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Scalar field spacetimes and the antide Sitter spacéconformal-field theory conjecture
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We describe a class of asymptotically AdS scalar field spacetimes, and calculate the associated conserved
charges for three, four and five spacetime dimensions using the conformal and counterterm prescriptions. The
energy associated with the solutions in each case is proportionafo- k?, whereM is a constant and is
a scalar charge. In five spacetime dimensions, the counterterm prescription gives an additional (@euum
simir) energy, which agrees with that found in the context of AdS conformal-field th@FI) correspon-
dence. We find a surprising degeneracy: the energy of the “extremal” scalar field solMtiok equals the
energy of global AdS. This result is discussed in light of the AAS/CFT conjecture.
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The nonlinear coupling of gravity to matter in general With this motivation we study the Einstein-scalar field
relativity presents difficult technical problems in attempts tosystem, with minimally coupled massless scalar field and
understand gravitational interactions of elementary particlesegative cosmological constant. We present static spherically
and strings, as well as questions such as the details of gravdymmetric AAdS solutions of these equations. For spacetime
tational collapse. Progress in the former area has comeéimensiond= 3, the equations can be solved exactly. Bor
mainly from treating quantum fields as propagating on fixed=4, the corresponding equations can be solved analytically
background geometrid4], whereas much of the progress in for large radial distance, i.e., asymptotically. We calculate
the latter has come from detailed numerical w{zk conserved charges associated to these spacetimes using the

Exact solutions of the relevant matter-gravity equationsconformal[6] and the counterterrfi7] prescriptions. Finally
can play an important role by shedding light on questions ofve discuss some consequences of our results, in particular
interest in both general relativity and string theory. One isthe surprising energy degeneracies associated with the solu-
often interested in certain classes of solutions, with specifietions: The “extremal” limit of our solutions have the same
asymptotic properties, the most common of which are thesnergy as the corresponding global Ad$acetime.
asymptotically flat spacetimes. Recent work in string theory The solutions we discuss are singular at the origin. This
however, has highlighted the importance of another class afises the question of whether these are “admissable” in the
spacetimes via the AdS/conformal-field the@BFT) conjec-  context of the AAS/CFT conjecture. The fact that the energy
ture [3]. These are the asymptotically anti—de Sitter spaceef this class of solutions turns out to be finite is a hint that
times (AAdS). the singularity may be resolved by quantum effects. Indeed,

The AdS/CFT conjecture is a duality between stringthere has been a suggest[@&i that singularities are valuable
theory on AdgxS® and the largeN limit of conformally  in that they are concomitant with the absence of an energy
invariant N=4 SU(N) Yang-Mills (YM) theory on the lower bound, which is another criteria for excluding solu-
boundary of Ad$§. This conjecture proposes a direct corre-tions. This is not the case for the solutions we present, since
spondence between physical effects associated with fieldse corresponding energies are well defined and bounded be-
propagating in AdS spacetime and those of a conformalow by the energy of global AdS.
quantum field theory on the boundary of AdS spacetime. The equality of the vacuum energy of Ad&lculated via
Significant evidence for the conjecture has come from studythe counter-term methgdand the Casimir energy of the
ing free scalar or other fields on a fixed AdS backgroi#ld  boundary YM theory is considered to be a piece of the evi-
Another important aspect of this conjecture is that it connectslence for the AAS/CFT conjecture. However, our degeneracy
infrared effects in AdS space to ultraviolet effects in theresult demonstrates th#tere is another spacetime with the
boundary theoryf5]. This in turn implies a connection be- same Yang-Mills Casimir energihis raises an ambiguity
tween low and high energy physics in the respective theoriegoncerning this dictionary entry of the AdS/CFT correspon-
A fully non-linear gravity-scalar field solution can provide a dence.
window into this aspect of the conjecture as well, as is the The d=3 matter-gravity model considered in this paper
case for scalar fields on a fixed background. has been studied numerically in the full time dependent con-

text with circular symmetry in Refq.9,10], where critical
behavior at the onset of black hole formation is observed.

