the 

SAR signal is transmitted and received to the satellite’s antenna. Early SAR satellite 

systems in the 1990’s operated on single polarisation mode such as HH (horizontal 

transmitted and horizontal received) or VV (vertical transmitted and vertical received). 

More recent systems launched in the 2000’s are equipped with quadruple mode, also 

called ‘quad pol’, which is capable or acquiring data in four channels (HH, HV, VH, VV) 

for enhanced terrain and vegetation studies (Hong et al. 2009).   
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TerraSAR-X (German Aerospace Center (DLR)) is a space-born X-band SAR 

system, launched in 2007 with an 11 day repeat orbit. The high spatial resolution (0.25m 

– 40m), combined with the repeat orbit has been found suitable for monitoring water-

level changes over wetlands (Hong et al. 2009, Schmitt et al. 2012). TerraSar-X can 

generate coherent interferograms in wetland areas and has been used in multi-temporal 

mapping of the distribution of vegetation formations for determining flood duration 

(Schmitt 2012). Another recent satellite is Sentinel-1A and Sentinel 1B (European Space 

Agency (ESA)), which is a C-band, two SAR satellite constellation mission part of a 

larger mission (Copernicus), launched in 2014 and 2016 respectively with a 6 day repeat 

cycle (Potin et al. 2015). One of the benefits of the mission is the relatively open access 

data, which has been made available to public for research applications. Specific water 

resource studies with Sentinel-1 include Amitrano et al. (2014) and Ardhuin et al. (2017) 

focused on calibration of the data and mapping of large water bodies at high resolution. 

The demand for sentinel data has been steadily growing as the Copernicus mission 

progresses and develops. As additional satellites become active (Sentinel 1 to Sentinel 6), 

with a wide variety of active and passive imaging sensors, there will be added capabilities 

for more comprehensive ocean, land and atmospheric monitoring through data fusion.    

RADARSAT-2 (RS2) is a Canadian Space Agency (CSA) satellite launched in 

2007 at an altitude of approximately 798km and orbits Earth 14.3 times per day, with a 

repeat cycle of 24 days. It carries a C-band (5.405 GHz) synthetic aperture radar, which is 

a good wavelength for earth observation applications over land and water, offering a wide 

range of beam modes well suited for wetland monitoring (Livingstone et al. 2005, White 

el a. 2015). Since RS2 data is used to conduct the wetland classification and hydroperiod 

analyses in Chapters 3 and 4, additional radar principles and technical details of the 
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satellite will be discussed as it relates to RS2, but these principles also apply to other 

radar satellite systems. The position of the satellite is derived from an on-board GPS that 

is also used to determine the position of the acquired data on the Earth’s surface. The 

antenna and sensor electronics (SE) comprise the two major systems of the satellite. 

These systems execute all radar functions and are controlled by the spacecraft 

management unit (SMU) that is linked to the antenna SE that interacts with transceivers 

that form the link to ground receiving facilities (Livingstone et al. 2005). Radar 

acquisitions are scheduled by an internal clock that is synchronised to GPS time provided 

by the satellite GPS receivers, allowing for the unique ability to direct and image the 

satellite to the desired area of interest. RADARSAT-2 can transmit and receive fully 

polarimetric radar waves in both horizontal and vertical polarisation planes (HH, VV, 

HV, VH); maintaining the phase information and allowing for enhanced mapping of the 

difference between low and high backscatter values (White et al. 2015). Phase relates to 

the location and shape of the wave pattern allowing for the measurement of the time it 

takes for the radar signal sent from the satellite to interact with the target in the ground 

and return to the satellite (Brisco et al. 2013). RADARSAT-1, the predecessor to the 

RADARSAT-2, was launched in 1995, but only had the capability to transmit and receive 

waves horizontally to the ground target, limiting the ability to detect and calculate phase 

information. The upcoming RADARSAT Constellation Mission (RCM), which is 

anticipated to launch in 2018, will also offer a wide range of beam modes well suited to 

water monitoring applications similar to RADARSAT-2. RCM will be composed of 3 

satellites that will have an average daily coverage for 95% of the world. RCM will also 

have a much shorter revisit time (four days) compared to RADARSAT-2 (24 days), due 
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to the larger swath-width and nature of the constellation, which will greatly enhance 

temporal monitoring applications.   

 The spatial resolution of SAR is determined by built in range and processor 

constraints and depends on beam mode used at the time of data acquisition, which 

dictates scene size and the nominal resolution. Range resolution is dependent on the 

length of the processed beam pulse, where shorter pulses result in higher resolution found 

in ultra-fine or spotlight modes. SAR data can be acquired in a variety of modes (Table 

2.3). Higher resolution modes are best suited for applications requiring high spatial 

resolution over small spatial areas, such as change detection, whereas broad area coverage 

modes are intended for applications requiring wide area coverage where coarser 

resolution is not a limiting factor. 

Table 2.3. High resolution SAR modes of Radarsat-2 with associated nominal resolution, 

scene size and incident angle. 

Mode Scene Size (km) Nominal Resolution 

(m) 

Nominal Incident 

Angle(°) 

Fine 50 x 50 8 30 to 50 

Multi-Look Fine 50 x 50 8 30 to 50 

Extra-Fine 125 x 125 5 22 to 49 

Ultra-Fine 20 x 20 3 20 to 54 

Spotlight 18 x 18 1 20 to 54 

 

2.5.1 SAR Interaction with Wetland Surfaces 

The utility, limitations, and accuracy of radar derived data in water extent 

mapping, flooded vegetation delineation, and water mask generation and has been well 

investigated (Hess et al. 1995, Kasischke & Bourgeau-Chavez 1997, Brisco et al. 2014; 

Santoro and Wegmuller 2014). Synthetic Aperture Radar (SAR) can effectively map and 

monitor changes in surface water, on annual and seasonal scales in near real-time (Irwin 

et al. 2017). Most surface water features are detectable on radar imagery because of the 
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contrast in return between smooth water surface and the rough land surface. Therefore, 

Synthetic Aperture Radar (SAR) can effectively map and monitor changes in surface 

water (Brisco et al. 2008, Brisco et al. 2009), on annual and seasonal scales in near real-

time (Hess et al. 1990, Touzi et al. 2007, White et al. 2014).  Moisture content of a 

material can change electrical properties, thus affecting how material appears in the radar 

image. Increased moisture increases a material’s complex dielectric constant (i.e. ability 

to store electric charge), influencing the ability of a material to absorb, reflect and 

transmit energy which factors into both water and vegetation feature extraction, whereby 

reflectivity and image brightness of most natural vegetation and surfaces is increased with 

increasing moisture content (Toyra et al. 2002). Radar data are good for detecting open 

surface water because the dielectric constant of water is high compared to soil and 

vegetation, and have been shown to be important for wetland water extent 

characterization (Toyra et al. 2001, Brisco 2015, Irwin et al. 2017). Since water has a high 

dialectic constant, it acts as a specular reflector under calm weather conditions (no rain or 

wind). Therefore, due to the off-NADIR emission and view angle, very little backscatter 

is returned to the satellite sensor, which makes water appear as a dark feature in radar 

images compared to land features which are brighter due to increased texture and 

backscattering responses (Di Baldassarre et al. 2011, White et al. 2015).  

 Rain and wind poses one of the biggest challenges for surface water mapping 

using SAR. As wind increases it causes rough surface back-scattering rather than specular 

scattering which is typical in calm conditions. As the water roughness increases, the 

scattering pattern of the incident wave changes and more energy is backscattered (Figure 

2.4). As a result, the contrast is lowered between water and land making surface water 

mapping more problematic (Brisco 2015).  



35 
 

 

Figure 2.4. Schematic drawing illustrating specular scattering and the increase in 

backscatter due to increased surface roughness over a waterbody (adapted from Brisco 

2015). 

Radar signals are often reduced in wetlands dominated by herbaceous vegetation 

with low biomass, largely due to the specular reflectance (Smith et al. 2007). While 

surface wave action has a large influence on the scattering response, different types of 

vegetation also produce variable types of scattering, which are dependent on vegetation 

density and height (Figure 2.5). Wetlands present four different types of backscattering-

under different polarisations and acquisition conditions in SAR data (Brisco et al 2011). 

Scattering is predominantly influenced by wave effects and varying emergent phases of 

vegetation (Figure 2.5). 

 The four common types of scattering in wetland environments are as follows:     

1) Specular Scattering: weak or no return to the satellite. Occurs from smoother 

surfaces such calm water and bare soil. 

2) Rough Scattering: single bounce return to the SAR from surfaces such as rough 

water or low emergent vegetation. 

3) Double-Bounce Scattering: two smooth surfaces create a right angle that deflects 

the incoming radar signal off both surfaces such that most of the energy is 

returned to the sensor. 

4) Volume Scattering: signal is backscattered in multiple directions from features 

such as vegetation or canopies 
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Figure 2.5. Schematic illustrating four types of Radar scattering that occurs in wetland 

environments as a function of surface roughness and vegetation (adapted from Brisco et 

al. 2015). 

As mentioned, RADARSAT-2 can transmit and receive fully polarimetric radar 

waves in both horizontal and vertical planes (HH, VV, HV, VH). HH Polarisation 

generally yields a higher contrast between upland and open water (Brisco et al. 2008, 

2009). Therefore, differences in backscatter response between land and water are the 

greatest in the HH polarization. HH polarization is better able to separate land from water 

under calm water conditions because open water results in less scattering, resulting in 

higher contrast between land and water compared to the HV or VV polarization (Brisco et 

al. 2008, 2009). Therefore, differences in backscatter responses between land and water 

are the greatest in the HH polarization (Adam et al. 1998). While HH is best utilised 

under calm conditions, the HV polarization is better suited for surface water mask 

processing when there are waves or high wind because backscatter is more independent 

of surface roughness, and largely independent of incidence angle and wind direction 

(Toyra et al. 2001). When waves are present in water there is often an increase in 

backscatter that causes water features to appear as vegetation. Therefore, HH/HV dual 

polarisation images are better suited to ensure accurate delineation of open water in 

variable conditions (White et al. 2015). Data for mapping wetlands are best acquired in 
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the spring, summer, and fall to avoid any ice-on imagery (Van der Sanden et. al. 2012). 

For example, rough surface water can produce a backscatter response similar to ice, 

thus making it difficult to distinguish between the two land covers (Van der Sanden et. 

al. 2012). 

2.5.2 SAR Intensity Thresholding for Surface Water extraction 

Areas of known surface water can be sampled to determine the range of intensity 

thresholds (dB) that represent surface water in a SAR image, in order to create a surface 

water extent mask. When mapping using an intensity threshold, the user must consider 

beam mode, and polarization ancillary sources of data for post-editing to obtain an 

accurate result. Intensity thresholding is a commonly used approach where all pixels in an 

intensity image are mapped as water when their backscatter co-efficient is lower than a 

specific threshold based on intensity ranges sampled in areas of known water (White et al. 

2014). The intensity threshold decibel (dB) of water in SAR images is largely influenced 

by weather, polarization, and incidence angle. Lower incidence angles tend to be more 

sensitive to waves on water, therefore a combination of high and low incidence angle 

images is sometimes required to accurately map surface water features (Toyra et al. 

2001). A smaller incidence angle is better able to penetrate vegetation, therefore offering 

better detection of flooded vegetation, especially noted in delta or floodplain areas with 

dynamic seasonal inundation (Crevier et al. 1996, Adam et al. 1998). Generating water 

masks using intensity thresholds is described in Chapter 3 of the thesis as the primary 

objective of the chapter, whereas Chapter 4 focuses more on extracting flooded 

vegetation characteristics using SAR. 
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2.6 Image Orthorectification 

While ortho-rectification of optical imagery is well documented (Leprince et al. 

2007, Marsetic et al. 2015), ortho-rectification of SAR data has proven to be more 

difficult due to its unique and complicated geometry, predominantly caused by the 

interaction of side-looking imaging geometry of the sensor (Leberl 1990, Schreier 1993, 

Leberl 1998). Any geometric distortion of the mosaics limits the use of these data for 

scientific applications, especially when integrated with data from other sources, and can’t 

be compared temporally. The interpretive and mosaicking problems of side-looking radar 

images are well known, and described by Lewis et al. (1970) and Curlander et al. (1984). 

One such issue is known as radar fore-shortening, which occurs when imaged terrain 

surfaces slope toward the radar sensor creating the appearance that they are shortened 

relative to those sloping away from the sensor. Another common issue called ‘radar 

layover’ is an extreme case of foreshortening that occurs when the slope of the terrain is 

greater than the angle of the incident signal (Sheng et al. 2003). Both issues create 

geometric complications when attempting to ortho-rectify SAR images, specifically 

without control data found in the meta-data from acquisition. DEM data are required to 

correct topographic distortion in SAR imagery and image simulation due to the 

dependence of SAR echoes to terrain topography. An indirect strategy uses the technique 

of SAR image simulation from DEM data (Guindon 1993, Sheng et al. 2003). The direct 

strategy determines the ground coordinates of a SAR image pixel through an iterative 

process using the SAR Doppler equation, SAR range equation, and Earth surface model 

(Kwok et al. 1987). These equations are commonly used in SAR spatial processing in 

modern software that directly uses meta-data of the sensor. The direct method requires as 

input the precise sensor position and imaging parameters. Since these data do not function 
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when creating SAR mosaics due to differing meta-data unique to each image, the direct 

strategy is not applicable to SAR mosaic rectification. 

  Typical SAR ortho-rectification procedures are as follows: 1) simulating a SAR 

image from the DEM according to the imaging geometry of the real SAR image; 2) 

manually selecting or automatically deriving reliable tie-points that appear in both real 

and the simulated SAR images; 3) warping the real SAR image to the simulated image 

using a polynomial function fitted from the tie-points; and 4) projecting the warped real 

SAR image back to the map coordinate system using a DEM (Sheng et al. 2003).  As 

previously stated, the procedures only work well in rectifying individual scenes of SAR 

imagery (Kwok et al. 1987, Sheng et al. 2003). With a proper DEM for topographic 

correction and proper meta-data for layover and foreshortening distortion correction, the 

radar images can be projected to regular map coordinate systems, at which point they are 

denoted as orthorectified or orthographic SAR images (Kropastch 1990). The result of the 

whole process is an orthorectified SAR image in the DEM map coordinate system. 

2.7 Common SAR Image Enhancement Methods 

2.7.1 Filters 

Image filtering is a common procedure in SAR data due to the noise 

characteristics present in each image. Filters are used for a variety of reasons to perform 

adjustments to an image to reduce speckle (noise) while also preserving edge effects of 

pixels (White et al. 2014).  Image variance is known as speckle, which is a function of the 

radar system not the scene. The difference between scene texture and image texture is 

explained by speckle in a SAR image. The presence of speckle makes SAR imagery very 

different from most optical imagery because speckle causes SAR imagery to have broad 
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spatial bandwidth, meaning that the spectral width for SAR data approaches the upper 

limit set by the sampling rate. Speckle variance in an image reduces with increased 

effective number of looks (ENL), but by increasing the ENL and averaging the 

reflectivity in an image, the area of each speckle increases which can also reduce the 

resolution of an image (Brisco et al. 2013, White et al. 2014). Filtering allows the user to 

mitigate or correct distortion caused by the imaging sensor or environmental effects such 

as windy or rainy weather. While there are many filters available to adjust imagery, 

almost all filters perform averaging on clusters of pixels, based on the pixels value 

compared to adjacent pixels. In order to reduce the amount of speckle in an image, a 

moving weighted function filter with varying filter window sizes can be applied to the 

image pixels to reduce the amount of speckle (Lee at al. 1994). Common filters used for 

SAR processing can be found in Geomatica (PCI Geomatics) software developed for geo-

spatial analysis and remote sensing applications, which includes the following three 

processing filters:  

1) ‘FAV’ (Averaging Filter) 

FAV is a filter that performs spatial average filtering on individual pixels in an 

image using the gray-level values in a square or rectangular window that surrounds each 

pixel (Figure 2.6). Dimensions of the filter size must be odd numbers, and can be between 

1x3 or 3x1 to 1001x1001. The filter size cannot exceed the size of the image. Common 

resample pixel sizes are 3, 5 or 7. Values higher than 7 will result in significantly altered 

and dissolved data which is not indicative of the SAR response in most cases. 
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Figure 2.6. FAV averaging filter example using a 5x5 filter on an 8x8 pixel image 

(Geomatica 2015). 

