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ABSTRACT 

We investigated checkpoint adaptation in HT-29 human colorectal 

adenocarcinoma cells treated with cisplatin. Cells that undergo checkpoint adaptation 

arrest at and then abrogate the G2/M checkpoint to enter mitosis with damaged DNA. We 

identified that cytotoxic amounts of cisplatin induce either checkpoint adaptation or 

apoptosis in a concentration dependent manner. We also found that some cisplatin treated 

cells can survive checkpoint adaptation. These survival cells may contain rearranged 

genomes, because they entered mitosis with damaged DNA. Additionally, cisplatin 

treated cells can die when they are induced to undergo checkpoint adaptation but entry 

into mitosis is inhibited. This might prevent cells surviving treatment with rearranged 

genomes and could improve the efficacy of genotoxic anti-cancer drugs. Finally, we show 

that the process of checkpoint adaptation is not identical in response to treatment with two 

different genotoxic agents; both HT-29 and M059K glioma cells treated with 

camptothecin spend longer in mitosis than cells treated with cisplatin.  
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CHAPTER 1 

General introduction 

1.1 General overview of thesis 

This thesis is about checkpoint adaptation in human cancer cells treated with 

cisplatin. Checkpoint adaptation consists of three steps: 1) arrest at a DNA damage 

checkpoint; 2) abrogation of the DNA damage induced checkpoint and 3) entry into 

mitosis with damaged DNA (Toczyski et al. 1997). Checkpoint adaptation may be a key 

step that lies between cell cycle arrest and cell death in human cancer cells treated with 

genotoxic agents but it has only been shown to occur in response to treatment with 

ionising radiation (Syljuåsen et al. 2006; Rezacova et al. 2011), camptothecin (CPT) and 

etoposide (Kubara et al. 2012). In this thesis we investigate if checkpoint adaptation 

occurs in response to treatment with cisplatin, because it has a different mechanism of 

action than that of known checkpoint adaptation inducing agents. We hypothesise that 

human cancer cells treated with cisplatin undergo checkpoint adaptation. If checkpoint 

adaptation occurs in response to treatment with cisplatin, in addition to the treatments 

previously described, it would support the hypothesis that checkpoint adaptation is a key 

cellular response by cancer cells to treatment with genotoxic agents.  

Cisplatin has been widely-used to treat cancer patients since it was approved for 

use in ovarian and testicular cancers in 1978 (Kelland 2007). Furthermore, cisplatin has 

previously been shown to induce mitotic catastrophe in different cancer cell lines 

(Demarq et al. 1994; Chang et al. 1999; Vakifahmetoglu et al. 2008), and in some cases 

these cells may have been undergoing checkpoint adaptation. It is necessary to introduce 
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the cell cycle, cisplatin, the DNA damage response, genomic instability in cancer cells 

and cancer cell death pathways, to understand checkpoint adaptation and its role in cancer 

cell death. 

1.2 Cancer and its hallmarks 

The World Health Organisation has estimated that in 2012 there were 14 million 

new cases of cancer and 8.2 million cancer related deaths worldwide (Stewart and Wild 

2014). Many anti-cancer treatments exist yet cancer remains a leading cause of death 

around the world. It is therefore necessary to both improve the efficacy of current anti-

cancer treatments and develop new anti-cancer therapies. In this thesis we investigate the 

process of checkpoint adaptation in cancer cells treated with cisplatin, to investigate if 

this process could be targeted to improve the efficacy of current genotoxic anti-cancer 

drugs. 

Cancer is a complex disease that was characterised by six hallmarks in 2000 

(Hanahan and Weinberg 2000). These hallmarks are sustained proliferative signalling, 

resisting cell death, evading growth suppressors, activating invasion and metastasis, 

enabling replicative immortality and inducing angiogenesis. Following a decade of 

research, these hallmarks were revisited in 2011 and two emerging hallmarks were 

identified. These were deregulating cellular energetics and avoiding immune destruction 

(Hanahan and Weinberg 2011). Underlying these hallmarks of cancer are genomic 

instability and tumour promoting inflammation (Hanahan and Weinberg 2011). Genomic 

instability occurs in individual cells and chromosomal instability (CIN), the rate at which 

chromosome number changes over time due to errors in mitosis, is common in cancer 
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cells (Negrini et al. 2010). Most cancer cells are therefore aneuploid (have a change in 

chromosome number) (Thompson and Compton 2011). 

Of the hallmarks of cancer, sustained proliferative signalling and resisting cell 

death are the most relevant to this thesis. Sustained proliferation can occur when the 

signals that control the production and release of growth-factors and/or the control of cell 

division are lost. For example, it is estimated that the majority of cancers have mutations 

in at least one of the genes that encode the tumour suppressors retinoblastoma (Rb), p21 

or p53 (Manning et al. 2013; Rausch et al. 2012). These proteins regulate progression 

through the cell cycle, described in section 1.4. Mutations to the tumour suppressor genes 

encoding p53, pRb and p21 allow cells to divide even when conditions for division are 

not optimal. TP53 is one of the most commonly mutated genes found in cancers. The 

Cancer Genome Atlas (TCGA) analysed 3,281 tumours from 12 cancer types (breast 

adenocarcinoma, lung adenocarcinoma, lung squamous cell carcinoma, uterine corpus 

endometrial carcinoma, glioblastoma multiforme, head and neck squamous cell 

carcinoma, colorectal carcinoma, bladder urothelial carcinoma, kidney renal clear cell 

carcinoma, ovarian serous carcinoma and acute myeloid leukaemia) for point mutations 

and small insertions/deletions and found that TP53 was the most frequently mutated gene, 

mutated in 42% of samples (Kandoth et al. 2013).  

The loss of p53 function also has a role in resisting cell death, because p53 can 

induce cell death by apoptosis in response to extensive DNA damage (Zhivotovsky and 

Kroemer 2004). By resisting cell death cancer cells can continue to survive and 

potentially divide in conditions that would kill or arrest the growth of normal cells, such 

as when they have damaged DNA. Because cancer cells can lose the ability to regulate 
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the cell cycle and to induce apoptosis, this has implications for cancer treatments. Many 

cancer treatments aim to inhibit cell division and induce cell death by causing irreparable 

amounts of DNA damage. However, because cancer cells are capable of dividing in sub-

optimal conditions and are more resistant to cell death, some cells can survive treatment. 

This can lead to either tumour progression or cancer relapse. 

1.3 The cell cycle 

Cell division is a fundamental process in biology. To divide, a eukaryotic cell 

must pass through four phases of the cell cycle: G1 (Gap 1), when cells grow and prepare 

for DNA synthesis; S (DNA synthesis), when cells replicate their DNA, G2 (Gap 2), 

when cells continue to grow and prepare for mitosis and M, (mitosis) when cells separate 

copies of their DNA as chromosomes. This is followed by cytokinesis, when cells divide 

the cytoplasm to complete the process of cell division. G1, S and G2 collectively make up 

interphase, whereas mitosis and cytokinesis make up M phase. Cells in G1 phase can also 

enter a resting state called G0 when they do not grow or divide (Vermeulen et al. 2003). 

To maintain the integrity of the genome during the cell cycle several events must occur: 

DNA replication must be accurate; chromosomes must be distributed correctly during 

mitosis and cytokinesis; and damaged DNA must be detected and repaired (Jackson and 

Bartek 2009). 

Mitosis is further divided into five processes: prophase, prometaphase, metaphase, 

anaphase and telophase. In prophase the chromatin begins to condense into visible 

chromosomes and the mitotic spindle (composed of microtubules extending from two 

centrosomes) begins to form. During prometaphase the nuclear envelope dissolves and 

the kinetochores present on sister chromatids are attached to the microtubules of the 
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mitotic spindle. In metaphase the centrosomes reach the opposite poles of the cell and the 

chromosomes are lined up along the metaphase plate. In anaphase the chromosomes are 

separated to opposite ends of the cell and the cell lengthens. Anaphase is followed by 

telophase and cytokinesis. In telophase new nuclear envelopes are formed, producing two 

daughter nuclei, and the chromosomes decondense.  

During mitosis almost every organelle and structure in a cell is altered (Morgan 

2007) and cells that are in mitosis adopt a rounded morphology, known as mitotic cell 

rounding (Cadart et al. 2014). Mitotic cell rounding is evolutionarily conserved and is 

nearly universal in metazoan and eukaryotic cells that lack a cell wall. Mitotic cell 

rounding is required for chromosome capture, spindle formation and spindle stability and 

therefore has an important role in cell division (Cadart et al. 2014). To exhibit mitotic 

rounding, cells must disassemble focal adhesion complexes to decrease adhesion to their 

substrate and reorganise the actin cytoskeleton (Heng and Koh 2010; Cadart et al. 2014).  

The rounded morphology of mitotic cells can be used to visually distinguish 

mitotic cells from interphase cells. It can also be utilised to separate and collect mitotic 

cell populations from interphase cell populations during tissue culture by mechanical 

shake-off (Terasima and Tolmach 1963; Kubara et al. 2012). A second feature of mitotic 

cells is that they contain histone H3 phosphorylated on serine 10 (Hendzel et al. 1997). 

Phosphorylation of histone H3 at serine 10 is correlated to mitotic chromosome 

condensation (Hendzel et al. 1997). Dephosphorylation of histone H3 at serine 10 is 

initiated in anaphase and is completed before chromosomes decondense (Hendzel et al. 

1997). This means that serine 10 phosphorylated histone H3 can be used to detect cells in 

mitosis. 
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1.4 Cell cycle regulation 

The cell cycle is highly regulated to prevent cells from transmitting damaged 

DNA to daughter cells. Cyclin-dependent kinases (Cdks) are the main regulators of the 

cell cycle and are highly conserved catalytic subunits of a family of serine/threonine 

kinases (Malumbres and Barbacid 2005). To be active, these subunits must be bound to 

proteins called cyclins. Cdk-cyclin complexes are responsible for phosphorylating a 

multitude of substrates, tightly regulating progression through the cell cycle. In 

mammalian cells, progression through G1 phase of the cell cycle is regulated by Cdk4, 

Cdk6 and Cdk2 (de Cárcer et al. 2007).  

Cdk4/cyclin D and Cdk6/cyclin D begin to phosphorylate and inactivate members 

of the Rb protein family (Malumbres 2014). The Rb proteins prevent the transcription of 

genes that encode proteins necessary for entry into S phase (Giacinti and Giordano 2006). 

Inhibition of the Rb proteins by phosphorylation allows cyclin E to be synthesised and 

cyclin E then binds to Cdk2 (de Cárcer et al. 2007). Active Cdk2-cyclin E further 

phosphorylates Rb and other transcription factors, promoting the transcription of genes 

whose products are needed for entry into S phase (Malumbres and Barbacid 2005). Cdk2-

cyclin E also phosphorylates components of the pre-replication complex at origins of 

replication, inducing origin activation (Woo and Poon 2003). It is proposed that when 

Cdk2 is disassociated from cyclin E it interacts with newly synthesised cyclin A, 

phosphorylating the proteins needed to complete and exit from S phase of the cell cycle 

(Malumbres and Barbacid 2005).  

Cyclin B is synthesised during S and G2 phases of the cell cycle, increasing the 

level of cyclin B in the cytoplasm (Deibler and Kirschner 2010). Cyclin B binds to Cdk1, 
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creating a Cdk1-cyclin B dimer, and the activity of this complex controls the transition 

between G2 phase and mitosis. Once Cdk1 is bound to cyclin B, Cdk1 is phosphorylated 

on threonine 161 by cyclin-dependent kinase activating kinase (CAK). This 

phosphorylation stabilises the Cdk1-cyclin B complex and induces conformational 

changes necessary for kinase activity (Larochelle et al. 2007; Deibler and Kirschner 

2010). However, despite being bound to cyclin B, Cdk1-cyclin B is held inactive by 

phosphorylation on threonine 14 and tyrosine 15. Threonine 14 is phosphorylated by 

Myt1 kinase and tyrosine 15 is phosphorylated by Wee1 kinase (Haese et al. 1995). These 

phosphate groups prevent Cdk1 from binding to and hydrolysing adenosine triphosphate 

(ATP) (Deibler and Kirschner 2010), preventing the transfer of a phosphate group from 

ATP onto a Cdk1 substrate. The phosphate groups on threonine 14 and tyrosine 15 are 

removed by Cdc25 phosphatases, promoting entry into mitosis (Millar and Russell 1992). 

Once active Cdk1-cyclin B phosphorylates the Cdk1 inhibitor Wee1 and the Cdk1 

activating Cdc25 phosphatases through two different feedback loops (Morgan 2007). 

Interestingly, overexpression of only cyclin B and Cdc25 phosphatase is necessary to 

cause cells in G2 phase to prematurely enter mitosis (Karlsson et al. 1999).  

Once activated, the Cdk1-cyclin B complex phosphorylates over 70 proteins in 

mammalian cells (Malumbres and Barbacid 2005). Furthermore, a proteomic screen of 

the budding yeast Saccharomyces cerevisiae identified 360 proteins phosphorylated by 

Cdk1-cyclin B. Of these proteins, 181 were designated interesting because they were less 

abundant proteins that were highly phosphorylated (Ubersax et al. 2003). Cdk1 substrates 

include multiple enzymes and structural components that initiate the events of early 

mitosis (Morgan 2007). These substrates include; condensins, which condense 
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chromosomes (Abe et al. 2011); nuclear lamins, which are necessary for the structure and 

function of the nuclear envelope (Margalit et al. 2005) and tubulin and microtubule 

binding proteins, which promote the formation of the mitotic spindle (Fourest-Lieuvin et 

al. 2006). One specific Cdk1 substrate is protein phosphatase 1 (PP1Cα) which is 

inhibited by phosphorylation on threonine 320 by active Cdk1-cyclin B (Kwon 1997). It 

is suggested that inactivation of PP1Cα is necessary to maintain the Cdk1-cyclin B 

mediated phosphorylation of mitotic substrates because PP1Cα dephosphorylation is 

necessary for mitotic exit and occurs during anaphase, as Cdk1-cyclin B activity 

decreases (Kwon 1997). The decrease in Cdk1-cyclin B activity is mediated by the 

anaphase promoting complex/cyclosome (APC/C) degradation of cyclin B at the 

metaphase-anaphase transition. The APC/C is activated by Cdk1-cyclin B in a negative 

feedback loop (Domingo-Sananes et al. 2011). APC/C is an ubiquitin ligase that labels 

cyclin B for degradation by the proteasome (Sudakin et al. 1995; Domingo-Sananes et al. 

2011). The degradation of cyclin B deactivates Cdk1 and APC/C activity is also inhibited 

(Morgan 2007). 

In 2010, Deibler and Kirschner used a human cell free system to study Cdk1 

activation in mammalian somatic cells by increasing the concentration of recombinant 

cyclin B (Deibler and Kirschner 2010). They found that the activation of Cdk1 was a 

three stage process where Cdk1-cyclin B substrates were phosphorylated in a sequence 

that was related to changes in cyclin B levels. In stage one, at low concentrations of 

cyclin B (approximately 100 nM), Cdk1 activity increased proportionally to the amount 

of cyclin B added. In stage two Cdk1 activity plateaued, with both active and inactive 

complexes present in the system, despite increasing the concentration of cyclin B to 



9 
 

approximately 400 nM. In stage three, when cyclin B concentration was above 400 nM, 

Cdk1 was rapidly activated and the increase in Cdk1 activity exceeded the increase in 

cyclin B concentration. The authors found that tyrosine 15 phosphorylation increased 

until this third stage, at which point the Cdc25 phosphatase feedback loop was activated 

(Deibler and Kirschner 2010).  

The oscillating nature of cyclin B levels can be used to detect cells that are 

capable of entering mitosis. This is because cyclin B is synthesised through S and G2 

phases of the cell cycle and then degraded at the metaphase-anaphase transition of mitosis 

(Pines and Hunter 1989). Cdk1 phosphorylation is also a good measure of whether cells 

have active Cdk1 or not; if cells have high levels of tyrosine 15 phosphorylated Cdk1 

then they do not contain enough active Cdk1 to be in mitosis (Deibler and Kirschner 

2010; Kubara et al. 2012). Additionally, to detect Cdk1 activity, a specific Cdk1 activity 

assay can be performed. In 2013, Lewis et al. published a protocol to detect Cdk1 activity 

by using western blotting to quantify the amount of phosphorylation of threonine 320 on 

an artificial Cdk1 substrate consisting of GST and amino acids 316-324 from the PP1-

alpha catalytic subunit (PP1Cα) (Lewis et al. 2013).  

1.5 Cdk1 inhibitors 

 Cell cycle Cdks are the potential targets of chemical inhibitors to prevent 

sustained proliferation, a hallmark of some cancer cells (Hanahan and Weinberg 2011). In 

2013, 13 Cdk1 inhibitors were in clinical trials (Bruyère and Meijer 2013). Typically 

Cdk1 inhibitors are small ATP-competitive molecules (Johnson and Shapiro 2010). 

Roscovitine is a Cdk inhibitor that is currently undergoing phase II clinical trials for 

nasopharyngeal cancer and non-small cell lung cancer (Sallam et al. 2013). CR8 is a 
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second generation analogue of roscovitine that is at least 50-fold more potent (Bettayeb et 

al. 2008; Bettayeb et al. 2010). CR8 and roscovitine are both low molecular weight 2,6,9-

trisubstituted purines that bind to the ATP binding site of Cdks (Bettayeb et al. 2008). 

Treating SH-SY5Y human neuroblastoma (Bettayeb et al. 2008) and HT-29 human 

colorectal adenocarcinoma cells (Kubara et al. 2012) with CR8 prevents them from 

entering into mitosis. CR8 can therefore be used as a Cdk1 inhibitor in the laboratory, to 

chemically inhibit entry into mitosis. 

1.6 Cell cycle checkpoints 

 Cell cycle checkpoints enable a cell to ensure that important processes, such as 

DNA replication, are complete (Hartwell and Weinert 1989; Kastan and Bartek 2004). 

Cell cycle checkpoints prevent the transmission of genetic errors to daughter cells. Three 

major cell cycle checkpoints exist; the G1/S checkpoint, the G2/M checkpoint and the 

spindle assembly checkpoint (SAC). The SAC ensures that chromosome segregation 

occurs correctly (Holland and Cleveland 2009) and is activated at the metaphase to 

anaphase transition in mitosis, in response to microtubule defects (Schwartz and Shah 

2005) or erroneous kinetochore attachment (Nicklas 1997). Cells also arrest at the SAC 

when they enter mitosis with damaged DNA (Nitta et al. 2004). Inactivation of the SAC 

can lead to chromosome mis-segregation and aneuploidy (a change in the number of 

chromosomes present in a cell) (Holland and Cleveland 2009).  

The G1/S and G2/M checkpoints are initiated in response to DNA damage, to 

prevent the transmission of damaged or incomplete chromosomes to daughter cells. The 

DNA damage checkpoints provide cells with time to repair damaged DNA. If the DNA 

damage is irreparable cells may initiate senescence (growth arrest) or cell death. The 
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G1/S checkpoint prevents cells from replicating damaged DNA, whereas the G2/M 

checkpoint prevents cells from dividing with damaged DNA (Kastan and Bartek 2004).  

1.7 Genotoxic agents as anti-cancer treatments 

 Genotoxic agents are a mainstay of cancer therapy (Woods and Turchi 2013) that 

cause high levels of DNA damage. This DNA damage induces cells to arrest at cell cycle 

checkpoints leading to cell cycle arrest and/or cell death (Helleday et al. 2008). There are 

many different genotoxic anti-cancer drugs that are grouped into different categories 

based on their mechanism of action. A summary of these agents is provided in Table 1.1. 

 The first DNA damaging drugs used to treat cancer were the nitrogen mustards 

and nitrosoureas (Hurley 2002; Woods and Turchi 2013). These alkylating agents were 

developed after studying soldiers exposed to mustard gas in World Wars I and II (Hurley 

2002; Chabner and Roberts 2005). Since the discovery of nitrogen and sulphur mustards, 

a large number of genotoxic agents have been developed and approved for clinical use. 

The majority of these are chemical agents, except for ionising radiation, which is a 

physical agent. 

 It is estimated that approximately 50% of all cancer patients receive treatment 

with ionising radiation, either alone or in combination with chemical anti-cancer drugs 

(Baskar et al. 2012). Ionising radiation directly damages the DNA backbone, inducing 

strand breaks (Jackson and Bartek 2009). It also produces reactive oxygen species (ROS), 

which can form covalent bonds with DNA and induce a variety of DNA modifications 

(Jackson and Bartek 2009). Interestingly, ionising radiation is proposed to induce cell 



12 
 

death following entry into mitosis in most solid tumours (Dewey et al. 1995; Jonathan et 

al. 1999; Hall and Giaccia 2012). 

Camptothecin (CPT) (Figure 1.1A) is a topoisomerase I (Top1) inhibitor which in 

this thesis is used as a positive control treatment for the cellular response of checkpoint 

adaptation (described in section 1.9.2). The water soluble derivatives of CPT, topotecan 

(TPT) and irinotecan, are widely used to treat colorectal, lung and ovarian cancers. It is 

relevant to this thesis that the pharmacology of CPT in humans is well understood and a 

peak plasma concentration of 75 nM has been reported (Raymond et al. 2002; Swift and 

Golsteyn 2014). Topoisomerase enzymes are essential for DNA replication because they 

relax DNA supercoiling by introducing transient nicks along the phosphodiester backbone 

of DNA (Pommier 2006). To relieve torsional stress, type 1 topoisomerases nick one 

strand of DNA, passing the uncleaved strand through this nick. By contrast, type 2 

topoisomerases break both strands of DNA (Cheung-Ong et al. 2013). Once the DNA has 

been relaxed the DNA nicks are re-ligated (Froelich-Ammon and Osheroff 1995). 

Topoisomerases form enzyme-DNA cleavage complexes by covalently attaching to DNA. 

Topoisomerase inhibitors induce DNA damage by binding to the topoisomerase-DNA 

complexes, preventing the DNA nicks from being re-ligated (Froelich-Ammon and 

Osheroff 1995; Pommier 2006). This leads to the formation of DNA strand breaks.  

Double strand breaks (DSBs) are directly induced by topoisomerase II (Top 2) 

inhibitors such as etoposide (Figure 1.1B), whereas Top1 inhibitors first induce single 

strand breaks (SSBs) that are then converted into DSBs when they are met by a 

replication fork (Hsiang et al. 1989; Froelich-Ammon and Osheroff 1995). When DNA is 

damaged by Top1 inhibitors, the Top1 complex covalently bound to the DNA must first 
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be removed, before DNA damage repair can begin. This is achieved by tyrosyl-DNA-

phosphodiesterase (Tdp1) which hydrolyses the covalent bond between the Top1 complex 

and the DNA, generating a 3′-phosphate end (Pommier et al. 2006).  

 The DNA strand breaks induced by CPT and other genotoxic agents such as 

ionising radiation often require further processing before they can be repaired, because 

they have 5′-hydroxyl and 3′-phosphate ends (Meijer et al. 2002). To re-ligate DNA, the 

breaks must have 5′-phosphate and 3′-hydroxyl ends. This processing can occur by 

human polynucleotide kinase (hPNK) which has 5′-kinase and 3′-phosphatase activities 

and is required for non-homologous end joining (NHEJ) (Karimi-Busheri et al. 2007). 

The DNA strand breaks induced by topoisomerase inhibitors can be repaired by 

either NHEJ or homologous recombination (HR). NHEJ is used to repair DSBs when a 

homologous DNA template is unavailable for HR. As such, NHEJ occurs in G1 and 

early-S phases and involves re-ligating the broken DNA. HR occurs when a homologous 

DNA template is available, such as in late S and G2. HR involves ssDNA from the site of 

damaged DNA invading its sister chromatid at a homologous region, forming 

heteroduplex DNA and Holliday junctions (Helleday et al. 2007). Holliday junctions are 

four-way DNA intermediates that are formed between the invading and displaced DNA 

strands. The invading strand is then used as a primer for extension by a DNA polymerase 

and the DNA nicks are repaired by ligation (Shrivastav et al. 2008). To complete HR, the 

Holliday junctions are cleaved by resolvases and this can lead to chromosome crossovers 

(Li and Heyer 2008).  Because the DNA strand breaks induced by topoisomerase 

inhibitors are induced primarily during DNA replication by replication fork stalling and 
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collapse, HR is heavily involved in the repair of these breaks (Nitiss and Wang 1988; van 

Waardenburg et al. 2004). 

 A third type of DNA damage is induced by cis-diamminedichloroplatinum(II) 

(cisplatin) (Figure 1.1C). Cisplatin is a platinum based inorganic molecule (Rosenberg et 

al. 1969) that induces a variety of DNA adducts and crosslinks. Peak plasma 

concentrations of total platinum range from 12-40 µM (Vermorken et al. 1984; Oldfield 

et al. 1985; Charlier et al. 2004) and cisplatin is widely used to treat different cancers 

including ovarian, testicular, cervical, head and neck, oesophageal and non-small cell 

lung cancer (Jamieson and Lippard 1999). In this thesis we investigate checkpoint 

adaptation in human cancer cells treated with cisplatin. It is therefore necessary to 

introduce the history of cisplatin as an anti-cancer drug and its mechanism of action. 

