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Microcanonical entropy of a black hole
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It has been suggested recently that the microcanonical entropy of a system may be accurately reproduced by
including a logarithmic correction to the canonical entropy. In this paper we test this claim both analytically
and numerically by considering three simple thermodynamic models whose energy spectrum may be defined in
terms of one quantum number only, as in a non-rotating black hole. The first two pertain to collections of
noninteracting bosons, with logarithmic and power-law spectra. The last is an area ensemble for a black hole
with equi-spaced area spectrum. In this case, the many-body degeneracy factor can be obtained analytically in
a closed form. We also show that in this model, the leading term in the entropy is proportional to the horizon
areaA, and the next term is lnA with a negative coefficient.
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I. INTRODUCTION

The entropy of a macroscopic black hole is known to
proportional to the area of its horizon@1#, in units of the
Planck length squared. It has also been shown by sev
authors using a variety of approaches that the leading o
correction to this is proportional to the logarithm of the ar
@2# ~also see the references in@3#!. Recently, a universal form
for the ~negative! coefficient of this logarithmic term ha
been obtained in Ref.@4# by assuming a power-law depen
dence of the area on the mass of the~non-rotating! black
hole. For an isolated black hole, it is of course appropriate
consider the microcanonical entropy. For a quantum syst
the microcanonical entropy may be defined uniquely in ter
of the degeneracy of the state at a given energy, and it ha
fluctuation in energy. The many-body degeneracy factor,
any nontrivial system, however, is exceedingly difficult
calculate. For this reason, it is desirable to approximate
microcanonical entropy by the canonical entropy~the leading
term!, minus a logarithmic term due to fluctuations in th
canonical ensemble-averaged energy from the equilibr
value. The main objective of this paper is to test this form
quantitatively in three solvable models, where the micro
nonical entropy can also be calculated exactly. The first
of these are systems of noninteracting bosons, andnot re-
lated to black holes. These many-body systems, howe
have eigenenergies that depend on a single quantum num
similar to a non-rotating quantum black hole. When the lo
rithmic correction to the canonical entropy are included
the canonical expression, its agreement with the micro
nonical entropy improves markedly. Next, we consider a
nonical area ensemble with equi-spaced spectrum and di
guishable area components as a model for a non-rota
black hole. The area of the surface of the event horizon p
a role analogous to the energy@5#. This equi-spaced spec
trum was first proposed in the early seventies and later c
firmed by several authors using different techniques@6#. The
model has been studied earlier by Alekseevet al. @7# using
the grand canonical ensemble. In this paper, we calculate
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e

ral
er

o
,

s
no
r

e

m
a
-
o

er,
er,
-

a-
-
in-
ng
ys

n-

he

exact microcanonical entropy for this spectrum in a clos
form, and obtain the area law for the entropy. We also sh
that the next term in the entropy is proportional to lnA with
a negative coefficient. This is also verified using the cano
cal ensemble when the area fluctuation is subtracted out

The origin of the black hole entropy, in theories of qua
tum gravity, is believed to arise from the microstates that
generated by a quantum mechanical operator such as are
standard statistical mechanics, when many particles in
mean-field model are trapped in a potential well, the mic
canonical entropy of the many-body system at a~quantized!
energyEn is obtained by taking the logarithm of the numb
of distinct microstates that all give the same energyEn . To
be more explicit,En5($Ni %n

Nie i , whereNi is the number of

particles with single-particle energye i . The set$Ni%n de-
notes a given occupancy configuration of single-particle l
els that make up a microstate with total energyEn . There
may beV(En) such distinct microstates for an energyEn ,
each denoted by a set$Ni%, and the microcanonical entrop
is then uniquely defined as

S~En!5kB ln@V~En!#, ~1!

where the Boltzmann constantkB will henceforth be set to
unity. Similarly, in models of quantum gravity, the~macro-
scopic! area eigenvalueAn is taken to be coming from the
elementary componentsai , such thatAn5($Ni %n

Niai , where

Ni is the number of elementary components with areaai @7#.
Each microstate is specified by a distinct set$Ni%, and there
may beV(A) such microstates for a given areaA. The mi-
crocanonical entropy is thenS(An)5 ln@V(An)#.

