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Scalar field spacetimes and the anti–de Sitter spaceÕconformal-field theory conjecture
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We describe a class of asymptotically AdS scalar field spacetimes, and calculate the associated conserved
charges for three, four and five spacetime dimensions using the conformal and counterterm prescriptions. The
energy associated with the solutions in each case is proportional toAM22k2, whereM is a constant andk is
a scalar charge. In five spacetime dimensions, the counterterm prescription gives an additional vacuum~Ca-
simir! energy, which agrees with that found in the context of AdS conformal-field theory~CFT! correspon-
dence. We find a surprising degeneracy: the energy of the ‘‘extremal’’ scalar field solutionM5k equals the
energy of global AdS. This result is discussed in light of the AdS/CFT conjecture.
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The nonlinear coupling of gravity to matter in gener
relativity presents difficult technical problems in attempts
understand gravitational interactions of elementary partic
and strings, as well as questions such as the details of g
tational collapse. Progress in the former area has co
mainly from treating quantum fields as propagating on fix
background geometries@1#, whereas much of the progress
the latter has come from detailed numerical work@2#.

Exact solutions of the relevant matter-gravity equatio
can play an important role by shedding light on questions
interest in both general relativity and string theory. One
often interested in certain classes of solutions, with speci
asymptotic properties, the most common of which are
asymptotically flat spacetimes. Recent work in string the
however, has highlighted the importance of another clas
spacetimes via the AdS/conformal-field theory~CFT! conjec-
ture @3#. These are the asymptotically anti–de Sitter spa
times ~AAdS!.

The AdS/CFT conjecture is a duality between stri
theory on AdS53S5 and the largeN limit of conformally
invariant N54 SU(N) Yang-Mills ~YM ! theory on the
boundary of AdS5. This conjecture proposes a direct corr
spondence between physical effects associated with fi
propagating in AdS spacetime and those of a confor
quantum field theory on the boundary of AdS spacetim
Significant evidence for the conjecture has come from stu
ing free scalar or other fields on a fixed AdS background@4#.
Another important aspect of this conjecture is that it conne
infrared effects in AdS space to ultraviolet effects in t
boundary theory@5#. This in turn implies a connection be
tween low and high energy physics in the respective theor
A fully non-linear gravity-scalar field solution can provide
window into this aspect of the conjecture as well, as is
case for scalar fields on a fixed background.
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With this motivation we study the Einstein-scalar fie
system, with minimally coupled massless scalar field a
negative cosmological constant. We present static spheric
symmetric AAdS solutions of these equations. For spacet
dimensiond53, the equations can be solved exactly. Ford
>4, the corresponding equations can be solved analytic
for large radial distance, i.e., asymptotically. We calcula
conserved charges associated to these spacetimes usin
conformal@6# and the counterterm@7# prescriptions. Finally
we discuss some consequences of our results, in partic
the surprising energy degeneracies associated with the s
tions: The ‘‘extremal’’ limit of our solutions have the sam
energy as the corresponding global AdSd spacetime.

The solutions we discuss are singular at the origin. T
raises the question of whether these are ‘‘admissable’’ in
context of the AdS/CFT conjecture. The fact that the ene
of this class of solutions turns out to be finite is a hint th
the singularity may be resolved by quantum effects. Inde
there has been a suggestion@8# that singularities are valuabl
in that they are concomitant with the absence of an ene
lower bound, which is another criteria for excluding sol
tions. This is not the case for the solutions we present, s
the corresponding energies are well defined and bounded
low by the energy of global AdS.

The equality of the vacuum energy of AdS~calculated via
the counter-term method!, and the Casimir energy of th
boundary YM theory is considered to be a piece of the e
dence for the AdS/CFT conjecture. However, our degener
result demonstrates thatthere is another spacetime with th
same Yang-Mills Casimir energy. This raises an ambiguity
concerning this dictionary entry of the AdS/CFT correspo
dence.