1.7.1 The history of cisplatin 

 Cisplatin was first synthesised by the Italian chemist Michele Peyrone in 1844 and 

was originally named Peyrone’s chloride [PtCl2(NH3)2] (Kauffman et al. 2010). In 1893 

the Swiss chemist Alfred Werner published his work with cisplatin, distinguishing 

between the trans and cis isomer and proposing its square planar configuration (Alderden 

et al. 2006; Kauffman et al. 2010). This contributed to Werner winning the Nobel Prize 

for Chemistry in 1913 (Werner 1913). The anti-cancer properties of cisplatin were 

discovered in the 1960s by the American biophysicist Barnett Rosenberg (Alderden et al. 

2006) and since then cisplatin has had a major impact on improving survival rates for 

patients with testicular and ovarian cancers (Kelland 2007).  
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Barnett Rosenberg was originally interested in studying the effects of 

electromagnetic radiation on cell division in bacterial and mammalian cells (Kelland 

2007). Rosenberg used platinum electrodes (considered to be inert) to apply an electric 

current to Escherichia coli cells growing in an ammonium chloride buffer (Rosenberg et 

al. 1965; Kelland 2007). Strikingly, when the current was turned on, Rosenberg observed 

that bacterial cell division was inhibited and the cells instead grew as long filaments up to 

300 times their normal length. After further testing, this effect was shown to be caused by 

the electrolysis products from the platinum electrodes (Rosenberg et al. 1965). 

In 1968, cisplatin was administered to mice transplanted with a standard sarcoma 

180 tumour and it inhibited tumour growth, with some mice showing complete tumour 

regression and living tumour free for a further 6 months (Rosenberg et al. 1969). 

Subsequently, Rosenberg left samples of cisplatin for testing at the US National Cancer 

Institute (NCI) where the compounds were screened using mice with L1210 leukaemia. 

These samples demonstrated potent anti-tumour activity (Rosenberg et al. 1969; 

Wiltshaw 1979) and in 1970 Rosenberg and VanCamp published that cisplatin was active 

in regressing large solid sarcoma 180 tumours in mice (Rosenberg and VanCamp 1970).  

Cisplatin was then studied by Sir Alex Haddow at the Chester Beatty Institute in 

London, United Kingdom (Wiltshaw 1979; Kelland 2007) before being used for clinical 

trials by the NCI in 1971 (Kelland 2007). Initially cisplatin was tested in Phase I trials on 

cancer patients for whom no other treatments were available (Wiltshaw 1979). 

Surprisingly some patients showed tumour regression after these trials, especially those 

with either testicular or ovarian cancers (Wiltshaw 1979). However, renal toxicity was a 

serious limiting factor in progressing with cisplatin as an anti-cancer drug, until it was 
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found that this toxicity could be reduced by intravenous hydration both before and after 

the administration of cisplatin (Wiltshaw 1979). Phase II trials of cisplatin began in 1975, 

before large scale Phase III trials led to the US Food and Drug Authority approval of 

cisplatin as an anti-cancer drug for testicular and ovarian cancers in 1978 (Kelland 2007). 

Cisplatin is now a top-selling anti-cancer drug that has revolutionised the 

treatment of some types of cancers. Specifically, cisplatin and combination treatments 

with cisplatin have increased the cure rate for testicular cancer to 90%, when tumours are 

diagnosed early (Bosl and Motzer 1997; Jamieson and Lippard 1999). Despite this, the 

efficacy of treatment with cisplatin is limited by intrinsic and acquired resistance. 

Intrinsic resistance is present before treatment begins whereas acquired resistance 

develops as treatment progresses (Giaccone and Pinedo 1996). Resistance to cisplatin is 

complex and multifactorial (Mayer et al. 2003). Common mechanisms of resistance 

include decreased drug accumulation in the cell, increased levels of thiol containing 

species in the cytoplasm which bind to and inactivate cisplatin, increased repair of DNA 

damage and resistance to cell death pathways (Woźniak and Blasiak 2002; Kelland 2007). 

These pathways of resistance are associated with molecular changes in the cell that are 

induced by genetic and epigenetic changes (Shen et al. 2012). By identifying how cancer 

cells acquire resistance to cisplatin, it might be possible to prevent this, improving the 

efficacy of this widely used genotoxic agent. 

Cell lines and tumour samples that are resistant to cisplatin exhibit chromosomal 

abnormalities that distinguish them from cisplatin sensitive cell lines and tumour samples. 

The difference between cisplatin sensitive and cisplatin resistant cell lines and tumour 

samples has been studied using comparative genomic hybridisation (CGH). This 
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technique allows the detection of a change in chromosomal copy number (Weiss et al. 

1999). DNA extracted from a tumour or cancer cell line of interest is labelled with a 

specific fluorochrome (typically green) and mixed with DNA from wild type or normal 

cell DNA that is labelled with a fluorochrome of a different colour (typically red). These 

fluorescently labelled samples of DNA are hybridised to metaphase preparations or 

probes from normal cells and compete for hybridisation to the metaphase preparations. 

The ratio of green to red is then assessed to determine loss or gain of genetic material 

(Weiss et al. 1999). In 1997, Wasenius et al. compared six ovarian carcinoma cell lines 

selected for resistance to cisplatin to two cisplatin sensitive parental cell lines (2008 and 

A2780) using CGH (Wasenius et al. 1997). They found that acquired resistance in the 

2008 cells was associated with many chromosomal gains and losses by comparison to the 

parental cell line and the average number of chromosome aberrations per resistant cell 

was 15. By contrast, acquired resistance in the A2780 cell line was only associated with 5 

chromosomal aberrations and all of these were losses (Wasenius et al. 1997). These data 

suggest that acquired resistance to cisplatin is not associated with specific genetic 

changes. This has also been demonstrated in testicular germ-cell tumour (TGCT) cell 

lines using CGH. Three cisplatin resistant TGCT cell lines (resistant GCT27, 833K and 

Susa) were found to contain more gains and losses of chromosomal regions by 

comparison to the parental cell lines (Wilson et al. 2005). However, these losses and 

gains were different in each of the three resistant cell lines.  

The efficacy of cisplatin is also limited by clinical parameters, which include 

severe undesired effects such as nausea and vomiting, renal toxicity and hearing loss 

(Kelland 2007; Zamble and Lippard 1995). These effects limit the dose a patient can 
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receive, which limits the effects of platinum drugs on cancer cells (Wheate et al. 2010). 

To overcome some of the resistance and side effects associated with cisplatin, thousands 

of cisplatin analogues have been investigated (Kelland 2007). However, only 23 

platinum-based drugs entered into clinical trials and only two, carboplatin and oxaliplatin 

(Figure 1.1D and E), are globally approved (Wheate et al. 2010). Carboplatin has fewer 

side effects by comparison to treatment with cisplatin, but tumours are similarly resistant 

to both carboplatin and cisplatin (Jamieson and Lippard 1999). Oxaliplatin is capable of 

overcoming the resistance associated with cisplatin, but it is still associated with severe 

side effects (Wheate et al. 2010). To improve the efficacy of cisplatin, research is now 

focused on investigating how cisplatin induces cell death (Choi et al. 2015), exploring 

how tumours become resistant to cisplatin (Galluzzi et al. 2012; Piskareva et al. 2015) 

and developing new ways to deliver platinum drugs to target cells (Zhou et al. 2014). In 

this thesis we investigate how cisplatin induces cell death. 

1.7.2 The mechanism of action of cisplatin 

Cisplatin is thought to enter cells by both passive diffusion (Gately and Howell 

1993) and by the plasma membrane transporter, copper transporter-1 (Ishida et al. 2002). 

Once inside the cell one or both chlorine atoms are displaced by water because the cell 

contains a lower concentration of chlorine (4-20 mM) by comparison to the blood stream 

(100 mM) (Wheate et al. 2010). The water groups attached to cisplatin are then displaced 

by the N7 of purine bases, most commonly guanine (Baik et al. 2003). It is widely 

accepted that the cytotoxic effect of cisplatin is due to its interaction with nuclear DNA 

(Zamble and Lippard 1995; Jamieson and Lippard 1999). However, the precise 

mechanisms by which cisplatin induces cell death remain to be elucidated and cisplatin 
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also reacts with many cellular components including mitochondrial DNA, ribonucleic 

acid (RNA) and proteins (Jamieson and Lippard 1999). It has therefore been suggested 

that these interactions may also have a role in cell death when cancer cells are treated 

with cisplatin. For example, cisplatin can bind to phospholipids and phosphatidylserine in 

cellular membranes and also to intracellular proteins (Fuertes et al. 2003). In 2013, 

Karasawa et al. used agarose-cisplatin conjugates in protein pull down assays and then 

identified proteins that bound to cisplatin using mass-spectrometry (Karasawa et al. 

2013). The authors found that cisplatin bound to a range of proteins including myosin IIA 

which regulates cell motility; glucose-regulated protein 94, a protein that is highly 

abundant in the endoplasmic reticulum; heat shock protein 90 a molecular chaperone 

found in the cytoplasm and ribosomal protein L5, a component of the large 60S ribosomal 

subunit (Karasawa et al. 2013). Furthermore, cisplatin can induce cell death by binding to 

mitochondrial DNA in head and neck squamous cell carcinoma cell lines (Yang et al. 

2006) and cisplatin analogues designed to localise to mitochondria can induce cell death 

without damaging nuclear DNA (Wisnovsky et al. 2013). 

When cisplatin reacts with DNA it forms monofunctional adducts as well as intra- 

and inter- strand crosslinks (Eastman 1987). These DNA adducts and crosslinks distort 

the structure of the DNA double helix. The most common types of DNA adducts in the 

nucleus are 1,2-intrastrand crosslinks between adjacent bases (Jamieson and Lippard 

1999) with guanine-guanine1,2-intrastrand crosslinks accounting for 47-50% of DNA 

adducts formed by cisplatin (Fichtinger-Schepman et al. 1985). These intra-strand 

crosslinks are largely repaired by nucleotide excision repair (NER) in the nucleus and 

cancer cells that are defective in NER can be more sensitive to treatment with cisplatin 
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(Köberle et al. 1999). Conversely, the overexpression of NER proteins has been 

correlated with resistance to cisplatin (Dabholkar et al. 1994; Mendoza et al. 2013).  

The DNA adducts formed by cisplatin are well characterised and the distortion of 

nuclear DNA induced by these adducts can block DNA and RNA polymerases, stalling 

DNA replication and transcription (Villani et al. 2006). Cisplatin is not considered to be 

cell cycle specific (Huang et al. 2004). However, it has been reported that cells treated 

with cisplatin do not signal damaged DNA until they pass through S phase of the cell 

cycle (Olive and Banàth 2009). Cisplatin is also more cytotoxic to dividing cells than it is 

to resting cells (Eastman 2006), suggesting that stalled replication forks have a role in the 

cytotoxicity of cisplatin.  

1.7.3 Cisplatin induced cell death 

How cisplatin damages DNA has been well studied. By contrast, the 

mechanism(s) by which the DNA adducts induced by cisplatin lead to cytotoxicity are 

poorly understood. Cisplatin has been shown to induce mitotic cell death in several 

different studies (Demarq et al. 1994; Chang et al. 1999; Vakifahmetoglu et al. 2008). 

However, these studies did not identify the pathway that cells used to enter mitosis 

following treatment. It is therefore possible that cells in these studies underwent 

checkpoint adaptation before dying.  

Cells that are treated with cisplatin can arrest at the G2/M checkpoint before dying 

(Sorenson and Eastman 1988a; Sorenson and Eastman 1988b; Demarcq et al. 1994). 

Arrest at the G2/M checkpoint, followed by abrogation of this arrest, is the second step of 

checkpoint adaptation. In 1988, Sorenson and Eastman found that L1210 murine 
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leukaemia cells treated with cisplatin underwent a slowed S phase before arresting in G2 

phase (Sorenson and Eastman 1988a). The authors followed this study by reporting that 

the Chinese hamster ovarian (CHO) cell lines AA8, UV20 and UV41 also arrested in G2 

phase after treatment with cisplatin (Sorenson and Eastman 1988b). In both of these 

studies, the authors found that G2 arrest was transient when cells were treated with lower 

concentrations of cisplatin and permanent when cells were treated with higher 

concentrations of cisplatin (Sorenson and Eastman 1988a; Sorenson and Eastman 1988b). 

The authors therefore proposed that the cells treated with lower concentrations of 

cisplatin were able to repair their damaged DNA, prior to entering mitosis (Sorenson and 

Eastman 1988b). However, it is possible that these cells were actually undergoing 

checkpoint adaptation by entering mitosis with damaged DNA, but checkpoint adaptation 

had not been identified when these studies were undertaken. 

Micronucleation has also been observed following treatment with cisplatin. 

Micronuclei are formed when lagging whole chromosomes or acentric chromosome 

fragments become enclosed in a separate nuclear membrane following an aberrant mitosis 

(Fenech et al. 2011). Micronucleation is therefore associated with entry into mitosis 

following treatment with genotoxic agents and is a marker for mitotic cell death (Chang et 

al. 1999; Vitale et al. 2011).  

Following treatment with 2.2 µM cisplatin for 96 h (a dose that inhibited 85% of 

growth at 96 h), 47% of HT1080 3′SS6 human fibrosarcoma cells were micronucleated 

(Chang et al. 1999). SKOV-3 ovarian carcinoma cells treated with 33 µM cisplatin also 

displayed increased micronucleation following treatment (Vakifahmetoglu et al. 2008). 

Furthermore, treatment with either oxaliplatin or cisplatin induced micronucleation in 
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TE7 oesophageal cancer cells (Ngan et al. 2007). Again, these studies identified that 

cisplatin can induce cell death following entry into mitosis, but did not address how these 

cells entered mitosis or investigate if these cells were undergoing checkpoint adaptation. 

It is important to understand if cells treated with cisplatin undergo checkpoint adaptation 

or not because the final step of the process (entry into mitosis with damaged DNA) may 

contribute to genomic instability in cancer cells treated with cisplatin. 

Treatment with cisplatin is associated with the induction of chromosomal 

aberrations that occur when treated cells enter mitosis. Bone marrow cells from either 

mice or Wistar rats treated with cisplatin contained an increased number of chromosome 

aberrations by comparison to not treated cells, as determined by microscopic analyses of 

metaphase spreads (Adler and el-Tarras 1989; Edelweiss et al. 1995). The induction of 

chromosomal aberrations was also observed following treatment of CHO cells with 

cisplatin. Krishnaswamy and Dewey (1993) found that 90.5% of CHO cells treated with 

13 µM cisplatin in G1 phase entered mitosis by 28 h, as determined by trapping of mitotic 

cells using colcemid and multinucleation (Krishnaswamy and Dewey 1993). These 

authors found that as the average number of chromosome aberrations per cell increased, 

the fraction of cells surviving treatment decreased. They therefore suggest that entry into 

mitosis with chromosome aberrations in the form of chromosome/chromatid breaks and 

chromosome/chromatid exchanges is correlated with cisplatin induced cell death, but did 

not study if any cells could survive mitosis with chromosome aberrations. It is necessary 

to understand if cells survive mitosis with chromosome aberrations because it is possible 

that some cells could survive this process with rearranged genomes (discussed in section 

1.10.2). This could decrease the efficacy of cisplatin by promoting the genetic changes 
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necessary for acquired resistance to treatment. Krishnaswamy and Dewey (1993) also 

suggest that cell death is enhanced when cells treated with cisplatin enter mitosis. This 

may mean that it is necessary for cells treated with cisplatin to enter mitosis to die, 

however this has not been investigated.  

1.8 The DNA damage response and the G2/M checkpoint 

 The DNA damage response (DDR) consists of a network of DNA damage sensor, 

transducer and effector proteins (Zhou and Elledge 2000). These proteins initiate cell 

cycle checkpoints, signal for the repair of damaged DNA and are responsible for cell fate 

depending on whether DNA damage is repaired or not (Bartek and Lukas 2007). The 

DDR is an important response in eukaryotic organisms and the main proteins are 

conserved from yeasts to humans (Rhind and Russell 2000).  

 The DDR is activated by the large serine/threonine kinases, ataxia telangiectasia 

mutated (ATM) and ATM and Rad3-related (ATR) (Figure 1.2). These two kinases act as 

signal transducers and have been reported to phosphorylate as many as 700 different 

proteins on 900 different sites in response to 10 Gray ionising radiation (Matsuoka et al. 

2007). Some of these downstream substrates included proteins involved in cell cycle 

checkpoint activation, DNA replication and DNA damage repair (Matsuoka et al. 2007). 

ATM and ATR are activated by different types of DNA damage, but the pathways that 

they activate are subject to large amounts of cross-talk (Kastan and Bartek 2004). ATM 

responds to DSBs (Kastan and Bartek 2004) while ATR responds to single-stranded DNA 

(ssDNA) that is generated by stalled replication forks or by DSB end-processing (Zhou 

and Elledge 2000).  
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A common substrate for ATM and ATR is the histone variant H2AX (Burma et al. 

2001; Ward and Chen 2001). Histone H2AX is phosphorylated on serine 139 by ATM 

and ATR, becoming histone γH2AX (Rogakou et al. 1998). Histone γH2AX signals that 

DNA damage has occurred and is required for the assembly of DDR and DNA damage 

repair proteins, such as mediator of DNA damage checkpoint 1 (MDC1), at sites of 

damaged DNA. If damaged DNA is repaired then histone γH2AX is dephosphorylated by 

protein phosphatase 1 (PP1) (Nazarov et al. 2003) and protein phosphatase 2 (PP2) 

(Chowdhury et al. 2005). Because histone H2AX is phosphorylated when DNA damage 

occurs and dephosphorylated when DNA damage is repaired, it can be used to detect 

damaged DNA in cells (Rogakou et al. 1998; Furuta et al. 2003). 

 To engage the G1/S checkpoint, Cdk2 must be inhibited and this can occur by two 

different pathways. First, ATM and ATR activate the checkpoint kinases Chk1 and Chk2 

which target the Cdc25A phosphatase for ubiquitination and proteasomal degradation 

(Zhao and Piwnica-Worms 2001; Sørensen et al. 2003). This prevents the 

dephosphorylation of Cdk2 and thus prevents the initiation of DNA replication (Lukas et 

al. 2004). This Chk2 mediated response is reported to induce a transient G1/S arrest that 

only delays entry into S phase by several hours (Mailand et al. 2000; Falck et al. 2001). 

The G1/S arrest is prolonged by the p53-p21 pathway. In cells without damaged DNA, 

p53 is bound by the ubiquitin ligase mouse double minute 2 (Mdm2), ensuring that there 

is a rapid turnover of p53 (Khosravi et al. 1999; Maya et al. 2001). ATM and ATR 

phosphorylate p53 and Mdm2 and this leads to the stabilisation and accumulation of p53 

protein (Lukas et al. 2004). p53 then acts as a transcription factor, increasing the levels of 

the Cdk inhibitor p21 (Zhivotovsky and Kroemer 2004). p53 also has a role in the 
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initiation of apoptosis if damaged DNA cannot be repaired following cell cycle arrest, by 

acting as a transcription factor for genes that encode the pro-apoptotic BAX, BID, NOXA 

and PUMA proteins (Zhivotovsky and Kroemer 2004).  

The G1/S checkpoint is lost when p53 or p21 are either absent or not functional 

(Deng et al. 1995). This checkpoint is often defective in cancer cells, because many of 

them have mutations in the genes that encode either p53, pRb or p21 (Schwartz and Shah 

2005; Rausch et al. 2012; Manning et al. 2013). This means that the only DNA damage 

checkpoint available to these cancer cells is the G2/M checkpoint (Kastan and Bartek 

2004; Bucher and Britten 2008; Chen et al. 2012). 

 Both ATM and ATR are involved in the initiation of the G2/M checkpoint, 

however ATR is the main effector kinase associated with G2/M arrest (Smith et al. 2010). 

When ssDNA is present it is bound by replication protein A (RPA) (Zou and Elledge 

2003a; Flynn and Zou 2011). RPA recruits the ATR-interacting protein (ATRIP) in 

complex with ATR and the Rad9-Rad1-Hus1 (9-1-1) complex to the ssDNA (Delacroix et 

al. 2007). The 9-1-1 complex then recruits DNA topoisomerase binding protein 1 

(TOPBP1), which triggers the ATR-mediated phosphorylation of Chk1 (Delacroix et al. 

2007). The Rad17-replication factor C complex, the 9-1-1 complex and the adaptor 

protein claspin are also required for Chk1 activation (Weiss et al. 2002; Chini and Chen 

2003; Zou and Elledge 2003b). The Rad17-replication factor C complex acts as a clamp 

loader for the 9-1-1 complex (Zou and Elledge 2003a; Flynn and Zou 2011) and claspin 

links ATR and Chk1, allowing for the phosphorylation of Chk1 on serine 317 and serine 

345 (Liu et al. 2000; Zhao and Piwnica-Worms 2001; Kumagai et al. 2006). Of these 
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phosphorylation sites, serine 345 is essential for Chk1 activation while serine 317 plays a 

contributory role (Walker et al. 2009). 

 Once active, Chk1 prevents the activation of Cdk1 by phosphorylating Cdc25A 

and Cdc25C, targeting them for cytoplasmic sequestration by the 14-3-3 proteins (Lopez-

Girona et al. 1999; Graves et al. 2001) or for ubiquitination and degradation by the 

proteasome (Ferguson et al. 2005; Jin et al. 2008). This prevents the removal of inhibitory 

phosphates on threonine 14 and tyrosine 15 of Cdk1, preventing Cdk1 activity. Active 

Chk1 also stabilises the Wee1 kinase, which is responsible for phosphorylating tyrosine 

15 of Cdk1 (Lee et al. 2001). 

It has been reported that Chk1, but not Chk2, is essential for the activation of the 

G2/M checkpoint. In 2000, Liu et al. generated an inducible Chk1 deficient line of 

murine embryonic stem cells (Liu et al. 2000). They found that when this cell line was 

irradiated and Chk1 depleted, these cells abrogated the G2/M checkpoint (Liu et al. 

2000). It has also been demonstrated that H1299 human lung carcinoma cells treated with 

doxorubicin (a topoisomerase II inhibitor) and transfected with Chk1 small interfering 

RNA (siRNA) abrogated the G2/M checkpoint (Chen et al. 2003). Furthermore, when 

p53
-/-

 HCT116 human colon carcinoma cells were treated with the genotoxic agent 

lidamycin, cells transfected with Chk1 siRNA abrogated the G2/M checkpoint (Pan et al. 

2009). By contrast, cells transfected with Chk2 siRNA remained arrested at the G2/M 

checkpoint (Pan et al. 2009). Chk1 phosphorylation on serine 345 is a good measure of 

whether cells are arrested at the G2/M checkpoint or not. The detection of Chk1 

phosphorylated on serine 345 can therefore be used to determine whether cells have 

activated and then abrogated the G2/M checkpoint, the second step of checkpoint 
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adaptation. Phosphorylation of Chk1 at serine 345 is present in interphase cells but lost in 

mitotic cells following the second step of checkpoint adaptation (Kubara et al. 2012). Cell 

cycle arrest in G2/M phases can also be detected using flow cytometry to quantify the 

DNA content of cells. 

1.8.1 Histone γH2AX as an experimental marker for damaged DNA 

 DNA is packaged by coiling around nucleosomes. Each nucleosome is made up of 

eight proteins, two each from the H2A, H2B, H3 and H4 histone families. Histone H2AX 

is a histone variant of the H2A histone family that is phosphorylated on serine 139 

following DNA damage, becoming histone γH2AX (Rogakou et al. 1998). The 

phosphorylation of histone H2AX was first characterised in response to DSBs induced by 

ionising radiation (Rogakou et al. 1998). Treatment with ionising radiation typically 

induces the formation of histone γH2AX foci and these can be detected experimentally, as 

a marker for DNA damage (Sharma et al. 2012). However, histone γH2AX formation can 

be induced by different kinases depending on how damaged DNA is induced and can also 

appear as either distinct foci or be pan-nuclear. 

In response to DNA damage, histone H2AX can be phosphorylated by ATM, 

ATR or DNA-dependent protein kinase catalytic subunit (DNA-PKcs). ATM and DNA-

PKcs both phosphorylate histone H2AX following ionising radiation (Stiff et al. 2004) 

whereas ATR phosphorylates histone H2AX following replication induced DNA DSBs 

(Furuta et al. 2003). Histone γH2AX staining following treatment with CPT is mediated 

by ATR. When cells that were either dominant negative for ATR (GM847/ATRkd) or 

deficient in ATM (AT fibroblasts) were treated with 1 µM CPT for 3 h, the ATR deficient 

cell line contained less histone γH2AX by comparison to the ATR proficient cell line and 
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the ATM deficient cell line (Furuta et al. 2003). Replication induced DSBs that lead to 

histone γH2AX formation by ATR occur when DNA lesions and SSBs are met by 

replication forks (Kuzminov 2001). DNA lesions and SSBs are induced by genotoxic 

agents such as ultra-violet (UV) irradiation, alkylating agents, topoisomerase I inhibitors 

and the platinum agents. In HCT116 human colorectal carcinoma cells treated with 1 µM 

CPT, histone γH2AX formation depends on DNA replication and can be prevented by co-

treating these cells with the replication inhibitor aphidicolin (Furuta et al. 2003).  