II. CORRECTION TO THE CANONICAL ENTROPY

Consider a many-body quantum system with eigenen
gies En that are completely specified by a single quantu
numbern,

En5 f ~n!, n50,1,2,3, . . . , ~2!
©2004 The American Physical Society18-1
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where we assumef (n) to be an arbitrary monotonic functio
with a differentiable inverse,f 21(x)5F(x), such thatn
5F(En). The degeneracy of the states at energyEn is given
by V(En), a function characterizing the quantum spectru
At this point, we need not assume that this many-body s
tem is described in the mean-field picture. The quantum d
sity of the system is defined as

r~E!5(
n

V~En!d~E2En!. ~3!

Using general properties of the delta function, we write

d~E2En!5d„E2 f ~n!…5d„n2F~E!…uF8~E!u, ~4!

where the prime denotes differentiation with respect to
continuous variableE. Using the Poisson sum formula, w
thus obtain@8#

r~E!5V~E!uF8~E!uS 112(
k51

`

cos@2pkF~E!# D . ~5!

We assume the functionV(E) of the continuous variableE
to be smooth. The first term on the right-hand side~RHS! of
the above relation is then the smoothly varying part of
density of states, while the second part consists of the o
lating components coming from the discreteness of the
ergy levels. For a macroscopic system with largeE, the os-
cillating part may be neglected. We then obtain the import
relation

r̃~E!5V~E!uF8~E!u, ~6!

where r̃(E) denotes the averaged smooth density of sta
Now we specialize to a system ofN noninteracting particles
~or in a mean field! constituting the many-body system. The
the degeneracyV(En) is just the number of distinct mi
crostates that all have the same energyEn , as described
earlier. The microcanonical entropy is given by Eq.~1!,
which, using Eq.~6!, may now be expressed as

S~E!. ln@ r̃~E!uF8~E!u21#, ~7!

where the oscillating part has been dropped.
Our next task is to calculater̃(E) for a many-body sys-

tem. This may be obtained by considering the canonical
tition function of theN-particle system, and taking its invers
Laplace transform using the saddle-point method@3#. The
canonicalN-particle partition function is given by

Z~b!5(
n

V~En!exp~2bEn!5E
0

`

r~E!exp~2bE!dE,

~8!

wherer(E) was defined earlier. Note that we are using t
canonical ensemble only as a tool to obtainr̃(E) by Laplace
inversion with respect tob, which is just a variable of inte-
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gration along the imaginary axis. The saddle-point appro
mation simply gives the smooth partr̃(E). The well-known
result @9# is

r̃~E!5
exp@SC~b0!#

A2pSC9 ~b0!
, ~9!

where

SC~b0!5b0E1 ln Z~b0!

is the canonical entropy evaluated at the stationary pointb0,
and the prime denotes differentiation with respect tob. The
energyE is related to the saddle pointb0 via the condition
that SC8 (b0)50. Using Eqs.~7! and ~9!, we obtain

S~E!.SC~b0!2
1

2
ln@2pSC9 ~b0!#2 ln~ uF8~E!u!. ~10!

The formula that was originally suggested in@3# missed the
last term on the RHS. This was also pointed out earlier
Ref. @4#. It turns out that for two of the models that w
consider in this paper,F8(E)51, and the last term in Eq
~10! does not contribute. On the other hand, in the mo
with a logarithmic energy spectrum, this term plays a cruc
role. Note that within the canonical formalism,SC9 (b0)
5(^E2&2^E&2) is the fluctuation squared of the energy@9#.
When this energy fluctuation is subtracted out from the
nonical entropy, as in Eq.~10!, we obtain an estimate for th
microcanonical entropy~for quantum gravitational fluctua
tions, see e.g.@10#!.

The approximation~10! for the microcanonical entropy
S(E) is very useful, since it is prohibitively difficult to cal
culate it directly from Eq.~1!. Generally, in a mean-field
model, one is given the single-particle quantum spectru
The direct computation of the many-body degeneracy fac
V(E) from this starting point is very time consuming. In
stead, it is much simpler to obtain the canonicalN-body par-
tition function by well-known recursion relations~depending
on quantum statistics! @11#, and then compute the canonic
entropySc(b0). Going one step further, one may calcula
the canonical energy fluctuation, and use Eq.~10! to obtain
S. By following this canonical route, no computation o
V(E) is necessary. The approximate formula~10!, relevant
to black hole physics, has not been yet explicitly tested. T
main objective of this paper is to test this formula quanti
tively in some model systems where the microcanonical
tropy S(E) can be calculated exactly.