Pixels with values within the minimum and maximum background range are excluded 

from the calculations. If one value is specified, the image contains one background value. 

If a parameter is not specified, the image will contain no background value. 

2) ‘FGAMMA’ (Gamma Filter) 

FGAMMA performs gamma map filtering on image data that removes high 

frequency noise (speckle), while preserving high frequency features (edges). When a 

scene reflectivity is assumed to have a Gaussian distribution, it assumes a negative 

reflectivity (Lopes et al. 1990; Lopes et. al. 1993). The filter performs spatial filtering on 

each individual pixel in an image using the gray-level values in a window surrounding 

each pixel. Horizontal and vertical filter size selected by the user specifies the size of the 

filter in pixel units between 1 and 33. The dimensions of the filter must be an odd number 

that can range from 3x3 to 11x11 pixels. To retain higher resolution and visual detail, 3, 

5, or 7 are the most commonly used pixel sizes. Pixels near the edge of the image are 

replicated to provide sufficient data for the filter.  
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3) ‘FMO’ (Mode Filter) 

The FMO mode filter computes the modal gray-level values (the most frequently 

occurring gray-level value) in the square or rectangular filter window that surrounds each 

pixel. FMO mode filtering is best for cleaning thematic maps for presentation purposes 

because it replaces small 'island' effects with larger surrounding pixel clusters (Figure 

2.7).  

 
Figure 2.7. Mode filter (5x5) applied to an 8x8 database image that cleans thematic maps 

(PCI Geomatica, 2015). 

 

While filtering allows the user to mitigate or correct distortion caused by the imaging 

sensor or environmental effects, it may also distort or degrade the image to the degree that 

the resolution changes markedly, resulting in loss of valuable spatial information on a 

per-pixel basis.     

2.7.2 SAR Polarimetric Decompositions for Flooded Vegetation 

Vegetation canopy penetration of the microwaves in a SAR system allows for 

mapping and classification of flooded vegetation due to enhanced backscatter from a 

double-bounce scattering mechanism (Brisco 2015). This results in enhanced HH 

backscattering with less increase seen in VV, therefore dual (HH/VV) or quad (HH, HV, 
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VH, VV) polarised data sets can be used to identify flooded vegetation using polarimetric 

decomposition techniques (Brisco et al. 2011, Brisco 2015). Decompositions are 

physically based models that can be decompressed from several channels in quad 

polarised SAR data, into a single intensity channel that estimates the amount of different 

types of scattering contributing to the total backscatter from each pixel (Freeman & 

Durden 1998, White et al. 2015). The phase information in the SAR data allows for the 

SAR decomposition to discriminate between different scattering mechanisms, and in 

particular between areas of double bounce scattering which is indicative of flooded 

vegetation (Brisco 2015). Well documented decomposition techniques include: Van Zyl 

(Van Zyl, 1989), Cloude-Pottier (Cloude and Pottier 1997), Freeman- Durden (Freeman 

and Durden 1998), and Touzi (Touzi et al. 2007). The most suitable decomposition for 

extracting flooded vegetation has been found to be the Freeman-Durden decomposition, 

which produces three bands identifying volume scattering (taller vegetation and forest), 

double-bounce scattering (flooded vegetation) and surface scattering (water or rough 

surface), (Freeman and Durden 1998, Brisco et al. 2013, White et al. 2014, 2015). 

Decomposition techniques are widely accepted and validated, and have been developed 

and implemented in remote sensing software for SAR processing.  

2.8 Data Fusion 

Data fusion is a technique that seeks to enhance the detection of features in an 

image by creating composite data from a variety of sensors or geospatial data sources. 

Remote sensing fusion decreases classification error and increases interpretation 

robustness, something that is generally only accomplished through integration of data 

collected from more than one sensor (Wald 2001, Wald 2002, Ramsey et al. 1998). The 
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utility of adding more than one sensor data type can be assessed by whether the fused 

classification product is more accurate compared to the results without fusion (Wald 

2001, Irwin et al. 2017). Ideally, processes manipulating spatial data that fuse data from 

multiple sensors create quality products that provide improved accuracy and aid in 

interpretation of spatial data, which could not be otherwise achieved without data fusion. 

Fusion can be integrated in a wide variety of applications that have very different sensor 

characteristics, but can be modified to meet specific objectives that require rigorous 

quality control to meet research or consumer needs (Wald 2001, Wald 2002, Chasmer et 

al. 2014, Brisco et al. 2015).  

Sometimes it can be difficult to map flooded vegetation with only SAR data because there 

are other targets in a scene that can have the same brightness as the flooded vegetation 

(White et al. 2014). While the use of multi-polarisation or multi-frequency data can 

improve accuracies, errors of omission and co-mission are still observed (Brisco 2015). 

As a result, many approaches use optical and terrain data to improve delineation of water 

features, identifying additional topographic high and lows, which greatly aid in 

delineation of surface water and flooded vegetation (Townsend and Walsh 1998, 

Pierdicca et al. 2008, Hostache et al. 2009). This is also true for detailed mapping of 

ephemeral water bodies for monitoring seasonal and annual changes in flooded vegetation 

due to changing climate factors (Brisco 2015). Therefore, the need for enhanced data 

fusion methods has been identified, and studies are increasingly using more than one type 

of sensor due to the different interactions with the ground surface, and feature extraction 

capabilities of the sensors. For example, Radar records the backscatter attributes of 

various polarisations, whereas optical sensors record the sum of radiance reflected. As a 

result, passive optical products are far more directly interpretable due to being analogous 
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to what we see with our eyes compared to radar, which is considered more difficult to 

visually interpret and is less intuitive. But, radar and optical remote sensing have similar 

attributes defined by reflectance, transmittance, backscatter and absorption, even though 

they operate on different regions of the electromagnetic spectrum (Jensen 2007). Optical 

is recording the passive reflectance from solar illumination, whereas radar sensors 

provide their own illumination, therefore, reflectance characteristics differ markedly. 

These two types of images are therefore not comparable in information content, which 

ultimately affects interpretation of the image. Therefore, data fusion (combination of 

different sensors) is valuable to derive similar products, such as canopy reflectance or 

land cover type (Hong et al. 2009).  While there is limited literature on combining Lidar 

and optical derived water masks to evaluate temporal change, temporal Lidar products 

integrated with temporal multispectral products and hydrometric data provide a basis for 

monitoring surface volume changes in wetlands and support development of monitoring 

frameworks over large areas (Zhang et al. 2014).   

2.9 Image Classification 

Landscape classification is often tedious due to the size of most spatial datasets. 

Classification methods can also create discrete classes and overlapping units, inaccurately 

grouping features from interpreted landscapes. Clustering algorithms with many variants 

called K-means, is often used for land classification of spatial data. Methods of K-means 

classification have been successfully used to overcome problems of class overlap and to 

create increasingly spatially accurate land class maps, especially when combined with a 

high-resolution DEM (Burrough et al. 2000). K-means cluster classification aims to 

partition observations into clusters in which each observation belongs to the cluster with 
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the nearest mean, serving as a prototype of the cluster (Kanungo et al. 2002). The aim of 

the K-means algorithm divides points into clusters so that the within cluster sum of 

squares is minimised. The Euclidean distance is then calculated repeatedly between points 

and clusters by moving points from one cluster to another (Hartigan & Wong 1979). This 

process results in partitioning of the data into separate cells described in Figure 2.8. 

Hamerly et al. (2002) suggest by pre-processing data to exclude detected noise data, the 

accuracy of the clustering algorithm used in K-means classification is significantly 

improved.       

 

Figure 2.8. Demonstration of the K-means standard algorithm generating clusters 

(Hamerly et al. 2002). 

Other widely used classification methods in geography are decision tree (DT) 

hierarchical models based on decisions (decision tree) and rules that can be applied to 

predict land cover by determining the highest probability of prediction with input data 

and manually delineated areas, such as wet areas. Decision-tree hierarchical classification 

is more accurate than manual delineation from aerial photography, and can also be used 

with many types of spatial data to classify land cover types through supervised and 

unsupervised clustering techniques (Strahler 1980, Goodale et al. 2007; Chasmer et al. 

2014). Decision tree fusion can be used to quantify the highest probability of prediction in 
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a set of input data and sample sites distributed throughout a watershed (Chasmer et al. 

2014), which is specifically useful for wetland delineation and classification in forested 

wetlands such as bogs and fens. In addition to generating water masks, a decision tree 

water mask and/or level approach can be extended into use in water storage calculations 

by using data-fusion for classification, or integrated with channel and bank delineation 

routines to characterize flood hydrology in wetland environments (Crasto et al 2012; 

Chasmer et al. 2014). This is accomplished by determining the highest probability of 

prediction with input data and manually delineated wet areas distributed throughout a 

watershed; specifically, for wetland delineation and land classification in forested wetland 

environments (Chasmer et al. 2014), effectively identifying different types of wetlands in 

spatially large, logistically challenging areas.  
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ABSTRACT 

The Shepard Slough wetlands area is an urban fringe, suburban, agri-human 

modified prairie pothole environment in the Foothills Fescue Natural Subregion, located 

east of Calgary, Alberta, Canada. Due to low precipitation, development. and dry 

conditions with high evaporation, only approximately 1% of the natural subregion is 

continuously occupied by water, with natural wetlands confined to depressions in 

undulating terrain, making it challenging to monitor these wetland ecosystems. 

This study examines how high resolution, single polarisation (HH) RADARSAT-

2, Synthetic Aperture Radar (SAR), can be utilized in spatial-temporal studies to classify 

wetlands by associating surface water hydroperiod to wetland permanence and 

classification. The innovative hydroperiod analysis and methodology presented provides a 
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baseline for long-term, high resolution water resource monitoring describing more than 

just water extent of wetlands, allowing for enhanced characterization and classification of 

wetlands that can be applied to any wetland or floodplain environment. An intensity (dB) 

threshold routine is used to extract open surface water extent of marsh wetlands in the 

growing season over three years (2013, 2014, 2015). Wetland hydroperiod is examined 

using a pixel frequency analysis and classified in accordance with the current Alberta 

Wetland Classification System (2015).  

The results of this three-year study indicate that SAR derived multi-temporal 

open-water masks provide an index of wetland permanence class, with overall accuracies 

of 88.7 to 95.2% compared to optical validation data, and RMSE between 0.2m and 0.7m 

between model and field validation data. Hydroperiod variation and surface water extent 

was found to be heavily influenced by short-term rainfall events in both wet and dry years 

(rainfall events of ~30+mm corresponded with a marked increase in temporary surface 

water). Persistent and staggered rainfall yielded the largest water surface area. Seasonal 

hydroperiod in wetlands was found to be highly variable if there was a decrease in 

temporary or semi-permanent hydroperiod classes. In years with extreme rain events, the 

more temporary hydroperiod classes were observed in higher total area percentages 

compared to seasonal and semi-permanent/permanent classes (ie. 84% in 2015 which has 

significant rainfall events, compared to 42% which did not have a significant rainfall 

event). Flooding controls, water diversion, and highly variable precipitation may also be 

affecting the hydrological regimes of these prairie pothole wetlands, contributing to 

changes to wetland riparian vegetation, and therefore how these wetlands are classified 

and what class they fall in to under the Alberta Wetland Classification System (2015).         

Keywords: SAR, wetlands, hydroperiod, time series, frequency analysis 
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3.1 Introduction 

3.1.1 Wetland Resources 

Wetlands are defined as areas of land that hold water, either temporarily or 

permanently, and contain waterlogged and altered soils with water tolerant (hydrophytic) 

vegetation adapted for life in saturated soil conditions (Government of Alberta 2013). 

Wetlands are vital for replenishing and storing groundwater, preventing flooding, 

reducing erosion, filtering and purifying water, and storing substantial amounts of carbon 

(Stewart & Kantrud 1971; Warner & Rubec 1997, Government of Alberta 2013). 

Therefore, wetland areas have environmental, social, and economic impacts given the role 

wetland ecosystems have in local ecology. Wetlands are one of the world’s most 

threatened ecosystem types, estimated to have diminished between 64-71% in extent in 

the 20th century, and continue to decline in quantity and function due to the effects of 

climate change, anthropogenic activities, and land cover change (Daily et al. 1997, Dahl 

et al, 2007, Costanza 2014). Wetlands found at high latitude or in semi-arid regions have 

been found to be vulnerable to climate changes due to their poor capability to adapt to 

changing temperature and precipitation regimes (Lane et al. 2014).  

Even in water rich countries such as Canada, decline and degradation of these 

wetland ecosystems has become concerning (Komers and Stanojevic 2013, Smith et al. 

2014). Agricultural drainage and urban expansion in the settled areas (known as the 

‘White Zone’) in the province of Alberta, has resulted in the disappearance of 

approximately 2/3 of wetlands in the region (Government of Alberta 2013, de Groot et al. 

2013). In addition, warmer temperatures and reduced precipitation trends are causing 

drying of wetland surface and groundwater, resulting in changes to hydrology and 

vegetation (Roulet 2000; Stow et al. 2004; Klein et al. 2005; Riordan et al. 2006; Smith et 
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al. 2014). Wetland water-levels and extent can fluctuate daily, seasonally and 

unpredictably following prolonged periods of rainfall, affecting the ecological 

characteristics of a wetland controlled by the presence and duration of open water, 

referred to as the ‘hydroperiod’ (Ewel 1990). Surface water frequency and hydroperiod 

characterizes wetland type, directly relating to the perceived value of a wetland in time 

series investigations (eg. Foster 2007, Mitsch and Gosselink 2007). Therefore, if a 

wetland has a high proportion of more permanent water (semi-permanent) determined in 

hydroperiod analysis, and has dynamic hydroperiod changes (temporary hydroperiod), it 

is likely of more value ecologically and economically based on the services it provides.  

As these valuable freshwater resources become increasingly scarce, there is a need 

for improved wetland monitoring and management through mapping and inventory 

(Ozesmi and Bauer 2002). While policy makers have sufficient scientific information to 

understand the need to take steps toward conservation, the global extent and spatial scale 

of wetlands is immense. Therefore, governing entities increasingly rely on developing 

remote sensing techniques to quantify wetland physical and functional changes for water 

monitoring and management where changes can be tied to ecosystem function using in 

situ validation methods. This enables temporal studies to be conducted over large areas to 

preserve and better understand the dynamics of wetland environments.  

3.1.2 Remote Sensing for Water Mask Generation 

Accurately mapping the hydrology in the prairie pothole region using remote 

sensing techniques can be challenging on a large temporal and spatial scales, particularly 

the dynamic wet area extent of the shallow and often ephemeral wetlands. While optical 

data such as SPOT or RapidEye has been used widely to map wet areas and accurately 
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delineate water body boundaries it is not able to capture the extent of the water surface 

following significant precipitation events, and atmospheric effects such as haze and 

clouds are problematic when trying to construct long-term monitoring programs over 

large areas (White et al. 2015).  