 The pattern of histone γH2AX formation differs depending on which genotoxic 

agent cells are treated with and the amount of damaged DNA induced. Ionising radiation 

induces the formation of histone γH2AX foci but histone γH2AX formation can also be 

pan-nuclear. UV irradiation induces histone γH2AX formation without inducing direct 

DSBs and when detected by staining, the histone γH2AX signal is pan-nuclear (Limoli et 

al. 2001; Marti et al. 2006). Histone γH2AX formation in primary human fibroblasts was 

found to be mostly pan-nuclear following treatment with 20 J/m
2
 UV irradiation (Marti et 

al. 2006). Marti et al. suggest that this γH2AX formation is related to NER. Cells that 

were deficient in either of the NER proteins xeroderma pigmentosum (XP) XPA or XPC 

had histone γH2AX levels that were only 1.2 fold higher than in mock-treated cells, by 

comparison to histone γH2AX levels that were 2.3 fold higher in treated normal cells 

(Marti et al. 2006). The results from this study might also be applicable to other genotoxic 

agents that do not directly induce DSBs following treatment.  

Pan-nuclear histone γH2AX staining has also been observed in normal human 

fibroblast, U2OS human osteosarcoma, MEF mouse fibroblast, AA8 CHO and XPA
-
/
-
 

human fibroblast cell lines, following clustered DNA damage induced by localised heavy 
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ion irradiation with either gold or xenon ions (Meyer et al. 2013). This pan-nuclear 

staining was mediated by ATM and DNA-PK (Meyer et al. 2013) and this study suggests 

that pan-nuclear staining can occur when a localised area of DNA undergoes severe DNA 

damage. 

 Cells treated with cisplatin stain positive for histone γH2AX (Olive and Bánáth 

2009). However, similar to UV irradiation, treatment with cisplatin does not induce direct 

DSBs (Clingen et al. 2008; Olive and Bánáth 2009). DSBs are formed when cisplatin 

treated cells replicate their DNA. Replicating (incubated in growth medium) S. cerevisiae 

cells treated for 1 h with 1.7 mM cisplatin contained DSBs whereas non replicating 

(incubated in non-growth medium) cells did not contain DSBs following treatment 

(Frankenberg-Schwager et al. 2005). This suggests that cells treated with cisplatin might 

induce histone γH2AX formation by a similar mechanism to cells treated with UV 

irradiation. 

In 2009, Olive and Bánáth investigated the relationship between treatment with 

cisplatin and histone γH2AX formation (Olive and Bánáth 2009). These authors found 

that histone γH2AX levels peaked at 18 h, following treatment of V79 CHO cells for 2 h 

with either 7, 17 or 33 µM cisplatin, as determined by flow cytometry. Furthermore the 

levels of histone γH2AX present in these V79 cells increased as cisplatin concentration 

increased. Olive and Bánáth (2009) also found that histone γH2AX formation required 

DNA replication following treatment, unless very high doses of cisplatin were used for 

treatment (Olive and Bánáth 2009). This reflects the importance of considering dose or 

concentration in experiments. The time needed for histone γH2AX formation was shorter 

for cell lines with a shorter cell cycle time and flow cytometry data indicated that cells 
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were not positive for histone γH2AX until S phase. These authors also found that there 

was a correlation between how long histone γH2AX staining remained after treatment 

with cisplatin and cisplatin induced cell death (Olive and Bánáth 2009).  

The timing of histone γH2AX formation can also differ depending on the 

genotoxic agent used to treat cells. Ionising radiation induces histone γH2AX formation 

within minutes, with levels peaking 30 min after treatment whereas histone γH2AX 

formation is detectable 1 h following UV irradiation, peaking at 2 h and being maintained 

until 8 h (Marti et al. 2006). Olive and Bánáth found that histone γH2AX levels took 18 h 

to peak in V79 cells treated for 2 h with 7, 17 or 33 µM cisplatin (Olive and Bánáth 

2009). Furthermore, Huang et al. (2004) found that histone γH2AX levels in HL-60 

promyelocytic leukaemia cells treated with TPT peaked 1.5 h following treatment, 

whereas histone γH2AX levels in cells treated with cisplatin peaked 3 h following 

treatment (Huang et al. 2004). These data suggest that the timing of histone γH2AX 

formation depends on the mechanism of action of the genotoxic agent used as a treatment. 

The data from all of these studies show that histone γH2AX is a sensitive marker 

to detect damaged DNA in cells treated with a variety of genotoxic agents. However, 

these studies also highlight that it is not possible to detect the precise types of DNA 

damage induced by a genotoxic agent using histone γH2AX staining and detection. 

Although histone γH2AX staining detects DSBs it also detects other types of damaged 

DNA such as the DNA lesions induced by UV irradiation and cisplatin (Marti et al. 2006; 

Olive and Bánáth 2009; de Feraudy et al. 2010; Revet et al 2011). Thus it is possible to 

use histone γH2AX staining to experimentally detect and quantify damaged DNA, but it 
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cannot be used to confirm the presence of DSBs by comparison to other DNA lesions in 

cells treated with genotoxic agents that do not directly induce DSBs.  

1.9 Outcomes following initiation of the G2/M checkpoint 

 The pathways that are involved in the initiation of DNA damage checkpoints are 

relatively well-understood. By contrast, the pathways associated with cell fate after the 

initiation of DNA damage checkpoints are less well understood. After the initiation of the 

G2/M checkpoint, cells can: 1) later continue with the cell cycle and enter mitosis; 2) die 

without entering mitosis or 3) undergo cellular senescence. The cellular response 

following the initiation of the G2/M checkpoint depends on many factors including: the 

type, quantity and location of DNA damage; whether a cell is cancerous or not; the tissue 

a cell originates from and the mutation status of genes that encode proteins with a key 

role in the DDR, such as p53 (Bunz et al. 1998; Shaltiel et al. 2015). Cells that die 

without entering mitosis may do so by undergoing apoptosis, necrosis or autophagy. Cells 

that enter mitosis following G2/M arrest do so by either checkpoint recovery or 

checkpoint adaptation and these have different implications for cell fate.  

1.9.1 Checkpoint recovery 

 When damaged DNA is repaired, cells may continue with the cell cycle and enter 

mitosis by checkpoint recovery (Bartek and Lukas 2007; Shaltiel et al. 2015). Checkpoint 

recovery involves the disassembly of DNA damage foci as damaged DNA is repaired and 

Cdk1-cyclin B activity. Checkpoint recovery is a complex task that involves many 

cellular proteins acting in a highly regulated manner (Shaltiel et al. 2015). The major 

players in checkpoint initiation, such as histone γH2AX, ATM, ATR and Chk1 must be 
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deactivated by dephosphorylation. The phosphatases responsible for dephosphorylating 

the active checkpoint proteins must be activated in a controlled manner (Shaltiel et al. 

2015). Cells that undergo checkpoint recovery completely repair their damaged DNA 

before entering mitosis. They can therefore divide their DNA during mitosis without an 

elevated risk of genomic instability. 

1.9.2 A history of checkpoint adaptation 

 Checkpoint adaptation is the process of entering mitosis with damaged DNA and 

is defined by three sequential steps: 1) a cell cycle arrest induced by DNA damage; 2) 

overcoming this arrest and 3) resuming the cell cycle with damaged DNA (Figure 1.3) 

(Toczyski et al. 1997). Checkpoint adaptation was first observed in 1993 by Sandell and 

Zakian (Sandell and Zakian 1993). DNA damage repair deficient S. cerevisiae cells 

initiated and then overcame a G2 arrest following the loss of telomeric DNA from an 

extra, dispensable chromosome (Sandell and Zakian 1993).  

Since the discovery that S. cerevisiae cells undergo checkpoint adaptation, several 

different research groups have explored this process in yeast cells. Because the DNA 

damage response is highly conserved in eukaryotes, some of this research may provide 

insight into how checkpoint adaptation is induced in other eukaryotic organisms such as 

humans. However, there are differences between G2/M checkpoint control in human and 

S. cerevisiae cells. As described in section 1.8, inhibitory phosphorylation of Cdk1 is 

maintained by activation of Chk1 in human cells arrested at the G2/M checkpoint. This 

prevents cells from entering mitosis with damaged DNA. In S. cerevisiae, arrest at the 

DNA damage checkpoint does not require inhibitory phosphorylation of Cdk1 and two 

distinct pathways are involved in activation of the DNA damage checkpoint (Sanchez et 
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al. 1999). One pathway involves Chk1 and one involves Rad53, a second checkpoint 

kinase that is homologous to human Chk2. These pathways have different roles in the 

checkpoint following DNA damage; the Chk1 pathway acts pre-anaphase to prevent 

chromosome segregation whereas the Rad53 pathway prevents mitotic exit (Sanchez et al. 

1999). Both of these kinases are activated by Mec1, the yeast homologue of ATR 

(Weinert et al. 1994). Sanchez et al. (1999) found that Chk1 can prevent entry into 

anaphase by controlling both phosphorylation and levels of Pds1, preventing cleavage of 

cohesin. Furthermore, they suggest that Rad53 induces cell cycle arrest through inhibitory 

phosphorylation of its substrate Cdc5 and show that overexpression of Cdc5 overrides 

checkpoint arrest (Sanchez et al. 1999). Cdc5 is a polo-like kinase that induces mitotic 

exit by phosphorylating and inactivating proteins such as the Bfa1-Bub2 complex (Hu et 

al. 2001). Bfa1-Bub2 are part of the mitotic exit network (MEN) and prevent mitotic exit 

until mitosis is complete (Hu et al. 2001). 

That Cdc5 has a role in checkpoint adaptation in S. cerevisiae was first observed 

in 1997. Toczyski et al. (1997) identified two S. cerevisiae mutants that were checkpoint 

adaptation deficient in response to a single dsDNA break induced using the same 

S.cerevisiae model and method as Sandell and Zakian (Toczyski et al. 1997). One of the 

mutants identified contained mutated CDC5 and the other mutated CKB2. Cdc5 is a 

member of the polo-like kinase (Plk) family of proteins. CKB2 encodes a nonessential 

subunit of casein kinase II (CKII), a serine-threonine kinase that is implicated in a 

number of pathways including the phosphorylation of the PP2 like phosphatase Ptc2 

(Leroy et al. 2003). 
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In 2001, Galgoczy and Toczyski used the Cdc5 mutant checkpoint adaptation 

deficient S. cerevisiae strain to investigate the effects of checkpoint adaptation on cell 

viability and genomic instability (Galgoczy and Toczyski 2001). They found that 

checkpoint adaptation increased cell viability when DNA damage was induced in a 

nonessential chromosome. Furthermore, they demonstrated that checkpoint adaptation 

proficient cells irradiated with 30 Gray of X-rays contained more chromosomal losses and 

translocations, by comparison to checkpoint adaptation deficient cells. This indicates that 

checkpoint adaptation has a role in the induction of genomic instability in yeast 

(discussed in section 1.10.2). Pellicioli et al. (2001) also used S. cerevisiae checkpoint 

adaptation proficient and deficient cells to investigate checkpoint adaptation and found 

that the kinase activity of Rad53 was elevated for over 24 h in Cdc5 checkpoint 

adaptation deficient mutants, whereas Rad53 kinase phosphorylation and activity was lost 

in cells that underwent checkpoint adaptation (Pellicioli et al. 2001). Overexpression of 

Rad53 also prevented cells from undergoing checkpoint adaptation in response to the 

induction of a DSB. These data support the results from Sanchez et al. (1999) which 

demonstrated that Rad53 inhibited Cdc5, preventing mitotic entry (Sanchez et al. 1999).  

Further studies have since confirmed that both Rad53 and Cdc5 have important 

roles in checkpoint adaptation in S. cerevisiae. Rad53 is dephosphorylated and inactivated 

by the PP2C like phosphatase Ptc2, promoting checkpoint adaptation (Leroy et al. 2003). 

When the PTC2 gene was deleted, checkpoint adaptation proficient cells were unable to 

undergo checkpoint adaptation and when Ptc2 was overexpressed in checkpoint 

adaptation deficient cells the ability to undergo checkpoint adaptation was restored 

(Leroy et al. 2003). To dephosphorylate Rad53, Ptc2 must be phosphorylated on 
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threonine 376 and the CKII kinase is responsible for this (Guilleman et al. 2007). This 

might explain why Toczyski et al. found that one of the checkpoint adaptation deficient 

mutants they discovered contained mutated CKII (Toczyski et al. 1997).  In addition to 

Rad53 dephosphorylation, Rad53 deacetylation also has a role in checkpoint adaptation. 

Deletion of the histone deacetylase Rpd3 prevents checkpoint adaptation and leads to an 

increased level of acetylation on Rad53 (Tao et al. 2013). Checkpoint adaptation is 

therefore promoted by deacetylation and inhibition of Rad53.  

To date the precise biochemical pathway that induces checkpoint adaptation in S. 

cerevisiae has not been identified. However, it has been demonstrated that the checkpoint 

kinase Rad53 and the polo-like kinase Cdc5 have central roles in this process. This 

reflects the important roles of Rad53 and Cdc5 in the control of the cell cycle in budding 

yeast. Recently, proteins involved in several cellular responses that are not directly 

involved in checkpoint control have been identified as having a role in the biochemical 

pathway(s) that induce(s) checkpoint adaptation. Many of these studies have used 

checkpoint adaptation deficient mutants to identify proteins that might be involved in 

checkpoint adaptation. However these studies are not usually capable of elucidating the 

precise role of these proteins in checkpoint adaptation. 

In 2015 Ghospurkar et al. identified that phosphorylation of replication factor A2 

(Rfa2), the yeast homologue of RPA, induced S. cerevisiae cells to undergo checkpoint 

adaptation (Ghospurkar et al. 2015). Cells with a phosphomimetic form of Rfa2, where all 

serine/threonines in the N-terminal domain (9 amino acids) were mutated to aspartic acid, 

underwent checkpoint adaptation. Furthermore, checkpoint adaptation deficient cells 

expressing these phosphomimetic proteins also underwent checkpoint adaptation. The 
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authors therefore propose that the induction of checkpoint adaptation occurs when the Rfa 

proteins (Rfa1 and Rfa2) are modified following prolonged arrest at the DNA damage 

checkpoint (Ghospurkar et al. 2015). 

Chromatin remodelling proteins are also involved in checkpoint adaptation. This 

was first demonstrated by Lee et al. (2001) who found that checkpoint adaptation 

deficient S. cerevisiae cells contained mutated Rdh54/Tid1 (Lee et al. 2001). In 2006 

Papamichos-Chronakis et al. found that the chromatin remodelling protein Ino80 was 

required for checkpoint adaptation in S. cerevisiae following the induction of a DSB 

(Papamichos-Chronakis et al. 2006). In 2012, Eapen et al. found that checkpoint deficient 

S. cerevisiae cells contained mutant Fun30, a chromatin remodelling protein involved in 

HR (Eapen et al. 2012). The role of these chromatin remodelling proteins in checkpoint 

adaptation remains to be elucidated. 

These S. cerevisiae studies indicate that checkpoint adaptation is an important area 

of research, of interest to researchers worldwide. Because checkpoint adaptation increases 

the number S. cerevisiae cells that survive a DNA damaging event and also increases 

genomic instability (Galgoczy and Toczyski 2001), it has been suggested that checkpoint 

adaptation may be important in the development of tumourigenesis (Vidanes et al. 2010). 

Additionally, these studies indicate that a polo-like kinase and checkpoint kinases are 

central to checkpoint adaptation in S. cerevisiae. These data provide starting points for 

elucidating the biochemical pathway(s) that induce(s) checkpoint adaptation in higher 

eukaryotes. However, these studies also highlight the complexity of checkpoint 

adaptation and the need for more research in this area. Furthermore, although proteins 

involved in the DNA damage response and cell cycle regulation are largely evolutionarily 
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conserved across eukaryotes, from yeasts to humans, the regulation of cell cycle 

checkpoints in S. cerevisiae is not identical to the regulation of cell cycle checkpoints in 

humans. To understand better the process of checkpoint adaptation in humans it is 

therefore necessary to use human model systems such as human cancer cell lines. 

 Initially it was proposed that checkpoint adaptation would only occur in 

unicellular organisms, as a last attempt at survival if DNA damage repair was not 

successful (Lupardus and Cimprich 2004). This is because entry into mitosis with 

damaged DNA in multicellular organisms may have a detrimental effect on the survival 

of the organism as a whole, by increasing the risk of genomic instability. By contrast, 

unicellular organisms have nothing to lose by attempting cell division when DNA damage 

is irreparable (Lupardus and Cimprich 2004; Syljuåsen 2007). However, in 2004, Yoo et 

al. described checkpoint adaptation in Xenopus oocyte extracts (Yoo et al. 2004). Yoo et 

al. reported that when they blocked DNA replication with aphidicolin, the cell free 

extracts arrested in interphase and then entered mitosis with only partially replicated 

chromosomes (Yoo et al. 2004). Because Xenopus are multi-cellular organisms this 

suggested, for the first time, that checkpoint adaptation may also occur in other 

metazoans, such as humans (Lupardus and Cimprich 2004; Yoo et al. 2004). However, 

Xenopus oocyte extracts are different from somatic cells because they are a cell free 

system without intact cell membranes. They also rapidly alternate between S phase and 

mitosis without G1 or G2 phases of the cell cycle (Kappas et al. 2000).  

 Checkpoint adaptation was next identified in plant cells, in early 2006. The 

pathways involved in DNA damage repair and the cell cycle checkpoints are largely 

conserved in all eukaryotes, including plants (Carballo et al. 2006). Root cells from 
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Allium cepa were irradiated with 2.5 to 40 Gray X-rays and analysed for entry into 

mitosis with damaged DNA (Carballo et al. 2006). Cells arrested at G2/M following X-

ray irradiation with either 5, 10, 20 or 40 Gray. An increase of apoptotic cells was also 

observed when cells were treated with 20 and 40 Gray X-rays. The number of apoptotic 

cells relative to the not treated control cells increased at 16 h following treatment with 20 

Gray and at 4 h following treatment with 40 Gray. However, some cells treated with 

either of these doses of X-rays still underwent checkpoint adaptation following treatment, 

albeit at later times by comparison to cells treated with 5 and 10 Gray X-rays. The authors 

also scored the mitotic cells for aberrant mitoses. Broken chromatids and acentric 

chromosomal fragments (lacking a centromere) were observed in some cells that were in 

either metaphase, anaphase or telophase. When the percentages of aberrant mitoses were 

quantified following treatment with either 5, 10, 20 or 40 Gray X-rays, between 20% and 

90% of mitoses were aberrant. Furthermore, the percentage of aberrant mitoses depended 

on the dose of X-ray irradiation and time after treatment. Cells were fixed at 0, 2 and 4 h 

and then at 4 h intervals to 24 h. A consistent number of mitoses were aberrant when cells 

were treated with 5 Gray X-rays between 2 and 24 h following treatment (between 50 and 

70%). By contrast, 90% of mitoses were aberrant 24 h after treatment with either 20 or 40 

Gray. Cells treated with either 20 or 40 Gray X-rays did not enter mitosis between 4 and 

20 h following treatment. This suggested that they arrested at the G2/M checkpoint for a 

long time before entering mitosis by comparison to cells treated with 10 Gray, which 

entered mitosis at 16 h, and cells treated with 5 Gray, which entered mitosis at all times 

tested between 2 and 24 h. This study demonstrates that chromosome aberrations are 

present when cells undergo checkpoint adaptation, which may lead to genomic instability 

in cells that survive this process (discussed in section 1.10.2). Additionally, these results 
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suggest that cells enter mitosis at different times when they have different levels of 

damaged DNA; cells treated with higher doses of X-rays took longer to enter mitosis with 

damaged DNA (the final step of checkpoint adaptation) by comparison to cells treated 

with lower doses of X-rays. 

1.9.3 Checkpoint adaptation in human cells 

 Checkpoint adaptation was first observed in human cancer cells in 2006 

(Syljuåsen et al. 2006). Syljuåsen et al. treated U2OS cells with 6 Gray of ionising 

radiation and cells accumulated in G2 phase of the cell cycle. Cells were arrested at the 

G2/M checkpoint, as shown by flow cytometry and by Chk1 phosphorylation on serine 

345 (Syljuåsen et al. 2006). The arrested cells then began to enter mitosis with damaged 

DNA, observed by the detection of histone γH2AX and phosphorylated serine 10 histone 

H3 staining using immunofluorescence microscopy. The authors found that when Chk1 

was inhibited in irradiated cells by the Chk1 inhibitor UCN-01, more cells were in mitosis 

18 h following treatment, by comparison to cells treated with 6 Gray ionising radiation 

alone (Syljuåsen et al. 2006). Furthermore, cells that inducibly over-expressed Chk1 

arrested in G2 for longer than cells with wild type levels of Chk1 following treatment 

with 6 Gray ionising radiation. Because the polo-like kinase Cdc5 has a role in 

checkpoint adaptation in S. cerevisiae (Toczyski et al. 1997) and Plk1 was implicated in 

checkpoint adaptation in Xenopus egg extracts (Yoo et al. 2004), Syljuåsen et al. tested if  

Plk1 has a role in checkpoint adaptation in human cancer cells. Plk1 was depleted by 

siRNA in U2OS cells which were then treated with ionising radiation. These cells 

accumulated in G2/M 19 h after treatment, but did not enter mitosis, suggesting that Plk1 

has a role in checkpoint adaptation in human cancer cells. However, the authors did not 
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determine whether checkpoint adaptation was prevented or just delayed as a result of 

inhibiting Plk1. Similar to the studies in S. cerevisiae, the results of Syljuåsen et al. 

implicated Chk1 and Plk1 in the pathway of checkpoint adaptation in human cells. 

However, it was unclear if this process was clinically relevant, because humans are 

unable to tolerate a single dose of 6 Gray of ionising radiation and are treated with 

fractions of ionising radiation in the clinic (Bernier et al. 2004). 

The question of whether or not checkpoint adaptation occurs in cancer cells 

treated with fractionated doses of ionising radiation was addressed in 2011. Rezacova et 

al. (2011) reported that 26% of MOLT4 leukaemia cells treated with fractionated 

radiation initiated a G2/M arrest 48 h after treatment, before entering mitosis with 

damaged DNA (Rezacova et al. 2011). However, it was still unknown whether 

checkpoint adaptation occurred in response to treatments other than ionising radiation.  

In 2012, checkpoint adaptation was observed in HT-29 cells treated with either 

CPT or etoposide and in M059K human glioma cells treated with CPT (Kubara et al. 

2012). Kubara et al. (2012) demonstrated that HT-29 cells treated with 25 nM CPT for 48 

h were arrested in G2/M phase, by analysing DNA content using flow cytometry and by 

the detection of serine 345 phosphorylated Chk1. These CPT treated cells then entered 

mitosis with damaged DNA; they contained high levels of cyclin B1, had decreased levels 

of Cdk1 phosphorylated on tyrosine 15 and were positive for histone γH2AX and 

phosphorylated serine 10 histone H3 staining (Kubara et al. 2012). Furthermore, Kubara 

et al. also demonstrated that entry into mitosis with damaged DNA could be prevented by 

co-treatment with the Cdk1 inhibitor CR8 (Kubara et al. 2012). Because HT-29 and 
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M059K cells treated with CPT undergo checkpoint adaptation, CPT can be used as a 

positive control for checkpoint adaptation in these cell lines.  

Kubara et al. also investigated the roles of Chk1 and Plk1 in checkpoint 

adaptation. HT-29 cells treated with CPT for 24 h and then with CPT and a Plk1 inhibitor 

for a further 24 h were partially prevented from entering mitosis with damaged DNA. 

However, there was only a slight decrease in the percentage of mitotic cells present in 

cells co-treated with CPT and Plk1 inhibitor, by comparison to cells treated with CPT 

alone (Kubara et al. 2012). This suggests that proteins other than Plk1 are involved in 

checkpoint adaptation in human cancer cells.  

The role of Plk1 in human checkpoint adaptation remains unclear. In 2014, Liang 

et al. studied how single U2OS cells from a cell population treated with 1.5 Gray ionising 

radiation responded to activation of the G2/M checkpoint (Liang et al. 2014). They found 

that different cells from the same population entered mitosis after a G2/M arrest at 

different times and with different levels of damaged DNA (Liang et al. 2014). This entry 

into mitosis was reported to be dependent on levels of Plk1 and cyclin B. However, 

unpublished results from the laboratory of R. H. Medema indicate that inducing 

expression of a constitutively active Plk1 mutant was not capable of over-riding an 

established DNA damage induced checkpoint (Shaltiel et al. 2015). The full molecular 

pathway(s) that are involved in the cellular induction of checkpoint adaptation therefore 

remain to be elucidated. 

In their investigation of checkpoint adaptation, Kubara et al. (2012) used HT-29 

cells because these cells display a pronounced rounded morphology when in mitosis 

(Kubara et al. 2012). HT-29 cells also spend a long time arrested in mitosis following 
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treatment. HT-29 cells treated with either nocodazole or taxol spend longer in mitosis by 

comparison to H1703 human non-small cell lung cancer and RKO human colon 

carcinoma cells treated with either nocodazole or taxol (Gascoigne and Taylor 2008). 

Additionally, HT-29 cells treated with the Eg5 mitotic kinesin inhibitor AZ138 spend 

longer in mitosis by comparison to HCT116 human colorectal adenocarcinoma, RKO, 

DLD-1 human colorectal adenocarcinoma and SW480 human colorectal adenocarcinoma 

cell lines (Gascoigne and Taylor 2008).  

1.9.4 Cisplatin and checkpoint adaptation 

Using HT-29 cells, Kubara et al. were the first to report that checkpoint adaptation 

occurs in response to treatment with chemical genotoxic agents (Kubara et al. 2012), as 

opposed to treatment with the physical agent ionising radiation. In this thesis, we build on 

this study by investigating if checkpoint adaptation occurs in response to treatment with 

cisplatin, which is a chemical genotoxic agent with a different mechanism of action to 

CPT and etoposide. Furthermore, we ask whether checkpoint adaptation is a major event 

in response to treatment with cisplatin. The fraction of cells that undergo checkpoint 

adaptation following treatment with genotoxic agents has not previously been quantified. 