The d53 matter-gravity model considered in this pap
has been studied numerically in the full time dependent c
text with circular symmetry in Refs.@9,10#, where critical
behavior at the onset of black hole formation is observ
More recently the critical exponent for the apparent horiz
radius found in@10# has been verified by an analytical pe
turbation theory calculation@11#.
©2001 The American Physical Society27-1
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We consider the massless scalar field minimally coup
to gravity in d spacetime dimensions. With the parametriz
tion of the negative cosmological constant asL5
2(d21)(d22)/2l 2, the field equations are

Rab1
~d21!

l 2 gab5]af]bf, ~1!

where factors of 8pG are suppressed. We assume the st
spherically symmetric form

ds252g~r !h~r !dt21
h~r !

g~r !
dr21r 2dVd22

2 , ~2!

of the metric in d spacetime dimensions, which give th
coupled equations

rl 2g81~d23!~g2h!l 22~d21!r 2h50,

~ lnh!85
r

d22
~f8!2,

~3!

f85
k

grd22
,

where the prime denotes the derivative with respect tor and
k is an integration constant obtained by integrating the Kle
Gordon equation.

By a field redefinitiong(r )ªc(r )/r d23, the above set of
equations give

c2F r
c9

c8
2

~d21!~d22!r 21~d23!~d24!l 2

~d21!r 21~d23!l 2 G5
k2

d22
.

~4!

This basic equation determines the spacetime metrics o
terest. This equation is especially simple ford53 and we
deal with it separately, followed by the casesd>4.

d53. The differential equation~4! reduces to@12#

g~r !2F r
g9~r !

g~r !
21G5k2. ~5!

The complete solution in this case can be expressedr
5r (g) with

r 5Bl~g21Ag/22k2/2!1/4S g1A/41C/4

g1A/42C/4D
A/4C

, ~6!

where A and B.0 are integration constants, andC
5A8k21A2. Without loss of generality, we can setB51. It
is convenient to define the variablesx5g1A/4,b5C/4,a
5A/C, in terms of which Eq.~6! becomes

r 5 l ~x2b!(12a)/4~x1b!(11a)/4. ~7!

Using Eq.~3! gives
06502
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h~x!5
x22b2

x2ab
~x2b!2(12a)/2~x1b!2(11a)/2,

f~x!5
1

2
A12a2

2
lnS x2b

x1bD .

Thus the scalar field is real fora2<1. The metric may be
written in the new radial coordinatex as

ds252~x2b!(11a)/2~x1b!(12a)/2dt21
l 2

4~x22b2!
dx2

1 l 2 ~x2b!(12a)/2~x1b!(11a)/2dVd22
2 . ~8!

The Ricci scalar of the metric is

R522
3x224b21a2b2

l 2~x22b2!
, ~9!

which shows that there are curvature singularities atx5
6b, corresponding to the originr 50. Also, it confirms that
the spacetime is AAdS, sinceR(x→`)526/l2. Since the
solution contains no horizons for non-vanishing scalar fie
the singularity atr 50 is naked.

There are two special cases of this metric which are
miliar, both of which correspond to vanishing scalar fieldk
50. The first isa251 for which the metric reduces to

ds252S r 2

l 2
72bD dt21

dr2

r 2/ l 272b
1r 2du2, ~10!

where the7 signs correspond toa561 respectively. Thus
a51 is the non-rotating BTZ black hole with mass 2b
5C/2. The second isb50 anda arbitrary, which gives the
zero mass BTZ black hole, rather than global AdS3 space-
time.

d>4. For spacetime dimensions greater than three,
~4! cannot be solved analytically. However it is possible
obtain an asymptotic expansion of the solution for larger.
For r @ l ~and fixedl ), Eq. ~4! can be approximated as

c2Fc9

c8
r 2~d22!G5

k2

d22
, ~11!

which has the exact solutionc0(r ) given implicitly by

r 5Bl2/(d21)Fc0
21

Ac0

d21
2

k2

~d21!~d22!G
1/2(d21)

3Fc01A/2~d21!1C/2~d21!~d22!

c01A/2~d21!2C/2~d21!~d22!G
(A/2C)[(d22)/(d21)]

.

~12!

As before the metric for larger may be written using the
variablesx5c01A/2(d21), b5C/2(d21)(d22), anda
5(d22)A/C. For larger, c0(r );r (d21).

The next term in the asymptotic expansion for larger is
obtained by writing
7-2
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c~r !5c0~r !~11a l 2/r 2!, ~13!

wherea is a constant. Ford55 one findsa51 by substi-
tuting this expression into Eq.~4!, a result which is useful for
calculating conserved charges.

For AAdS geometries, the calculation of conserv
charges is complicated by the occurrence of divergent
pressions. These occur essentially because the metric
verges asr 2 for larger. There exist two quite distinct proce
dures for obtaining ‘‘regularized’’ finite expressions fo
asymptotic conserved charges. These are the so-called ‘‘
formal’’ @6# and ‘‘counter-term’’@7# methods.