Traditional mapping requires significant amounts of in- situ data collection, which 

can be logistically challenging, costly and may miss or underestimate the extents of many 

smaller seasonal or annual wetlands (eg. Halsey et al. 2004, Frey & Smith 2007). Remote 

sensing applications have been found to greatly enhance water resources monitoring, 

ecological studies, and infrastructure management with spatial and temporal data (Ozesmi 

& Bauer 2002; Toyra et al. 2002, Brisco et al. 2009; Maxa & Bolstad 2009, White et al. 

2014, Brisco et al. 2017). Water masks are spatial data layers that can be derived from 

many types of remote sensing data, providing a snap-shot of water versus land at a 

specific time (White et al. 2014, 2015). Application domains include flood extent 

delineation, water resource monitoring, habitat mapping and wetland assessments 

(Goodale et al. 2007, Chasmer et al. 2014, Brisco et al. 2015, Crasto et al. 2015). 

Synthetic Aperture Radar (SAR) backscattering signals obtained using radar satellites 

have been commonly used for surface water extraction (White et al. 2014, Brisco et al. 

2015, Schlaffer et al. 2016), and flooded vegetation monitoring in a variety of ecosystems 

(Kasischke & Bourgeau-Chavez 1997, Brisco et al. 2008; Touzi et al. 2007, Brisco et al. 

2009, Brisco et al. 2017).  

Radar is different to optical sensors in that it is an active, self-illuminating sensor 

technology that operates in the microwave spectrum, with two distinct benefits for earth 

observation applications: (1) radar systems can collect any time of day or night and under 

poor weather or atmospheric conditions; (2) backscatter (radar reflections) provide 
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different information to optical sensors. Unlike optical, radar is sensitive to surface 

texture, particularly in studies discriminating the contrast or brightness between objects 

such as land and water (Hess et al. 1990, Rio & Lozano-García, 2000; Bourgeau-Chavez 

et al. 2001; Alsdorf et al. 2001; Ozesmi & Bauer 2002, Brisco et al. 2013, White et al. 

2015). Higher spatial resolution modes from RADARSAT-2 have been used to monitor 

smaller wetlands and enhance discrimination between land, flooded vegetation and water 

surrounding or beneath vegetation, allowing for better characterization and classification 

of wetland types (Touzi et al. 2007, Brisco et al. 2011, Schmitt et al. 2012, White et al. 

2014). Open water areas have a high dielectric constant and act as a specular reflector 

under calm conditions causing very little backscatter to the sensor, therefore water 

appears dark (Di Baldassarre et al. 2011). Based on this, several water boundary 

extraction algorithms have been developed using pixel, object based or threshold 

classification approaches (Martinis et al. 2015, Bolanas et al. 2015, Brisco 2015). 

3.1.3 Wetland Classification System 

While the combination of several wetland classification systems (regionally 

variable), enhances and clarifies wetland classification, Stewart and Kantrud (1971) is 

still the foundation for assessments of marsh wetlands found in the prairie pothole region 

of North America (USA and Canada).    

Prairie potholes are depressions formed after glacial retreat in the last ice age 

(~12,000 years ago), promoting wetland formation in these depressions following melting 

of land ice (Winter, 1989). Prairie pothole wetlands are highly variable in size and 

permanency, but are generally characterized as having less than 1m water depth at peak 

volume (Stewart and Kantrud 1971). Winter and Labaugh, (2003) describe how prairie 
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pothole wetlands change dynamically, making wetland function and classification 

difficult to consistently assess through the growing season and between years. Stewart 

and Kantrud (1971) describe prairie pothole marsh wetlands in detail, specifically 

vegetation and surface water cover as indicators of wetland type and permanency. 

Marshes are divided into seven different types based on open water and vegetation zones 

(Figure 3.1). Each of these zones is subject to highly variable water levels and vegetation 

succession depending on snowpack melt and rainfall.  

 

Figure 3.1. Marsh wetland classifications based on water permanence and spatial relation 

of associated wetland riparian zones.  Adapted from Stewart & Kantrud (1971). 

 

The most common marsh environments in the prairie pothole region of Alberta are 

temporary (class II), seasonal (class III), semi-permanent (class IV) and permanent (class 

V) (Table 3.1). Wetland classes from Stewart and Kantrud (1971) have been narrowed 

from seven to five, removing fen and alkali wetlands, better representing the common 
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marsh environments. Semi-permanent and permanent wetland types have been merged 

into one class as a result of the limited three-year data series (permanent (V) requires a 

longer timeframe (at least ~five consecutive years of data) to be classified as permanent). 

Vegetation and soil characteristics are generally the best wetland class indicators, but the 

hydroperiod of these four marsh wetland types is indicative of how permanent the 

wetland is both seasonally and annually (Stewart & Kantrud 1971, Kantrud 1989, 

Government of Alberta 2015, Ameli et al. 2017).  

Table 3.1. Four commonly found marsh environments based on the Stewart and Kantrud (1971) 

wetland classification system, with corresponding hydroperiod and vegetation characteristics. 

Wetland Type (S&K) Hydroperiod Vegetation 

Zone 

Temporary (II) Surface water present for short period of 

time after snowmelt or heavy rainfall. 

Wet meadow 

Seasonal (III) Surface water present throughout 

growing season, typically dry by end of 

summer. 

Shallow wetland 

Semi-permanent (IV) Surface water is present for most or all 

the year, except in drought conditions. 

Deep wetland 

Permanent (V) Surface water present throughout the 

year 

Open water 

 

3.1.4 Study Objective 

This study examines how high resolution, C-HH SAR data can be utilized to 

classify dynamic marsh and shallow-open water wetlands by associating surface water 

extent and permanence in accordance with the current Alberta Wetland Classification 

System (2015). Objectives of the study were to: (1) present and evaluate an effective 

approach to derive water masks from SAR imagery and compare them to water masks 

derived from temporally similar optical imagery, and (2) classify open water wetland 

hydroperiod and permanency using frequency analysis over a three-year time-period.   
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3.2 Data & Methods  

3.2.1 SAR Data 

 RADARSAT-2 SAR data were collected at each repeat cycle (24 days) in 2013 to 

2015. A total of 18 (6 each year, (Table 3.2)) Ultra-Fine (U77) single look complex 

(SLC) 20 x 20km swath images in ascending orbit are used to derive surface water masks, 

which have a nominal resolution of 2.8 x 2.8m. While the nominal resolution of the U77 

mode is 2.8 x 2.8m, the SAR dataset was re-sampled using cubic convolution to 5 x 5m to 

match the optical datasets used for validation purposes. 

Table 3.2. Ultra-Fine (U77) beam-mode SAR acquisition dates at Shepard Slough for 2013 to 

2015 (2016) 

2013  2014 2015 

April 19 April 14 April 9 

May 13 May 8 May 3 

June 6 June 1 June 7 (2016) 

June 30 June 25 - 

July 24 July 19 July 14 

August 17 August 12 August 31 

- - September 24 

    

 To maintain consistent frequency values (discussed in results section) the sample 

size n=6 was used for each year. For 2013 and 2014 high quality acquisitions were 

available for April to August. Unfortunately, data quality limitations prohibited 

temporally similar analysis in 2015, specifically in June. To maintain temporal continuity 

for all years, an acquisition from June 7, 2016 was substituted based on similar 

environmental conditions. A missing acquisition issue was also encountered for 

September 2014; therefore, to be temporally consistent to 2014, September 2013 was also 

not included in the series. September 2015 is included in the analysis as it provides six 
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high quality images for the 2015 series and showcases the effects of substantial late 

growing season precipitation (results section).      

3.2.2 Optical Data 

 RapidEye (Planet Labs) optical image data from May 8, 2014, and SPOT (Centre 

national d'études spatiales) from July 15, 2015, and September 20, 2015 sampled at 5 x 

5m resolution were acquired on near-coincident or coincident days as some of the SAR 

data for validation purposes. Images contain atmospheric effects such as clouds or haze 

which required atmospheric correction using PCI Geomatica Focus atmospheric 

correction tools. While primarily used for agricultural purposes, RapidEye imagery is also 

suitable for water identification (Tapsall et al. 2010, Giardino et al. 2014). Surface water 

was classified using K-means unsupervised classification in PCI Geomatica Focus 2015 

(Burrough et al. 2000, 2001, Lane et al. 2014).  

3.2.3 Airborne Lidar Data 

Airborne Lidar data was collected by Airborne Imaging (Calgary, Canada) in 

2008 over the Shepard Slough area. Processing of a bare earth 1m x 1m digital elevation 

model (DEM) was carried out using TerraScan (Terrasolid, Finland) and Surfer (Golden 

Software, Colorado) following methods of Hopkinson et al. (2005). The Lidar DEM was 

primarily used for orthorectification of the SAR and optical data, but also provided 

topographic validation for water surfaces within wetland basins while illustrating the 

surface hydrologic flow pathways for the study area.    

3.2.4 Ground Validation Data Collection 

Wetlands were chosen for the study from a series of optical images based on 

observed riparian disturbance, wetland size, pre-existing stilling wells (GoA), and 
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logistical feasibility (Figure 2b-2e). Of the four chosen study locations, two were visited 

in the last week of July 2015 to determine surface water extent and riparian habitat 

boundaries within cm accuracy using a Global Navigation Satellite System kinematic 

‘stop and go’ survey techniques, where rover positions were corrected to a nearby static 

base station location. The topographic transition between wetlands and surrounding 

upland is gradual but the transition between wetland vegetation communities and upland 

vegetation communities is abrupt due to agricultural activities near or within the wetland 

riparian area. Cross-sectional transects were performed extending away and upwards 

from the wetlands to reflect vegetation zones and apparent changes in vegetation 

community composition, which includes identification of predominant plant species, with 

abundance ranking by foliar cover. Naming, taxonomic treatment, and life history 

characteristics are in accordance with ‘USDA-Plants’ of the United States Department of 

Agriculture, Natural Resources Conservation Service (https://plants.usda.gov/java/), with 

some wetland characteristics from Washington State Department of Transportation lists 

(wsdot.wa.gov). 

3.2.5 Study Area 

The Shepard Slough study site is a 278km2 polygon east of the City of Calgary, 

Alberta, Canada in the Municipal District of Rockyview (M.D. #44) (Figure 3.2a). 

Shepard Slough is characterized as an urban fringe, suburban, agri-human, modified 

prairie pothole environment in the grassland natural region, Foothills Fescue Natural 

Subregion, with gently rolling plains dominated by moderately calcareous glacial tills at 

an average elevation of 1030m (Natural Regions Committee 2006). Only approximately 

1% of the natural subregion is continuously occupied by water due to low precipitation 

https://plants.usda.gov/java/
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and high evaporation, with wetlands confined to prairie pothole depressions. The Shepard 

Slough region has lost much of its natural prairie pothole character due to extensive 

modification, and is therefore distinct to true prairie pothole regions. Cultivation, 

irrigation networks, and urbanization has greatly impacted the local ecology and 

hydrology of the natural subregion, in some areas reversing the drainage pattern to the 

north through reservoirs and irrigation canals.  

Marsh wetlands were selected to best reflect the overall wetland population in the 

study polygon. Four study sites were selected in the Shepard Slough Study Area based on 

accessibility and previously established field data collection activities. The wetlands do 

not have official names, therefore are identified by defining features or proximity to 

infrastructure. ‘West Chestermere’ (Figure 3.2b) and ‘Pumpjack’ (Figure 3.2c) are 

individual wetlands in agricultural fields in well-defined depressions (determined from a 

Lidar DEM), chosen to represent wetlands known to be more permanent features on the 

landscape. Their overall permanence derives from surface hydrological connectivity at a 

low point in the landscape (West Chestermere) or by partial obstruction of surface 

drainage by surrounding road development (Pumpjack). ‘Algae’ (Figure 3.2d) and 

‘Pothole’ (Figure 3.2e) are larger spatial scale areas containing many individual 

hydrologically variable wetland components in dynamic prairie pothole landscapes. These 

latter two wetland areas are more disconnected from surface hydrological inflows either 

by virtue of upstream anthropogenic flow diversion (Algae) or their shallow and 

disconnected catch basins on the land surface (pothole). The differences in hydrological 

drainage characteristics and spatial coverage between the wetland focus areas was chosen 

to evaluate the utility and effectiveness of the presented hydroperiod analysis over a range 

of scales and wetland types.               
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Figure 3.2a-e. Shepard Slough case study area ~10x30km in Canada, a) adjacent to the City 

of Calgary, and location of the four chosen wetlands focus areas used in the hydroperiod 

classification analysis b) West Chestermere, c) Pumpjack, d) Algae, and e) Pothole. 

Vegetation transects surveyed in 2015 are shown as yellow in (b) and (c). 
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3.2.6 Surface Water Extraction   

Geomatica 2015 (PCI Geomatics) was used for filtering and surface water 

extraction procedures using the SAR data. A model developed by White et al. 2014 using 

Geomatica v10.3.2 was updated to current module versions to extract surface water using 

input threshold intensity/decibel (dB) range values (Appendix A). The first steps convert 

from linear to decibel then reduce the amount of speckle before applying a threshold 

value to the image, reducing speckle noise while maintaining spatial resolution and edges 

(White et al. 2014). Speckle reduction methods are used to remove unwanted ‘noise’ 

while preserving edge features in an image using moving weighted filters and resampling 

algorithms (e.g. Lee et al. 1994, Schmitt et al. 2013, White et al. 2014). The FGAMMA 

adaptive filter is used to preserve edges, which is important for surface water extent 

analysis (Toutin 2011, Zhang et al. 2012). The FAV filter is used to reduce speckle and 

noise, and the FMO filter is used to further reduce noise and has been found to help with 

the ortho-rectification (White et al. 2014, 2015). FGAMMA and FAV filters are applied 

independently in parallel, to avoid the possibility of compounded loss of water edge 

detail, then combined later in the routine (White et al. 2014). Figure 3.3 presents a flow 

diagram of the image processing, threshold range and surface water extraction workflow.   
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Figure 3.3. Flow diagram of intensity (dB) threshold routine in PCI Modeller and Ortho-

Engine to create binary water masks, and hydroperiod classification conducted in ESRI 

ArcGIS. Grey rectangles indicate inputs, white icons with rounded corners are 

intermediate processes, and blue parallelograms represent final outputs. Functions within 

software are italicized. 

 

Extraction of the threshold decibel (dB) ranges that represent surface water was 

conducted through the PCI SAR Polarimetry Tool in the PCI Geomatica suite using a 

consistent area polygon ~70 hectares in area over Chestermere Lake, which is a known 
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and controlled body of water with persistent water permanency and water extent (Figure 

3.4a). This threshold (dB) sampling routine is presented as a manual process in this study 

and the values are scene specific due to weather effects on the backscattering, but can be 

automated based on training data from known geographic locations or other surface water 

inventories (Peiman et al. submitted). Outlier pixels with values contributing five or less 

percent of the dB sample polygon area were excluded from the threshold input range 

(Figure 3.4b). 

        a)  b)  

Figure 3.4a and b. a) consistent sample polygon used to derive the intensity (dB) range 

for each image over Chestermere Lake. b) histogram output from August 12, 2014 of the 

intensity (dB) ranges from the sample polygon (-14 to -32, 90% of total pixels) showing 

values over 5% total pixel count (blue outline). 

After the threshold range is input into the model, pixels that were only water in 

FGAMMA and not FAV are assigned to the water class so that the water edge is 

preserved. Pixels not selected as surface water after the FAV filter and not in FGAMMA 

are then not included as open water to again preserve edges (White et al. 2014). Ortho 

rectification to the high resolution 2008 Lidar DEM was performed in Geomatica 2016 

Ortho-engine using rational function and metadata ground control points.  