If checkpoint adaptation is a major response in cells treated with different genotoxic 

agents, then it is likely a biologically significant event that lies between cell cycle arrest 

and cell death. However, it is unknown whether or not human cancer cells undergo 

checkpoint adaptation in response to treatment with genotoxic agents that damage DNA 

by a different mechanism of action to ionising radiation, CPT and etoposide.  

As discussed in section 1.7.1, cisplatin has been widely used to treat cancer 

patients since it was approved for use in 1978, yet how cisplatin induces cell death is 
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poorly understood. Although cisplatin has been successful in prolonging the life of cancer 

patients, its long term efficacy can be limited by cells acquiring resistance to treatment 

(Kelland 2007). We reason that by understanding better the steps that lie between the cell 

cycle arrest induced by cisplatin and cell death then it might be possible to improve the 

efficacy of this genotoxic agent. Several studies have indicated that cells treated with 

cisplatin die by mitotic catastrophe (Demarq et al. 1994; Chang et al. 1999; 

Vakifahmetoglu 2008). Furthermore, as discussed in section 1.7.3, cells that entered 

mitosis with damaged DNA were positive for chromosomal aberrations (Adler and el-

Tarras 1989; Krishnaswamy and Dewey 1993; Edelweiss et al. 1995) that could induce 

genomic instability. However, these studies did not investigate how cells were entering 

mitosis following treatment.  

Two studies have previously suggested that cancer cells treated with cisplatin 

undergo checkpoint adaptation (Wang et al. 2008; Lewis 2014). However, neither of the 

studies were focused on the response of checkpoint adaptation itself. As such neither 

study fully confirmed that cells were entering mitosis with damaged DNA following a 

G2/M cell cycle arrest, nor investigated how many cells entered mitosis following 

treatment.  

In 2008, Wang et al. found that 2-3% of HCC metastatic hepatocellular carcinoma 

cells were positive for serine 10 phosphorylated histone H3 following treatment with 3 

µM cisplatin at 0, 12, 24 and 36 h after treatment (Wang et al. 2008). They also 

demonstrated that Chk1 was phosphorylated on serine 345 24 h after treatment with 

cisplatin.  However, Chk1 was not active before this time so it may be that these cells did 

not arrest at the G2/M checkpoint before entering mitosis. The authors also did not 
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investigate if cells were entering mitosis with damaged DNA or compare the response of 

treated cells to not treated cells. Therefore, although the authors suggest that these cells 

underwent checkpoint adaptation, they did not fully test for this. 

During the course of this thesis, Lewis and Golsteyn demonstrated that cisplatin 

induces the formation of micronuclei in M059K cells (Lewis 2014). This required a 

mitosis step, however, this study was focused on characterising micronuclei rather than 

investigating the biochemical steps leading to mitosis, which include those of checkpoint 

adaptation. Additionally, Lewis and Golsteyn found that WI-38 human non-cancerous 

lung fibroblast cells did not undergo checkpoint adaptation and that the number of 

micronuclei in these cells did not increase following treatment with cisplatin (Lewis 

2014). These data suggest that the phenomenon of checkpoint adaptation could be limited 

to cancerous cells in humans. 

In this thesis, we use HT-29 cells to investigate checkpoint adaptation. The 

pronounced cell rounding displayed by HT-29 cells in mitosis allows us to determine 

whether treated cells undergo checkpoint adaptation by using light and time-lapse 

microscopy. This pronounced cell rounding also allows the investigation of whether 

checkpoint adaptation is a major response to treatment or not by using time-lapse video 

microscopy to determine how many cells in a population display a rounded morphology 

(enter mitosis) following treatment. Because HT-29 cells spend a long time rounded and 

in mitosis following treatment, it is possible to separate mitotic cells from treated 

interphase cells so that the biochemical changes that occur during checkpoint adaptation 

can be explored. By investigating checkpoint adaptation in HT-29 cells treated with 
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cisplatin we are also able to compare the response of the same cell line treated with two 

different genotoxic agents, cisplatin and CPT. 

1.10 The consequences of checkpoint adaptation 

 Checkpoint adaptation has several possible outcomes: 1) cells may die in mitosis; 

2) cells may survive mitosis but die in subsequent phases of the cell cycle or 3) cells may 

survive mitosis and divide with damaged DNA (Figure 1.3) (Syljuåsen 2007; Kubara et 

al. 2012). It has been demonstrated that the majority of human cancer cells that undergo 

checkpoint adaptation will die (Syljuåsen et al. 2006; Kubara et al. 2012). This is the 

desired outcome of treating cancer cells with a genotoxic agent. However, checkpoint 

adaptation is also a mechanism by which cells can transmit damaged DNA to daughter 

cells. It is therefore likely that checkpoint adaptation is a source of genomic instability in 

human cells that undergo this process 

1.10.1 The relationship between entry into mitosis with damaged DNA and genomic 

instability 

Common causes of genomic instability are base substitutions, DNA insertions, 

DNA deletions, DNA translocations and a change in copy number (Stratton et al. 2009). 

Genomic instability can occur following DNA damage and two different events can 

induce this: 1) DNA damage mis-repair and 2) entry into mitosis with damaged DNA. 

DNA damage can be mis-repaired during interphase, inducing genomic rearrangements. 

Because NHEJ does not require homologous DNA sequence to repair DSBs, the ends of 

breaks from different chromosomes can be joined together, resulting in chromosomal 

translocations (Ferguson and Alt 2001).  
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Entry into mitosis with damaged DNA can also be a source of genomic instability. 

In 2006, Nakada et al. found that when ATM-deficient primary fibroblast cells 

prematurely entered mitosis after treatment with etoposide some cells survived with 

chromosomal translocations, including the 11q23 translocation associated with 

topoisomerase II inhibitor induced secondary leukaemia (Nakada et al. 2006). Entry into 

mitosis with damaged DNA induced by replication stress can also be a source of genomic 

instability. DNA damage induced by replication stress that occurred because of 

overexpression of the oncogene E2F1 induced chromosome bridge formation and 

aneuploidy (Ichijima et al. 2010). Replication stress can also occur in chromosomal 

instability positive (CIN
+
) (aneuploid) human colorectal carcinoma cells lines and this 

was also found to induce structurally altered chromosomes that were subject to mis-

segregation in mitosis, leading to genomic instability (Burrell et al. 2013). As described in 

section 1.7.3, cells treated with cisplatin can also enter mitosis with damaged DNA, 

leading to the induction of chromosome aberrations (Adler and el-Tarras 1989; Edelweiss 

et al. 1995). 

Entry into mitosis with damaged DNA can lead to genomic instability by several 

different mechanisms. When DNA strand breaks occur, acentric fragments can be created 

(Jeggo and Lӧbrich 2006). These fragments can be lost during cell division because they 

lack centromeres and are unable to attach to the mitotic spindle (Hall and Giaccia 2012). 

These fragments can also be incorporated into micronuclei and then either lost or 

subjected to further genomic rearrangement (Crasta et al. 2012), discussed below. The 

loss of genetic material following treatment with genotoxic agents has been detected 

experimentally. LA-9 murine cells containing a stable chromosome with integrated green 
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fluorescent protein (GFP) were treated with either ionising radiation or etoposide and 

assessed for loss of GFP signal (Burns et al. 1999). An increase in the percentage of non-

fluorescent cells was observed when cells were either irradiated (3 or 5 Gray) or treated 

with etoposide (0.5 and 1 µM), by comparison to the percentage of non-fluorescent cells 

in not treated cells (Burns et al. 1999). 

DNA strand break repair is inhibited in mitosis, once sites of damaged DNA 

induced by irradiation have been marked by the formation of histone γH2AX and MDC1 

foci (Zhang et al. 2011; Orthwein et al. 2014). Cdk1 activity is responsible for preventing 

DSB repair in mitosis by phosphorylating the key DSB repair protein RNF8 (a ubiquitin 

ligase) at threonine 198, preventing it from interacting with MDC1 (Orthwein et al. 

2014). 53BP1 is also phosphorylated in mitosis, at threonine 1609 and serine 1618, 

preventing its recruitment to sites of damaged DNA. Because cells do not repair damaged 

DNA in mitosis, this means that when cells enter mitosis with damaged DNA, this 

damage can be transmitted to daughter cells. Instead of repairing damaged DNA in 

mitosis, mitotic cells progress to G1 where DNA damage repair can occur. Although 

repair of damaged DNA may occur in G1, it is possible that some genetic material could 

be lost or that micronuclei could form in cells in mitosis with damaged DNA, leading to 

genomic rearrangement. Furthermore, many cancer cells have a defective G1/S DNA 

damage checkpoint. It is therefore plausible that a cancer cell can continue through a 

second cell cycle with damaged DNA following entry into mitosis with DNA damage 

(the final step of checkpoint adaptation), contributing to genomic instability. 

Aberrant mitoses are also frequently associated with the formation of micronuclei 

and this can induce further genomic rearrangement in cells. In 2012, Crasta et al. 
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demonstrated that micronuclei, formed by errors in chromosome segregation during 

mitosis, contribute to genomic instability (Crasta et al. 2012). Crasta et al. studied 

micronuclei in RPE-1 untransformed retinal pigment epithelial and U2OS cells (Crasta et 

al. 2012). Crasta et al. generated micronuclei in cells and then followed them through the 

cell cycle. The authors found that DNA contained in the micronuclei was damaged by 

DNA replication and that 7.6% of chromosome spreads prepared from cells with 

micronuclei contained pulverised chromosomes (Crasta et al. 2012). Additionally, Crasta 

et al. reported that micronuclei persisted for several generations and that the 

chromosomes contained in micronuclei could be re-incorporated into the nuclei of 

daughter cells (Crasta et al. 2012).  

The chromosome shattering observed by Crasta et al. is called chromothripsis 

(Stephens et al. 2011). Chromothripsis describes a catastrophic event where tens to 

hundreds of genomic rearrangements are acquired in one or several regions of 

chromosomes (Stephens et al. 2011). A number of possibilities for how chromothripsis 

occurs have been suggested, including that chromothripsis occurs due to a high-energy 

ionising radiation event during mitosis, that DNA fragmentation occurs as a result of 

aborted apoptosis or that DSBs induced by genotoxic agents create dicentric fusions 

between sister chromatids that can be broken during mitosis (Forment et al. 2012). 

However, the model for chromosome pulverisation described by Crasta et al. is currently 

considered the most likely model for how chromothripsis arises (Forment et al. 2012). 

This model of chromothripsis is supported by a recent study from the same group of 

researchers where live cell imaging and single-cell genome sequencing were used to 

characterise micronucleated cells (Zhang et al. 2015). Combining these techniques 
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allowed the researchers to sequence cells where micronuclei were reincorporated into the 

main nucleus after one round of cell division. Zhang et al. used copy number analysis of 

the paired daughter cells present after the one round of cell division, to determine which 

chromosomes were present in the micronuclei. They found that the mis-segregated 

chromosomes had a large number of genomic rearrangements, by comparison to normally 

segregated control chromosomes, in 8 of the 9 daughter cell pairs studied (Zhang et al. 

2015). To date these are the only studies that provide experimental evidence for how 

chromothripsis can occur, although chromothripsis has been observed in a number of 

different cancer types including glioma (Stephens et al. 2011; Cohen et al. 2015), 

melanoma (Stephens et al. 2011), multiple myeloma (Magrangeas et al. 2011), 

medulloblastoma, acute myeloid leukaemia (Rausch et al. 2012) and breast cancer 

(Przybytkowski et al. 2014). Additionally, chromothripsis has been detected in patients 

with congenital abnormalities (Kloosterman et al. 2011; Gamba et al. 2015; Bertelsen et 

al. 2015). Cells that undergo checkpoint adaptation enter mitosis with damaged DNA and 

it is likely that this induces aberrant mitoses that may lead to genomic rearrangement and 

the induction of micronuclei, which can contribute to chromothripsis.  

Cells that enter mitosis with damaged DNA are at risk of genomic instability. 

However, the studies described above did not investigate how cells were entering mitosis 

following treatment or address whether these cells were undergoing checkpoint 

adaptation. Moreover, many of these studies did not investigate the long-term effects of 

entering mitosis with damaged DNA, to explore whether any of the cells in mitosis with 

chromosomal aberrations survive and whether any of these surviving cells contain 
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rearranged genomes. It is therefore necessary to explore how the process of checkpoint 

adaptation can contribute to the induction of genomic instability in cancer cells.  

1.10.2 The relationship between checkpoint adaptation and genomic instability 

  As described in section 1.9.2, Galgoczy and Toczyski (2001) found that 

checkpoint adaptation in S. cerevisiae generated genomic rearrangements such as 

chromosome loss or chromosome rearrangement (Galgoczy and Toczyski 2001). 

Additionally, these authors demonstrated that checkpoint adaptation increased yeast 

survival following DNA damage and that adaptation deficient cells were less likely to 

survive a DNA damaging event (Galgoczy and Toczyski 2001). These data suggest that, 

in yeast, checkpoint adaptation may contribute to cell survival following a genotoxic 

event and that cells surviving checkpoint adaptation are more likely to contain rearranged 

genomes. Some plant cells that enter mitosis following treatment with 5, 10, 20 and 40 

Gray X-rays also contained broken chromatids, acentric chromosomal fragments and 

chromosome bridges (Carballo et al. 2006). These data support the suggestion that 

checkpoint adaptation may induce genomic rearrangement in human cancer cells. 

However, these plant cells were fixed within 24 h of treatment so it is unknown if cells 

survived checkpoint adaptation with rearranged genomes or whether these chromosomal 

aberrations induced cell death.  

To determine whether human cancer cells can survive checkpoint adaptation with 

rearranged genomes it is first necessary to collect cells undergoing checkpoint adaptation 

and then culture these cells to assess cell viability. HT-29 cells can be used for this type 

of analysis because they display a pronounced rounded morphology in mitosis and spend 

a long time in mitosis following treatment. This allows cells that have undergone 
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checkpoint adaptation and are in mitosis to be collected by mechanical shake-off. These 

cells can then be assessed for cell survival by the clonogenic assay (Rahman 2013). 

Furthermore, once survival cells have been identified these cells can be investigated to 

determine whether they contain rearranged genomes. Genomic rearrangement in these 

survival cells could be detected using cytogenetic  techniques such as fluorescence in situ 

hybridisation (FISH) to observe centromeres, telomeres and chromosomal regions using 

fluorescent probes specific for these regions (Bishop 2010; Rahman 2013) and spectral 

karyotyping (SKY) which uses fluorescent probes of different colours to detect specific 

chromosomal regions (Imataka and Arisaka 2012). In addition to these techniques it will 

also be possible to sequence the genomes of individual cells surviving checkpoint 

adaptation, when advances are made in single cell DNA sequencing (Leung et al. 2015). 

It has been reported that small numbers of HT-29 cells treated with CPT can 

survive entry into mitosis with damaged DNA (Kubara et al. 2012; Rahman 2013). 

Furthermore, preliminary data has suggested that HT-29 cells treated with CPT contain 

mitotic chromosomes that are shattered into different pieces (Rahman 2013). CPT treated 

HT-29 cells that survived checkpoint adaptation contained an average of 35 

chromosomes, by comparison to not treated cells which contained an average of 65 

chromosomes (Rahman 2013). It has also been reported that entry into mitosis increases 

the number of micronuclei present in M059K cells treated with cisplatin (Lewis 2014). 

Checkpoint adaptation may thus facilitate the formation of survival cells with rearranged 

genomes, as a consequence of these cells surviving entry into mitosis with damaged 

DNA.  
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Investigation of checkpoint adaptation can provide insight into the specific role of 

each step upon cell survival and genomic change. For example, cancer cells appear to 

need to enter mitosis following treatment with a genotoxic agent to facilitate cell death in 

other phases of the cell cycle (Lupardus and Cimprich 2004; Syljuåsen 2007). It is 

currently unknown whether cells that undergo checkpoint adaptation will still die if they 

are prevented from entering mitosis. If treated cancer cells can die when entry into 

mitosis with damaged DNA (the final step of checkpoint adaptation) is inhibited, then this 

could prevent cells from surviving treatment with rearranged genomes.  

Current genotoxic anti-cancer treatments such as cisplatin, the agent used in this 

thesis, are often limited by acquired resistance to treatment, which is induced by genomic 

change (Wasenius et al. 1997; Wilson et al. 2005). By preventing treatment induced 

genomic change, it should be possible to prevent cells from acquiring resistance to 

treatment. These cancer cells would then be susceptible to cell killing induced by further 

rounds of treatment, improving the efficacy of genotoxic anti-cancer agents. 

1.11 Cell death 

Cell death or permanent growth arrest are the desired outcomes of cancer 

treatments. It is often assumed that cancer cells die by apoptosis following treatment with 

anti-cancer drugs and apoptosis has been extensively studied with regards to cancer 

development and treatment. However, other modes of cell death and growth arrest exist 

and understanding these may be equally or more important to understanding how cancer 

cells respond to current cancer treatments. Four types of cell death frequently discussed in 

the literature with regard to cancer therapies are apoptosis, necrosis, mitotic catastrophe 
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and autophagy. Senescence is also a desired outcome of cancer treatment, because 

senescent cells undergo permanent growth arrest. 

1.11.1 Apoptosis 

The term apoptosis was first used by Kerr et al. in 1972, following several years 

of research into a form of regulated cell death initially termed “shrinkage necrosis” (Kerr 

et al. 1972; Kerr 2008). Cell death by apoptosis was first described in 1885 by Walther 

Flemming, but this description of apoptosis was ignored at the time, even though 

Flemming was the originator of the term mitosis (Kerr 2008). In the mid-1960s, Lockshin 

and Williams were also studying regulated cell death and proposed the term 

“programmed cell death” (Lockshin and Zakeri 2008). The term programmed cell death is 

now synonymous with apoptosis, although it has since been shown that other types of cell 

death can also be programmed (Bredesen 2008). After 1990 research on apoptosis greatly 

increased, as genes involved in its regulation were discovered (Kerr 2008).  

Apoptosis can be either extrinsically or intrinsically activated. The extrinsic 

pathway is activated in response to external signals and occurs through the binding of 

specific cytokines to cell surface receptors (Egger 2008). The intrinsic pathway is 

activated in response to internal factors such as excessive DNA damage or viral infection 

(Egger 2008). Activation of either pathway leads to the activation of caspases. Caspases 

are cysteine proteases which have a cysteine at their active site and cleave target 

polypeptides after aspartic acid residues in specific peptide sequences (Alnemri et al. 

1996). Caspases degrade important cellular proteins such as those involved in cell 

division, DNA replication, DNA damage repair, RNA splicing and structure of the 

cytoskeleton (Fan et al. 2005). In mammals, specific endonucleases, endonuclease-G and 
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apoptosis inducing factor, are also activated (Susin et al. 1999; Li et al. 2001). This 

occurs in a caspase independent manner and these endonucleases are responsible for 

nuclear fragmentation, which is associated with apoptotic cell death (Danial and 

Korsmeyer 2004). 

Intrinsic apoptosis involves the Bcl-2 family of proteins and the permeabilisation 

of the mitochondrial membrane (Zhivotovsky and Kroemer 2004). The Bcl-2 family of 

proteins consists of both pro- and anti- apoptotic proteins. Examples of anti-apoptotic 

proteins are Bcl-xL, Bcl-2 and Mcl-1 and examples of pro-apoptotic proteins are Bax, 

Bak, Bid and Puma. Bax and Bak begin the process of intrinsic apoptosis and exist as 

inactive monomers in the cell until apoptosis is initiated (Westphal et al. 2011). Bax is 

found in the cytosol while Bak is held inactive by binding to anti-apoptotic proteins such 

as Bcl-xL or Mcl-1 (Westphal et al. 2011). When active, Bax and Bak permeabilise the 

outer mitochondrial membrane releasing apoptosis initiating factors such as cytochrome 

c. Cytochrome c then binds to apoptotic protease-activating factor 1 forming the 

apoptosome and this recruits and activates the initiator pro-caspase 9 (Saikumar et al. 

1999). Once cleaved and activated, caspase 9 cleaves the effector caspases 3 and 7 which 

cleave cellular proteins (Fan et al. 2005).  

Extrinsic apoptosis is activated by specific tumour necrosis factor (TNF) 

signalling proteins (TNFα, FasL and TRAIL) and their respective TNFR receptors 

(Saikumar et al. 1999). When the receptors are bound by specific cytokines they initiate 

the activation of the initiator caspases 8 and 10 which in turn cleave and activate the 

effector caspases, leading to the cleavage of cellular proteins (Fan et al. 2005). Finally 

apoptotic cells are engulfed by phagocytes, allowing for the removal of apoptotic cells 
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without inducing an inflammatory response (Allen et al. 1997). The recognition of 

apoptotic cells by phagocytes is achieved by changes to the plasma membrane. During 

apoptosis a component of the inner leaflet of the plasma membrane, phosphatidylserine, is 

translocated to the outer leaflet of the plasma membrane and acts as a recognition signal 

for phagocytes (Fadok et al. 1992).  

Apoptosis is well defined and the various steps of the pathway can be used to 

determine if dying cells are undergoing apoptosis or dying by a different mode (Figure 

1.4). Apoptotic cells can be morphologically distinguished by plasma membrane 

blebbing, a specific pattern of chromatin condensation, nuclear fragmentation and the 

formation of apoptotic bodies (Krysko et al. 2008). The exposure of phosphatidylserine 

on the outer surface of the plasma membrane is also a recognised marker for apoptosis 

and is detected using annexin V conjugated to various fluorescent molecules (Krysko et 

al. 2008). Annexin V is a calcium dependent phospholipid binding protein and annexin V 

staining combined with propidium iodide (PI) staining is widely used to distinguish 

apoptotic cells from necrotic cells (Krysko et al. 2008). PI is unable to penetrate the 

membrane of live cells and cells undergoing apoptosis, but is able to stain cells that have 

lost membrane integrity, such as dead cells and cells undergoing necrosis (van Engeland 

et al. 1998). 

 Western blotting can also be used to detect protein changes associated with 

apoptosis. For example, the anti-apoptotic proteins Mcl-1 and Bcl-2 are degraded in 

apoptotic cells but present in cells that are not undergoing apoptosis. The presence of 

cleaved caspases such as the initiator caspase 9 and the effector caspase 3 indicate that 

cells are undergoing apoptosis (Fan et al. 2005). The presence of cleaved caspase 
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substrates, such as cleaved poly ADP ribose polymerase (PARP), provide further 

evidence that cells are apoptotic (Fan et al. 2005). Staurosporine is a non-specific kinase 

inhibitor that is widely used as a positive control for apoptosis in the laboratory (Zhang et 

al. 2004). It has been reported that HT-29 cells (the cell line used in this thesis) die by 

apoptosis when they are treated for 24 h with 1 µM staurosporine (Qiao et al. 1996).  

Apoptosis is considered to be the major mode of cell death in cancer cells treated 

with genotoxic agents. This is partly because the genes for many of the proteins that 

regulate apoptosis are mutated in human cancers (Brown and Wouters 1999). However, 

there is increasing evidence that other cell death pathways have a major role in cancer cell 

death when solid tumours are treated with genotoxic agents. Inhibiting apoptosis is 

reported to have little or no effect on the clonogenic survival of cancer cells following 

treatment with anti-cancer drugs or ionising radiation (Roninson et al. 2001; Brown and 

Attardi 2005). This has been demonstrated by several studies where the anti-apoptotic 

protein Bcl-2 was overexpressed (Yin and Schimke 1995; Lock and Stribinskiene 1996; 

Kyprianou et al. 1997; Elliott et al. 1998; Elliott et al. 1999; Wouters et al. 1999; Tannock 

and Lee 2001). It was predicted that if Bcl-2 was overexpressed then cells would be 

resistant to apoptosis and would therefore be less sensitive to treatment with genotoxic 

agents (Brown and Attardi 2005). However in these studies, although overexpression of 

Bcl-2 prevented cells from undergoing apoptosis, it did not have a significant impact on 

clonogenic survival. This indicates that the cells died by a mode of cell death other than 

apoptosis (Yin and Schimke 1995; Lock and Stribinskiene 1996; Kyprianou et al. 1997; 

Elliott et al. 1998; Elliott et al. 1999; Wouters et al. 1999; Tannock and Lee 2001). In 

1999, Wouters et al. also found that there was no difference in cell viability when 
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apoptosis proficient and apoptosis deficient HCT116 cells were treated with either 5 

µg/ml etoposide or 10 Gray ionising radiation (Wouters et al. 1997). Ruth and Roninson 

(2000) made similar observations in cells engineered to inducibly express multidrug 

resistance protein 1 (MDR1), a P-glycoprotein that inhibits apoptosis (Ruth and Roninson 

2000). HeLa derived HtTA-MDR1 cervical adenocarcinoma cells and NIH 3T3 murine 

fibroblasts were treated with 9 Gray ionising radiation and induced to express MDR1. 

Ruth and Roninson found that MDR1 expression prevented cells from undergoing 

apoptosis but did not change overall cell survival after treatment (Ruth and Roninson 

2000). Instead, the treated cells either died by mitotic catastrophe or initiated a 

senescence-like growth arrest (Ruth and Roninson 2000).  