In the conformal method, a conformal transformati
gab5V2ĝab is performed on the physical spacetim
(M̂ ,ĝab) under consideration, such that the asymptotic
gions get mapped to a finite distance in a new manif
(M ,gab) @6#. A boundary is then added to this conformal
transformed~and unphysical! manifold. This is especially
useful for AAdS spacetimes, because many of the canon
metric components diverge asymptotically and limits such
r→` become rather tricky. On the other hand, the tra
formed manifold has a completely well-behaved structure

The procedure basically involves showing that the elec
parts of the Weyl tensor satisfy, as a consequence of
stein’s equations, a conservation law at null infinity,I, in the
conformally transformed spacetime. The end result is that
following equation holds onI:

DpEmp528pG
~d23!

l
Tabn

ahb
m , ~14!

whereDp is the intrinsic covariant derivative onI, compat-
ible with the induced metric habªgab2 l 2nanb (na
ª¹aV), Eab is the electric part of the Weyl tensor atI
defined asEabª l 2 V32dCambnn

mnn andTabªV22dT̂ab on
I. The above conservation equations dictate the follow
form of conserved charge associated with the conformal K
ing vector field~KVF! j:

Qj@C#ª2
1

8pG

l

d23 R
C
Eabj

adSb. ~15!

~An ordinary KVF on M̂ becomes the conformal KVF o
M.! In the presence of matter fields, this charge satisfies
covariant balance equation

Qj@C2#2Qj@C1#5E
DI

Tabj
adSb ~16!

whereC1 andC2 are two cross-sections onI bounding the
regionDI. Equations~15! and ~16! are the fundamental re
lations which we will use to define conserved quantiti
Thus apart from volume factors, the electric part of the W
tensor is the relevant quantity to be calculated. For our m
rics the scalar field vanishes too quickly to be captured
the right hand side of Eq.~16!.
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The counter-term method proposes that the Einste
Hilbert actionSEH should be supplemented with addition
boundary terms dependent on the intrinsic metricg. Since
the variational principle is defined with fixed boundary me
ric, this does not change the equations of motion. The
actionS1Sct is used to obtain an effective energy mome
tum tensor associated with the boundary,

Tabª
2

A2g

d~SEH1Sct!

dgab
. ~17!

The conserved charge associated with the symmetry ge
ated by a vector fieldj is then defined by

Qjª
1

8pGE
S
dd22As Tabu

ajb, ~18!

where S is a spatial slice of]M , ua is the timelike unit
normal atS, andsabªgab1uaub .

For d53, 4 and 5, the following expression suffices
yield finite charges for commonly encountered AAdS spa
times, including the scalar solutions:

Lct52
d22

l
A2g2

lA2g

2~d23!
R~g!. ~19!

The resulting stress-energy tensor is

Tab5Kab2gabK2
d22

l
gab

1
l

d23 S Rab~g!2
1

2
gabR~g! D . ~20!

The conserved charges for various dimensions are ca
lated using Eq.~15! in the conformal method (Q1), and Eq.
~18! in the counterterm method (Q2). Restoring the 8pG
factors we obtain the expressions given in Table I.

Note that the conformal method does not apply ford53,
as the Weyl tensor is identically zero. The following com
ments discuss additional aspects of the solutions:

~i! Although we have not been able to find an exact so
tion of Eq. ~4! above three dimensions for allr, there is
strong evidence that the solutions in higher dimensions h
curvature singularities at the origin. This may be seen a
lytically and numerically. Analytically, Eq.~4! can be inte-
grated nearr 50. For example, ind55 this equation gives

TABLE I. Conserved quantities in the two approaches.

Dim Q1 Q2

3 – ab/4G

4 ab/G ab/G

5 9pab/16G 9pab/16G13p l 2/32G
7-3
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c5Ak2

6
2

r 4

6l 4 , ~21!

from which the Ricci scalar isR;r 26. Numerically, this
equation can be integrated for allr andd ~for example using
MAPLE! @13#. For all initial conditions considered,f8 shows
a strong divergence at the origin, which is similar to t
behavior seen analytically in three dimensions. Finally,
exact scalar field solution in five dimensions has been fo
recently by one of us@14#. Although this exact solution arise
in different coordinates, it has the same symmetries as
class considered in this paper. This provides further evide
that the spherically symmetric scalar field-AdS spacetim
generically have naked singularties at the origin.