A. The logarithmic energy spectrum

In the first idealized example, we considerN noninteract-
ing bosons (N→`) occupying a set of single-particle energ
levels ~and also the ground state, which is at zero ener!
ep5 ln p, where p runs over all the prime number
2,3,5, . . . . As recently pointed out in Ref.@12#, the many-
body microcanonical entropyS of this system isexactlyzero.
This follows from the fundamental theorem of arithmet
8-2
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known from the time of Euclid. It states that every positi
integern can be expressed in only one way as a produc
the prime number powers:

n5p1
n1p2

n2 . . . pr
nr ,

where thepr ’s are distinct primes, andnr ’s are positive in-
tegers, including zero, and need not be distinct. It imme
ately follows that the eigenenergies of the many-body sys
are given byEn5 ln n5(r nrln pr , and that each eigenstate
non-degenerate. This means that for every macro-state of t
many-body system, there is exactly one microstate,
V(En)51. This implies, by Eq.~1!, that the microcanonica
entropyS(En)50. We would now like to check if this can
be verified from Eq.~10!. For the above lnn many-body
spectrum, note that the inverse functionF(E)5exp(E), and
we immediately obtain the density of states using Eq.~5!

r~E!5eES 112(
k51

`

cos~2pkeE!D . ~11!

The second term on the RHS is the intrinsic quantum fl
tuation, due toEn’s taking only discrete values. The smoo
part of the density of states isr̃(E)5eE. To obtain the ca-
nonical entropySc(b0), we need to calculate the canonic
partition functionZ(b). The exactZ(b) for N→` in this
case is the Riemann zeta functionz(b)5(n51

` n2b, which
includes the quantum fluctuations. We pick up the smo
part of Z(b) by evaluating it using Eq.~8! with r̃(E)5eE,
obtaining Z(b)5(b21)21, for b.1. From this, we get
Sc(b)52 ln(b21)1bE, so the saddle point is given byb0
5(1/E11). Thus the equilibrium canonical entropy
Sc(b0)5E1 ln E11, that contains both a linear and a log
rithmic term. Evaluation of the fluctuation term is eleme
tary, and the microcanonical entropy using Eq.~10! is

S~E!5E1 ln E112
1

2
ln~2pE2!2E512

1

2
ln~2p!.

~12!

We see that theE-dependent terms in the canonical entro
are entirely canceled by the fluctuation term; the small
sidual constant is due to the use of the saddle-point met
This example is atypical, because the canonical term c
tains both the linear and the logarithmic terms, and still E
~10! yields ~almost! the correct microcanonical estimate.

B. The power-law single-particle spectrum

For our second example, we considerN noninteracting
bosons confined in a mean field with a single particle sp
trum given byem5ms, where the integerm>0, ands.0.
The energy is measured in dimensionless units. This mod
considered here because the canonical partition function~for
N→`) is exactly known@13#:

Z~b!5 )
m51

`

@12exp~2bms!#21. ~13!
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This expression is well known in number theory. It is th
generating function forV(E), which pertains to the numbe
of ways that an integerE can be partitioned into a sum o
powers. This is illustrated in the Appendix by taking a qu
dratic single-particle spectrum (s52), and showing that the
exact combinatorial result forV(E) of the many-body sys-
tem can be reproduced by expanding the canonical parti
function above. It is important to note that even though
single-particle energies may not be equi-spaced~for s.1),
the many-bodyEn51,2,3, . . . is. This has the consequenc
thatF8(E)51, andV(E)5 r̃(E) when the quantum oscilla
tions are dropped. The numerical calculations for a la
number of particles, using different power-law single-partic
spectra, were done in a different context in Ref.@14#, where
the details may be found. We test the accuracy of Eq.~10! by
comparing it with the exactS(E) from Eq. ~1! for s51,2.
The quantum oscillations have been included in the ex
microcanonical calculations, but are difficult to see in th
scale. In Figs. 1~a! and 1~b!, the dashed curve denotes th
canonical entropySC(E) without the correction, and the con
tinuous curve the exact microcanonical entropyS(E) for the
two power laws. We see from these curves that the two di
substantially as a function of the excitation energyE, spe-
cially for s52. Inclusion of the logarithmic correction to th
canonical entropy using Eq.~10! results, however, in almos
perfect agreement, as shown by the dot-dashed curve
these figures.