1.11.2 Necrosis 

 Originally considered an uncontrolled form of cell death, necrosis (Figure 1.4) 

was thought to lack a true molecular signature (Ricci and Zong 2006). However, several 

types of regulated necrosis with molecular signatures have now been identified, of which 

necroptosis is the most understood (Feoktistova et al. 2014). There are therefore different 

types of cell death that exhibit the morphological features of uncontrolled necrosis but 

that are induced by specific molecular signalling pathways. The characteristics of 

uncontrolled necrosis are membrane damage leading to membrane permeability, depletion 

of cellular energy, and loss of function of ion pumps and channels that regulate cellular 

homeostasis (Golstein and Kroemer 2007). Uncontrolled necrosis can be morphologically 

characterised by cell swelling, organelle swelling and loss of membrane integrity 

(Feoktistova et al. 2014) which causes cells to spill their contents into the extracellular 

space, initiating an inflammatory response (Majno et al. 1960). Uncontrolled necrosis is 
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most commonly activated due to disrupted ATP production, the imbalance of intracellular 

calcium, the generation of ROS or the activation of non-apoptotic proteases (Ricci and 

Zong 2006). To detect uncontrolled necrosis cellular swelling can be observed by light 

microscopy and loss of membrane integrity can be detected by nuclear staining with PI 

and flow cytometry (Jain et al. 2013).  

1.11.3 Mitotic catastrophe 

Mitotic catastrophe (Figure 1.4) is a form of cell death related to mitosis; 

however, the exact definition of mitotic catastrophe is debated. Mitotic catastrophe has 

been defined as cell death resulting from inappropriate entry into mitosis (Chan et al. 

1999; Vitale et al. 2011), as cell death occurring during or shortly after a failed mitosis 

(Kroemer et al. 2009; Vitale et al. 2011), or as cell death resulting from an aberrant 

mitosis characterised by premature chromosome condensation and multiple micronuclei 

(Rezacova et al. 2011; Vitale et al. 2011). Mitotic catastrophe has also been defined as the 

induction of apoptosis, necrosis or senescence following a failed mitosis (Vitale et al. 

2011; Hayashi and Karlseder 2013). The induction of other cell death pathways due to a 

failed mitosis has three different consequences: 1) cell death during mitosis; 2) cell death 

once a cell has exited mitosis and 3) senescence following exit from mitosis (Vitale et al. 

2011; Hayashi and Karlseder 2013). It is also debated whether mitotic catastrophe should 

be classified as a distinct form of cell death (Roninson et al. 2001; de Bruin and Medema 

2008) or if cell death occurs by apoptosis or necrosis following aberrant mitosis (Dewey 

et al. 1995; Castedo et al. 2004b).  

It has long been known that cells treated with ionising radiation enter mitosis. In 

1961 Yamada and Puck found that following irradiation with sub-cytotoxic 
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concentrations of X-rays (either 0.3, 0.7 or 1.4 Gray) there was a decrease in the mitotic 

index of HeLa cells, followed later by an increase in the mitotic index (Yamada and Puck 

1961). Because the cells delayed entry into mitosis, this suggests that they arrested at the 

G2/M checkpoint before entering mitosis. These cells could therefore have been 

undergoing checkpoint adaptation, however it is not known if they entered mitosis with 

damaged DNA or if they entered mitosis following the repair of damaged DNA.  

  By comparison to apoptosis, there are few distinguishing characteristics of mitotic 

catastrophe. This means it is difficult to detect mitotic catastrophe as a form of cell death 

(de Bruin and Medema 2008). The main characteristic associated with mitotic catastrophe 

is the presence of micronuclei (Vitale et al. 2011), but micronuclei only indicate that cells 

have undergone an aberrant mitosis. Some cells with micronuclei may not undergo 

mitotic catastrophe because they survive and do not die. Furthermore, cells may die 

directly in mitosis and micronuclei cannot be used as a marker for this type of cell death. 

One of the best ways to study mitotic catastrophe is therefore time-lapse video 

microscopy, to observe cells in real time (Rello-Varona et al. 2010).  

Mitotic catastrophe can be induced by DNA damage that directly affects the 

integrity of chromosomes, by interference with the mitotic spindle (Vitale et al. 2011) or 

by deficiencies in proteins and protein complexes involved in the process of mitosis itself 

(Broude et al. 2008). Drugs such as the taxanes and vinca alkaloids induce mitotic 

catastrophe without damaged DNA, by interfering with the mitotic spindle. This induces a 

mitotic arrest followed by cell death. The taxanes stabilise microtubules and induce a 

metaphase arrest (Rowinsky 1997) whereas the vinca alkaloids induce mitotic catastrophe 

by disrupting the dynamics of microtubule polymerisation and depolymerisation (Jordan 
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et al. 1991). Nocodazole is a compound that inhibits microtubule polymerisation and is 

widely used as a positive control for mitotic cells in the laboratory, because it arrests cells 

in mitosis (Vasquez et al. 1997). 

Entry into mitosis with damaged DNA induces mitotic catastrophe through the 

SAC. HeLa cells treated with 1.5 µM aphidicolin entered mitosis with damaged DNA and 

arrested at metaphase (Nitta et al. 2004). Following this metaphase arrest cells entered 

what the authors describe as a “precatastrophic phase” where chromosome segregation 

was attempted. This was followed by cell death. When either of the SAC proteins Mad2 

or BubR1 were depleted by siRNA in HeLa cells treated with aphidicolin, cells did not 

arrest at metaphase and continued with mitosis. This increased cell viability following 

treatment with aphidicolin, by comparison to the viability of cells transfected with control 

siRNA (Nitta et al. 2004).  

Mitotic catastrophe has been observed in response to treatment with a variety of 

genotoxic agents that have different mechanisms of action, as shown in Table 1.2. These 

data demonstrate that mitotic catastrophe is an important and widely observed mode of 

death in response to treatment with genotoxic agents. It is likely that these cells undergo 

checkpoint adaptation to enter mitosis with damaged DNA, but this was not addressed in 

the majority of these studies. Checkpoint adaptation may therefore be a common pathway 

that leads to cell death following treatment with genotoxic agents. It is necessary to 

understand whether cells undergo checkpoint adaptation or not because checkpoint 

adaptation may contribute to cells surviving treatment with rearranged genomes. It may 

be possible to target the final step of checkpoint adaptation to prevent cells from entering 
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mitosis with damaged DNA, preventing them from surviving treatment with rearranged 

genomes. 

Cells that have undergone aberrant mitoses have also been observed in clinical 

samples. Micronuclei have been detected in clinical cervical (Widel et al. 1999; Zolzer et 

al. 1995) and oral carcinoma samples (Bhattathiri et al. 1998; Bhattathiri et al. 2001; 

Kumari et al. 2005) after patients were treated with ionising radiation. However, because 

mitotic catastrophe is difficult to detect, there is a lack of clinical data about mitotic 

catastrophe as a mode of cell death in vivo.  

1.11.4 Dual modes of cell death 

 Mode of cell death can depend on different factors including the tissue origin of a 

cell and the amount of DNA damage that a cell contains (Yoshikawa et al. 2001; 

Vakifahmetoglu et al. 2008). The effect of treatment concentration on mode of cell death 

has been demonstrated in studies where the same cell lines treated with different 

concentrations of the same genotoxic agent died by different modes of cell death.  

Three human colorectal adenocarcinoma cell lines, SW480, COLO320DM and 

HCT116 were treated with relatively low and relatively high concentrations of the 

antimetabolite 5-fluorouracil (5-FU) (Yoshikawa et al. 2001). SW480 and COLO320DM 

cells treated with 1000 ng/ml 5-FU and HCT116 cells treated with 100 ng/ml 5-FU died 

by apoptosis, whereas SW480 and COLO320DM cells treated with 100 ng/ml 5-FU and 

HCT116 cells treated with 10 ng/ml 5-FU died by mitotic catastrophe (Yoshikawa et al. 

2001). The same results were observed when hepatocellular carcinoma cells were treated 

with doxorubicin (Eom et al. 2005). Low dose doxorubicin treatment (15-60 ng/ml 
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depending on the cell line) of five human hepatocellular carcinoma cell lines; Huh-7, 

SNU-354, -398, -449 and -475 induced entry into mitosis, followed by a senescence like 

phenotype (Eom et al. 2005). By contrast, Huh-7 cells treated with a high dose of 

doxorubicin (10 µg/ml) died by apoptosis (Eom et al. 2005). Similarly, DC-3F Chinese 

hamster lung fibroblast cells treated with bleomycin died by mitotic catastrophe when 

treated with a low concentration of bleomycin (10 nM) whereas DC-3F cells treated with 

a high concentration of bleomycin (10 µM) died by apoptosis (Tounekti et al. 1993). High 

concentrations of genotoxic agents likely induce high levels of damaged DNA. These 

results therefore suggest that amount of damaged DNA affects which cell death pathway 

is activated following treatment.  

It is likely that the cells dying by mitotic catastrophe were undergoing checkpoint 

adaptation, but this was not tested because checkpoint adaptation had not been identified 

in human cell lines at the time these studies were undertaken. Checkpoint adaptation 

might therefore be induced in a concentration dependent manner, where relatively low 

cytotoxic concentrations of a genotoxic agent induce checkpoint adaptation but high 

concentrations induce cell death by apoptosis. The relationship between treatment dose 

and the induction of checkpoint adaptation has not been previously investigated and is 

one of the research questions studied in this thesis.  

 Different modes of cell death were also observed when two different ovarian 

carcinoma cell lines (Caov-4 and SKOV-3) were treated with 33 µM cisplatin 

(Vakifahmetoglu et al. 2008). Caov-4 cells died by apoptosis whereas SKOV-3 cells died 

by entry into mitosis followed by necrosis like lysis. However, the authors did not provide 

cytotoxicity data for Caov-4 and SKOV-3 cells treated with cisplatin and so it may be that 
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33 µM cisplatin was a high dose of cisplatin for Caov-4 cells but not for SKOV-3 cells 

(Vakifahmetoglu et al. 2008). Overall, these studies have identified that mode of cell 

death following treatment with genotoxic agents can be different and depend on either 

concentration of treatment or cell type. Furthermore, in all of the studies, cells underwent 

either cell death following entry into mitosis or cell death by apoptosis. This highlights 

the importance of these two cell death pathways in cells treated with genotoxic agents.  

1.11.5 Autophagy 

 Autophagy is a regulated pathway that is evolutionarily conserved. It is initiated 

by cells in response to nutrient stress, as well as during development and differentiation 

(Ricci and Zong 2006). Autophagy is involved in the routine turnover of cellular 

components (Lockshin and Zakeri 2008) and is also used to maintain energy homeostasis 

and protein synthesis when nutrient availability is low (Wirth et al. 2013). Cellular 

components are enclosed by a double membrane vesicle known as the autophagosome 

which fuses to lysosomes and is then known as an autolysosome (Lockshin and Zakeri 

2004; Wirth et al. 2013). The autolysosome degrades the cytosolic contents of the vesicle 

so that they can be reused by the cell (Lockshin and Zakeri 2008; Wirth et al. 2013). 

However, excessive autophagy can promote cell death in a process widely recognised as 

autophagic cell death (Ricci and Zong 2006). Autophagic cell death is characterised by 

the formation of autophagic vacuoles and the lack of inflammatory response. Caspases 

are not activated in cells undergoing autophagy (Lockshin and Zakeri 2004). 

1.11.6 Senescence 



64 
 

 Cellular senescence refers to irreversible withdrawal from the cell cycle and 

permanent growth arrest, as opposed to a mode of cell death (Campisi 2008). Senescence 

was first described in 1961 by Hayflick and Moorhead who observed that normal human 

cells have a limited ability to divide in cell culture, by contrast to transformed cells 

(Hayflick and Moorhead 1961). Senescence is relevant to understanding the response of 

cancer cells to treatment because when cells are senescent it means that they are no longer 

dividing and this can prevent further tumour growth. Features of senescence include 

cellular and nuclear enlargement and increased gene expression, leading to an 

upregulation of genes for secreted molecules (Campisi 2008). Experimentally the most 

widely used marker of senescent cells is β-galactosidase activity (Dimri et al. 1995). 

1.12 Cancer cell lines 

 HT-29 and M059K cells are used in this thesis to study checkpoint adaptation 

following treatment with cisplatin. HT-29 cells are a good model cell line for the study of 

checkpoint adaptation (Kubara et al. 2012). They display a striking rounded morphology 

when in mitosis and arrest in mitosis for a long time following treatment (Gascoigne and 

Taylor 2008). HT-29 cells display chromosomal instability (CIN) (Gascoigne and Taylor 

2008) and have a modal number of 71-72 chromosomes (Kawai et al. 2002). CIN is 

defined as an increase in the rate of gain or loss of segmental and whole chromosomes 

during cell division and is characterised by changes in chromosome number and structure 

(Pikor et al. 2013). HT-29 cells also contain mutated p53 where arginine 273 is mutated 

to histidine (Rodrigues et al. 1990).  

M059K cells are also used in this thesis, because they have been shown to 

undergo checkpoint adaptation when treated with one genotoxic agent, CPT (Kubara et al. 
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2012). M059K cells are fibroblastic and are therefore from a different tissue of origin by 

comparison to HT-29 cells, which are epithelial. M059K cells have a modal number of 75 

chromosomes, with a range of 65 to 79 chromosomes (ATCC data sheet 1994). 

Additionally, M059K cells contain mutated p53 where the glutamate 286 is mutated to a 

lysine (Anderson and Allalunis-Turner 2000). 

1.13 Research objectives   

The majority of cancer patients are treated with DNA damaging agents in the form 

of either ionising radiation or chemical genotoxic anti-cancer drugs. These agents induce 

high levels of DNA damage, initiating cell cycle arrest at cell cycle checkpoints. 

However, it is unclear how cancer cells die when they are treated with genotoxic agents. 

One process that links cell cycle arrest at the G2/M checkpoint and cell death is 

checkpoint adaptation. It has been proposed that checkpoint adaptation is a common 

response in cancer cells treated with genotoxic agents. However, checkpoint adaptation 

has only been shown to occur in cancer cells treated with ionising radiation (Syljuåsen et 

al. 2006; Rezacova et al. 2011), CPT and etoposide (Kubara et al. 2012). We therefore 

investigated further how cancer cells treated with genotoxic agents die, by exploring 

whether cells treated with cisplatin undergo checkpoint adaptation.  

We hypothesised that HT-29 cells treated with cisplatin undergo checkpoint 

adaptation before dying. We chose to use cisplatin to investigate checkpoint adaptation 

because it has a different mechanism of action to CPT, etoposide and ionising radiation. 

In addition cisplatin is widely used both clinically and experimentally, is well 

characterised with regard to how it induces DNA damage and has been previously shown 

to induce mitotic cell death (Demarcq et al. 1994; Chang et al. 1999; Vakifahmetoglu et 
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al. 2008). Cells that undergo checkpoint adaptation follow three steps: 1) a DNA damage 

induced cell cycle arrest, 2) overcoming this cell cycle arrest and 3) resuming the cell 

cycle with damaged DNA (Toczyski et al. 1997). Checkpoint adaptation can therefore be 

investigated in cells by identifying the status of proteins involved in the signalling of 

damaged DNA, cell cycle progression and cell cycle arrest. 

It is important to understand how cancer cells die when they are treated with 

genotoxic agents because these agents are not always curative (Havelka et al. 2007). We 

therefore asked if HT-29 cells treated with either cisplatin or CPT can survive checkpoint 

adaptation. Treated cells that undergo checkpoint adaptation enter mitosis with damaged 

DNA and checkpoint adaptation may be a source of genomic instability in cells that 

survive it. The potential genomic change induced in cells that survive checkpoint 

adaptation could be a source of cancer cells that acquire resistance to treatment. Acquired 

resistance limits the efficacy of genotoxic anti-cancer drugs. It might therefore be 

possible to prevent cells treated with genotoxic agents from entering mitosis, to prevent 

cells surviving treatment with rearranged genomes. However, it is unknown whether 

mitosis is necessary for cell death in cells that die following checkpoint adaptation. We 

therefore explored whether cells are able to die when entry into mitosis is inhibited.  

If checkpoint adaptation is going to be targeted to improve the efficacy of current 

genotoxic agents, then it is important to understand this process when cells are treated 

with different genotoxic agents. Checkpoint adaptation has not previously been compared 

in the same cell line treated with different genotoxic agents. We therefore investigated 

whether the process of checkpoint adaptation is the same or different in human cancer 

cells treated with two different genotoxic agents, cisplatin and CPT.  
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In summary, we investigated: 

1) How cancer cells treated with cisplatin die, by exploring whether HT-29 cells 

treated with cisplatin undergo checkpoint adaptation (Chapter 2). 

2) If any HT-29 cells treated with cisplatin can survive checkpoint adaptation 

(Chapter 3). 

3) If mitosis is necessary for cell death when HT-29 cells are treated with either 

cisplatin or CPT (Chapter 3). 

4) If the process of checkpoint adaptation is the same or different in human cancer 

cells treated with either cisplatin or CPT (Chapter 4). 
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Table 1.1 A table of different cancer treatments that damage DNA, their mechanism of 

action and the main types of damage that they cause. Modified with permission from 

Swift and Golsteyn, 2014 (Swift and Golsteyn 2014). 

Agent type Examples of drugs Mechanism of Action Type of DNA Damage 

Alkylating agents Nitrogen mustards 

Nitrosoureas 

S23906 

Base alkylation 

Monofunctional DNA 

adducts 

 

Inter, Intra and DNA-

protein crosslinks 

 

Distort the DNA double 

helix which can block 

the DNA replication and 

transcription and lead to 

DNA strand breaks 

 

Platinum drugs Cisplatin 

Carboplatin 

Oxaliplatin 

Monofunctional DNA 

adducts 

 

Inter, Intra and DNA-

protein crosslinks 

Distort the DNA double 

helix which can block 

the DNA replication and 

transcription and lead to 

DNA strand breaks 

 

Antimetabolites 5-Fluorouracil Misincorporates into 

DNA 

 

Depletes dNTPs 

Distort the DNA double 

helix which can block 

the DNA replication and 

transcription and lead to 

DNA strand breaks 

 

Topoisomerase 

poisons  

Camptothecin 

Etoposide 

Inhibit topoisomerase 

enzymes in complex 

with DNA 

SSBs and DSBs 

Ionising radiation  Direct 

 

Indirect production of 

ROS 

SSBs and DSBs 

 

DNA adducts, base 

oxidation, SSBs, DSBs, 

base deamination, DNA-

protein crosslinks 
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Figure 1.1 Structures of DNA damaging agents. The structures of (A) the topoisomerase I 

inhibitor camptothecin; (B) the topoisomerase II inhibitor etoposide; (C) the platinum 

drug cisplatin; (D) the platinum drug carboplatin and (E) the platinum drug oxaliplatin. 

Checkpoint adaptation has previously been shown to occur in cells treated with either 

CPT or etoposide. In this thesis we investigate checkpoint adaptation in human cancer 

cells treated with cisplatin. 
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Figure 1.2 An overview of the DNA damage response (DDR). Cells with damaged DNA 

activate the ataxia telangiectasia mutated (ATM)/ATM and Rad3-related (ATR) kinases. 

These kinases phosphorylate many substrates including proteins involved in checkpoint 

activation, DNA replication and DNA damage repair. Checkpoint kinase 1 (Chk1) and 

checkpoint kinase 2 (Chk2) inactivate the Cdc25 phosphatases and this prevents the 

activation of the cyclin-dependent kinases (Cdks) by maintaining inhibitory 

phosphorylation of these enzymes. ATM also activates p53 which activates and maintains 

the G1/S checkpoint by promoting the transcription of the Cdk inhibitor, p21. Used with 

permission from Swift and Golsteyn, 2014 (Swift and Golsteyn 2014). 
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Figure 1.3 A schematic of checkpoint adaptation. Proliferating cells with damaged DNA 

arrest at the G2/M cell cycle checkpoint. The cells then enter mitosis with damaged DNA. 

The majority of cells die but some may survive, likely with changes to their genome. The 

grey cell with a black nucleus represents a cell surviving checkpoint adaptation with 

micronuclei and a rearranged genome. Modified with permission from Swift and 

Golsteyn, 2014 (Swift and Golsteyn 2014). 
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Figure 1.4 An overview of three different modes of cell death. Three of the major modes 

of cell death are apoptosis, necrosis and mitotic catastrophe. Apoptosis is characterised by 

cell shrinkage and the formation of apoptotic bodies. Necrosis is characterised by cell 

swelling and lysis. Mitotic catastrophe is characterised by entry into mitosis prior to cell 

death. 
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Table 1.2 A table to show treatments that induce mitotic catastrophe in different cell lines. 

Treatment Agent type Cell Type Features of Mitotic 

Catastrophe 

Reference 

Aphidicolin DNA replication 

inhibitor 

HT0180 fibrosarcoma 

P53-/- HCT116 colon 

carcinoma 

Micronucleation 

Analysis of cell cycle phase, 

increased mitotic index 

Chang et al. 1999 

Nitta et al. 2004 

Bleomycin Radiomimetic, 

induces DSBs 

DC-3F Chinese 

hamster lung fibroblast 

Analysis of cell cycle phase, 

micronucleation 

Tounekti et al. 1993 

Cisplatin Crosslinking 

agent 

CHO/UV41 Chinese 

hamster ovary 

 

CHO 

 

 

HCC metastatic 

hepatocellular 

carcinoma 

 

HT0180 

 

M059K glioma 

 

 

SKOV-3 ovarian 

carcinoma 

Rounded morphology, 

analysis of cell cycle phase 

 

Micronucleation 

 

 

Ser10 phospho-H3 positive, 

analysis of cell cycle phase 

Micronucleation 

 

Micronucleation 

 

Micronucleation, high levels 

of cyclin B 

 

Lack of caspase activation, 

micronucleation  

Demarq et al. 1994 

 

 

Krishnaswamy and 

Dewey 1993 

 

Wang et al. 2008 

 

 

 

Chang et al. 1999 

 

Lewis and Golsteyn 

2014 

 

Vakifahmetoglu et 

al. 2008 

CPT Topoisomerase I 

inhibitor 

HT-29 human 

colorectal adeno 

carcinoma 

M059K 

Checkpoint adaptation 

 

Checkpoint adaptation 

Kubara et al. 2012 

Cytarabine Antimetabolite HT0180 Micronucleation Chang et al. 1999 

Doxorubicin Topoisomerase II 

inhibitor 

HT0180 

 

Huh-7 hepatocellular 

carcinoma (HCC) 

 

SNU-354 -398 -449 -

475 HCC 

Micronucleation 

 

Micronucleation, analysis of 

cell cycle phase, lack of 

caspase activation 

Micronucleation 

Chang et al. 1999 

 

Eom et al. 2005 

Etoposide Topoisomerase II 

inhibitor 

HT-29 

 

HT0180 

Checkpoint adaptation 

 

Micronucleation 

Kubara et al. 2012 

 

Chang et al. 1999 

5-FU Antimetabolite COLO320DM, 

HCT116, 

SW480 

Colorectal 

adenocarcinoma 

Analysis of cell cycle phase, 

increased levels of cyclin B 

Yoshikawa et al. 

2001 

Ionising 

radiation 

Physical agent 

that induces 

direct DSBs 

U2OS osteosarcoma 

 

MOLT4 leukaemia  

 

HeLa cervical 

adenocarcinoma 

 

HT0180 

Checkpoint adaptation 

 

Checkpoint adaptation 

 

Analysis of cell cycle phase, 

increased levels of cyclin B 

 

Micronucleation 

Syljuåsen et al. 2006 

 

Rezacova et al. 2011 

 

Ianzini and Mackey 

1998 

 

Chang et al. 1999 

Oxaliplatin Crosslinking 

agent 

TE7 oesophageal 

adenocarcinoma 

Analysis of cell cycle phase, 

multinucleation 

Ngan et al. 2008 

S23906 Atypical 

alkylating agent 

HeLa 

HT-29 

High levels of cyclin B, 

increased Cdk1 activity, 

Ser10 phospho-H3 positive 

Cahuzac et al. 2010 
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CHAPTER 2 
 

Cytotoxic amounts of cisplatin induce either checkpoint adaptation or apoptosis in a 

concentration dependent manner in cancer cells  

 

 

Lucy H. Swift and Roy M. Golsteyn 

 

Short title:  Cisplatin and checkpoint adaptation  

 

This chapter has been submitted to Biology of the Cell for review 
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2.1 Abstract 

Background information: Checkpoint adaptation (entry into mitosis with damaged DNA) 

is a key process that links arrest at the G2/M cell cycle checkpoint and cell death in 

cancer cells. However, it is unknown whether cells treated with the genotoxic agent 

cisplatin undergo checkpoint adaptation and whether checkpoint adaptation is a major 

pathway leading to cell death or not.  We therefore investigated the relationship between 

treatment with cisplatin and cytotoxicity in cancer cells. 

Results: We find that treatment of HT-29 human colorectal adenocarcinoma cells with 

cisplatin can induce cell death by one of two different mechanisms. Cells treated with 30 

µM cisplatin die after undergoing checkpoint adaptation. By 72 h, almost all treated cells 

are positive for histone γH2AX staining and contain high levels of cyclin B1.  A sub-

population of 30 µM rounded cells appears at 72 h and these cells are positive for 

phospho-Ser10 histone H3, have low levels of phospho-Tyr15 cyclin dependent kinase 1, 

high levels of cyclin dependent kinase 1 activity, and checkpoint kinase 1 that is not 

phosphorylated on Ser345. Strikingly, by 96 h of treatment with 30 µM cisplatin, 81% of 

cells enter mitosis before dying. By contrast, after treatment with 100 µM cisplatin, 

nearly all cells die but only 7% of cells enter mitosis. Instead these cells die by apoptosis; 

they are positive for annexin V staining, contain cleaved caspase 3, cleaved caspase 9 and 

cleaved PARP and do not contain Mcl-1.   