*Email address: saurya@theory.uwinnipeg.ca More recently the critical exponent for the apparent horizon
"Email address: lenin@math.unb.ca radius found in[10] has been verified by an analytical per-
*Email address: husain@math.unb.ca turbation theory calculatiofl1].
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We consider the massless scalar field minimally coupled x2—Dp?

to gravity ind spacetime dimensions. With the parametriza-

tion of the negative cosmological constant as=
—(d—1)(d—2)/21?, the field equations are

(d=1)
Rap+ Tz Jab= daPdp b,

&Y

h(X): (X_b)—(l—a)/Z(X+ b)_(1+a)/2.

x—ab

1 /1-a
p(X)=5\—In

Thus the scalar field is real fa?<1. The metric may be
written in the new radial coordinateas

Xx—b

x+b

where factors of &G are suppressed. We assume the static

spherically symmetric form

h(r
ds?=—g(r)h(r)dt?+ er2+ r2dQ3_,,

G @

2

of the metric ind spacetime dimensions, which give the The Ricci scalar of the metric is

coupled equations

rIZg’+(d—3)(g—h)IZ—(d—l)rzh:O,
r
(|nh)'=ﬁ(¢')2,
3

.k
gr'”

2!

where the prime denotes the derivative with respectdad

k is an integration constant obtained by integrating the Klein-

Gordon equation.
By a field redefinitiong(r):=(r)/r% 3, the above set of
equations give

Y (d=1)(d=2)r?+(d-3)(d—4)I?

W' (d—1)r?+(d—23)I?

k2
Td-2-
(4)

2

— _(y_ph\(1+a)2 (1-a)/2q+42 2
ds’=—(x—b) (x+b) dt +4(x2—b2)dx
+12 (x=b)~ (x4 )1+ AZgOZ . ®)
3x?—4b*+a’h?
R=—2——7—, 9

12(x2—b?)

which shows that there are curvature singularitiesxat
+h, corresponding to the origin=0. Also, it confirms that
the spacetime is AAdS, sind@(x—x)= —6/I°. Since the

solution contains no horizons for non-vanishing scalar field,

the singularity ar =0 is naked.

There are two special cases of this metric which are fa-

miliar, both of which correspond to vanishing scalar fikld
=0. The first isa?=1 for which the metric reduces to

2

r dr?
ds?’=—| —=%2b ————— +r2de?,
|2 r2/12x2b

dt’+ (10)

where thex signs correspond ta= =1 respectively. Thus
a=1 is the non-rotating BTZ black hole with masd 2
=C/2. The second i®§=0 anda arbitrary, which gives the
zero mass BTZ black hole, rather than global Ad®ace-
time.

This basic equation determines the spacetime metrics of in- d=4- For spacetime dimensions greater than three, Eq.
terest. This equation is especially simple tb=3 and we (4) cannot be solved analytically. However it is possible to

deal with it separately, followed by the casés 4. obtain an asymptotic expansion of the solution for large

d=3. The differential equationd) reduces t412] Forr>1| (and fixedl), Eq. (4) can be approximated as

g"(r)

12
g(r) I

-1

g(r)?r (5)

2

d-2’

lp—r—(d—Z)
l/f,

¥ (11

The complete solution in this case can be expressed asWhich has the exact solutiogig(r) given implicitly by

=r(g) with

Al4C

g+Al4+Cl4
, (6

_ 2 — k2/o\ 14
r=BIl(g°+Ag/l2—k“/2) g+ AIA—Cl4

where A and B>0 are integration constants, an@
= /8kZ+ AZ. Without loss of generality, we can sBt=1. It
is convenient to define the variables=g+A/4b=Cl/4a
=A/C, in terms of which Eq(6) becomes
r=|(X—b)(1_a)/4(X+ b)(l+a)/4. (7)

Using Eq.(3) gives

At K2 1/2d-1)

2 _
Yot o1 [d-1D)d—2)
Yot AI2(d— 1)+ C/2(d—1)(d—2)
Ut AI2(d—1)—Cl2(d—1)(d—2)

r=RB[2(d-1)

(AI2C)[(d—2)/(d—1)]

(12

As before the metric for large may be written using the
variablesx= iy +A/2(d—1), b=C/2(d—1)(d—2), anda
=(d—2)A/C. For larger, yo(r)~r@b,

The next term in the asymptotic expansion for large
obtained by writing
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Y(r)=tho(r)(1+ al?/r?), (13 TABLE I. Conserved quantities in the two approaches.

wherea is a constant. Fod=5 one findsae=1 by substi- Dim Q1 Q2
tuting this expression into E¢4), a result which is useful for 5 _ ab/4G
calculating conserved charges.
For AAdS geometries, the calculation of conserved4 ab/G ab/G
charges is complicated by the occurrence of divergent ex:
pressions. These occur essentially because the metric di-
verges as? for larger. There exist two quite distinct proce-
dures for obtaining “regularized” finite expressions for
asymptotic conserved charges. These are the so-called “