 

0 2 
 Km 



64 
 

3.2.7 Hydroperiod Analysis 

The wetland surface water hydroperiod classification was performed using an 

‘equals frequency’ routine in ESRI ArcMap 10.3, executed on six binary surface water 

raster images for each year. The equals frequency routine calculated the number of times 

a pixel was identified as water in the same geographic location in each of the rasters, 

providing a measure of water permanence throughout the growing season (Figure 3.5). 

Hydroperiod frequency analysis criteria is illustrated in Figure 3. Reference rasters were 

created that contain a numerical pixel value that corresponds to the pixel values in the 

input rasters. Input rasters are binary and contain only ‘0’ (land) and ‘1’ (water) values, 

therefore all the pixel values in the reference raster are all ‘1’ (water) (Figure 3.5). 

Reference rasters were created by mosaicing all input water mask rasters into a new mask 

with only ‘1’ (water) values of the maximum extent of all input water mask rasters. Land 

values ‘0’ were reclassified or deleted in the reference raster to avoid commission of land 

in the frequency results.  
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Figure 3.5. Visual flow diagrams of the binary water mask frequency processing and 

hydroperiod classification. The binary water masks and hydroperiod rasters overlay the 

Lidar DEM for texture and visualization purposes. 
 

Before executing the ‘equals frequency’ routine, all binary water masks were 

clipped to the reference raster (combined area of all water values in all rasters) to avoid 

commission of land. The output pixel frequency (Figure 3.5) corresponds to the number 

of months (n=6) used in each year, which was reclassified from frequency values (1 to 6) 

to water hydroperiod values (temporary, seasonal, and semi-permanent) based upon the 

Stewart and Kantrud (1971) marsh wetland classification criteria (Table 3.1). The six-

month time series coincides with the growing/rainy months at Shepard Slough (April to 
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August/September) where frequency values of 1-2 months are reclassified to represent 

‘temporary’ (S&K class II), 3-4 months to ‘seasonal’ (S&K class III), and 5-6 months to 

‘semi-permanent’ (S&K class IV). ’Permanent’ (S&K class V) wetlands that exist year-

round even in drought years were not differentiated from ‘semi-permanent’ in this study 

because SAR cannot directly detect water under winter snow and ice conditions, and 

certainty of permanent wetland classification requires a period longer than 3 years 

(Government of Alberta 2015). Consequently, class V (permanent water bodies) 

constitute a sub-set of class IV wetlands in this study.        

3.3 Results 

3.3.1 SAR Binary Water Mask Extraction 

Results of this study show that the intensity thresholding technique developed by 

White et al. 2014 is an effective method for extracting surface water of large and small 

wetlands in a dynamic prairie pothole marsh environment (Figure 3.6). The average upper 

SAR dB threshold limit was found to be -14dB, and the lower limit -31dB, with dB 

ranges varying with weather and ground conditions (variable dependent on weather 

conditions) (Table 3.3 and Figure 3.7).  
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Table 3.3. Calgary, Alberta International Airport weather station data. SAR acquisition 

dates and intensity decibel (dB) ranges for surface water in each image, with associated 

percentage of pixels contributing to the overall number of pixels sampled within the 

sample area polygon. Wind (km/hr) and daily precipitation (mm) information is also 

provided. 

Acquisition 

Date 

(yyyy-mm-

dd) 

Upper 

Limit 

(dB) 

Lower 

Limit 

(dB) 

dB range 

percentage (%) of 

pixels used from 

sample area 

Wind/Gust 

Speed 

(km/hr) 

Daily 

Precipitation 

(mm) 

2013-04-19 -16 -30 89 21/NoData 1 cm snow 

2013-05-13 -18 -32 89 28/67 Trace rain 

2013-06-06 -17 -30 90 23/43 Trace rain 

2013-06-30 -15 -28 85 15/35 0 

2013-07-24 -13 -30 85 14/31 0.8 

2013-08-17 -18 -32 90 14/50 0.6 

2014-04-14 -9 -25 89 20/37 0 

2014-05-08 -15 -30 85 34/44 0 

2014-06-01 -8 -28 94 13/46 5.4 

2014-06-25 -14 -30 86 14/57 2.1 

2014-07-19 -15 -32 90 17/31 NoData 

2014-08-12 -14 -32 90 27/48 0 

2015-04-09 -15 -33 85 13/31 0 

2015-05-03 -15 -32 92 5/35 Trace Rain 

2016-06-07 -15 -30 88 34/44 0 

2015-07-14 -8 -31 90 19/52 0.4 

2015-08-31 -10 -30 88 12/57 0 

2015-09-24 -17 -33 88 16/35 0 

Average -14 -31 89 19/44 - 
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Figure 3.6. SAR derived surface water masks using an intensity (dB) thresholding 

approach for 2013 (top row), 2014 (middle), and 2015 (bottom). Images show the 

dynamic changes of wetland surface water over the growing season at Shepard Slough. 

Note quality issues with May 13, 2013, August 31, 2015, and that June 7, 2016 is 

substituted for June 2015. 
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Figure 3.7. Metrological data with monthly average temperature and daily precipitation for Shepard Slough recorded at the 

Calgary International Airport. Note: total precipitation for June 7, 2016 was the same as June 7, 2015 at 0mm. 
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SAR water mask results reflect the spring and summer growing season. Two images 

(May 13, 2013, and August 31, 2015) were found to be of poor quality for surface water 

extraction. Areas of known surface water in these images illustrated high backscatter with 

similar intensity (dB) ranges as surrounding areas of known land. It is likely these poor-

quality images were a result of surface waves associated with high winds during the days 

of acquisition (gusts up to 67 and 57 kph, respectively, table 3.3). A noticeable change in 

surface water extent of larger wetland areas is seen in these images, compared to smaller 

wetlands.      

3.3.2 Comparison of SAR and Optical Water Masks 

Ten optical mask classifications of RapidEye (RE) and SPOT images were tested 

for classification accuracy based on training areas for SAR water mask comparison 

purposes, with overall optical classification accuracies ranging from 87-95%, and Kappa 

values ranging 0.72-0.87. With the 24-day repeat visit of RADARSAT-2 and atmospheric 

issues associated with RE and SPOT data (clouds, shadows and haze), few temporally 

close images were ideal for comparative analysis. Water masks from three sets of near-

coincident (within four days) SAR and Optical images were compared to assess the 

similarity of the SAR derived threshold masks (Figure 3.8). Confusion matrix data 

produced positive correlation of > 76% when compared to the SAR data (Table 3.4). True 

positive reflects the correlation between pixels classified as water in both SAR and 

optical images.  
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Table 3.4. Confusion matrix results of near-coincident SAR and optical (RapidEye and 

SPOT) data from 2014 and 2015. Note: results do not represent absolute accuracies, as 

the optical water masks contain some uncertainty and the two weaker comparison results 

represent acquisitions from different days. 

 

SAR Date Optical Date True 

Positive 

False 

Positive 

Misclassification 

Rate 

Overall 

(%) 

2014/05/08 2014/05/08  92.1 0.5 0.3 95.2 

2015/07/15 2015/07/14 76.5 1.2 4.7 88.7 

2015/09/24 2015/09/20 84.8 2.9 1.4 96.1 

 

 

 

Figure 3.8. Comparison of binary water masks for temporally coincident SAR (left), and 

RapidEye (middle) on May 8, 2014. Cloud (white) and shadow (black) effects are shown 

in the RapidEye image. Correlation (right) shows areas of agreement in purple, SAR only 

as red, and RapidEye only as blue. 
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3.3.3 SAR Water Extent Field Validation and Wetland Vegetation  

Pumpjack and West Chestermere are wetlands that have minimal agricultural 

disturbance from activities such as tilling, allowing for riparian vegetation growth;  

validated from riparian vegetation composition and abundance during field data collection 

(Figure 3.9a-b), (Tables 3.5 and 3.6). The RMSE of the riparian transects and water 

extent observed in field validation data and optical data used for hydroperiod 

classification of wetland water extent was between 0.2m and 0.7m, less than 10% error 

between field and model, or approximately 0.5 meters based on the limited number of 

transects. 

a)  b)  

Figure 3.9. Wetland vegetation and water extent field transects collected in July 2015 

near-coincident with SAR acquisition over: a) Pumpjack (Transect 3 in Table 3.5); and b) 

West Chestermere (Transect 2 in Table 3.6). Note: green points indicate field validation 

points. RapidEye vegetation zone colours have not been re-classified to represent any 

particular zone, therefore just indicate where general zones transition along transects. 
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Table 3.5. Riparian vegetation species transects for Pumpjack and West Chestermere. 

Refer to Figure 2 for transect locations. Transect 3 is seen in Figure 3.9a. 

 

Wetland & 

Transect 

Habitat 

zone 

Plants sequenced by decreasing 

abundance 

Pumpjack   

1 H1 Foxtail, sowthistle, goosefoot, mannagrass, 

cattail 

 H2 Goosefoot, cattail 

 H3 Cattail, buttercup 

2 H1 Foxtail, cattail 

 H2 Foxtail, goosefoot, sloughgrass, cattail, 

mannagrass 

 H3 Goosefoot, bur-reed, dandelion 

 H4/5 Duckweed 

 H4/5 Duckweed 

3 H1 Foxtail  

 H2 Foxtail, sloughgrass, sedges 

 H3 Buttercup, goosefoot, cattail, bulrush 

 H4 Lamb’s quarter, dandelion, goosefoot, 

ranunculus 

West 

Chestermere 

  

1 1 Brome, rush, dandelion, sowthistle 

 2 Sedges, foxtail, quackgrass, rush 

 3 Mannagrass, foxtail 

 4 Foxtail, goosefoot, manna grass 

2 1 Brome, reed, wheatgrass, wildrye 

 2 Foxtail, manna grass, sedges 

 3 Manna grass, spikerush, sedges 

 4 Sedges 

3 1 Brome, reed canary grass, wheatgrass, 

wildrye 

 2 Foxtail, manna grass, sedges 

 3 Mannagrass, spikerush, sedges 

 4 Sedges 
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Table 3.6. Most common plant species around the Pumpjack and West Chestermere 

wetlands, sequenced by decreasing occurrence across transect habitat zones. 

 
Rank 

Occurrence 

Common 

Name* 

Scientific Name Native/ 

Intro. 

Growth Wetland 

Status 

Comment 

1 (48%) foxtail 

barley 

Hordeum jubatum 

L. 

N 

(hybrid) 

graminoid facultative generalist – 

weed hybrid 

2 (35%) sedges, inc. 

beaked 

sedge 

Carex sp., 

including C. 

rostrata Stokes  

N graminoid obligate 

wetland 

specialists, 

hydrophytic 

3 (30%) mapleleaf 

goosefoot 

Chenopodium 

simplex (Torr.)R 

N forb upland disturbance 

promoted 

4 (30%) American 

mannagrass 

Glyceria grandis 

S. Watson 

N graminoid obligate 

wetland 

short/tall to 

1.5 m 

5 (26%) broadleaf 

cattail 

Typha latifolia L. N forb obligate 

wetland 

often 

emergent 

6 (17%) tall 

buttercup 

Ranunculus acris 

L. 

I forb facultative 

wetland 

prolific weed  

7 (13%) common 

dandelion 

Taraxacum 

officinale F.H. 

Wigg. 

I forb facultative 

upland 

widespread 

weed 

8 (13) smooth 

brome 

Bromus inermis. 

Leyss 

I graminoid obligate 

upland 

weedy or 

invasive 

9 (9%) common 

sowthistle 

Sonchus 

oleraceus L. 

I forb facultative 

upland 

noxious 

weed in 

Alberta 

10 (9%) reed canary 

grass 

Phalaris 

arundinacea 

N 

(hybrid) 

graminoid facultative 

wetland 

concern for 

riparian zone 

11 (9%) sloughgrass Beckmannia 

syzigachne Stued.  

N graminoid obligate 

wetland 

specialists, 

hydrophytic 

12 (9%) western 

wheatgrass 

Agropyron smithii 

(Rydb.) 

N graminoid facultative 

upland 

upland 

regions 

13 (9%) Canada 

wildrye gras 

Elymus sp. N/I graminoid facultative 

upland 

upland 

regions 

14 (9%) wire rush Juncus arcticus 

Willd. 

N graminoid facultative 

wetland 

specialists, 

hydrophytic 

15 (9%) common 

duckweed 

Lemna minor L. N forb/herb obligate 

wetland 

hydrophytic 

16 (4%) bur-reed Sparganium L. N Forb/herd obligate 

wetland 

often 

emergent 

17 (4%) bulrush Schoenoplectus 

tabernaemontani 

(Gmel.)  

N graminoid obligate 

wetland 

often 

emergent 

18 (4%) lamb’s 

quarter 

Chenopodium 

album L. 

I forb facultative disturbance 

promoted 

19 (4%) quackgrass Elymus repens (l.) 

G. 

I graminoid facultative weedy or 

invasive 

20 (4%) common 

spikerush 

Eleocharis 

palustris (L) R&S 

N graminoid obligate seasonally 

flooded areas 
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A mixture of native species and extensive occurrence of introduced plants was 

observed at all sites, generally associated with the prairie agricultural regions, with some 

weedy and invasive species (Table 3.6). Indicator plant species include duckweed, cattail, 

sedges, mannagrass, reed canary grass, which characterize inundation patterns and 

summer positions above the groundwater table, vegetation zones and hydroperiod.   

Based on the vegetation species composition and zones observed at both wetlands the 

habitat zones are classified as follows: 

H5 - aquatic – open water 

H4 - deep marsh zone 

H3 - shallow marsh zone emergent plants and obligate wetland species – shallow wetland 

H2 - wet meadow zone – facultative wetland species 

H1 - low prairie zone – facultative upland plants   

These habitat zones correspond to those found in a class IV or V marsh wetland 

described by Stewart and Kantrud (1971) (Figure 3.10), with wetland vegetation indicator 

ratings described by Lichvar et al. (2012). Five indicator ratings designate the preference 

of a plant species’ occurrence in a wetland environment, ranging from ‘obligate wetland’, 

being the highest preference for wetland environments, to ‘obligate upland’, being the 

lowest preference in wetlands (Table 3.7). The entire range of indicator species are 

represented in the vegetation zones observed at Pumpjack and West Chestermere (Tables 

3.5 and 3.6).   
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Figure 3.10. Vegetation habitat zones found in a semi-permanent (IV)/permanent (V) 

marsh wetland corresponding to zones found at Shepard Slough wetlands.  

 

Table 3.7. Wetland indicator statuses used to designate plant species preference 

for occurrence in wetland or upland. (Lichvar 2012) 

 

Indicator Species Comment 

Obligate Wetland Always occur in wetlands 

Facultative Wetland Usually occur in wetlands, but may occur in non-wetlands 

Facultative Occur in wetlands and non-wetlands 

Facultative Upland Usually occur in non-wetlands, but may occur in wetland 

Obligate Upland Almost never occur in wetlands 

Some apparent unique vegetation banding was observed (duckweed communities 

at Pumpjack, transect two), but overlap of species was observed across the sequential 

vegetation zones at each wetland (foxtail barley, and smooth brome). Reasonable 

consistency for multiple transects within sites was observed, with some consistency of 

indicator species across the two wetland sites (mannagrass, sedges).    

3.3.4 Wetland Hydroperiod Frequency Analysis    

 Wetland hydroperiod classification results for each year (2013-2015) at the four 

study sites are presented in Figure 3.11. Hydroperiod (temporary, seasonal, and semi-

permanent / permanent) are shown, as well as associated area of each hydroperiod class in 

hectares. SAR acquisition date, daily precipitation and temperature information from the 

Calgary International Airport weather station, the closest weather station to the study 
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area, is detailed in (Figure 3.7). Precipitation over the study period (April-September) for 

each year is as follows; 2013=384mm, 2014=289mm, 2015=310mm (118mm in late 

August), compared to an average of 346mm over the same months from 2007-2016. 