Conclusions: Our data demonstrate that cancer cells treated with cisplatin undergo dual 

modes of cell death in a concentration dependent manner. These findings suggest that 

checkpoint adaptation is likely a primary pathway in genotoxic cell death at 
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pharmacological concentrations of cisplatin and that it may be possible to target specific 

cell death pathways to improve the efficacy of genotoxic anti-cancer drugs. 

 

2.2 Introduction 

Cisplatin is a genotoxic agent that is widely used to treat a range of cancers, 

including testicular and ovarian carcinomas (Wheate et al. 2010) and glioblastoma 

(Brandes et al. 2004). Cisplatin forms monofunctional DNA adducts and intra- and inter- 

strand crosslinks (Eastman 1987) that damage DNA and cause cell death (Eastman 2006). 

Cells that are treated with cisplatin initiate a DNA damage response checkpoint before 

dying (Sorenson and Eastman 1988a, 1988b; Demarcq et al. 1994); however, the steps 

that lie between the DNA damage response and cell death following treatment with 

cisplatin are not well understood. 

 Cells that undergo checkpoint adaptation follow three steps: 1) a DNA damage 

induced cell cycle arrest, 2) overcoming this cell cycle arrest and 3) resuming the cell 

cycle with damaged DNA (Toczyski et al. 1997). Checkpoint adaptation may be a process 

that links the G2/M cell cycle arrest and cell death and has been observed in experiments 

in which cancer cell lines were treated with either ionising radiation (Syljuåsen et al. 

2006; Rezacova et al. 2011), camptothecin (CPT) or etoposide (Kubara et al. 2012). It is 

not known whether cisplatin treated cells can undergo checkpoint adaptation and, 

importantly, if it is a major pathway leading to cell death. 

When cells detect damaged DNA they phosphorylate histone H2AX on Ser139, 

which is known as γH2AX (Rogakou et al. 1998).  Damaged DNA can be readily 

detected in cells by the identification of histone H2AX using microscopy or western 
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blotting (Mah et al. 2010; Löbrich et al. 2010). In a parallel pathway, cells initiate the 

G2/M checkpoint by phosphorylating checkpoint kinase 1 (Chk1) on Ser345 and Ser317 

(Liu et al. 2000; Zhao and Piwnica-Worms 2001), which prevents cells from entering 

mitosis. Active Chk1 targets the Cdc25 phosphatases for sequestration and degradation 

(Ferguson et al. 2005; Jin et al., 2008), which in turn prevents the removal of inhibitory 

phosphates on Thr14 and Tyr15 of cyclin-dependent kinase 1 (Cdk1). To activate Cdk1 

and enter mitosis, cells must have low levels of Cdk1 phosphorylated at Tyr15 and high 

levels of cyclin B. When cells are in mitosis they display cell rounding, have condensed 

chromosomes and contain phosphorylated Ser10 histone H3 which can be used to confirm 

that treated cells are in mitosis (Hendzel et al. 1997).  By identifying the status of proteins 

that signal damaged DNA and cell cycle progression, it is possible to detect checkpoint 

adaptation in cells treated with genotoxic agents.   

We report that HT-29 cells undergo checkpoint adaptation when treated with 

cytotoxic amounts of cisplatin. Treated cells signal damaged DNA and arrest in the cell 

cycle. These cells then escape cell cycle arrest and enter mitosis with damaged DNA. 

Strikingly, at concentrations of cisplatin that are above those required for cell death and 

which induce higher levels of histone H2AX signals, cells no longer undergo checkpoint 

adaptation but die by apoptosis. Finally, we show that M059K glioma cells also exhibit 

dual modes of cell death when treated with different concentrations of cisplatin.   

 

2.3 Materials and Methods 

2.3.1 Cell culture 
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The human cell lines HT-29 (ATCC HTB-38) and M059K (ATCC CRL-2365) 

were obtained from the American Type Culture Collection (ATCC). HT-29 cells were 

maintained in RPMI 1640 medium (Gibco; 21870-092) supplemented with 10% (v/v) 

heat inactivated fetal bovine serum (FBS) (Gibco; 12484028) and 1.6 mM GlutaMAX 

(Gibco; 35050-061). M059K cells were maintained in Dulbecco’s Modified Eagle 

Medium/F-12 (Gibco; 11320-082) supplemented with 10% (v/v) heat inactivated FBS 

(Gibco; 12484028), 2 mM Modified Eagle Medium non-essential amino acids (Gibco; 

11140050) and 15 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 

7.4. Cells were grown at 37°C in 5% CO2 and the media were changed every 3-4 d. HT-

29 cells were plated at a density of 3.0 x 10
5
 cells/25 cm

2 
flask and cultured for 72 h prior 

to treatment. M059K cells were plated at a density of 7.5 x 10
5
/75 cm

2
 flask and cultured 

for 24 h prior to treatment. The compound cisplatin (Sigma; 479306-1G) was dissolved in 

dimethyl sulphoxide (DMSO) (Sigma-Aldrich; D2438) to a concentration of 100 mM and 

stocks were freshly made every two weeks. CPT (Sigma; 7689-03-4) and nocodazole 

(Sigma; M1404-10MG) were dissolved in DMSO to a concentration of 10 mM and 200 

μg/ml respectively. Staurosporine (Cayman Chemicals; 81590-250) and H2O2 (VWR; 

BDH7742-1) were diluted in DMSO prior to use. H2O2 was stored at 4°C and all other 

compounds were stored at -20°C until use. Not treated cells were treated with the solvent 

only (0.1% (v/v) DMSO). 

2.3.2 Cytotoxicity assay 

The cytotoxicity of cisplatin was measured by the MTT (3-((4,5)-dimethylthiazol-

2-yl)-2,5-diphenyl-tetrazolium) assay (Sigma-Aldrich; M2128-1G). HT-29 cells were 

plated at 3.8 x 10
5
 cells/96 well culture plate and cultured at 37°C for 72 h prior to 

treatment. M059K cells were plated at 2.5 x 10
5 

cells/96 well culture plate and cultured at 
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37°C for 24 h prior to treatment. All treatments were run in triplicate at 24, 48, 72 and 96 

h and experiments were performed three times. After the specified treatment time, 20 µl 

MTT solution (5 mg/ml MTT in phosphate buffered saline (PBS) (137 mM NaCl, 3 mM 

KCl, 100 mM Na2HPO4, 18 mM KH2PO4) was added to the media in each well and the 

plates were incubated at 37°C for 3.5 h. The media were then aspirated and 100 µl MTT 

solvent (4 mM HCl, 0.1% (v/v) octylphenoxypolyethoxyethanol, in isopropanol) was 

added to each well. Plates were placed on a shaker for 30 min in the dark, and absorbance 

was measured at 590 nm using a BioTek microplate spectrophotometer powered by Eon 

software. Results were expressed as IC50 concentrations; the concentration of the 

compound that reduced the absorbance of MTT by 50%, by comparison to 0.1% (v/v) 

DMSO treated cells. The normalised percent absorbance was calculated as shown: 

Normalised percent absorbance = (absorbance/DMSO absorbance) x 100 

The log concentrations of the compound were plotted against the normalised 

percent absorbance using Microsoft Excel software. Analysis was performed with 

GraphPad Prism 5 software, using non-linear regression (log(inhibitor) versus normalised 

response), to estimate the IC50 concentrations. Standard curves were plotted using the 

equation: 

Y = maximum + (maximum – minimum)/(1+10
(x-LogIC50)

) 

where maximum is the percentage of viable cells after treatment with 0.1% DMSO, 

minimum is the percentage of viable cells after treatment with the highest concentration 

of the genotoxic molecule and x is the log10 value of the treatment concentration. 

2.3.3 Light microscopy 
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HT-29 cells were seeded at 1.0 x 10
5
/well in a 6 well culture plate and incubated 

at 37°C for 72 h prior to treatment. Images were captured at room temperature with an 

Infinity 1 camera powered by Infinity Capture imaging software (Lumenera Corporation) 

on an Olympus CKX41 inverted microscope using an Olympus LUCPlanFLN 20x 

objective with 0.45 numerical aperture. Images were processed using Adobe Photoshop 

(CC 2014.1.0). Rounded cells were counted using Image J software (IJ 1.46r). 

2.3.4 Flow cytometry 

HT-29 cells were plated at 1 x 10
6
 cells/75 cm

2
 flask and incubated at 37°C for 72 

h prior to treatment. Total cell cultures were collected by trypsinisation while rounded 

mitotic cells were collected by mechanical shake-off. Cells were washed with 1% (w/v) 

bovine serum albumin (BSA) in PBS and fixed in ice cold 90% ethanol for at least 24 h. 

Fixed samples were stored at -20°C until use. For analysis, samples were centrifuged at 

750 x g for 5 min at 4°C and washed with ice cold PBS. Cells were then washed twice 

with ice cold wash buffer (1% (w/v) BSA in PBS) before being incubated with labelling 

buffer (1% (w/v) BSA, 20 μg/ml propidium iodide (PI) (Life technologies; P1304MP) 

and 200 μg/ml RNAse A (Sigma; R6513-250MG) in PBS) for 30 min. Samples were 

analysed by a FACSCanto II flow cytometer (BD Biosciences) using BD FACSDiva 

software (BD Biosciences). Gating was set using a not treated sample and experiments 

were performed three times. 

2.3.5 Immunofluorescence microscopy  

HT-29 cells were plated on glass coverslips at 1.0 x 10
5
/well in a 6 well culture 

plate and incubated at 37°C for 72 h prior to treatment. After treatment, cells were fixed 
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at room temperature for 20 min in 3% (v/v) formaldehyde (Ted Pella Inc; 18505), diluted 

in PBS. Fixation was quenched with 50 mM NH4Cl in PBS and cells were permeabilised 

for 5 min using 0.2% (v/v) Triton X-100 in PBS and blocked for 1 h with 3% (w/v) BSA 

in PBS-T (0.1% (v/v) Tween-20 diluted in PBS). Cells were then incubated with primary 

antibodies as described: anti-histone γH2AX (Millipore; 05-636; 1:400) for 1 h at room 

temperature; anti-cyclin B1 (Santa Cruz Biotechnology; SC-752; 1:100) for 2 h at room 

temperature or anti-phospho-Ser10 histone H3 (Millipore; 06-570(CH); 1:1000) for 18 h 

at 4°C. After washing with PBS-T, cells were incubated with secondary antibodies for 2 h 

at room temperature as follows: Alexa Fluor 488-conjugated anti-mouse (Life 

Technologies; A11059; 1:400) for anti-histone γH2AX and Texas Red-conjugated anti-

rabbit (Jackson ImmunoResearch; 111-075-003; 1:400) for anti-phospho-Ser10 histone 

H3 and anti-cyclin B1. Nuclei were stained with 300 nM DAPI (4′,6-diamidino-2-

phenylindole) in PBS for 15 min and coverslips were mounted onto microscope slides 

using ProLong Gold Antifade reagent (Molecular probes; P36934). Cells were observed 

at room temperature on an Olympus BX41 microscope using either an Olympus UPlanFL 

N 20x objective with 0.50 numerical aperture or an Olympus UPlanFL N 60x objective 

with 1.25 numerical aperture. Images were captured using an Infinity 3 camera operated 

by Infinity Capture imaging software (Lumenera Corporation). Images were prepared 

using Adobe Photoshop (CC 2014.1.0) software. Cells positive for histone γH2AX, 

phospho-Ser10 histone H3 and cyclin B1 were counted using Image J (IJ 1.46r) software. 

To prevent the detection of background histone γH2AX staining, the signal from not 

treated cells was set to zero using exposure settings on the microscope camera (Borgne et 

al. 2006). At least 500 cells were counted for each treatment, unless otherwise stated, and 

experiments were performed three times. 
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2.3.6 Mechanical shake-off 

HT-29 cells were plated at 1 x 10
6
 cells/75 cm

2
 flask and incubated at 37°C for 72 

h prior to treatment. After treatment, medium was aspirated and cells were gently washed 

with PBS. Fresh medium was added at 1 ml/25 cm
2
 and the flask was tapped with 

medium force on all edges to extract rounded cells from flattened cells. 

2.3.7 Extract preparation 

HT-29 cells were plated at 1 x 10
6
 cells/75 cm

2
 flask and incubated at 37°C for 72 

h prior to treatment. After treatment, cells were either trypsinised or collected by 

mechanical shake-off and washed with ice cold PBS. Cells were re-suspended in ice cold 

lysis buffer (50 mM HEPES, pH 7.4, 50 mM NaF, 10 mM  EGTA (ethylene glycol 

tetraacetic acid), 50 mM β-glycerophosphate, 1 mM ATP, 1 mM DTT (dithiothreitol), 1% 

Triton X-100 (v/v), 10 μg/ml RNase A (Sigma-Aldrich; R6513-250MG), 0.4 U/ml DNase 

I (Invitrogen; I354Ba) and protease inhibitor cocktail (Roche; 11836170001)) at a 

concentration of 20,000 cells/μl, passed through a 26-gauge needle five times and 

incubated on ice for 30 min. The suspension was centrifuged at 10,000 x g for 10 min at 

4°C, aliquoted into 1.5 ml microfuge tubes and stored at -80°C. Extracts were either used 

for electrophoresis after being boiled for 5 min in the presence of 2x SDS (sodium 

dodecyl sulphate) sample buffer (20% (v/v) glycerol, 10% (v/v) DTT, 6% (w/v) SDS, 500 

mM Tris, pH 6.8) or used for the detection of Cdk1 activity. The concentration of proteins 

in each extract was quantified using the Agilent 2100 Bioanalyzer and samples were 

prepared using the Agilent Protein 230 kit: 4 µl of protein sample and 2 µl denaturing 

solution were mixed in a 0.5 ml microfuge tube and incubated at 95°C for 5 min. The 

samples were then briefly centrifuged and 84 µl deionised water was added. Samples 
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were mixed by vortexing and loaded onto the Agilent Protein 230 chip which was loaded 

into the Agilent 2100 Bioanalyzer. Samples were analysed using Agilent Expert 2100 

software to quantify the amount of protein present. 

2.3.8 Electrophoresis and western blotting 

Cell extracts were separated on 10% (v/v) SDS-PAGE (poly-acrylamide gel 

electrophoresis) gels with 4% (v/v) stacking gels. Precision Plus Dual Colour marker 

(BioRad; 161-0394) was used to determine molecular weight in kilodaltons (kDa). 

Proteins were transferred onto nitrocellulose membranes by wet transfer (BioRad) for 

16.5 h at 30 volts. Transfer was confirmed using Ponceau S stain (0.1% (w/v) in 5% 

acetic acid) and membranes were blocked with either 5% (w/v) low fat milk or 2% (w/v) 

BSA in Tris buffered saline with Tween-20 (TBS-T) (50 mM Tris base, 150 mM NaCl 

and 0.1% (v/v) Tween-20, pH 7.6) for 2 h. Membranes were then incubated with the 

following primary antibodies at 4°C overnight: anti-Cdk1/Cdc2 (Signalway Antibodies; 

21236-2; 1:500); anti-phospho-Tyr15 Cdk1/Cdc2 (Signalway Antibodies; 11244-2; 

1:500); anti-Chk1 (Santa Cruz Biotechnology; sc-8408; 1:200); anti-phospho-Ser345 

Chk1 (Cell Signaling Technology; 2348S; 1:1000); anti-cyclin B1 (Santa Cruz 

Biotechnology; sc-245; 1:200); anti-actin (Santa Cruz Biotechnology; sc-58673; 1:200); 

anti-cleaved PARP (Asp214) (Cell Signaling Technology; 5625; 1:100); anti-cleaved 

caspase 9 (Asp330) (Cell Signaling Technology; 9501S; 1:100); anti-Mcl-1 (Santa Cruz 

Biotechnology; sc-819; 1:100); anti-caspase 3 p17 (Santa Cruz Biotechnology; sc-

271028; 1:100) and anti-histone γH2AX (Millipore; 05-636; 1:200). The membranes 

were then washed with TBS-T and incubated with the following secondary antibodies for 

1 h at room temperature: alkaline phosphatase coupled anti-mouse IgG (Promega; 
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PRS3721; 1:2500) or alkaline phosphatase coupled anti-rabbit IgG (Promega; PRS3731; 

1:2500). The membranes were washed with TBS-T and developed using an alkaline 

phosphatase conjugate substrate kit (BioRad; 172-1063). Development was stopped with 

Tris-EDTA (ethylenediaminetetraacetic acid) buffer (10 mM Tris base, 1 mM EDTA, pH 

8.0). Western blot analyses were performed three times. In some analyses, the signals 

were quantified for each treatment using Image J software; the signal from each treatment 

was normalised to the corresponding actin signal, to control for differences in protein 

loading. The signal from each treatment was then normalised to the not treated signal, 

which was set to represent one arbitrary unit. 

2.3.9 Cdk1 Kinase Assay 

Cdk1 phosphorylation reactions (20 μl total volume) were prepared as follows: 10 

μl 2x Cdk1 phosphorylation buffer (50 mM β-glycerophosphate pH 7.4, 10 mM MgCl2, 

10 mM NaF, 1 mM DTT) with 200 μM ATP and 5 μl of either 80 ng/μl glutathione S-

transferase (GST) or GST-PP1C-S artificial substrates (Lewis et al. 2013). Reactions 

were initiated by adding 5 μl of whole cell extracts diluted in cold lysis buffer (50 mM 

HEPES, pH 7.4, 50 mM NaF, 10 mM EGTA, 50 mM β-glycerophosphate, 1 mM ATP, 1 

mM DTT, 1% Triton X-100 (v/v), 10 μg/ml RNase A (Sigma-Aldrich; R6513-250MG), 

0.4 U/ml DNase I (Invitrogen; I354Ba) and protease inhibitor cocktail (Roche; 

11836170001)) to 100 lysed cells/μl. Reactions were incubated for 5 min at 30°C and 

were stopped by adding an equal volume of 2x SDS sample buffer and heating at 95°C 

for 5 min. Reaction mixtures were separated on 12% (v/v) SDS-PAGE gels. Proteins 

were transferred to nitrocellulose membranes with a semi-dry electroblotter system 

(BioRad) for 40 min at 25 volts. The membranes were blocked with either 5% (w/v) low 
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fat milk or 5% (w/v) BSA in TBS-T and incubated overnight at room temperature with 

either anti-phospho-Thr320 PP1Cα (Abcam; Ab62334; 1:300,000) or anti-GST (Sigma-

Aldrich; G7781; 1:20,000) primary antibodies. After washing with TBS-T, the 

membranes were incubated with alkaline phosphatase coupled anti-rabbit IgG (Promega; 

PRS3731; 1:2500). The membranes were washed with TBS-T and developed using an 

alkaline phosphatase conjugate substrate kit (BioRad; 172-1063). Development was 

stopped using Tris-EDTA buffer. The membranes were then analysed using Image J (IJ 

1.46r) software to calculate the relative signal intensity of the bands. The signal from each 

phospho-Thr320 PP1Cα band was normalised to the signal from the corresponding band 

of GST, to control for differences in protein loading.  The signal from each treatment was 

then normalised to the not treated signal, which was set to represent one arbitrary unit. 

Cdk1 assays were performed three times. 

2.3.10 Time-lapse video microscopy 

HT-29 cells were plated at 3.0 x 10
5
/25 cm

2
 flask and incubated at 37°C for 72 h 

prior to treatment. M059K cells were plated at 2.0 x 10
5
/25 cm

2 
and incubated at 37°C for 

24 h prior to treatment. Time-lapse video microscopy images were collected from the 

start of treatment, using a Lumascope 500 microscope (etaluma) powered by LumaView 

software (etaluma; V.13.4.25.99). Images were captured at 37°C every 10 min for 96 h 

using a Meiji Techno Japan UPlan 20x objective with 0.40 numerical aperture. Cells were 

manually scored for a rounded morphology, indicative of mitosis, or not between 0 and 

96 h. Cells that left the field of view before rounding were not counted. At least 250 HT-

29 cells and 50 M059K cells were counted for each treatment. Experiments were 

performed three times. 
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2.3.11 Annexin V and propidium iodide staining 

 HT-29 cells were plated at 0.3 x 10
6
 cells/25 cm

2
 flask and incubated at 37°C for 

72 h prior to treatment. Cells were processed using the RAPID Annexin V Binding 

protocol provided with the Annexin V-Biotin Apoptosis Detection Kit (EMD Millipore; 

PF036). For the detection of annexin V positive cells, cells were collected by 

trypsinisation 24, 48, 72, 96 and 120 h after treatment. Cells were re-suspended in media 

to a final concentration of 1 x 10
6
 cells/ml and 0.5 ml was transferred to a microfuge tube. 

Ten μl media binding reagent and 1.25 μl Annexin V-Biotin were added and samples 

were incubated in the dark at room temperature for 15 min. Samples were then 

centrifuged at 1000 x g for 5 min at room temperature and the media were aspirated. The 

cells were re-suspended in 0.5 ml cold 1x binding buffer and 15 μl streptavidin Alexa 

Fluor 488 conjugate (Life technologies; S-11223) at 15 μg/ml in 1x binding buffer was 

added. For the detection of PI positive cells, cells were collected by trypsinisation 24, 48, 

72, 96 and 120 h after treatment. Cells were re-suspended at 1 x 10
6
/ml

 
in cold 1x binding 

buffer, 0.5 ml was transferred to a microfuge tube and 10 μl 30 mg/ml PI diluted in PBS 

was added. All samples were immediately analysed using an Olympus BX41 microscope 

and images were captured using an Infinity 3 camera operated by Infinity Capture 

imaging software (Lumenera Corporation). Experiments were performed three times. 

2.3.12 Statistical analysis 

Data were analysed using Microsoft Excel 2010 software. Data were plotted as 

means from three separate experiments ± standard errors of the means. Statistical 

significance was calculated using the student’s t-test for two paired sample means and 

values were considered significantly different when p < 0.05. 
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2.4 Results 

2.4.1 Identification of cytotoxic effects of cisplatin upon HT-29 cells 

We identified concentrations of cisplatin that were cytotoxic to HT-29 cells, to 

investigate if cisplatin induces checkpoint adaptation. HT-29 cells were treated with 

different concentrations of cisplatin (0.3-300 μM) for 24, 48, 72 and 96 h and cell 

viability was measured using the MTT assay (Figure 2.1). The results from each 

treatment were normalised to treatment with 0.1% (v/v) DMSO.  The IC50 values ranged 

from 120 μM at 24 h to 5 μM at 96 h (Table 2.1), revealing that the cells were sensitive to 

cisplatin in time and concentration dependent manners. We identified two concentrations 

of cisplatin that were cytotoxic to HT-29 cells, 30 and 100 μM. Cells treated with 30 μM 

cisplatin were 83 ± 3% viable at 24 h but only 17 ± 3% viable at 96 h indicating that cells 

viable at 24 h were destined to die by 96 h, and providing a window of time for the study 

of cisplatin induced cell death.  Cells treated with 100 μM cisplatin were 49 ± 3% viable 

at 24 h, 10 ± 2% viable at 72 h and 5 ± 1% viable at 96 h.  

2.4.2 HT-29 cell populations treated with either 30 or 100 μM cisplatin contain different 

amounts of damaged DNA 

Knowing that cisplatin is a genotoxic agent and that cells treated with 30 and 100 

μM die at different times, we compared the timing and levels of DNA damage signals.  

HT-29 cells were treated with either 30 or 100 μM cisplatin and analysed for histone 

γH2AX staining at 24, 48 and 72 h by immunofluorescence microscopy (Figure 2.2A). 

Not treated and 50 nM CPT treated cells were used as control treatments. The percentages 

of cells positive for histone γH2AX staining were determined using Image J software 

(Figure 2.2B). Cells were considered positive for histone γH2AX staining when they 
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exhibited a staining intensity greater than background levels, as determined by Image J 

software.  At 24 h, 56 ± 4% of the 30 μM cisplatin treated cells were positive for histone 

γH2AX staining, whereas 93 ± 3% of 100 μM treated cells contained histone γH2AX.  By 

48 h, however, 30 and 100 μM treated populations had similar numbers of cells that 

stained positive for histone γH2AX (96 ± 1% and 94 ± 2%, respectively). By 72 h, the 30 

μM cisplatin treated cells remained positive for histone γH2AX staining (93 ± 4%), 

whereas the majority of 100 μM treated cells were dead and showed variable staining.  As 

expected, not treated cells rarely displayed histone γH2AX staining (2 ± 1% at 24 h) and 

CPT treated cells were positive for histone γH2AX at all times tested. These data confirm 

that treatment with cisplatin damages DNA at the cytotoxic concentrations of 30 and 100 

μM cisplatin, although the histone γH2AX staining appeared earlier following treatment 

with 100 μM cisplatin.  

We compared the relative levels of histone γH2AX by western blotting in not 

treated, 30 μM and 100 μM cisplatin treated cells at different times (Figure 2.3) (Lopez et 

al. 2012). Actin was used as a loading control (Figure 2.3A).  Cells treated for 72 h with 

30 μM cisplatin had a histone γH2AX signal intensity of 7 ± 1 arbitrary units. By 

contrast, cells treated with 100 μM cisplatin for 24 and 48 h had histone γH2AX signal 

intensities of 11 ± 2 and 12 ± 2 arbitrary units respectively. These data indicate that 100 

μM cisplatin treated cells have almost double the amount of damaged DNA prior to dying 

by comparison to cells treated with 30 μM cisplatin.  