~ii ! The two approaches for calculating conserved char
give positive energies for our scalar field solutions in spite
the fact that the solutions contain a naked singularity at
origin. This is unlike the negative mass Schwarzschild na
singularity, where the associated conserved charge is n
tive.

~iii ! Except in d55, the two approaches yield identic
results. Ind55, the counterterm prescription predicts an a
ditional Casimir energy, which is identical to that found
the context of AdS/CFT correspondence, and is indepen
of the scalar chargek. This is unlike AAdS spacetimes with
rotation, where the vacuum energy depends on the rota
parameter@6#. Our results can be generalized to spaceti
dimensions greater than five; the Casimir energy appears
all odd dimensional spacetimes.

~iv! In terms of the scalar field strengthk, the conserved
charges are proportional to

ab5
1

4
A C2

~d22!2 24k2
~d21!

~d22!
. ~22!

Note that thek50 case is the AdS-Schwarzschild solutio
with massM5C/(d22). Thus, surprisingly the presence
the scalar field effectively reduces the energy of the grav
tional solution.

~v! There is an unexpected and interesting result in
‘‘extremal’’ case

C

d22
52kAd21

d22
. ~23!

The conserved charge vanishes in the conformal calcula
for all dimensions and is therefore equal to the energy
global AdS in this method. The same holds for the coun
term method, except that the energies of the two soluti
now equal the Casimir energy in five dimensions. This s
prising degeneracy of energy associated with two dist
solutions on the gravity side raises an interesting question
the AdS/CFT conjecture: What effects on the CFT side d
tinguish global AdS from this extremal scalar field solutio
It is possible that the answer lies in calculating other effe
using the correspondence, such asn-point functions with
these spacetimes as background~see below!.
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~vi! The energy of Schwarzschild-AdS spacetimeMSA
~calculated using either method! can be matched by choosin
C andk of the scalar solutions such that

MSA5
1

4
A C2

~d22!2 24k2
~d21!

~d22!
. ~24!

Thus the energy degeneracy pointed out above, concer
global AdS, extends to the Schwarzschild-AdS metrics.

~vii ! There exist certain intuitive criteria for the types
gravitational singularities that might be permitted in the co
text of the AdS/CFT conjecture@15#. The central singularity
in the present solutions does not violate these. Thus it
pears that an explanation of the degeneracy is not yet a
able.

~viii ! Some evidence that the energy degeneracy discu
above may not be manifested in other calculations in
AdS/CFT context comes from consideration of the full acti
associated with our solutions. This computation can be d
exactly in three dimensions. Surprisingly, the divergence
the origin does not make the action infinite.~Recall that the
divergence for larger is regulated by the subtraction proc
dure.! The key test is whether the scalar field parameter
pears in the action. It does:S52pk ~multiplied by a factor
coming from thet integration! for the ‘‘extremal’’ solution.
~For comparison the action of global AdS is22p.! This
situation is analagous to the result for Schwarzschild-A
where the action is a function of the black hole massM. The
natural interpretation of the latter@16,3# is that it corresponds
to a CFT at finite temperature. Since there is a scale in
solution, determined by the scalar field strength, the co
sponding CFT must have conformal invariance broken. T
exact nature of the breaking is apparently not due to te
perature since temperature cannot be associated with n
singularities. Nevertheless, these considerations provid
clear distinction between global AdS and this class of sca
field spacetimes, regardless of the energy degeneracy.

In summary we have described solutions of general re
tivity with a cosmological constant coupled to a scalar fie
In three spacetime dimensions, the solution is exact for ar,
whereas for higher dimensions, the solution is an asympt
one, for larger. The solutions have finite energy, althoug
they do not possess an event horizon. The only nonz
charges are those associated with the timelike KVF. Furth
more, these charges contain information about the streng
the scalar fieldk. As we have discussed above, these res
lead to interesting questions concerning the AdS/CFT c
jecture. Among these are the issues of how a naked sing
ity on the gravity side translates to the field theory sid
given that the associated energy is finite, and the meanin
the energy degeneracy of the extremal solution and glo
AdS. Finally, it would be interesting to see if the ener
degeneracies we have found can lead to the possibility
phase transitions analagous to the Hawking-Page trans
@17# between Schwarzschild-AdS black holes and glo
AdS.
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