Notable rainfall events are seen in May and June of 2013, as well as August and 

September or 2015. For both well-defined basin wetlands (Pumpjack and West 

Chestermere), less open water is observed in 2013, which was the year with the most 

precipitation (West Chestermere was 11.5ha in 2013, compared to 13.9ha in 2014, and 

14.7ha in 2015; Pumpjack was 16.3ha in 2013, 20.0ha in 2014, 17.8ha in 2015). Whereas 

pothole area wetlands (Algae and Pothole), somewhat counter-intuitively, do not follow 

the same trend, potentially due to differences in riparian vegetation growth, and wetland 

shape and size (Figure 9). 
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Figure 3.11. Hydroperiod results for Pumpjack, West Chestermere, Algae and Pothole 

study areas with associated area in hectares of each hydroperiod. Hydroperiods are shown 

as yellow for temporary (1-2 months), green for seasonal (3-4months), and blue for semi-

permanent / permanent (5-6 months). Lidar DEM is used as the background to illustrate 

surrounding terrain. 
  

Seasonal hydroperiod class fluctuations are identified in hydroperiod histograms detailing 

hydroperiod classes by year (Figure 3.12). The seasonal hydroperiod is found to be more 

variable than temporary and semi-permanent in both ‘Algae’ and ‘Pothole’, whereas, the 

semi-permanent/permanent hydroperiod is most variable in the defined basin wetlands of 

Pumpjack and West Chestermere. This indicates isolated pothole wetland hydroperiods 
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are more spatially variable than deeper wetlands in defined basins with surface 

hydrological connectivity or downstream flow obstruction. 

 

Figure 3.12. Hydroperiod classes grouped by year for each study wetland, showing 

average and variation of hydroperiod from the mean (orange) for each wetland study site. 

 

West Chestermere is like Pumpjack in that it is contained in a well-defined 

moderate-sized catch basin and has similar hydroperiod patterns as Pumpjack. One 

difference is the spike in seasonal hydroperiod in 2013 resulting in more seasonal than 

semi-permanent hydroperiod at over 5 ha, compared to 2-3 ha observed in 2014 and 2015. 

Higher variation from the mean is seen in the semi-permanent class at Pumpjack 

and west Chestermere. Lower variation from the mean is seen in the seasonal class at 



80 
 

Algae and Pothole (Figure 3.11). Hydroperiod fluctuations occur frequently and of 

inconsistent duration in ‘Algae’ and “Pothole’ study areas where a single rain event 

(Figure 3.7) contributes a disproportionate temporary hydroperiod (Figure 3.12), even in a 

drought year (2015) where many temporary hydroperiod pixels are found in areas along 

roadways (ditches) and shallow depressions on the landscape (Figure 3.11). This 

variability in per-pixel hydroperiod class is moderated in Pumpjack and West 

Chestermere, presumably as a result of increased surrounding hydrological connectivity 

(West Chestermere) or diminished opportunity for surface drainage (Pumpjack). 

3.4 Discussion 

3.4.1 Riparian Vegetation and Hydroperiod Variation  

Wetlands with predominantly semi-permanent hydroperiods may contain fewer 

riparian vegetation species because of more consistent surface water extents (Figure 3.11 

and Figure 3.12), which reflected in deep wetland and aquatic habitat zones (Figure 3.9, 

Table 3.5) due to overall reduced variation from the semi-permanent hydroperiod. 

Chernozemic soils of Southern Alberta are excellent for agriculture and vegetation 

growth in general (specifically in areas with temporary water) due to the natural 

accumulation, decomposition and transformation of the soil organic matter, where most 

of the carbon stored in a wetland is found below the surface (Soil Classification Working 

Group 1998). In the climatically sub-humid and low relief characteristics of Shepard 

Slough, wetlands with more semi-permanent or permanent pond areas surrounded by 

wetlands that are characterised by temporary hydroperiods promote periodic saturation of 

chernozemic soils, which supports greater ecological diversity described in Stewart and 

Kantrud (1971). Consistently similar ratios between the three hydroperiod classes each 

year and presence of each hydroperiod observed at Pumpjack, indicate low hydroperiod 
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variability and stable conditions from year to year (2013-2015), where hydroperiod 

surface area ranges are as follows: temporary = 3ha to 4ha, seasonal = 3ha to 4.5ha, and 

semi-permanent = 10ha -13ha. It is important to also discuss the implication of using the 

September 2015 SAR acquisition in only 2015 as well, especially following the 

significant late summer rain events (Figure 3.7). The most noticeable difference in surface 

water extent is seen in the northeast corner of the ‘Pumpjack’ wetland that is dominated 

by common cattail (Typha latifolia), which is a tall hydrophytic plant densely populated 

in this region of the wetland. In 2013 and 2014 this band of cattail can be easily 

identified, appearing as elevated topography (1-2m height) adjacent to the surface water 

(Figure 3.11). In 2015 however, this area was inundated by temporary hydroperiod 

surface water, suggesting conditions in 2015 prohibited growth density of these cattails, 

or greater surface water was detected instead of vegetation due to seasonal dye-off 

occurring in September, which would be consistent with vegetation succession observed 

by Brisco et al. (2017) in similar vegetated wetland environments.  

It is also important to note that at certain times of the year open water can be 

covered by varying extents of emergent and floating aquatic vegetation (Brisco et al. 

2015, Brisco et al. 2017). While field validation data is not available for 2013, a possible 

explanation is that the large rain events on May 23-24, 2013 (74mm) and June 2-3 in 

2013 (42mm) encouraged riparian and emergent vegetation growth earlier in the growing 

season than normal. These precipitation events could result in less open water being 

identified by the threshold routine which does not recognize flooded vegetation as a clear 

unobstructed open water surface (White et al. 2014, Brisco et al. 2015, and Brisco et al. 

2017). Wetland surface water extent was found to change dynamically corresponding to 

rainfall occurring seasonally or annually. This effect is seen in both ‘Algae’ and ‘Pothole’ 
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where precipitation events (May/June 2013, and August/September 2015) was related to 

an increase in temporary hydroperiod compared to seasonal or semi-permanent. It should 

also be noted in the year with the closest to ‘normal’ (2014) rainfall magnitude and 

frequency (2014), a sharp increase in seasonal hydroperiod of pothole wetlands (algae 

(2013=15ha, 2014=32ha, 2015=12ha), and pothole (2013=12ha, 2014=18ha, 2015=2ha) 

is observed, suggesting these wetlands experience a sharp increase in not only overall 

water area, but also transition to a seasonal hydroperiod classification from either 

temporary or semi-permanent in comparatively dry or wet years, respectively.    

Most notable is the variation from the mean of hydroperiod classes in the ‘Algae’ 

semi-permanent hydroperiod (Figure 3.13). In the 2013 wet year, there is 33% more semi-

permanent water compared to the three-year mean, whereas in the dry 2015 year there is 

34% less semi-permanent water compared to the mean. In the relatively steady (no 

extreme rainfall events) precipitation year of 2014 there is only a 0.5% change from the 

mean over the three-year study period, suggesting an increase or decrease in overall 

precipitation in the early growing season (April-June) with inversely related effects on the 

semi-permanent hydroperiod when comparing each year of this broad area/shallow 

wetland. This trend comparison is useful because it has the potential to be more widely 

applicable tool for monitoring, moving away from detailed measurements of local regions 

and time periods, into a more general measure of variation, providing and index of 

wetland ecosystem state and function.  
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Figure 3.13. Inter-annual variation (%) of each wetland hydroperiod class from the mean 

(‘0’ representing the mean) of each hydroperiod class for each wetland study area from 

2013 to 2015. 

 

3.4.2 Data Limitations, Uncertainties and Future Directions 

The major limitation of the study, specifically in sampling actual surface water 

conditions, relates to temporal image frequency. Since these prairie wetlands are 

hydrologically dynamic (Figure 3.13) and greatly influenced by precipitation events 

(Figure 7), there is a need for increased temporal resolution to better represent short term 

variations in hydroperiod. The C-Band RADARSAT Constellation Mission (RCM) 

planned for launch in 2018 will offer advanced capabilities for monitoring surface water 

with high spatial resolution modes such as Spotlight, providing enhanced monitoring of 

smaller wetlands. RCM is comprised of three satellites, providing daily coverage for 90% 
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of the world with larger swath width for some beam modes (at 50 x 50m resolution 

350km swath width for RCM, compared to 300km for RS2), (Canadian Space Agency 

2016). This is similar to RADARSAT-2, but the revisit time of RCM is 4 days (compared 

to 24 days for RADARSAT-2), allowing for more frequent monitoring and over larger 

areas. Increased temporal resolution has several implications for wetland hydroperiod 

classification; 1) precipitation events and subsequent local surface water changes will be 

better represented; 2) weekly hydroperiod comparisons can be made instead of monthly; 

and 3) increased acquisition frequency will make it easier to find coincident date optical 

data for comparative validation and data product improvement. This is important for 

understanding water resources and hydrological variations, especially in ungauged basins. 

When a SAR image is acquired in conditions with little wind or surface water 

roughness, HH has been shown to be the best suited to mapping surface water (White et 

al. 2014). While the majority of HH polarisation images were found to be of adequate 

quality for the analysis (Table 3.3, and Figure 3.6), some of the images did show 

significant surface roughness from wind, and were therefore unusable for surface water 

extraction. Dual-polarized SAR data is recommended when mapping surface water over 

windy areas, as it is scene dependent, and HV is less affected by wind effects, described 

by Manore et al. (2001), Scheuchl et al. (2004), and White et al. (2014). This allows for 

the user to choose appropriately between HH or HV polarization depending on whether 

conditions are calm or windy at the time of image acquisition. While dual polarization 

data was not used, or tested in this study, we see the influence of wind effects in some 

images (May 3, 2013, October 31, 2015). This could be reduced by selecting a more 

condition-appropriate polarization. While the use of the PCI SAR Polarimetry tool and a 

consistent sample area polygon reduces the amount of error introduced in the thresholding 
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approach through user selection, uncertainty can still be introduced to the routine when 

choosing the threshold range from the output dB histogram.     

3.4.3 Implications of Wetland Hydroperiod Time Series 

The SAR derived binary water mask hydroperiod classification described in this 

study differs from other classification routines as it combines a series of images into a 

dynamic surface water hydroperiod product over the growing season of wetlands, rather 

than evaluating hydroperiod based on single snapshots in time. The performance and 

results of the hydroperiod classification may require further evaluation with the greater 

temporal resolution attained from RCM, in order to perform more rigorous validation. 

However, the hydroperiod analysis and methodology presented in this study provides a 

framework for long-term, high resolution water resource monitoring describing more than 

just water extent of wetlands, allowing for enhanced characterization and classification of 

wetlands in accordance with Alberta’s provincial wetland classification criteria. It should 

be noted that the frequency routine could be carried out on any type of data that can 

produce binary water mask rasters (i.e. optical, Lidar). The strength of SAR extracted 

water masks lies in the ability of radar to collect images any time of day or night and 

under poor weather or atmospheric conditions.   

3.5 Conclusion 

SAR is an effective method of water extent mapping. The methodology developed 

in this study details a framework for a new time-series-based classification approach 

based on hydroperiod and hydro-climatic conditions that can be largely automated. The 

frequency analysis and classification based on Stewart and Kantrud (1971) provides a 

novel method of classifying dynamic marsh environments using temporal SAR data. The 
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results of this study suggest water mask frequency analysis can be used to determine 

hydroperiod and permanency of wetlands in a heterogenous prairie pothole area and can 

potentially be adapted to other end-member environments. Once the surface water 

extraction model has been constructed, the derived hydroperiod product can be quickly 

and easily produced. Frequency analysis is not a time intensive routine and can be 

developed into a batch script process capable of adding new or successive input rasters. It 

is recommended that users perform a post-classification review and edit of errors of 

commission and omission. Therefore, having recent landcover, digital elevation models 

and knowledge of the study site is recommended (White et al. 2014). 

Hydroperiod, variation from the mean and surface water extent of the wetlands 

was found to be heavily influenced by short-term rainfall events observed in both 

abnormally wet and dry years, whereas staggered and persistent rainfall yielded the 

highest water surface area. Furthermore, the seasonal hydroperiod in many wetlands was 

found to be highly variable at sites when there is a decrease in either the temporary or 

semi-permanent class. Temporary hydroperiod class was observed in higher ratios at 

times following extreme rain events compared to both seasonal and semi-permanent.  

Future research on the use of SAR for wetland hydroperiod classification would 

benefit from higher temporal resolution data to increase class reliability. The strength of 

the study is the ability to construct and examine meaningful hydroperiods of wetlands on 

large temporal and spatial scales that provide defining characteristics relevant to the 

current Alberta Wetland Classification System criteria, and better understanding the 

response of ungauged wetlands to precipitation events evapotranspiration. This is of 

relevance to decision or policy makers requiring accurate and temporally representative 

analysis of wetlands being impacted by infrastructure, agriculture or climate change. 
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Perceived temporary wetlands and associated classification and analysis are traditionally 

difficult to characterise or quantify.  

With the existing SAR satellites and inventory, such as RADARSAT-2, Sentinel, 

TerraSAR X, and the upcoming RCM, temporal resolution of many environmental 

monitoring studies involving the stacking of data can be greatly enhanced and applied to 

the hydroperiod methodology presented in this paper for monitoring wetlands.  

Indeed, the work presented is well-suited to a systematic monitoring regime as 

with the addition of new SAR data, the hydroperiod classification increases in accuracy 

and can be constantly updated. With the fusion of optical and/or Lidar data describing 

riparian vegetation communities, the hydroperiod analysis could be the basis for a more 

comprehensive wetland classification and monitoring framework. Such a framework 

would provide a valuable platform for land use permitting and regulation in heavily 

disturbed prairie or agri/urban landscapes in North America similar to the Shepard Slough 

study area in Alberta.  
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Abstract 

The objective of this study is to develop a decision-tree (DT) methodology 

focused on data fusion for wetland classification based on surface water hydroperiod and 

associated riparian vegetation community attributes. Multi-temporal, multi-mode data 

was examined from Lidar (Optech Titan), Synthetic Aperture Radar (Radarsat-2, single & 

quad polarisation), and optical (SPOT) sensors with similar acquisition dates. Model 

results are compared with 31 field measurement points for six wetlands at riparian 

transition zones and surface water extents in the URSA region producing high accuracies 

(R2 = 0.9).  

  The results suggest the methodology offers an innovative time-series-based boreal 

wetland classification approach using data fusion of multiple remote sensing data source. 

Water mask frequency analysis showed accuracies of 93% to 97.2%, and kappa values of 
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0.8-0.9% when compared to optical data. Confusion matrix results comparing semi-

permanent/permanent hydroperiod between 2015 and 2016 was found to be 98.3% 

correlated, suggesting very little change in wetland surface water extent. The decision tree 

methodology and data fusion could be applied to a wide range of wetland types and is not 

geographically limited, providing a platform for land use permitting, reclamation 

monitoring, and wetland regulation.  