2.4.3 HT-29 cells treated with either 30 or 100 μM cisplatin arrest at different phases of 

the cell cycle 
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We then compared the effects of the two cytotoxic concentrations of cisplatin 

upon the cell cycle by flow cytometric analysis of DNA amounts. HT-29 cells were 

treated for 72 h with 30 μM cisplatin and for 24 and 48 h with 100 μM cisplatin (Figure 

2.4). Not treated, mitotic (200 ng/ml nocodazole treated) and 50 nM CPT treated cells 

were used as controls. In the not treated sample 69 ± 3% of cells were in the G1 phase 

and 13 ± 3% of cells were in G2/M phases, whereas 96 ± 3% nocodazole treated cells and 

63 ± 12% of CPT treated cells were in G2/M phases. In the 30 μM cisplatin treated 

sample only 14 ± 5% of cells were in G1 phase and 48 ± 8% were in G2/M phases (Table 

2.2). By contrast, 77 ± 5% of 24 h 100 μM cisplatin treated cells and 76 ± 5% of 48 h 100 

μM cisplatin treated cells were in G1 phase of the cell cycle. These data show that cells 

treated with 30 μM cisplatin arrest predominantly in the G2/M-phases prior to dying 

whereas 100 μM cisplatin treated cells do not progress in the cell cycle before dying.  

2.4.4 HT-29 cells treated with 30 μM cisplatin acquire a rounded morphology whereas 

100 μM cisplatin treated cells do not 

 During the course of our experiments with different cytotoxic amounts of 

cisplatin, we observed that some treated cells displayed a rounded morphology prior to 

dying. We investigated the timing and number of rounded cells present in populations 

either not treated, treated with a range of concentrations of cisplatin or treated with CPT 

(Figure 2.5).  The total number of cells present in the not treated cell population increased 

between 24 and 96 h and rounded cells were present at all times. Rounded cells were 

present 48 h after treatment with CPT (10 ± 2%), as previously reported (Kubara et al. 

2012). In the 10 and 30 μM cisplatin treated cell populations many rounded cells were 

present by 72 h (12 ± 2% and 7 ± 1% respectively). Cell number decreased between 72 
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and 96 h in the 30 μM cisplatin treated cell population. This confirmed that 30 μM 

cisplatin was cytotoxic to HT-29 cells at 96 h. By contrast, cells treated with 100 μM 

cisplatin did not display a rounded morphology after treatment (1 ± 0.4% at 24 h, 1 ± 

0.2% at 48 h and 0.1 ± 0.01 at 72 h). Few 100 μM cisplatin treated cells were present 96 h 

after treatment, consistent with the toxicity of 100 μM cisplatin to HT-29 cells. As cells 

died they detached from the culture plates and were lost during media changes. Cell 

rounding is a morphology change associated with cells in mitosis (Kubara et al. 2012; 

Cadart et al. 2014). These data therefore provided a first indication that cells treated with 

30 μM cisplatin might enter mitosis before dying, whereas 100 μM cisplatin treated cells 

did not enter mitosis before dying. 

2.4.5 HT-29 cells treated with 30 μM cisplatin have high levels of cyclin B1  

The cytotoxicity, DNA damage signalling, and morphology data suggested that 

cells treated with 30 μM cisplatin were undergoing checkpoint adaptation before dying, 

whereas 100 μM cisplatin treated cells were not undergoing checkpoint adaptation. If 

cells treated with 30 μM cisplatin were undergoing checkpoint adaptation we predicted 

that they would contain proteins and protein modifications required for mitosis.  HT-29 

cells were treated with either 30 or 100 μM cisplatin and analysed for cyclin B1 staining 

at 24, 48 and 72 h by immunofluorescence microscopy (Figure 2.6A). Not treated and 50 

nM CPT treated cells were used as control treatments. The percentages of cells staining 

positive for cyclin B1 were determined using Image J software (Figure 2.6B). 

 A small number of not treated cells were positive for cyclin B1 staining at 24 h 

(11 ± 0.7%), 48 h (14 ± 2%) and 72 h (11 ± 1%). As expected, most of the CPT treated 

cells were positive for cyclin B1 at 48 h (95 ± 1%) and this was maintained at 72 h (93 ± 
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1%). The number of 30 μM cisplatin treated HT-29 cells staining positive for cyclin B1 

increased from 24 ± 3% at 24 h to 95 ± 1% at 48 and 72 h. By contrast only a small 

number of 100 μM cisplatin treated cells stained positive for cyclin B1 (14 ± 1% at 24 h, 

17 ± 5% at 48 h and 7 ± 1% at 72 h). 

2.4.6 HT-29 cells treated with 30 μM cisplatin can enter mitosis 

We reasoned that because cells treated with 30 μM cisplatin had high levels of 

cyclin B1 and displayed a rounded morphology, then cells might be entering mitosis. HT-

29 cells were treated with either 30 or 100 μM cisplatin and analysed for phospho-Ser10 

histone H3 staining at 24, 48 and 72 h by immunofluorescence microscopy (Figure 2.7A). 

Histone H3 phosphorylated at Ser10 is present in cells in mitosis (Hendzel et al. 1997) 

and in cells undergoing checkpoint adaptation (Kubara et al. 2012). Not treated and 50 

nM CPT treated cells were used as control treatments (Figure 2.7B).  The percentages of 

not treated cells staining positive for phospho-Ser10 histone H3 were 6 ± 1% at 24 h, 5 ± 

1% at 48 h and 2 ± 0.5% at 72 h. As expected, at 48 and 72 h, 8 ± 0.5% and 9 ± 1% of 

CPT treated cells were positive for phospho-Ser10 histone H3. The number of 30 μM 

cisplatin treated HT-29 cells staining positive for phospho-Ser10 histone H3 increased 

from 0.2 ± 0.07% at 24 h and 1 ± 0.3% at 48 h to 7 ± 1% at 72 h. By contrast, only a 

small number of 100 μM cisplatin treated cells stained positive for phospho-Ser10 histone 

H3 after treatment (0 ± 0.05% at 24 h, 2 ± 0.2% at 48 h and 0.4 ± 0.3% at 72 h) 

2.4.7 Cdk1 is dephosphorylated on Tyr15 in rounded 30 μM cisplatin treated HT-29 cells 

In addition to having cyclin B1, cells that are in mitosis have low levels of Cdk1 

phosphorylated on Tyr15. To investigate if the rounded cells present 72 h after treatment 
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with 30 μM cisplatin were mitotic, we used mechanical shake-off to separate the 30 μM 

cisplatin treated culture into a rounded cell population and an adherent cell population 

and prepared cell extracts.  It was not possible to do this with the 100 μM treated 

population because no rounded cells were present.  We then used western blotting to 

compare levels of Cdk1, phospho-Tyr15 Cdk1, cyclin B1 and actin, which was used as a 

loading control (Figure 2.8A). Not treated and 200 ng/ml nocodazole treated (mitotic) cell 

extracts were used as controls.  

As expected, not treated cells contained Cdk1 that was phosphorylated on Tyr15 

and were not positive for cyclin B1. The nocodazole treated cells contained Cdk1, which 

was not phosphorylated on Tyr15, and were positive for cyclin B1, also as expected. The 

30 μM cisplatin treated total and interphase cells contained Cdk1 that was phosphorylated 

on Tyr15 and were positive for cyclin B1. By contrast, the 30 μM cisplatin treated 

rounded cells contained Cdk1 with decreased levels of Tyr15 phosphorylation and were 

positive for cyclin B1.  

2.4.8 Chk1 is dephosphorylated on Ser345 in rounded 30 μM cisplatin treated HT-29 

cells 

Chk1 is activated by phosphorylation on Ser345 in response to damaged DNA and 

is responsible for the initiation and maintenance of the G2/M checkpoint (Liu et al. 2000). 

To test if 30 μM cisplatin treated cells arrested at and then abrogated the G2/M 

checkpoint, we used western blotting to detect levels of Chk1 and phospho-Ser345 Chk1 

(Figure 2.8B). Extracts were prepared as in Figure 2.8A. Actin was used as a loading 

control. Both the not treated and nocodazole treated mitotic cells contained Chk1, which 

was not phosphorylated on Ser345. The 30 μM cisplatin treated total and interphase cells 
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contained Chk1 that was phosphorylated on Ser345. Strikingly, Chk1 was 

dephosphorylated on Ser345 in the 30 μM cisplatin treated mitotic cells. These results are 

consistent with the observation that the rounded cells present following treatment with 30 

μM cisplatin are in mitosis.  

2.4.9 Cdk1 is active in rounded 30 μM cisplatin treated HT-29 cells 

To confirm that the rounded cells were in mitosis we measured activity of the 

Cdk1-cyclin B complex in 72 h 30 μM cisplatin treated total, interphase and mitotic cell 

extracts. The cell extracts were incubated with glutathione S-transferase-PP1Cα (GST-

PP1Cα), an artificial Cdk1 substrate containing a Thr320 PP1Cα site that is 

phosphorylated by active Cdk1 (Lewis et al. 2013). The cell extracts were also incubated 

with GST alone, a negative control substrate that lacked the Thr320 PP1Cα 

phosphorylation site. Not treated cell extracts, nocodazole treated (mitotic) cell extracts 

and extraction buffer were used as controls. The levels of phospho-Thr320 PP1Cα were 

analysed by western blotting (Figure 2.9A). Levels of GST were also detected, as a 

loading control (Figure 2.9B).  

 The phospho-Thr320 PP1Cα signal for the extraction buffer was 0.9 ± 0.3 

arbitrary units, whereas the phospho-Thr320 PP1Cα signal for the nocodazole treated cell 

extracts was 23 ± 6 arbitrary units. The phospho-Thr320 PP1Cα signals for the 30 μM 

cisplatin treated total and interphasic cell extracts were similar at 5 ± 0.7 and 4 ± 1.7 

arbitrary units, respectively. Noticeably, the phospho-Thr320 PP1Cα signal for the 30 μM 

cisplatin treated mitotic cell extracts was high at 20 ± 5 arbitrary units, a value similar to 

that of the nocodazole extract. The high phospho-Thr320 PP1Cα signal detected for 30 

μM cisplatin treated mitotic cell extracts indicated that these cells contained active Cdk1.  
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2.4.10 HT-29 cells treated with 30 μM cisplatin have condensed chromosomes that are 

positive for damaged DNA 

We were able to detect that cells treated with a cytotoxic concentration of cisplatin 

(30 μM) have damaged DNA, arrest in the cell cycle and then enter mitosis. These are 

events found in cells that undergo checkpoint adaptation. However, it remained to be 

determined whether the mitotic cells contained damaged DNA or not. We therefore 

investigated if mitotic 30 μM cisplatin treated cells were positive for histone γH2AX 

staining. First, to verify that cells with condensed chromosomes were mitotic, we used 

immunofluorescence microscopy to detect phospho-Ser10 histone H3 staining (Figure 

2.10A). HT-29 cells were either not treated, treated with 50 nM CPT for 48 h or treated 

with 30 μM cisplatin for 72 h. Cells with condensed chromosomes from the not treated, 

CPT treated and 30 μM cisplatin treated cell populations were positive for phospho-Ser10 

histone H3 staining. This confirmed that cells with condensed chromosomes were mitotic. 

We then stained 30 μM cisplatin treated cells with DAPI and with histone γH2AX 

antibodies and observed them by immunofluorescence microscopy to detect condensed, 

damaged chromosomes (Figure 2.10B). Cells with condensed chromosomes from not 

treated and 50 nM CPT treated cell populations were used as controls (Figure 2.10C). All 

of the CPT treated cells with condensed chromosomes were positive for histone γH2AX 

staining (100 ± 0%). Nearly all of the 72 h 30 μM cisplatin treated cells with condensed 

chromosomes were positive for histone γH2AX staining (97 ± 2%). These data confirm 

that 30 μM cisplatin treated cells are in mitosis with damaged DNA, the final step of 

checkpoint adaptation. 
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2.4.11 The majority of HT-29 cells treated with 30 μM cisplatin enter mitosis while the 

majority of 100 μM cisplatin treated cells do not 

Having demonstrated that treatment with 30 μM cisplatin induces cells to undergo 

checkpoint adaptation, we asked what fraction of a treated population undergoes 

checkpoint adaptation.   To answer this question we used time-lapse video microscopy to 

observe cell rounding in 30 μM cisplatin treated cells. Images were captured every 10 min 

for 96 h and individual cells were manually observed to detect the presence or absence of 

cell rounding. The percentages of cells that entered mitosis post-treatment were then 

determined. Not treated cells were used as a control (Figure 2.11). The percentages of cell 

death were calculated from the MTT cytotoxicity data presented in Figure 2.1. As 

previously described, the cytotoxicity data were normalised so that not treated cells 

represented 0% cell death. Nearly all of the not treated cells (99 ± 0.06%) entered mitosis 

over the 96 h observation period. Strikingly, the majority of 30 μM cisplatin treated cells 

were dead at 96 h (83 ± 3%) and 81 ± 3% of 30 μM cisplatin treated cells entered mitosis 

after treatment. We also observed that the majority of the 30 μM cisplatin treated cells 

that entered mitosis died in mitosis.  By contrast, only 7 ± 0.04% of the 100 μM treated 

sample entered mitosis. This suggested that 30 μM cisplatin treated cells died by a 

different mode of cell death by comparison to 100 μM treated cells.  

2.4.12 HT-29 cells treated with 100 μM cisplatin are positive for annexin V staining 

We reasoned that if 100 μM cisplatin treated cells were not entering mitosis before 

dying, then they could be dying by either apoptosis or necrosis. We observed cell 

morphology by light microscopy and combined this with immunofluorescence 

microscopy to detect annexin V and PI staining (Figure 2.12). Not treated cells were used 
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as a negative control, 1 μM staurosporine treated cells were used as a positive control for 

apoptosis (Qiao et al. 1996) and 5 mM hydrogen peroxide (H2O2) treated cells were used 

as a positive control for necrosis (McKeague et al. 2003). Cells were treated for 24, 48, 

72, 96 and 120 h, collected and stained for annexin V. Cells were then analysed by light 

and immunofluorescence microscopy and representative images of cells 48 h after 

treatment are shown (Figure 2.12). This procedure was then repeated except that cells 

were stained with PI instead of for annexin V. 

At 24 h, some staurosporine treated cells were positive for annexin V staining, no 

cells were positive for PI staining and some cells treated with 100 μM cisplatin and 

staurosporine displayed cell blebbing (unpublished data). At 48 h, not treated cells did not 

display cell blebbing and were negative for both annexin V and PI staining. Some 

staurosporine treated cells displayed cell blebbing and these cells were positive for 

annexin V staining and negative for PI staining. Cells treated with H2O2 were 

morphologically distinct from the staurosporine treated cells that displayed cell blebbing 

and were negative for annexin V staining. However, some H2O2 treated cells were 

positive for PI staining. Cells treated with 30 μM cisplatin did not demonstrate cell 

blebbing and were negative for both annexin V and PI staining. By contrast some 100 μM 

cisplatin treated cells displayed cell blebbing and these cells were positive for annexin V 

staining and negative for PI staining. The same results were observed at 72 h 

(unpublished data). Observation of cells at 96 and 120 h demonstrated that 30 μM 

cisplatin treated cells did not stain positive for annexin V or PI at either of these times 

(unpublished data). These data suggested that 100 μM cisplatin treated cells were dying 

by apoptosis whereas 30 μM cisplatin treated cells were not dying by apoptosis. 
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2.4.13 HT-29 cells treated with 100 μM cisplatin die by apoptosis 

 To explore further whether 100 μM cisplatin treated cells were undergoing 

apoptosis while 30 μM cisplatin treated cells were not, we used western blotting to detect 

levels of proteins associated with apoptosis (Figure 2.13). Total 72 h 30 μM cisplatin, 24 

h 100 μM cisplatin and 48 h 100 μM cisplatin treated cell extracts were prepared. Not 

treated and 24 h 1 μM staurosporine treated cell extracts were used as controls. Cell 

extracts were analysed by western blotting to detect levels of cleaved poly-ADP ribose 

polymerase (PARP), pro-caspase 3, cleaved caspase 3, cleaved caspase 9, Mcl-1 and 

actin. Actin was used as a loading control.  

Not treated cells were negative for cleaved PARP, cleaved caspase 3 and cleaved 

caspase 9 but were positive for pro-caspase 3 and Mcl-1. Staurosporine treated cells were 

positive for cleaved PARP, cleaved caspase 3 and cleaved caspase 9, had slightly 

decreased levels of pro-caspase 3 and were negative for Mcl-1. Cells treated for 72 h with 

30 μM cisplatin and for 24 h with 100 μM cisplatin were negative for cleaved PARP, 

cleaved caspase 3 and cleaved caspase 9 and were positive for pro-caspase 3 and Mcl-1. 

Noticeably, cells treated for 48 h with 100 μM cisplatin were positive for cleaved PARP, 

cleaved caspase 3 and cleaved caspase 9, had slightly decreased levels of pro-caspase 3 

and were negative for Mcl-1. These data indicate that cells treated for 48 h with 100 μM 

cisplatin undergo apoptosis whereas cells treated for 72 h with 30 μM cisplatin do not. 

2.4.14 Cisplatin is cytotoxic to M059K cells 

We then investigated if our observations about checkpoint adaptation using HT-29 

cells extended to a second unrelated cell line, M059K. We first treated M059K cells with 



98 
 

different concentrations of cisplatin (0.3-300 μM) for 24, 48, 72 and 96 h and measured 

cell viability by the MTT assay (Figure 2.14). M059K cell viability decreased in a time 

dependent manner as concentration of cisplatin increased. The IC50 values range from 30 

μM at 24 h to 1 μM at 96 h (Table 2.3), indicating that M059K cells were more sensitive 

to treatment with cisplatin by comparison to HT-29 cells.  

2.4.15 M059K cells undergo dual modes of cell death when treated with either relatively 

low or relatively high concentrations of cisplatin 

We then replicated the conditions of the MTT assay and observed the cells by 

time-lapse video microscopy (Figure 2.15). M059K cells were treated with 3, 10, 30 and 

100 μM cisplatin and the percentage of cells that entered mitosis post-treatment was 

determined for each cell population. Not treated and 50 nM CPT treated cells were used 

as controls.  Almost all not treated (99 ± 0.7%) and 75 ± 8% of CPT treated cells entered 

mitosis after treatment. Of the cisplatin treated cells, 96 ± 0.6% of the 3 μM and 75 ± 5% 

of the 10 μM cisplatin treated cells entered mitosis after treatment. Strikingly however, 

only 18 ± 3% of 30 μM and 8 ± 1% of 100 μM cisplatin treated cells entered mitosis after 

treatment. These data indicate that, like HT-29 cells, M059K cells undergo checkpoint 

adaptation at cytotoxic concentrations of cisplatin.  At higher concentrations of cisplatin, 

M059K cells die without undergoing checkpoint adaptation. 

 

2.5 Discussion 

Cisplatin is a widely used genotoxic anti-cancer drug and yet how cells die when 

they are treated with it remains poorly understood. Cells treated with cisplatin initiate a 

DNA damage checkpoint before dying (Sorenson and Eastman 1988a, 1988b; Demarcq et 
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al. 1994); however, the steps that lie between this cell cycle arrest and cell death 

following treatment are not well characterised. Checkpoint adaptation (entry into mitosis 

with damaged DNA) has been identified as a key pathway linking cell cycle arrest and 

cell death in response to treatment with either ionising radiation (Syljuåsen et al. 2006; 

Rezacova et al. 2011), CPT or etoposide (Kubara et al. 2012). In this paper, we report that 

cisplatin can induce checkpoint adaptation, but only when used at certain concentrations. 

We used HT-29 cells to study checkpoint adaptation by virtue of their change in 

morphology when entering mitosis and prolonged mitotic arrest (Gascoigne and Taylor 

2008; Kubara et al. 2012). We first identified concentrations of cisplatin that were 

cytotoxic to HT-29 cells and chose two concentrations with which to investigate 

checkpoint adaptation, 30 and 100 µM. The 30 µM concentration is similar to that present 

in the serum of treated cancer patients whereas the 100 µM concentration is 

suprapharmacological (Vermorken et al. 1984; Swift and Golsteyn 2014). We then 

compared the timing and levels of DNA damage signalling in cells treated with these 

different concentrations of cisplatin by the detection of histone γH2AX. This analysis 

confirmed that cisplatin was genotoxic to HT-29 cells (Olive and Banàth 2009) and 

indicated that DNA damage signals were present earlier and were higher in 100 µM 

treated cells by comparison to 30 µM treated cells. Knowing that there were differences 

in DNA damage signalling in cells treated with either 30 or 100 µM cisplatin, we next 

used flow cytometry to compare how these different concentrations affected the cell 

cycle. We found that cells treated with 30 µM cisplatin arrested predominantly at G2/M 

phases whereas 100 µM cisplatin treated cells did not progress through the cell cycle and 
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as such were predominantly in G1. We therefore first explored if cells treated with 30 µM 

cisplatin were entering mitosis following treatment. 

Cells treated with 30 µM cisplatin displayed a rounded cell morphology (typical 

of cell in mitosis) (Kubara et al. 2012; Cadart et al. 2014) and most 30 µM cisplatin 

treated cells accumulated cyclin B1. Additionally a sub-population of 30 µM cisplatin 

treated cells was positive for phospho-Ser10 histone H3. These data suggested that 30 µM 

cisplatin treated cells were entering mitosis before dying. Entry into mitosis was 

confirmed by studying rounded 30 µM cisplatin treated cells which contained low levels 

of Cdk1 phosphorylated on Tyr15, high levels of cyclin B1 and high levels of Cdk1 

activity.  

Having confirmed that cells treated with 30 µM cisplatin were entering mitosis, 

we asked if they were undergoing checkpoint adaptation. To undergo checkpoint 

adaptation treated cells must 1) induce a DNA damage arrest, 2) overcome this cell cycle 

arrest and 3) resume the cell cycle with damaged DNA (Toczyski et al. 1997). We found 

that cells treated with 30 µM cisplatin were undergoing checkpoint adaptation because 

mitotic 30 µM cisplatin treated cells contained Chk1 dephosphorylated on Ser345, 

whereas the total and interphasic cell populations contained active Chk1 phosphorylated 

on Ser345 (Liu et al. 2000). This indicated that cells treated with 30 µM cisplatin arrested 

at and then abrogated the G2/M cell cycle checkpoint. To confirm that these cells were 

undergoing all three steps of checkpoint adaptation we determined that nearly all 30 µM 

cisplatin treated cells contained damaged DNA. We also observed that 30 µM cisplatin 

treated cells in mitosis were positive for histone γH2AX staining and thus demonstrated 

that cells treated with 30 µM cisplatin undergo checkpoint adaptation. 
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Previous studies have shown that checkpoint adaptation occurs in cells treated 

with either ionising radiation (Syljuåsen et al. 2006; Rezacova et al. 2011), CPT or 

etoposide (Kubara et al. 2012). However, these studies did not investigate what fraction 

of the treated population was undergoing checkpoint adaptation and so did not address 

whether this was a major response to treatment or not. We used time-lapse video 

microscopy to observe mitotic cells and determined that most 30 µM cisplatin treated 

cells entered mitosis before dying. These data demonstrate that checkpoint adaptation is a 

major response to treatment with 30 µM cisplatin. Because cisplatin has a different 

mechanism of action to the genotoxic agents previously reported to induce checkpoint 

adaptation, our data support the suggestion that checkpoint adaptation and mitotic cell 

death play a major role in the cytotoxicity of genotoxic agents (Chang et al. 1999; 

Roninson et al. 2001; Brown and Attardi 2005; Broude et al. 2008; Kubara et al. 2012; 

Swift and Golsteyn 2014). 

We found that by contrast to cells treated with 30 µM cisplatin, cells treated with 

100 µM cisplatin did not display a rounded morphology, did not accumulate cyclin B1 

and were not positive for phospho-Ser10 histone H3. We therefore reasoned that these 

cells could be dying by apoptosis. Results from light and immunofluorescence 

microscopy revealed that these cells were positive for annexin V staining and negative for 

PI staining. This was confirmed by western blotting which demonstrated that 100 µM 

cisplatin treated cells were positive for cleaved PARP, cleaved caspase 3 and cleaved 

caspase 9 and negative for Mcl-1. Strikingly, M059K cells treated with low 

concentrations of cisplatin also died following entry into mitosis whereas cells treated 

with high concentrations of cisplatin died without entering mitosis. These data provide 
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one explanation for why inhibiting apoptosis in cancer cells does not affect clonogenic 

survival (Lock and Stribinskiene 1996; Elliott et al. 1999; Wouters et al. 1999; Ruth and 

Roninson 2000), because we show that when cells are treated with lower concentrations 

of cisplatin they die by mitotic cell death instead of by apoptosis. 

 It has been suggested that mitotic cell death is a special type of apoptosis that 

involves activation of the caspases (Castedo et al. 2004a, 2004b). Our results suggest that 

this is not the case and that mitotic cell death and apoptosis are two different mechanisms 

of cell death in HT-29 cells treated with cisplatin. By contrast to 100 µM cisplatin treated 

cells, 30 µM cisplatin treated cells were not positive for annexin V, cleaved-PARP, 

cleaved caspase 3 and cleaved caspase 9 and were positive for Mcl-1. 