97ah/16G 97ab/16G + 3712%/32G

The counter-term method proposes that the Einstein-
; . N COilpert action Sgy should be supplemented with additional
formal” [6] and “counter-term’[7] methods. .__boundary terms dependent on the intrinsic metricSince

n th? cor_lformal method, a conformal_ transformgtlonthe variational principle is defined with fixed boundary met-
ap= Q%g,, is performed on the physical spacetime ric, this does not change the equations of motion. The full
(M,g4p) under consideration, such that the asymptotic reaction S+ S, is used to obtain an effective energy momen-
gions get mapped to a finite distance in a new manifoldum tensor associated with the boundary,
(M,g.p) [6]. A boundary is then added to this conformally

transformed(and unphysical manifold. This is especially 2 8(Sen+Sw)
useful for AAdS spacetimes, because many of the canonical Tap= s y a7
metric components diverge asymptotically and limits such as NTY 5y

r—o become rather tricky. On the other hand, the trans-

formed manifold has a completely well-behaved structure. The conserved charge associated with the symmetry gener-
The procedure basically involves showing that the electri@ted by a vector field is then defined by

parts of the Weyl tensor satisfy, as a consequence of Ein-

stein’s equations, a conservation law at null infinifyjn the 1 42 ash

conformally transformed spacetime. The end result is that the Q§==%Ld Vo Tap?e (18)

following equation holds of:

where Y, is a spatial slice oyM, u? is the timelike unit
T,,n%h0, (14) normal at¥, and o= yap+ UaUp - . '
For d=3,4 and 5, the following expression suffices to
yield finite charges for commonly encountered AAdS space-
whereDP is the intrinsic covariant derivative off compat-  times, including the scalar solutions:
ible with the induced metrich,,:=gap— 12NNy  (Na

(d-3)
|

DPEmp=—87G

=V,Q), E,p is the electric part of the Weyl tensor @t d-2 IV—7y
defined a€ =12 03~ 9C, ™" andT,p:= Q29T L= = V=7~ 5q=3) RV (19
ab* ambd1 N anal p: ab ON I 2(d 3)
Z. The above conservation equations dictate the following
form of conserved charge associated with the conformal Kill-The resulting stress-energy tensor is
ing vector field(KVF) ¢:
| Ta=K K92
1 ab™ Nab™ Yab\ = 77 Yab
— a I
I 1
+ 373 | Rao(¥) = 5 7aR() |- (20

(An ordinary KVF onM becomes the conformal KVF on

M.) In the presence of matter fields, this charge satisfies the ) ) )
covariant balance equation The conserved charges for various dimensions are calcu-

lated using Eq(15) in the conformal method@,), and Eq.
(18) in the counterterm methodQ,). Restoring the &G
Qg[Cz]—Qg[Cﬂ:f TpéddS (16)  factors we obtain the expressions given in Table I.
AT Note that the conformal method does not applyder3,

as the Weyl tensor is identically zero. The following com-
whereC, andC, are two cross-sections aghbounding the ments discuss additional aspects of the solutions:
regionAZ. Equations(15) and(16) are the fundamental re- (i) Although we have not been able to find an exact solu-
lations which we will use to define conserved quantitiestion of Eq. (4) above three dimensions for al| there is
Thus apart from volume factors, the electric part of the Weylstrong evidence that the solutions in higher dimensions have
tensor is the relevant quantity to be calculated. For our meteurvature singularities at the origin. This may be seen ana-
rics the scalar field vanishes too quickly to be captured onytically and numerically. Analytically, Eq(4) can be inte-
the right hand side of Eq16). grated near=0. For example, ird=5 this equation gives
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k2 2 (vi) The energy of Schwarzschild-AdS spacetiniie; 5
Y= R (21 (calculated using either methpdan be matched by choosing
C andk of the scalar solutions such that

from which the Ricci scalar iR~r 8. Numerically, this
equation can be integrated for alandd (for example using 1\/ c? ) (d—=1)
MAPLE) [13]. For all initial conditions considered;’ shows MSA:Z (d—2)2 —4k (d—2)
a strong divergence at the origin, which is similar to the

behavior seen analytigally in_ thre_e dim_ensions. Finally, anrus the energy degeneracy pointed out above, concerning
exact scalar field solution in five dimensions has been foun%|oba| AdS. extends to the Schwarzschild-AdS metrics.