4.1 Introduction 

Wetlands come in many sizes and forms, generally developing where the water 

table is at or near the surface allowing water to settle on the land surface promoting 

development of soil conditions for hydrophytic vegetation (National Wetlands Working 

Group 1998). Canada has over 150 million hectares of wetlands, occupying 

approximately 14% of the land area of Canada, which is estimated to be 24% of the 

wetlands in the world (Government of Canada 1991, Pole Star Geomatics Inc. 1996, 

Environment Canada 2016). Most Canada’s wetlands are found in the boreal regions, 

where rates of boreal forest disturbance in 2008 were found to be approximately 78%, 

and among the highest in the world (Komers and Stanojevic 2013). Boreal wetlands are 

especially sensitive to disturbance and changes to hydrology, which are predominantly 

comprised of shallow ponds, treed fens and bogs on poorly drained organic soils. Natural 

resources extraction, agricultural land cover change, and drying because of warmer 

climate conditions are all contributing to some of the greatest boreal zone changes, 

especially in central Alberta. With increasing disturbance and changing hydrological 

patterns, accurate, high resolution classification of these boreal wetlands is required for 

understanding rates of boreal wetland change, many of which have yet to be accurately 
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identified or mapped, therefore, there is a need to characterize baseline wetland areas for 

the boreal region. The methodology presented attempts to conform to wetland 

classification criteria of the Alberta Wetland Classification (2015) and the Canadian 

Wetland Classification (1997) documents, which both require analysis of multiple 

wetland attributes. While both documents outline classification criteria, the accuracies 

and resolution required have yet to be firmly established but must meet a certain 

percentage of accuracy and resolution in the future, stated in the Alberta Wetland 

Mapping Standards Workshop Synopsis (AWMSWS) from March 23, 2017. 

Criteria and associated required/desired accuracies are as follows:  

1. High accuracy of separation of upland and wetland: 90-95%  

2. High confidence Treed/Not Treed: 85% - 95%  

3. Accuracy requirement for all 5 Major Classes (fen, bog, swamp, marsh, shallow 

open water): 50-60%  

4. Optional seasonality of marsh wetlands – seasonal, lumping type (I, II, III), Semi-

Permanent (IV, V) (as outlined by Stewart and Kantrud 1971): 60% - 80% 

 Drying trends in many northern regions of Canada and the USA have been 

observed in the last decades, where changes in ground and surface water hydrology have 

been observed, thereby increasing vegetation succession in some years and altering the 

carbon balance of wetlands (Stow et al. 2004, Riordano et al. 2006, Kettridge 2013). 

Synthetic Aperture Radar (SAR) has proven to be a promising sensor for surface water 

and flooded vegetation mapping due to the contrast and reflectivity between land and 

water (eg. Brisco et al. 2009, Santoro and Wegmuller, 2014, White et al. 2014, 2015).  

High spatial resolution data fusion methods using remote sensing data (lidar, 

SAR, optical) provides increased accuracy for wetland extent mapping and wetland type 
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classification (Millard and Richardson 2013, Irwin et al. 2017). Near coincident in situ 

field data collected within days of remote sensing data acquisition provides spatial 

validation for riparian vegetation species, composition, and open water extent over time, 

or pond/lake ‘hydroperiod’. A combination of statistical analyses and ground validation 

of the output classes is used to evaluate the data fusion approach for mapping the riparian 

ecology and surface water extent of wetlands. 

4.1.1 Objective 

 The objective of this study is to provide a new classification methodology for 

wetlands based on hydroperiod and associated riparian vegetation community attributes 

used in wetland classification according to the Alberta Wetland Classification System 

(2015), and the Canadian Wetland Classification System, using multi-temporal, multi-

mode data from Lidar (Optech Titan), Synthetic Aperture Radar (RADARSAT-2, single 

and quad polarisation), and optical (SPOT) sensors with similar acquisition dates. The 

result of this data fusion methodology is to create a mapping product that is useful for 

wetland policy development and long-term wetland monitoring.  

4.1.2 Study Area 

The Utikuma Regional Study Area (URSA) is a boreal forest region located 

approximately 100 km north of Slave Lake in the Central Mixedwood Natural Subregion 

(Pettapiece and Downing 2006). The URSA series of study sites covers an area of 1,062 

km2 surrounding Utikuma Lake described by Ferone and Devito (2004); Devito et al. 

(2005); Petrone et al. (2007). It was established in 1998 as a long-term monitoring site, 

primarily to quantify key hydrological processes associated with disturbance and 

regeneration, nutrient cycles and hydro-ecological changes over time (Ferone and Devito 
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2004; Devito et al. 2005; Petrone et al. 2007). An approximately 10 x 20 km (200 km2) 

subset of the URSA region is investigated in this study (Figure 4.1).  

 

Figure 4.1. SPOT image from September 21, 2016 of the regional location of the ~10 x 

20km area of interest subset of the Utikuma Regional Study Area (URSA) in the boreal 

region of the province of Alberta, Canada. The north shore of Utikuma Lake is pictured at 

the bottom of the image. Study ponds 45 and 43 are located within the red box. 

Vegetation is characterized by a mix of aspen-dominant deciduous stands 

(Populus tremuloides), with aspen-spruce mixedwood forests including white spruce 

(Picea glauca), and jack pine (Pinus banksiana) found within the upland regions. 

Wetland ecosystems are predominantly comprised of shallow ponds with submergent 

macrophyte vegetation that may float on open water during summer. Treed fens and bogs 

are found on poorly drained organic rich soils (Natural Regions Committee 2006; Petrone 

et al. 2007). Treed wetlands are comprised of mainly black spruce (Picea mariana) and 
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are commonly underlain with Sphagnum spp. mosses, fibric peat, grasses up to 0.5m 

height, and gyttja hummocks and hollows. 

4.2 Data & Methods 

4.2.1 SAR Data 

RADARSAT-2 images were acquired during the 2015 and 2016 growing season 

in single polarisation (HH) Wide Ultra-Fine (U24W2 descending orbit and U13W2 

ascending orbit), and quad polarisation (HH, HV, VH, VV) Wide Fine-Quad (FQ10/5W) 

beam modes (Table 4.1). Wide Ultra Fine has a nominal resolution of 1.6m x 2.8m, and 

Wide-Fine Quad has a nominal resolution of 5.2m x 7.6m. Wide Ultra Fine data were 

resampled using cubic convolution to 3m resolution for consistent resolution across all 

images.  

Table 4.1. SAR acquisition dates of Wide Ultra-Fine (U13W2 and U24W2) and Wide 

Fine-Quad (FQ10/5W) beam modes over URSA for 2015 and 2016. 

2015  2016  

July 20 (U24W2) May 3 (U24W2) 

August 13 (U24W2) May 24 (U13W2) 

September 3 (U13W2) May 27 (U24W2) 

September 6 (U24W2) June 17 (U13W2) 

September 27 (U13W2) June 20 (U24W2) 

October 21 (U13W2) July 11 (U13W2) 

August 13 (U24W2) July 14 (U24W2) 

- July 27 (FQ10/5W) 

- August 4 (U13W2) 

- August 8 (FQ10/5W) 

- August 28 (U13W2) 

- August 31 (U24W2) 

- September 21 (U13W2) 

- September 24 (U24W2) 
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4.2.2 Surface Water Extraction 

SAR derived surface water masks were created using Geomatica 2016 (PCI 

Geomatics), which includes image filtering, predominantly to preserve edges. A model 

developed by White et al. (2014) using Geomatica v10.3.2, was updated to current 

module versions to extract surface water using input threshold intensity/decibel (dB) 

range values (Montgomery et al. submitted) (Figure 3.3). Filters in the model include: 

FGAMMA adaptive filter used to preserve edges, which is important for surface water 

extent analysis (Toutin 2011, Zhang et al. 2012); FAV filter is used to reduce speckle 

(White et al. 2014), and FMO filter to further reduce noise and help with the ortho-

rectification of the SAR images (White et al. 2014, 2015). See chapter 3, section 3.6 for 

surface water extraction methodology, and section 3.7 for frequency analysis and 

hydroperiod methodology.   

4.2.3 SAR Polarimetric Decompositions for Flooded Vegetation 

Vegetation canopy penetration of the microwaves in a SAR system allows for 

mapping and classification of flooded vegetation due to enhanced backscatter from a 

double-bounce scattering mechanism (Brisco 2015). This results in enhanced HH 

backscattering with less increase seen in VV, therefore dual (HH/VV) or quad (HH, HV, 

VH, VV) polarised data sets can be used to identify flooded vegetation using polarimetric 

decomposition techniques (Brisco et al. 2011, Brisco 2015). Decompositions are 

physically based models that can be decompressed from several channels in quad 

polarised SAR data into a single intensity channel that estimates the amount of different 

types of scattering contributing to the total backscatter from each pixel (Freeman and 

Durden 1998, White et al. 2015). The phase information in the SAR data allows for the 
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SAR decomposition to discriminate between different scattering mechanisms, and 

between areas of double bounce scattering which is indicative of flooded vegetation 

(Brisco 2015). Well documented decomposition techniques include: Van Zyl (Van Zyl, 

1989), Cloude-Pottier (Cloude and Pottier 1997), Freeman- Durden (Freeman and Durden 

1998), and Touzi (Touzi et al. 2007). Decomposition techniques are widely accepted and 

validated, and have been developed and implemented in remote sensing software for SAR 

processing. Freeman-Durden (FD) decomposition is a physically based model and is 

effective for mapping changes between land cover classes in wetlands using fully 

polarimetric (four channel) SAR data, specifically for flooded vegetation applications 

(Touzi et al. 2004, White et al. 2015). The model estimates the contribution of surface, 

double-bounce, and volume scattering response to the total backscatter from each pixel in 

an image and outputs a three-channel composite raster of the scattering responses 

(Freeman and Durden 1998). The long wavelength of SAR systems can penetrate through 

the vegetation canopy, detecting emergent and woody wetland vegetation represented by 

the double-bounce backscatter (Pope et al. 1997, Townsend 2002, White et al. 2014). 

Freeman-Durden decomposition has been widely used in boreal environments for 

extracting flooded vegetation. This produces three bands, which identify volume 

scattering (taller vegetation and forest), double-bounce scattering (flooded vegetation) 

and surface scattering (water or rough surface), (Freeman and Durden 1998, Brisco et al. 

2013, White et al. 2014, 2015). Freeman-Durden decomposition of quad polarised images 

was applied using Geomatica 2016. To remove speckle, a 5x5 boxcar filter was applied 

based on local pixel averaging, which increases the effective number of looks (ENL).  
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4.2.4 Airborne Lidar Data 

Ground surface elevation and feature heights above ground are important data 

sources to aid in classifying lowland and upland wetland zones and associated wetland 

species (Wettstein and Schmid 1999). Airborne Lidar data was collected by the Airborne 

Imaging (Calgary, Canada) in 2008 over URSA. Ground point filtering and processing of 

a 1m x 1m digital elevation model (DEM) with inverse distance weighting (IDW) 

interpolation and 10m search radius was completed using TerraScan (TerraSolid, Finland) 

and Surfer (Golden Software, Colorado, USA). SAR and Optical data used in the study 

were ortho-rectified to the lidar DEM.  

Multispectral airborne Titan ALTM (Teledyne Optech) Lidar was flown by the 

authors on August 6, 2016 over the study area coincident with the SAR acquisitions and 

field validation work. Processing of the 2016 Titan (Teledyne Optech) Lidar point cloud 

was performed using LMS (Teledyne Optech, Ontario, Canada), Terrascan (Terrasolid, 

Finland) and LAStools (Isenburg, 2017). The raw data were initially tiled to a 1 km grid 

with a 20m buffer between neighbouring tiles to mitigate edge effects. Each tile was 

ground classified and the height of each remaining point above the identified ground 

surface was calculated. Vegetation classified points were interrogated (using a 1 m search 

radius) to determine the 99th percentile height (P99), where only points > 2 m were 

considered in the calculation to negate contributions of tree and shrub understorey 

vegetation; i.e. P99 is the height at which 99% of vegetation classified points > 2 m above 

the ground occur. These heights were then rasterised to a 1 m grid to represent the study 

site’s canopy height model (CHM). 

Topographic Position Index (TPI) is a measure of the difference between the 

elevation value of a cell and the average elevation of nearby (neighbouring) cells (Guisan 
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et al. 1999, Jones et al. 2000, Weiss 2001). A positive value indicates higher elevation 

than its surrounding whereas negative indicates it is lower. TPI results provide the means 

to suggest the probability of a wetland occurring in a certain area by separating high and 

low areas, where the probability or landscape suitability of a wetland occurring in a 

topographic high (upland) is very low, while a low TPI indicates high suitability for a 

wetland. TPI is scale dependent, therefore the user needs to select parameters appropriate 

for the study area. A search window of 200m was found to be suitable for this landscape 

based on the high resolution of the data, topography criteria outlined by Jenness (2006), 

and circular moving polynomial windows was based on the size of upland till moraines in 

the area by Chasmer et al. (2015). Isolated outlier wetland pixels from the hydroperiod 

analysis located on plateaus were flagged and masked out creating a corrected 

hydroperiod from the TPI. 

4.2.5 Optical Data 

 SPOT (Centre national d'études spatiales) optical imagery was acquired on July 

19, September 19, October 5, 2015, and July 1, September 21, and September 24, 2016 

each with 5 x 5m pixel resolution. Data were acquired at near-coincident or coincident 

days to SAR data acquisitions and are used for validation purposes. All images were 

atmospherically corrected using PCI Geomatica Focus ATCOR atmospheric correction 

tools. Surface water was classified using K-means unsupervised classification in PCI 

Geomatica Focus 2016 (Burrough et al. 2000, 2001, Lane et al. 2014). 

4.2.6 Ground Validation Data Collection 

An accessible wetland area within the broader study region was surveyed in July and 

August 2015 and July 2016 to determine surface water extent and riparian habitat 



99 
 

boundaries along transects to centimeter accuracy (Table 4.2). Surveys were carried out 

using a Topcon (Livermore, CA, USA) HiPer SR Global Navigation Satellite System 

(GNSS) rover unit using kinematic ‘stop and go’ survey techniques. GNSS rover 

positions were differentially corrected to a static base station of known location calculated 

using Precise Point Positioning (PPP) techniques in Magnet Office (Topcon, California, 

USA) and through Natural Resources Canada online tools. 

A summary of the data used and its intended purpose is detailed in Table 4.2.  

Table 4.2. Data layers used in the classification and associated information. 

Data Derived From Purpose of Layer 

SAR open water HH-SAR Mask of open surface water 

SAR FD decomposition Quad-Pol SAR Identifies flooded vegetation 

Topographic Position Index Lidar DEM Local terrain attributes 

Optical open water SPOT Validation for SAR open water mask 

Vegetation height layer Lidar CHM Vegetation height 

Road Layer SPOT/Manual Quality control layer  

4.2.7 Decision Tree Fusion Workflow 

A decision-tree methodology is developed that expands upon an earlier method 

developed by Chasmer et al. (2014 & 2015) who based a classification on topography and 

vegetation canopy attributes from Lidar intensity and structure expanding at the same 

study area. The methodology incorporates the variation in hydroperiod and impact on 

wetland aquatic transitional vegetation using RADAR. The combination of the SAR, 

Lidar and Optical image products used to identify wetlands and classify them based on 

logic, probability and ‘if’ statements provide the means for an accurate and more 

descriptive wetland classification from that developed in Chasmer et al. (2015) (Figure 

4.2). Water permanence and presence of flooded vegetation integration in fusion with 

Lidar follows findings by White et al. (2015), and Brisco et al. (2017) regarding the 

spatial distribution of wetland attributes. The decision-tree methodology includes deriving 
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SAR (single pol) water masks, associated hydroperiod classified according to Stewart and 

Kantrud (1971) and Government of Alberta (2015), flooded vegetation from SAR (quad 

pol) Freeman-Durden decomposition, and lastly Lidar-derived topographic index and 

canopy cover attributes.  