III. MODEL FOR AN AREA ENSEMBLE
OF A BLACK HOLE

The above bosonic model with the power law spectr
en5ns is not directly applicable to the black hole proble
since the leading term in the entropy varies asE1/(11s)

@13,14#. Following @7#, we consider insteaddistinguishable
elementary components, and consider the situation where
elementary area components are equi-spaced,aj5 j with j
taking values 0,1,2, . . . , etc., with a degeneracy ofg( j )
5( j 11). This model has been considered by the author

FIG. 1. ~a! Comparison of the exact microcanonical entro
S(E) ~solid line! and the canonical entropySC(E) ~dashed line! for
the e5ms spectrum, wheres51. The particles are taken to beN
non-interacting bosons, whereN→`. The dot-dashed curve, give
by Eq. ~10!, overlaps with the exact solid curve.~b! Same as~a!,
excepts52.
8-3
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BHADURI, TRAN, AND DAS PHYSICAL REVIEW D 69, 104018 ~2004!
Ref. @7#, but the results were derived in the grand-canoni
ensemble. For a macroscopic black hole with a horizon a
A, we assume that the number of independent componen

N5h
A

l p
2

, ~14!

where h is a positive constant, andl p the Planck length,
which is set to unity. BothN andA are fixed quantities in the
microcanonical picture. As will be shown shortly, the adva
tage of this model is that the expression for the multiplic
V(A,N) may be explicitly found, and therefore the exa
microcanonical entropy may be calculated directly. By e
panding the microcanonical entropy for largeA, we find that
the leading term is proportional to the areaA of the horizon,
and the next term varies as lnA. This expression is exactly
reproduced in the canonical ensemble calculation, when
ensemble averaged̂A& is identified withA, and the fluctua-
tion in ^A& is subtracted out.

The one-body partition function is

Z15(
j 50

`

~ j 11!exp~2a j !5~12e2a!225~12x!22,

~15!

where a is a variable canonical to the area, andx5exp
(2a). The canonicalN-particle partition function for distin-
guishable elementary components is

ZN5~Z1!N5~12x!22N,

5112Nx1
2N~2N11!

2
x2

1
2N~2N11!~2N12!

3!
x31 . . .

5 (
A51

` )
i 50

A21

~2N1 i !

A!
xA,

5(
A

V~A,N!e2aA, ~16!

which is analogous to Eq.~8!. The multiplicity of states of
area is therefore

V~A,N!5

)
i 50

A21

~2N1 i !

A!
. ~17!

This is the microcanonical partition function. It is not diffi
cult to check by combinatorics thatV(A,N) for a givenA
andN is indeed given by Eq.~17!. Note that unlike the case
of bose statistics where the multiplicityV(E) was found
only by expanding the partition function@for example, see
Eq. ~A1!# or by exact counting, here due to the distinguis
10401
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ability property of the system it is given by an explicit fo
mula. Thus an analytical expression for the microcanon
S(A) may be found directly from Eq.~17!: S(A)
5 ln V(A,N). Using Stirling’s series and the Euler-Maclaur
summation formula, we get

S~A!.A lnS 11
2N

A D12N lnS 11
A

2ND
2

1

2
lnF2pS A1

A2

2ND G . ~18!

We now calculate the canonical entropy and show that inc
sion of the logarithmic correction term@Eq. ~10!# gives a
formula that agrees with Eq.~18! for the microcanonical en-
tropy. The canonical calculations are performed for a fix
N, and the ensemble averaged area is given by^A&
52] ln ZN /]a at the equilibriuma0. For largeA, we iden-
tify ^A&5A and later correct for the fluctuation. The canon
cal entropy isSC(a)5aA1 ln ZN5aA22N ln(12e2a). The
saddle point is obtained from the condition thatSC8 (a0)
50, and givesa05 ln(2N/A11). For thisa0 , SC(a0) and
SC9 (a0) can easily be evaluated. Inserting these into Eq.~10!
immediately yields Eq.~18!, which was obtained from the
asymptotic expansion of the microcanonical entropy. Fina
we use the relation~14! to eliminateN from the above equa
tion. We obtain

S~A!.jA2
1

2
ln A2

1

2
ln@2p~111/2h!#, ~19!

where j5 ln@(112h)(111/2h)2h#. Note that the leading
term, proportional toA, comes from the canonical entrop
Sc , and the correction lnA arises from the fluctuation in̂A&.
If we had included the zero-point energy in theaj spectrum
by taking aj5( j 11), as in @7#, we again obtain the sam
form of Eq. ~19!, but the expression forj, as well as the
coefficient of lnA are different~the latter is still negative!.