recently by one of ul4]. Although this exact solution arises ™ (yi) There exist certain intuitive criteria for the types of
in different coordinates, it has the same symmetries as thgrayitational singularities that might be permitted in the con-
class considered in this paper. This provides further evidencgyt of the AJS/CFT conjecturgL5]. The central singularity
that the spherically symmetric scalar field-AdS spacetimes, the present solutions does not violate these. Thus it ap-
generically have naked singularties at the origin. pears that an explanation of the degeneracy is not yet avail-
(i) The two approaches for calculating conserved chargegpe.
give positive energies for our scalar field solutions in spite of (viii) Some evidence that the energy degeneracy discussed
the fact that the solutions contain a naked singularity at thg,oye may not be manifested in other calculations in the
origin. This is unlike the negative mass Schwarzschild naked\qs/CFT context comes from consideration of the full action
singularity, where the associated conserved charge is neggssociated with our solutions. This computation can be done
tive.. _ o _exactly in three dimensions. Surprisingly, the divergence at
(iii) Except ind=5, the two approaches yield identical {he origin does not make the action infinitRecall that the
results. Ind=5, the counterterm prescription predicts an ad'divergence for large is regulated by the subtraction proce-

ditional Casimir energy, which is identical to that found in qure) The key test is whether the scalar field parameter ap-
the context of AdS/CFT correspondence, and is independepfaars in the action. It doeS= — mk (multiplied by a factor

of the scalar chargk. This is unlike AAdS spacetimes with - ¢oming from thet integration for the “extremal” solution.
rotation, where the vacuum energy depends on the rotatiofoy comparison the action of global AdS is2.) This

parametef6]. Our results can be generalized to spacetimesitation is analagous to the result for Schwarzschild-AdsS,
dimensions greater than five; the Casimir energy appears fQfhere the action is a function of the black hole miksThe

(24)

all odd dimensional spacetimes. natural interpretation of the lattgt6,3] is that it corresponds
(iv) In terms of the scalar field strengkh the conserved g 5 CFT at finite temperature. Since there is a scale in our
charges are proportional to solution, determined by the scalar field strength, the corre-
sponding CFT must have conformal invariance broken. The
1 C? , (d—1) exact nature of the breaking is apparently not due to tem-
ab= 4N (d=2)2 —4k (d—2) (22) perature since temperature cannot be associated with naked

singularities. Nevertheless, these considerations provide a

] ) . clear distinction between global AdS and this class of scalar
Note that thek=0 case is the AdS-Schwarzschild solution field spacetimes, regardless of the energy degeneracy.

with massM = C/(d—2). Thus, surprisingly the presence of |, symmary we have described solutions of general rela-
the scalar field effectively reduces the energy of the gravitagyity with a cosmological constant coupled to a scalar field.

tional solution. _ _ _ In three spacetime dimensions, the solution is exact far, all
) (V) Th(—‘ire is an unexpected and interesting result in th§yhereas for higher dimensions, the solution is an asymptotic
extremal” case one, for larger. The solutions have finite energy, although
they do not possess an event horizon. The only nonzero
C d—1 charges are those associated with the timelike KVF. Further-
a2 2k i (23)  more, these charges contain information about the strength of

the scalar fielk. As we have discussed above, these results

] ) _ lead to interesting questions concerning the AdS/CFT con-

The conserved charge vanishes in the conformal Calcmat'o{écture. Among these are the issues of how a naked singular-
for all dimensions and is therefore equal to the energy ofy on the gravity side translates to the field theory side,

global AdS in this method. The same holds for the counteryiyen that the associated energy is finite, and the meaning of

term method, except that the energies of the two solutiongye energy degeneracy of the extremal solution and global
now equal the Casimir energy in five dimensions. This surpqs Finally, it would be interesting to see if the energy

prising degeneracy of energy associated with two distinCegeneracies we have found can lead to the possibility of

solutions on the gravity side raises an interesting question fo5nase transitions analagous to the Hawking-Page transition
the ADS/CFT conjecture: What effects on the CFT side dis{17] petween Schwarzschild-AdS black holes and global

tinguish global AdS from this extremal scalar field solution? poqs.

It is possible that the answer lies in calculating other effects

using the correspondence, such rapoint functions with This work was supported by the Natural Science and En-
these spacetimes as backgroysée below. gineering Research Council of Canada.
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