Figure 4.2. General data processing and decision-tree logic based data fusion workflow 

of the four primary products (SAR surface water masks, SAR flooded vegetation layer, 

topographic position index from DEM, and low riparian vegetation from CHM). The 

combination of each dataset acts as a quality control measure, high resolution wetland 

classification system, and creates an integrated, dynamic wetland product with potential 

monitoring implications. 

Double bounce returns identified as flooded vegetation and utilized based on 

scattering mechanisms from the Freeman Durden decomposition and studies in other 



101 
 

boreal environments (Freeman and Durden 1998, White et al. 2014, 2015, Brisco et al. 

2015). The double bounce scattering returns were exported as a stand-alone raster from 

the composite Freeman-Durden decomposition image, then reclassified to represent 

positive scattering mechanisms, removing background values with very low double-

bounce scattering, leaving only double-bounce scattering returns (Figure 4.3). 

     

Figure 4.3a-b. a) Freeman Durden decomposition over the area of interest and part of 

Utikuma Lake (pictured at the bottom of the image), and b) enlarged area around a 

prominent wetland next to a roadway, showing the power contribution of each scattering 

mechanism (double bounce, volume, and rough scattering). Areas of red and 

red/orange/yellow indicate flooded vegetation. 

The intersection of the riparian CHM and flooded vegetation double bounce 

returns removes commission errors from areas located in topographic uplands where 

positive values are found. This leaves only low areas where wetlands can form. Lastly the 

corrected flooded vegetation and corrected hydroperiod products are overlain as 

complimentary products creating a dynamic wetland attribute product.  
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4.3 Results 

4.3.1 SAR Surface Water Masks 

Results of the intensity threshold (dB) surface water masks developed by White et 

al. 2014 is visually compelling for extracting surface water of boreal wetlands at the 

URSA region in 2015 (Figure 4.4), and 2016 (Figure 4.5). The threshold range was found 

to be similar through all images, with the average upper limit found to be -18dB, and the 

lower limit -30dB. Similar consistency of decibel limits, although not the same limits, 

was observed in the Peace-Athabasca Delta (PAD) by White et al. (2014).  
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Figure 4.4. Intensity threshold (dB) SAR derived surface water masks over the URSA 

region in the growing season of 2015. Images show relatively consistent surface water 

extent. 
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Figure 4.5. Intensity threshold (dB) SAR derived surface water masks over the URSA region in the growing 

season of 2016. Images show relatively consistent surface water extent. 

Note: Some ice present in April 6 Image. 
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4.3.2 Optical Validation 

Optical satellite open water classification is a well-established method for open 

surface water classification, and is therefore useful for validation with water masks 

derived from other sensors (Frazier and Page 2000, Sawaya et al. 2003). Peiman et al. 

(Submitted) compared both ascending and descending SAR texture and intensity 

thresholding with an optical SPOT mask from 05-10-2015 over the study area. Despite 

the temporal offset, overall accuracies were >90% (kappa = 0.8-0.9) (Table 4.3). Greater 

accuracy is expected without the temporal offset and with the removal of roadways and 

infrastructure.  

Table 4.3. Confusion matrix results of near-coincident SAR intensity (dB) threshold 

derived surface water masks compared to a single clear sky optical SPOT scene from 

September 21, 2015. Note: results do not represent absolute accuracies, as the optical 

water masks contain some uncertainty and the comparison results represent acquisitions 

from different days. 

SAR Acquisition Overall 

Accuracy 

Kappa 

(%) 

C.ERR-O.ERR 

(%) 

3-09-2015 95.8 0.9 -1.1 

6-09-2015 97.1 0.8 5.5 

27-09-2015 93.0 0.8 13.3 

30-09-2015 97.2 0.8 0.9 

4.3.3 Surface Water Hydroperiod 

Surface water hydroperiod classes are presented for 2015 and 2016 in Figure 4.6. 

Temporary 1-2 months (yellow), seasonal 3-4 months (green), and semi-

permanent/permanent 5+ months (blue) are represented in the hydroperiod analysis. 

Confusion matrix results comparing the 2015 and 2016 hydroperiods (Table 4.4), are as 

follows: for temporary 53% (43.6 ha), seasonal 49% (30.48 ha), semi-

permanent/permanent 98% (744.7ha). Overall similarity of hydroperiods on pixel by pixel 
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basis is 79%, attributed to the low correlation of temporary and seasonal hydroperiod 

compared to the very high correlation between semi-permanent/permanent. 

 

 

Figure 4.6. Hydroperiod results over the URSA subset AOI 2015 and 2016 SAR surface 

water hydroperiod. Hydroperiods are shown as yellow for temporary (1-2 months), green 

for seasonal (3-4months), and blue for semi-permanent / permanent (5-6 months). The 

2016 Titan Lidar DSM is included to illustrate topography and canopy cover. 

Note that 2015 includes only six image acquisitions, compared to 14 acquisitions 

in 2016, where more scenes over the growing season increases the chance to capture 

additional temporary or seasonal surface water hydroperiod events. It is expected that a 

comparable number of acquisitions from each year would change the comparative 

hydroperiod results.   
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Table 4.4. Comparison between 2015 and 2016 surface water hydroperiod classes and 

area in hectares (ha). 

Hydroperiod (S&K) True Positive Hectares (ha) 

Temporary I 53.0 43.6 

Seasonal (II) 49.0 30.48 

Semi-permanent (III) 98.3 744.7 

 

4.3.4 Data Fusion Results  

The results of the data fusion of both riparian vegetation and flooded vegetation 

from quad polarised SAR are shown in Figure 4.7. Flooded vegetation can be found in 

improbable areas such as roadways, and appear isolated from vegetation (<2m) normally 

associated with flooded vegetation (circled in Figure 4.7a), but this effect is mitigated by 

intersecting the vegetation height layer from the CHM and the flooded vegetation mask, 

creating a corrected mask of flooded vegetation around wetlands (Figure 4.7b). This 

methodology also prohibits commission errors from areas of flooded vegetation where no 

vegetation height is recorded (Hopkinson et al. 2005).       
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Figure 4.7a-b. a) Wetland with flooded vegetation comission errors outside of wetland 

riparian area and within surface water, b) corrected flooded vegetation raster mask. 

The comphrensive wetland attribute product is shown in Figure 4.8. Attributes 

include: roadways derived from SPOT optical imagery, areas of high and low topography 

from the Lidar DEM topographic position index indicating where wetlands are most and 

least-likely to occur, vegetation height from Lidar CHM, flooded vegetation from quad 

polarised SAR Freeman Durden decomposition, and surface water hydroperiod from 

single polarisation SAR data extracted from dB thresholding and pixel frequency analysis 

in accordance with Stewart & Kantrud surface water classification.  
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Figure 4.8. Complete data fusion product showing all wetland attributes and 

characteristics derived from the decision-tree, data fusion methodology. 

Topographically corrected flooded vegetation and surface water hydroperiod is shown 

around a prominent wetland in the region with documented areas of dense cattail (Figure 

4.9). Little open water is observed in these areas of flooded vegetation, but flooded 

vegetation and topographic attributes suggest there is a high probability these areas are 

inundated.      
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Figure 4.9. Data fusion product showing the presence of flooded vegetation around a 

large wetland with defined seasonal surface water extent.  

4.3.5 Surface Water Extent and Riparian Vegetation Validation 

For clarity and display purposes, two of the six ponds are compared with field 

validation (Pond 45 (Figure 10a) and Pond 43 (Figure 10b)), as they are the most 

rigorously field validated and have an appropriate spatial scale for display purposes. 

Distinct riparian and upland vegetation zones were observed during 2015 field data 

collection. Transition zones are notably abrupt (vegetation zones are distinct) in most 

transects (Figure 10a-b), except for areas where there is encroachment of woody 

vegetation such as willow, alder and birch from uplands into the grass and forb dominated 
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wetland riparian areas, where patches of young woody vegetation have largely replaced 

tall grasses and sedge.  

 

 

Figure 4.10a-b. Field validation of surface water extent and riparian boundaries for late 

July 2015. a) pond 45, b) pond 43. Riparian habitats are extrapolated from highly accurate 

field data points (Topcon Hiper SR GNSS), a series of SPOT optical imagery, and DEM 

data, then tested against canopy height cover. Field waypoints represent boundaries 

observed between riparian areas. 
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From the six wetlands surveyed the RMSE of the riparian transects and water 

extent observed in field validation data and those generated from the model was 4.6 m 

between field and model, with an R2 value of 0.90 (Figure 4.11).  

 
Figure 4.11. Regression of measured and model riparian and surface water extent 

accuracies (n=31) for six wetlands in the URSA region in 2015. 

Most of the error is attributed to some notable surface water extent discrepancies 

within fen ponds with mud flats separating surface water and riparian vegetation. 

Vegetation species composition by transect for Pond 45 and Pond 43 are detailed in Table 

4.6 (Pond 45), and Table 4.7 (Pond 43). Species composition was found to be relatively 

consistent at each transect for the wetlands, which can be divided into 3 distinct habitats, 

with occasional pockets of unique vegetation communities (habitat 4, Figure 4.1a). 
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Table 4.5. Riparian vegetation species composition for Pond 45 (refer to Figure 4.10a for 

transect and derived habitat locations). 

Pond 45 

T Hab. Vegetation Species 

T1 H1 Paper birch/Alaska Birch (6-8m), young birch, rose, graminoids 

 H2 Young birch (1-3m), buckbrush, snowberry, graminoids 

 H3 Cattail, water sedge, buttercup sp., bur-reed, water parsnip 

T2 H1 Paper birch (6-8m), green alder, young trembling aspen, rose, mosses 

 H2 Tamarack, Labrador tea, willow, white spruce, young birch, graminoids 

 H3 Cattail, water sedge, reed grass, buttercup sp. 

 H4 Cattail, water cup sp. (float)., sedge sp., buttercup sp., goosefoot sp. 

T3 H1 Paper/Alaska birch (6-8m). rose, black currant 

 H2 Young birch (1-3m), buckbrush, snowberry, green alder, reed grass 

 H3 Cattail, water sedge, goosefoot sp., water parsnip 

 

Table 4.6. Riparian vegetation species composition for Pond 43 (refer to Figure 4.10b for 

transect and derived habitat locations). 

Pond 43 

T Hab. Vegetation Species 

T1 H1 Paper birch (6-8m), raspberry, wheat grass sp., rye grass sp. 

 H2 Young willow, young birch (<2m), water sedge, rice grass 

 H3 Water parsnip, water sedge, bog birch, dock sp., mosses, cattail, bog birch 

T2 H1 Paper birch (6-8m), raspberry 

 H2 Willow, water sedge, rice grass 

 H3 Sedge sp., young paper birch, water sedge 

 H4 Common cattail, water sedge, goosefoot sp., mosses 

T3 H1 Paper birch (6-8m), willows, bog birch, mosses 

 H2 Green alder, willow, bog birch, graminoids, sedges  

 H3 Cattail, water parsnip, sedges 

Vegetation communities observed at Pond 45 and Pond 43 were diverse at the 

time of data collection, with many wetland indicator species present (cattail, sedges), 

showing minimal to no anthropogenic disturbance. Vegetation growth was only observed 

to be limited in areas where woody vegetation such as young willows and birch was 

encroaching into the riparian area (eg. Habitat 2 in all transects at Pond 43), potentially 

prohibiting succession of some riparian grasses.  
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4.4 Discussion 

4.4.1 Subjectivity Associated with Manual Riparian Digitization  

The results in Figure 4.10 and the associated accuracies in Figure 4.11 are 

accurate within ~10% of the area, but the manual classification shows some obvious 

discrepancies and associated subjectivity of the boundaries observed in the validation 

dataset and model (Figure 4.11). While optical data can be trained and classified to 

provide some measure of interpreted accuracy the process is still largely determined by 

delineation conducted by the operator. Boundaries of vegetation and water extent in some 

wetlands are also subjective. Crasto et al. (2015) discuss how criteria outlined by Jahn 

and Dunne (1997) influence remote sensing feature detection due to bias during 

digitization that is often influenced by experience and interpretations that are subjective 

(Goodchild, 2001). All validation data were collected by the same individua in the field, 

and areas were digitized by the same operator. Manual surveys of flooded vegetation 

boundaries were not conducted due to access and time limitations (Figure 4.8 and Figure 

4.9), therefore these areas could not be validated to the same degree as less saturated 

riparian areas but the decomposition methodology has been well documented and studied 

for quality control in a variety of environments (Freeman and Durden 1998, Singh et al. 

2012, Cui et al. 2012, Brisco et al. 2015). Any combination of uncertainties may 

contribute to discrepancies in the overall accuracy of the classification, and this highlights 

the importance of reliable ground validation data when working in logistically 

challenging regions.      

4.4.2 Implications for Wetland Classification 

While many studies focus on mapping known permanent waterbodies, this study 

differs by utilizing temporal and high spatial resolution information to create dynamic 



115 
 

surface water and associated riparian community thematic maps. Data availability is the 

most important aspect when attempting to characterise non-permanent wetlands, requiring 

increased temporal resolution and field measurements that represent the natural ranges in 

hydrological conditions. The results of this high-resolution study suggest these criteria 

can be met by products of the decision-tree methodology presented (Figures 4.8 and 4.9). 

The methodology presented is also useful for the identification of marsh and 

swamp wetlands with associated open water areas but there is also great potential to use 

Lidar intensity following methods of Chasmer et al. (2015) to integrate more peatland 

(treed fen/bog) environments. For example, simple ‘if’ statements can be implemented to 

determine if an area is a swamp: eg 1) ‘if trees are present and topography is low lying 

(TPI) then high potential for a swamp’; 2) ‘if the surface water level is above the DEM 

then high potential for a swamp; 3) ‘if no open water is present and flooded vegetation is 

present then more likely a swamp or fen’. Absence of these statements in the 

methodology are currently a limitation, but they should be explored and integrated in 

further studies to provide a more complete classification system.          

4.4.3 Data Limitations and Potential Sources of Error 

The major limitation of the study relates to temporal image frequency of both 

SAR and Lidar data. Increased temporal resolution will better represent short-term 

variations. As mentioned in Chapter 3, the Canadian C-Band RADARSAT Constellation 

Mission (RCM), expected to launch in 2018, will offer advanced capabilities for 

monitoring surface water with high spatial resolution modes such as Spotlight, providing 

enhanced monitoring of smaller wetlands (Canadian Space Agency 2016). As the 

provincial Lidar database and coverage in Alberta expands and is updated, there is a 
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growing opportunity to integrate temporal Lidar datasets into wetland monitoring and 

enhance the understanding of precipitation variation influences on surface water and 

wetland vegetation change. 

Working on such a large scale in the relatively remote URSA region makes it 

logistically difficult to collect ground validation across all wetland environments. Since 

classifiers or ranges for SAR-derived surface water masks are variable between images 

and acquisition, there is a need to calibrate the intensity threshold (dB) for each image in 

order to consistently extract all true open water returns from an image (eg. White et al. 

2014), as well as instrument calibration and ground conditions (Hopkinson 2007).  

A limitation of this approach is found in the fine resolution used in the large 

spatial area. Subtle changes in riparian vegetation on the order of <2m are difficult to 

extract with certainty due to homogeneity of many of the riparian vegetation 

communities. While it is easy to determine high and low topographical areas, and high, 

medium and low vegetation canopy, it is difficult to discriminate between species. For 

example, while it may be important to examine species encroachment, the difference 

between a patch of 2m tall willow trees and 2m tall birch trees is challenging due to 

similarities in structure, therefore it was found more convenient to group these similar 

canopy environments. This is detailed in Figures 4.9 and 4.10a-b, where both elevation 

and canopy height are somewhat ambiguous, likely as a result of the general flatness of 

topography and sporadic woody vegetation regeneration in clearings and meadows.      