We have shown that for a class of statistical mechan
systems, the log-corrected entropy formula~10! accurately
reproduces the microcanonical entropy of these systems.
results are applicable to a large class of black holes, w
uniformly spaced area spectrum@6#. Although the area spec
trum in loop quantum gravity is not strictly uniform@15#, it
is effectively equi-spaced for large areas. Moreover,
shown in @7# and @16#, an exact equi-spaced spectrum m
emerge in loop gravity as well. It would be interesting
extend our analysis to charged and rotating black holes,
scribed by more than one quantum number.
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APPENDIX

We give an example of the calculation of the exact e
tropy for a system ofN non-interacting bosons with a single
particle spectrum given byem5m2, m50,1,2, . . . . Initially,
at T50 ~or E50), the particles all reside in the groun
state, wherem50. Denote byNex the number of particles in
the excited states. An excitation energyE may be shared by
Nex out of N particles such thatE5( i Nie i , Nex5( i Ni .
The multiplicity V(E,N) is the number of ways of doing
this. For example, takeE58 andN58; then there are thre
distinct configurations. First,Nex52 particles can be excite
in which case each takes 2254 quanta and goes to the se
ond level above the ground state. In this case,N252 and
Ni50, iÞ2. Second,Nex55 particles can be excited, fou
of which each takes one quantum to the first level (N154)
above the ground state and the other takes 2254 quanta to
the second level (N251). Finally, all 8 particles can be ex
cited; each takes one excitation quantum to the first le
(N158, andNi50, iÞ1). The energy in all three cases
the same:

E585N1e11N2e21 . . . 50123221 . . . 10,

or 54312113221 . . . 10,

or 583121 . . . 10.

Hence,V(8,8)53. We see that this problem is identical
counting the number of ways that an integerE can be parti-
tioned into a sum of squares. Note that had we taken 5<N
,8 in this example, then there would be only 2 configu
tions instead of 3, since the last case in which each par
takes one quantum is eliminated. In number theory this
known as restricted partitioning as opposed to the un
stricted case considered above. Clearly, as long asN>E, the
number of accessible microstates may be enumerated
N5`. In Table I we enumerate the multiplicity for sever
values ofE, assuming unrestricted partitioning.

A few remarks are in order. First, as mentioned before
long as E<N, the enumeration of the multiplicity is
N-independent. Second, as illustrated above,E is given by a
set of consecutive integers,En5n, even though the single
particle energy spectrum is not equi-spaced. Each ma
body energy levelEn has a degeneracyV(En ,N). This is in
ra
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fact general for any power-law single-particle spectrum a
non-interacting particles. Note that the multiplicityV(E,N)
enumerated in the table is the same as the expansion co
cient of the partition function, i.e.

Z~x!5 )
m51

`
1

@12xm2
#

511x1x21x312x412x5

12x612x713x814x91 . . . , ~A1!

wherex5e2b, and the power ofx corresponds to the many
body energyEn .

TABLE I. Calculation of the multiplicityV(E,N) for N bosons
at an excitation energyE. The single-particle energy spectrum
given byem50,1,4,9, . . . ,m2. For a given integerE, the partitions
of E are tabulated in column 1, and the corresponding numberNex

in column 2. The microstatev(E,Nex ,N), enumerated in column 3
is defined as the number of ways of excitingexactly Nex particles.
The last column gives the multiplicity V(E,N)
5(Nex51

N v(E,Nex ,N). It is to be noted that for a large excitatio
energyE ~not considered in the table!, v(E,Nex ,N) may take on
values larger than unity.

E Nex v(E,Nex ,N) V(E,N)

1512 1 1 1
2512112 2 1 1
3512112112 3 1 1
4522 1 1

512112112112 4 1 2
5512122 2 1

512112112112112 5 1 2
6512112122 3 1

5121 . . . 112 6 1 2
7512112122 3 1

5121 . . . 112 7 1 2
8522122 2 1

512112112112122 5 1
5121 . . . 112 8 1 3
.
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