Shadow effects in the SAR ascending and descending images can cause 

classification errors along some forested boundaries but quality control data were not 

available within this study so the extent (if at all) of such shadow-induced errors in low-
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lying riparian areas of the URSA study area is unknown. See Kropatsch (1990) for details 

and potential methods to reduce error associated with shadowing.  

When using SAR to derive surface water compared to other sensors, occasional 

omission of surface water bodies that are narrow or have mixed pixels (such as 

watercourses and fen pond boundaries), has been documented in shallow riparian areas 

(Santoro and Wegmuller, 2014), which may be a potential source of error in many boreal 

wetlands, where these boundary areas are mostly classified as land due to the unique 

scattering properties. Surface water modeling would also be enhanced by delineating 

water extent and elevation from Lidar, which can also provide further high-resolution 

comparative data to both optical and SAR derived surface water masks, adding utility to 

the wetland classification (eg. Hopkinson et al. 2011, Crasto et al. 2015).  
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4.5 Conclusion 

The presented methodology offers a new time-series-based boreal wetland 

classification approach using data fusion of multiple remote sensing data sources, based 

on hydroperiod, topography and vegetation attributes. The results of this study indicate 

water mask frequency analysis can be used to determine hydroperiod and permanency in 

boreal environments similarly to prairie environments with overall accuracies of 93% to 

97.2%, and kappa values of 0.8-0.9% when compared to optical data. Confusion matrix 

results comparing semi-permanent/permanent hydroperiod between 2015 and 2016 was 

found to be 98.3% correlated, suggesting there is very little change in open water extent 

in these wetlands between the two years. A longer time series would need to be used to 

determine if this is a consistent relationship. Regression analysis of field and model 

riparian and surface water extents from six wetlands also yielded high accuracies (R2 = 

0.9), suggesting the decision tree methodology could be applied to similar open-water 

boreal wetlands with some certainty. The time-intensive and potential limiting factor of 

the methodology is the expertise required in data preparation for multiple types of data 

(Lidar, SAR, Optical). However, once the data preparation and foundation for data fusion 

has been conducted, additional data can readily be integrated and processed in the 

workflow. While there are limitations associated with data availability and frequency, the 

strength of the study is the ability to construct and examine meaningful comprehensive 

wetland characterization products conforming to provincial guidelines set forth by the 

AWCS and CWCS.   

Future research using a logic-based decision-tree methodology would benefit from 

identifying additional topographic and vegetative attributes at a higher resolution to 

increase class reliability. SAR and Optical data to compliment Lidar data describing 
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riparian vegetation communities would further enhance the hydroperiod analysis for a 

more comprehensive wetland classification and monitoring framework. This framework 

could be largely automated through machine learning algorithms and would provide a 

platform for land use permitting, reclamation monitoring, and wetland regulation in 

remote boreal regions of Alberta.  
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5.0 Research Conclusion 

5.1 Summary of Research Purpose 

Research conducted in this thesis was motivated by the need for high resolution 

remote sensing monitoring of wetlands in Alberta of various endmember environments 

ranging from southern prairie regions to central and northern boreal forest regions. 

Wetland attributes and classes according to the Canadian Wetland Classification System, 

Alberta Wetland Classification System, and Stewart and Kantrud (1971), were targeted as 

a means to make the research innovative and relevant, potentially facilitating 

implementation of the methods and research findings into wetland policy.  Remote 

sensing technology functions across many scales and is capable of imaging large, remote 

areas desired for wetland monitoring at high resolution, enhanced by using data from 

multiple types of sensors to extract different information and reduce uncertainty. While 

remote sensing provides an excellent means for wetland mapping, wetlands cannot be 

perceived or classified as static entities, which is a major limitation in how wetlands are 

currently classified, especially in-situ where a wetland is only documented at a certain 

time in a certain season – generally not indicative of the true dynamics of a wetland. 

Therefore, temporal resolution of remote sensing data is an equally important component 

for wetland monitoring. Thus, the research in this thesis examined temporal and spatial 

resolution by combining multiple data types in data fusion to model surface water extent 

and associated riparian areas to conform to and enhance wetland policy.           

5.2 Research Findings and Future Research 

It is acknowledged the logic-based approach used in this study differs to 

traditional approaches. Logic was used in this study using remote sensing observations as 

proxies for processes occurring in the environment. Statistical classification approaches 
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using sample data or machine learning algorithms, for example, can be robust and 

produce highly accurate classifications but they require extensive training data. The 

benefit of a logic-based approach that aims to represent the physical features and 

processes that characterise wetlands is that it not as reliant on extensive training data and 

model iterations in order to produce a comprehensive wetland classification product.  

Synthetic Aperture Radar (SAR) was found to be an effective sensor for mapping 

open surface water extent in Alberta, at both prairie wetlands at Shepard Slough, and 

boreal wetlands at the Utikuma Regional Study Area (URSA). While water mask results 

at Shepard Slough were found to be less accurate, the intensity threshold (dB) approach 

was less influenced by environmental factors, specifically wind effects causing surface 

roughness. While the threshold range and limits were highly variable at Shepard Slough 

for most image acquisitions (ranging from -9 to -33 dB), it remained more consistent (-18 

to -30 dB) at URSA, presumably due to increased canopy sheltering surrounding wetland 

areas.  

Binary masking of surface water extent using SAR is well documented (White et 

al. 2014, 2015, Brisco 2015), but the innovative aspect of this research is the recognition 

that time-series SAR data enables wetlands to be explicitly classified as dynamic features. 

Wetland hydroperiod described by Stewart and Kantrud (1971) has long been used in 

prairie pothole and boreal wetland classification and continues to be used to 

predominantly describe prairie wetlands, and open surface water. Therefore, hydroperiod 

was determined based on the permanency classes described by Stewart and Kantrud 

(1971) through pixel frequency analysis of a stack of binary surface water masks, 

resulting in a product describing how long wetlands are present at seasonal and annual 

scales based on presence of open water. This hydroperiod classification provides the 
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means to accurately determine which wetlands fall under certain regulation and policy 

according to the Government of Alberta Wetland Policy (2014). While based on a 

regional policy, this methodology is not limited to jurisdictions or geographical regions 

and could be applied to wetlands across North America or in environments 

internationally, where it can also be applied to other applications such as floodplain 

inundation and flow regulation.           

Fusion of Lidar, optical and several polarizations of SAR added topographical 

elements to the wetland classification, enhancing riparian vegetation transition zone 

identification and providing the means to conduct quality control of surface water 

products and flooded vegetation products. While overall accuracy was high compared to 

validation data (R2=0.9), manual digitizing creates uncertainty and is highly subjective to 

the operator. Nonetheless, an interesting finding from the data fusion methodology is the 

presence of flooded vegetation found in low topographical areas, with low (<2m) riparian 

vegetation canopy height, was predominantly not associated with open surface water. 

This suggests wetlands are potentially greatly hydrologically influenced by sub-surface 

ground water interactions, rather than surface flow “fill and spill” mechanisms.     

This thesis has contributed to the Geography and Remote Sensing literature in 

several ways: First, this is the first study attempting to characterize wetlands in Alberta 

using temporal data fusion to derive wetland characteristics conforming to provincial 

wetland classification requirements. The research also identifies, demonstrates and 

contrasts the limitations associated with data quality due to environmental factors when 

using SAR for surface water masking in the end-member environments examined. Lastly, 

the approach provides the means for high-resolution monitoring of wetlands with a focus 
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on wetlands in two important end-member environments of Alberta using data fusion, 

something not well documented.       

 It was not possible within this study to represent all end-member landscapes in 

Alberta but as there remain some distinct landscape types i.e. montane (e.g. Rockies and 

foothills regions), floodplain delta (e.g. the Peace Athabasca Delta) and parkland (e.g. 

Beaver Hills and Camrose areas) areas with distinct characteristics. Future research 

should evaluate whether the approaches tested here could be used in these landscapes or if 

hybrid approaches might work. While this research was presented in an Alberta prairie 

and boreal context, the basic logic could be applied to other parts of Canada and the 

United States, as it is only regionally constrained by data availability. One important 

variable if applied to other parts of Canada would be the consideration for differences in 

surficial geology, which could have a marked effect on the presence of a wetland and the 

type. For example, wetlands in the Canadian Shield with underlying bedrock and/or 

mineral soils will display distinct hydrological interactions compared to the deep organic 

soils found in peatland areas. Many soils and surface geology data layers have been 

created throughout Canadian territories and provinces that could be implemented into the 

logic based decision-tree methodology presented. Such extension of the current 

methodology and data use could be facilitated with a machine learning framework, such 

as random forest.  

Future studies should also investigate the accuracies of using increased temporal 

resolution in this type of logic-based decision-tree methodology. As the Alberta 

provincial Lidar database grows, and with the advent of the Radarsat Constellation 

Mission (RCM) expected to launch of 2018, SAR and Lidar fusion based studies and 
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temporal change studies in general, will benefit from the increased Lidar coverage and 4-

day repeat acquisition of RCM, compared to 24-day repeat acquisition with Radarsat-2.   
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Appendix A: Surface Water extraction executed using PCI Geomatics  

1) Import the Data to include all channels desired for processing, it is recommended to 

carry through metadata from the import phase to export phase to provide a comprehensive 

file. The module for this is called 'Import'. 

2) The data must be converted from linear to decibel in order to retrieve the intensity data 

from the HH channel. If there is complex channels in the data (C32R) the PSIQINTERP 

module in Modeler can be used to convert the data from linear to decibels. 

Otherwise: 

If using EASI or Python: 

If the data are in Amplitude: %2= 20*log10 (%1) 

If the data are in Intensity: %2= 10*log10 (%1) 

Where %2 is an empty channel you created that will receive the results  

%1 the channel, in amplitude or intensity, to be converted to decibels 

In Geomatica Modeler this has to be done manually for each channel you want to convert. 

If using Modeler: 

s Model 

File=" D:\Data\workingfile.pix 

Source="D:\Data\Linear_to_DB.eas 

Undefval=0 

s Model 

r Model 

Here Linear_to_DB.eas is a text file containing your model, for example:  

%2= 20*log10 (%1) 

 

3) Split the data from step 2 where the data was converted to decibel so that it can be put 

through two separate filters detailed in steps 4 and 5. 

4) Execute the 'FAV' filter. 

FAV performs spatial filtering on individual pixels in an image using the gray-level 

values in a square or rectangular window that surrounds each pixel. The dimensions of 

the filter size must be odd and can be between 1x3 or 3x1 to 1001x1001. The filter size 

must not exceed the size of the image. Common resample pixel sizes are 3, 5 or 7. Higher 

than 7 will result in significantly altered and dissolved data which is not indicative of the 

SAR phase response in most cases. 

Example script for FAV that smooths a channel (eg. channel 1) of the file 'test.pix' using a 

3x3-square filter: 

from pci.fav import * 

file = r'$PCIHOME/demo/test.pix' 

dbic = [1] # use elevation data 

dboc = [1] # overwrite input data 

flsz = [3,3] # use a 21x21 filter 

mask = [] # process entire image 

bgrange = [] # no background values 

failvalu = [] # no failure value 

bgzero = ''   # default, set background to 0 

fav( file, dbic, dboc, flsz, mask, bgrange, failvalu, bgzero ) 

5) A second filter is called 'FGAMMA'. 
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An example of the FGAMMA filter that uses a number of looks (NLOOK) of 1 and filter 

size of 3x3: 

from pci.fgamma import* 

file = 'test.pix' 

dbic = [1] 

dboc = [1] # filtered results (overwrite DBIC) 

flsz = [3,3] # filter size 

mask = [1024,1024,2048,2048] # area to filter 

nlook = [1.0] # number of looks 

imagefmt = 'AMP' # amplitude image format 

fgamma( file, dbic, dboc, flsz, mask, nlook, imagefmt ) 

 

6) After filtering, both of the images go through a model where the threshold value is 

entered manually to extract the waterbodies. 

The module in PCI is simply called 'Model' and has the following arithmetic where the '-

12' value in both examples is the value which is changed based on desired threshold: 

Where for the FAV filter (step 4): 

if (%1 >= -50 and %1 <= -12) then 

%1 = 8888 

endif; 

Where for the FGAMMA filter (step 5): 

if (%1 >= -50 and %1 <= -12) then 

%1 = 9999 

endif; 

 

7) Both of the filtered (steps 4 and 5) and threshold processed (step 6) images are then 

combined using an arithmetic module called 'ARI' which simply adds the two images 

pixels together. ARI performs an arithmetic or a logical operation on image data stored in 

two database image channels (DBIC) and/or a constant (CNST). The result is saved on a 

specified output channel (DBOC). The output channel can be one of the input channels: 

 Where DBOC = DBIC(1) + DBIC(2). 

8) The data from the FGamma correction goes through another 'model' that parses 

unwanted thresholding data into water vs non-water.  

if (%1 = 18887 ) then 

%1 = 77777 

endif; 

 

9) Again an 'ARI' module is used to add the data from the 'model' (step 6) as a result of 

the FGamma correction (step 5) and the 'model' output from the previous (step 8) 

10) To create the final binary masks of water and  land, all of the data then goes through 

another 'model' module that makes the data values either a 0 (land) or 1 (water): 

if (%1 = 87776 ) then 

%1 = 1; 

else 

%1 = 0; 

endif; 
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11) All of the data from step 10 is then scaled back to linear from decibel as an 8 bit 

unsigned raster. This module is called 'Scale', which performs linear or non-linear 

mapping of image gray levels to a desired output range. This function is typically used to 

scale data from high-resolution (32- and 16-bit) channels to low-resolution (8- and 16-bit) 

channels.  

The algorithm is explained in the following example: 

A 16-bit radar image (test.pix, channel 1) is mapped to an 8-bit output range using the 

automatic normalized quantization algorithm within the model: 

from pci.scale import * 

fili = "test.pix" # input file 

filo = "" # output file same as input 

dbic = [1] # 16-bit radar image 

dboc = [8] # 8-bit channel 

dbiw = [] # process entire image 

dbow = [] # output entire image 

inrange= [] 

trim = [] 

outrange = [] # default range [0,255] 

sfunct = "NQ" # automatic normalized quantization 

scale (fili, filo, dbic, dboc, dbiw, dbow, inrange, trim, outrange, sfunct) 

 

12) Lastly the data is filtered one more time through a mode filter called "FMO'.  

The mode filter computes the mode of the gray-level values (the most frequently 

occurring gray-level value) in the filter window that surrounds each pixel. Mode filtering 

is ideal for cleaning thematic maps for presentation purposes because it replaces small 

'island' themes with larger surrounding themes. The minimum filter size is 1x3; the 

maximum is 7x7. The filter window need not be square. The input channel (DBIC) can be 

the same as the output channel (DBOC). 

The script is as follows which applies a 3x3 mode filter to a whole channel using test.pix. 

from pci.fmo import * 

file  = "test.pix" 

dbic  = [7]  # Filters channel 7 

dboc  = [8] 

flsz  = [3,3] # Specifies a 3x3 filter size 

mask  = []  # Processes the entire database 

thinline = "OFF" # Does not preserve thin lines 

keepvalu = [] 

bgzero  = "YES" 

fmo( file, dbic, dboc, flsz, mask, thinline, keepvalu, bgzero ) 

13) The data is then ready to be exported as a .pix file. Which is a GDB file that contains 

all of the metadata and processed data from the classification. The module is simply 

called 'Export'. The raster file is in .tiff format within the .pix file, which can be exported 

directly from the .pix database file if desired. 

 