The induction of different modes of cell death in response to high and low 

concentrations of different genotoxic agents in different cell lines has been previously 

reported, suggesting that this phenomenon may be a common response to treatment with 

genotoxic agents. DC3-F Chinese hamster lung fibroblasts treated with a low 

concentration of bleomycin arrested in G2/M phases of the cell cycle and were 

micronucleated, whereas cells treated with a high concentration of bleomycin died by 

apoptosis (Tounekti et al. 1993). High and low concentrations of 5-fluorouracil also 

induced cell death by either apoptosis or following entry into mitosis in three human 

colorectal adenocarcinoma cell lines (SW480, COLO320DM and HCT-116) (Yoshikawa 

et al. 2001). Similarly, low dose doxorubicin induced entry into mitosis followed by 

induction of a senescence like phenotype, characterised by increased β-galactosidase 

activity, in human hepatoma cell lines. Mitotic catastrophe was identified by the 

observation of micronuclei, abnormal spindle formation and lack of an apoptotic 
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response. By contrast, cells treated with a high dose of doxorubicin died by apoptosis 

(Eom et al. 2005). It has also been previously reported that cells treated with either 

cisplatin or oxaliplatin die by mitotic catastrophe (Demarcq et al. 1994; Chang et al. 

1999; Ngan et al. 2008; Vakifahmetoglu et al. 2008). We have now expanded upon these 

studies by using mechanical shake-off to collect treated rounded cells which allowed us to 

identify that cells treated with 30 µM cisplatin enter mitosis by checkpoint adaptation.  

Our data suggest that cancer cells treated with cisplatin are more likely to undergo 

checkpoint adaptation than they are to undergo apoptosis, because the concentration of 

cisplatin needed to induce apoptosis is above the concentration of cisplatin needed to 

induce cell death. Using this information it may be possible to target the process of 

checkpoint adaptation to improve the efficacy of genotoxic anti-cancer drugs. The aim of 

using genotoxic agents to treat cancer patients is that they induce cancer cell death to 

prevent further growth of a tumour. However, it has been observed that a small number of 

cells can survive checkpoint adaptation following treatment with CPT and cisplatin 

(Kubara et al. 2012, chapter 3) and it has been proposed that these survival cells may 

contain rearranged genomes (Syljuåsen et al. 2006; de Bruin and Medema 2008; Kubara 

et al. 2012). Cells that survive treatment with rearranged genomes could be detrimental to 

the success of genotoxic anti-cancer drugs because they may acquire the genetic changes 

necessary for resistance to treatment or be the source of some secondary tumours (Nakada 

et al. 2006).  

We have identified that cancer cells treated with cisplatin switch between 

undergoing checkpoint adaptation when they are treated with a pharmacological 

concentration of cisplatin to undergoing apoptosis when they are treated with a 
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suprapharmacological concentration of cisplatin. Our data suggest that this switch occurs 

in response to different levels of damaged DNA. By investigating further the biochemical 

switch that treated cells use to undergo either checkpoint adaptation or apoptosis, it might 

be possible to target components of this switch to inhibit checkpoint adaptation and 

induce cell death by apoptosis, without increasing the concentration of cisplatin that cells 

are treated with. This would prevent cells from surviving checkpoint adaptation with 

rearranged genomes and might increase the efficacy of genotoxic anti-cancer drugs. To 

understand better the clinical relevance of our findings, it will be necessary to investigate 

the relationship between checkpoint adaptation and cell death in tumour models. 

In conclusion we have found that checkpoint adaptation is a key response that 

links cell cycle arrest and cell death in cancer cells treated with cisplatin. Furthermore, we 

demonstrate that treatment of cells with different concentrations of cisplatin induces 

different modes of cell death. We predict that checkpoint adaptation is a major pathway 

that leads to cell death in cancer cells treated with genotoxic agents. It may therefore be 

possible to target this pathway to improve the efficacy of current genotoxic anti-cancer 

drugs. 
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Figure 2.1 Both 30 and 100 µM cisplatin are cytotoxic to HT-29 cells. HT-29 cells were 

treated with different concentrations of cisplatin for 24 h (diamonds), 48 h (triangles), 72 

h (circles) and 96 h (squares). The MTT assay was used to measure cell viability. Each 

treatment was run in triplicate and the results from each treatment condition were 

normalised to treatment with 0.1% (v/v) DMSO. Mean percentages of viability were 

calculated from three separate experiments and standard errors of the means are shown. 
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Table 2.1 Mean IC50 concentrations of cisplatin used to treat HT-29 cells for 24, 48, 72 

and 96 h. 

 Time (h) 

Genotoxic agent 24 48 72 96 

Cisplatin (µM) 120 31 14 5 
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Figure 2.2 Cisplatin is genotoxic to HT-29 cells. A. HT-29 cells were either not treated 

(NT), treated with either 30 or 100 µM cisplatin or treated with 50 nM CPT and stained 

with DAPI (blue) to detect DNA and with anti-histone γH2AX antibodies (green). Cells 

were analysed at 24, 48 and 72 h by immunofluorescence microscopy and representative 

images are shown. Scale bar equals 100 µm. B. The percentages of cells staining positive 

for histone γH2AX 24, 48 and 72 h after treatment were determined using Image J 

software. At least 500 cells were counted for each treatment per experiment. Mean 

percentages of cells staining positive for histone γH2AX, calculated from three separate 

experiments, and standard errors of the means are shown. Asterisks show significant 

differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 2.3 HT-29 cell populations treated with either 30 or 100 µM cisplatin contain 

different amounts of damaged DNA. A. HT-29 cells were either not treated (NT), treated 

for 72 h with 30 µM cisplatin or treated for 24 and 48 h with 100 µM cisplatin. Cell 

extracts were prepared and analysed by western blotting with anti-histone γH2AX and 

anti-actin antibodies. B. The relative amount of histone γH2AX signal was quantified for 

each treatment using Image J software. Means of arbitrary units of histone γH2AX signal 

normalised to actin and relative to not treated cells were calculated from three separate 

experiments. Standard errors of the means are shown. Asterisks show significant 

differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 2.4 HT-29 cells treated with 30 µM cisplatin arrest predominantly in G2/M phase 

whereas 100 µM cisplatin treated cells do not progress in the cell cycle. HT-29 cells were 

treated for 72 h with 30 µM cisplatin and for 24 and 48 h with 100 µM cisplatin and 

analysed by flow cytometry. Not treated, 48 h 50 nM CPT treated and 24 h nocodazole 

treated (mitotic) cells were used as controls. DNA content was analysed by propidium 

iodide staining. 
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Table 2.2 The percentages of cells in either G1, S or G2/M phases of the cell cycle, as 

determined by analysis of DNA content using flow cytometry. Mean percentages from 

three separate experiments and standard errors of the means are shown. 

Treatment G1 

(Mean % ± SEM)  

S 

(Mean % ± SEM) 

G2/M 

(Mean % ± SEM) 

NT 69 ± 3 18 ± 3 13 ± 3 

72 h 30 µM 

cisplatin 

14 ± 5 38 ± 5 48 ± 5 

24 h 100 µM 

cisplatin 

77 ± 5 13 ± 1 10 ± 5 

48 h 100 µM 

cisplatin 

76 ± 5 13 ± 1 11 ± 4 

50 nM CPT   9 ± 2 28 ± 10 63 ± 12 

Nocodazole   1 ± 1   3 ± 3 96 ± 3 
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Figure 2.5 HT-29 cells treated with 30 µM cisplatin acquire a rounded morphology 

whereas 100 µM cisplatin treated cells do not. A. HT-29 cells were treated with 3, 10, 30 

or 100 µM cisplatin. Not treated and 50 nM CPT treated cells were used as controls. Cells 

were observed by phase-contrast light microscopy at 24, 48, 72 and 96 h. Representative 

images are shown and arrows indicate mitotic cells. Scale bar equals 100 µm. B. HT-29 

cells were treated with 3, 10, 30 or 100 µM cisplatin. Not treated and 50 nM CPT treated 

cells were used as controls. Cells were observed by phase-contrast light microscopy and 

percentages of rounded cells were manually determined using Image J software at 0, 24, 

48, 72 and 96 h. At least 500 cells were counted for each treatment per experiment. Mean 

percentages from three separate experiments and standard errors of the means are shown. 

Asterisks show significant differences, paired student’s t-test, 2 degrees of freedom, p < 

0.05. 
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Figure 2.6 HT-29 cells treated with 30 µM cisplatin accumulate cyclin B1 whereas 100 

µM cisplatin treated cells do not. A. HT-29 cells were not treated (NT), treated with 

either 30 or 100 µM cisplatin or treated with 50 nM CPT and stained with DAPI to detect 

DNA and with anti-cyclin B1 antibodies (red). Cells were analysed at 24, 48 and 72 h by 

immunofluorescence microscopy and representative images are shown. Scale bar equals 

100 µm. B. The percentages of cells staining positive for cyclin B1 24, 48 and 72 h after 

treatment were determined using Image J software. At least 500 cells were counted for 

each treatment per experiment. Mean percentages of cells staining positive for cyclin B1, 

calculated from three separate experiments, and standard errors of the means are shown. 

Asterisks show significant differences, paired student’s t-test, 2 degrees of freedom, p < 

0.05. 
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Figure 2.7 A sub-population of HT-29 cells treated with 30 µM cisplatin enter mitosis, 

whereas 100 µM cisplatin treated cells do not. A. HT-29 cells were not treated (NT), 

treated with either 30 or 100 µM cisplatin or treated with 50 nM CPT and stained with 

DAPI (blue) to detect DNA and with anti-phospho-Ser10 histone H3 antibodies (PH3) 

(red). Cells were analysed at 24, 48 and 72 h by immunofluorescence microscopy and 

representative images are shown. Scale bar equals 100 µm. B. The percentages of cells 

staining positive for phospho-Ser10 histone H3 (PH3) 24, 48 and 72 h after treatment 

were determined using Image J software. At least 500 cells were counted for each 

treatment per experiment. Mean percentages of cells staining positive for PH3, calculated 

from three separate experiments, and standard errors of the means are shown. Asterisks 

show significant differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 2.8 Rounded 30 µM cisplatin treated cells contain cyclin B1, dephosphorylated 

Cdk1 and dephosphorylated Chk1. A. HT-29 cells were either not treated (NT), treated 

for 72 h with 30 µM cisplatin or treated for 24 h with 200 ng/ml nocodazole. Mechanical 

shake-off was used to separate treated rounded (mitotic) cells from flattened interphasic 

cells and not treated, cisplatin treated total, interphasic and mitotic and nocodazole treated 

mitotic cell extracts were prepared. Cell extracts were analysed by western blotting using 

anti-Cdk1, anti-phospho Tyr15 Cdk1, anti-cyclin B1 and anti-actin antibodies. Molecular 

masses are indicated in kDa. B. Cell extracts were prepared as in (A) and analysed by 

western blotting using anti-Chk1 and anti-phospho Ser345 Chk1 antibodies. The actin 

loading control is presented in (A). Molecular masses are indicated in kDa. 
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Figure 2.9 Rounded HT-29 cells treated with 30 µM cisplatin have active Cdk1. A. HT-

29 cells were either not treated (NT), treated for 72 h with 30 µM cisplatin or treated for 

24 h with 200 ng/ml nocodazole. Mechanical shake-off was used to separate treated 

rounded (mitotic) cells from flattened interphasic cells and not treated, cisplatin treated 

total, interphasic and mitotic and nocodazole treated mitotic cell extracts were prepared. 

Cell extracts were incubated with an artificial GST-Thr320-PP1Cα substrate (lanes 1-6) 

or a GST control substrate (lanes 7-12). Extraction buffer was used as a negative control. 

Samples were analysed by western blotting using anti-phospho Thr320 PP1Cα (top panel) 

and anti-GST (lower panel) antibodies. Molecular masses are indicated in kDa. B. The 

relative amount of phospho-Thr320 PP1Cα signal was quantified for each treatment using 

Image J software. Means of arbitrary units of phospho-Thr320 PP1Cα signal normalised 

to GST and relative to not treated cells were calculated from three separate experiments 

and standard errors of the means are shown. Asterisks show significant differences, paired 

student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 2.10 HT-29 cells treated with 30 µM cisplatin are in mitosis with damaged DNA. 

A. HT-29 cells were either not treated (NT), treated for 72 h with 30 µM cisplatin or 

treated for 48 h with 50 nM CPT. Cells were stained with DAPI to detect condensed 

chromosomes (blue) and with anti-phospho Ser10 histone H3 (PH3) antibodies (red). 

Scale bar equals 10 µm. B. HT-29 cells were either not treated (NT), treated for 72 h with 

30 µM cisplatin or treated for 48 h with 50 nM CPT. Cells were stained with DAPI to 

detect condensed chromosomes (blue) and with anti-histone γH2AX antibodies (green). 

Scale bar equals 10 µm. C. HT-29 cells were either treated for 72 h with 30 µM cisplatin 

or for 48 h with 50 nM CPT. Mean percentages of cells with condensed chromosomes 

staining positive for histone γH2AX were calculated from three separate experiments and 

standard errors of the means are shown Twenty cells were counted for each treatment per 

experiment. Asterisks show significant differences, paired student’s t-test, 2 degrees of 

freedom, p < 0.05. 
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Figure 2.11 Most HT-29 cells treated with 30 µM cisplatin enter mitosis before dying, 

whereas most 100 µM cisplatin treated cells do not. HT-29 cells were not treated (NT) or 

treated with either 30 or 100 µM cisplatin and observed by time-lapse video microscopy. 

Images were captured every 10 min for 96 h and individual cells were manually observed 

to detect the presence or absence of cell rounding. The percentages of cells that entered 

mitosis post-treatment were then determined for each treated cell population. The 

percentage of normalised cell death is also presented for each treatment, as determined by 

the MTT assay (Figure 2.1). Mean percentages of event from three separate experiments 

and standard errors of the means are shown. Asterisks show significant differences, paired 

student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 2.12 HT-29 cells treated with 100 µM cisplatin are positive for annexin V staining. 

HT-29 cells were treated with either 30 or 100 µM cisplatin for 24, 48, 72, 96 and 120 h. 

Cells were then collected by trypsinisation and stained for annexin V or treated for 24, 48, 

72, 96 and 120 h, collected by trypsinisation and stained with propidium iodide (PI). Not 

treated cells were used as a negative control, 1 µM staurosporine treated cells were used 

as a positive control for apoptosis and 5 mM hydrogen peroxide (H2O2) treated cells were 

used as a positive control for necrosis. Cells were then analysed by light and 

immunofluorescence microscopy. Representative images of cells 48 h after treatment are 

shown. Scale bar equals 10 µm. 
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Figure 2.13 HT-29 cells treated with 100 µM cisplatin undergo apoptosis. HT-29 cells 

were either treated for 72 h with 30 µM cisplatin or treated for 24 and 48 h with 100 µM 

cisplatin. Not treated and 24 h 1 µM staurosporine treated cells were used as controls. 

Total cell extracts were prepared and analysed by western blotting with anti-cleaved 

PARP, anti-pro-caspase 3, anti-cleaved caspase 3, anti-cleaved caspase 9, anti-Mcl1 and 

anti-actin antibodies. Molecular masses are indicated in kDa. 
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Figure 2.14 Cisplatin is cytotoxic to M059K cells. M059K cells were treated with 

different concentrations of cisplatin for 24 h (diamonds), 48 h (triangles), 72 h (circles) 

and 96 h (squares). The MTT assay was used to measure cell viability. Each treatment 

was run in triplicate and the results from each treatment condition were normalised to 

treatment with 0.1% (v/v) DMSO. Mean percentages of viability were calculated from 

three separate experiments and standard errors of the means are shown. 
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Table 2.3 Mean IC50 concentrations of cisplatin used to treat M059K cells for 24, 48, 72 

and 96 h 

 Time (h) 

Genotoxic agent 24 48 72 96 

Cisplatin (µM) 30 9 2 1 
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Figure 2.15 M059K cells undergo dual modes of cell death when treated with either 

relatively low or relatively high concentrations of cisplatin. M059K cells were either not 

treated (NT), treated with 3, 10, 30 or 100 µM cisplatin or treated with 50 nM CPT and 

observed by time-lapse video microscopy. Images were captured every 10 min for 96 h 

and individual cells were manually observed to detect the presence or absence of cell 

rounding. The percentages of cells that entered mitosis were manually determined for 

each treated cell population. Mean percentages of mitotic cells from three separate 

experiments and standard errors of the means are shown. Asterisks show significant 

differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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CHAPTER 3 

Mitosis is not required for cell death in human colorectal adenocarcinoma cells that 

undergo checkpoint adaptation 

3.1 Abstract 

Checkpoint adaptation may provide cells with an opportunity to survive treatment 

with rearranged genomes, by transmitting damaged DNA to daughter cells. HT-29 human 

colorectal adenocarcinoma cells undergo checkpoint adaptation when they are treated 

with a relatively low, yet cytotoxic concentration of cisplatin. We investigated the role of 

mitosis in cell death following treatment with cisplatin and found that a small, but 

biologically significant number of cisplatin treated cells survive checkpoint adaptation. 

To assess if cells treated with cisplatin can die without entering mitosis, we co-treated 

cells with CR8, an inhibitor of Cdk1. We show that mitosis is not required for cell death 

in HT-29 cells treated with cisplatin. We expanded these observations by investigating 

checkpoint adaptation induced by a second genotoxic agent, camptothecin (CPT), which 

has a different mechanism of action to that of cisplatin. We found that a small number of 

CPT treated cells also survive checkpoint adaptation. Furthermore, we demonstrate that 

mitosis is not required for cell death in HT-29 cells treated with CPT. The inhibition of 

mitosis in cells treated with genotoxic agents that usually induce checkpoint adaptation is 

therefore an attractive option to investigate further, with the aim of preventing cells from 

acquiring genomic change following treatment, which may increase the efficacy of 

current genotoxic anti-cancer drugs. 
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3.2 Introduction 

HT-29 human colorectal adenocarcinoma cells undergo checkpoint adaptation 

(entry into mitosis with damaged DNA) when they are treated with camptothecin (CPT) 

(Kubara et al. 2012). The majority of these CPT treated cells die following entry into 

mitosis with damaged DNA, but it has been observed that a small number of CPT treated 

cells can survive checkpoint adaptation (Kubara et al. 2012; Rahman 2013). In chapter 2 

we demonstrated that HT-29 cells treated with a cytotoxic concentration of cisplatin (30 

µM) undergo checkpoint adaptation. The discovery that treated cancer cells undergo 

checkpoint adaptation before dying permitted us to ask new questions about the role of 

mitosis in cell death and to determine the number of cells that can survive checkpoint 

adaptation. 

Resisting cell death is one hallmark of cancer (Hanahan and Weinberg 2011). To 

understand how cancer cells resist cell death, we first explored the pathways by which 

they die when treated with genotoxic agents such as cisplatin. In chapter 2, we 

demonstrated that HT-29 cells are capable of dying without entering mitosis, when they 

are treated with 100 µM cisplatin. However, 100 µM cisplatin is above the peak plasma 

concentrations of cisplatin reported from human patients (Vermorken et al. 1984; Oldfield 

et al. 1985; Charlier et al. 2004). Peak plasma concentrations of platinum in patients 

treated with cisplatin have reached 40 µM (Vermorken et al. 1984) and typically range 

from 3-17 µM (Charlier et al. 2004).  Cisplatin treatment is associated with severe side 

effects and treatment with concentrations of cisplatin above those tolerated in the patient 

can cause patient death with symptoms including blindness, ototoxicity, septicaemia and 

kidney failure (Charlier et al. 2004).  
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By contrast to cells treated with 100 µM cisplatin, at a lower concentration of 

cisplatin (30 µM), HT-29 cells first entered mitosis before dying. By using HT-29 cells, 

which spend a prolonged time in mitosis (Gascoigne and Taylor 2008), we were able to 

collect cells that undergo checkpoint adaptation and investigate whether any of these cells 

could survive. It is important to understand whether cells can survive checkpoint 

adaptation because checkpoint adaptation may promote genomic change in treated cancer 

cells (Syljuåsen et al. 2006; Kubara et al. 2012). 

Checkpoint adaptation can cause genomic change in the yeast Saccharomyces 

cerevisiae when exposed to X-ray irradiation (Galgoczy and Toczyski 2001). Checkpoint 

adaptation proficient and checkpoint adaptation deficient S. cerevisiae cells were 

irradiated with 30 Gray of X-rays and checkpoint adaptation proficient cells contained 

more chromosomal losses and translocations, by comparison to checkpoint adaptation 

deficient cells (Galgoczy and Toczyski 2001). Checkpoint adaptation has also been 

shown to induce the formation of acentric chromosome fragments and chromosomal 

bridges in irradiated Allium cepa plant cells (Carballo et al. 2006). Preliminary data 

obtained by investigating HT-29 cells has also suggested that human cancer cells 

surviving checkpoint adaptation following treatment with CPT contain rearranged 

genomes (Rahman 2013). These survival cells contained an average of 35 chromosomes. 

By comparison, not treated cells contained an average of 65 chromosomes. Because cells 

that survive checkpoint adaptation are transmitting damaged DNA to daughter cells then 

this may induce acquired resistance to treatment, reducing the efficacy of genotoxic anti-

cancer drugs.  
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Clinically, the long-term efficacy of cisplatin is severely limited by acquired 

resistance to treatment (Oliver et al. 2010). Treatment with cisplatin has also been 

associated with the induction of chromosomal aberrations in cell lines and animal models 

(Adler and El-Tarras 1989; Krishnaswaky and Dewey 1993; Edelweiss et al. 1995) and it 

is likely that checkpoint adaptation contributes to this genomic change. Genomic change 

underlies acquired resistance in cancer cells treated with cisplatin (Shen et al. 2012), thus 

cells that survive checkpoint adaptation might acquire resistance to treatment.  

 To prevent treated cancer cells from acquiring resistance to genotoxic anti-cancer 

agents, it may be beneficial to maintain the cytotoxicity of cisplatin and prevent treated 

cells from entering mitosis with damaged DNA (the final step of checkpoint adaptation). 

However, it is not known whether cytotoxicity is maintained when mitosis is inhibited in 

cells that die following checkpoint adaptation. By understanding the process of 

checkpoint adaptation it is possible to target the proteins involved in this pathway (Figure 

1.3), to test if cells can die when mitosis is inhibited. For example, cyclin dependent 

kinase 1 (Cdk1) (the enzyme responsible for entry into mitosis) (Lee and Nurse 1987) can 

be inhibited to prevent cells from entering mitosis. 

We investigated if HT-29 cells with cisplatin induced DNA damage could die 

when they were prevented from entering mitosis.  We found that it is possible to direct 

cisplatin treated cells towards the pathway of checkpoint adaptation but prevent them 

from entering mitosis by co-treatment with the Cdk1 inhibitor, CR8 (Bettayeb et al. 

2008). Importantly, cell death can be maintained when cisplatin treated cells are 

prevented from entering mitosis. Furthermore, we identified that cells treated with a 
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different genotoxic agent, CPT, can also survive checkpoint adaptation and that cell death 

can be maintained when CPT treated cells are prevented from entering mitosis. 

 

3.3 Materials and methods 

3.3.1 Cell culture 

The human cell line HT-29 (ATCC HTB-38) was obtained from the American 

Type Culture Collection (ATCC). HT-29 cells were maintained in RPMI 1640 medium 

(Gibco; 21870-092) supplemented with 10% (v/v) heat inactivated fetal bovine serum 

(FBS) (Gibco; 12484028) and 1.6 mM GlutaMAX (Gibco; 35050-061). Cells were grown 

at 37°C in 5% CO2 and the medium was changed every 3-4 d. HT-29 cells were plated at 

a density of 3.0 x 10
5
 cells/25 cm

2 
flask and cultured for 72 h prior to treatment. Cells 

were counted using a Luna automated cell counter (Logos Biosystems). The compound 

cisplatin (Sigma; 479306-1G) was dissolved in dimethyl sulphoxide (DMSO) (Sigma-

Aldrich; D2438) to a concentration of 100 mM and stocks were freshly made every two 

weeks. Camptothecin (Sigma; 7689-03-4) was dissolved in DMSO to a concentration of 

10 mM. The compounds were stored at -20°C until use. Not treated cells were treated 

with the solvent only (0.1% (v/v) DMSO). 

3.3.2 Mechanical shake-off to investigate cell survival by light microscopy 

HT-29 cells were plated at 1 x 10
6
 cells/75 cm

2
 flask and incubated at 37°C for 72 

h prior to treatment. After treatment, medium was aspirated and cells were gently washed 

with phosphate buffered saline (PBS) (137 mM NaCl, 3 mM KCl, 100 mM Na2HPO4, 18 

mM KH2PO4). Fresh medium was added at 1 ml/25 cm
2
 and the flask was tapped with 
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medium force on all edges to isolate mitotic cells from flattened cells. The rounded cells 

were then cultured in the wells of a 6 well culture plate and incubated at 37°C. Cell 

medium was changed every 3-4 d. Images were captured with an Infinity 1.5 camera 

powered by Infinity Capture imaging software (Lumenera Corporation) on an Olympus 

IX41 inverted microscope. Images were processed using Adobe Photoshop (CC 2014.1.0) 

software. Experiments were performed three times. 

3.3.3 Clonogenic assay 

 HT-29 cells were plated at 1 x 10
6
 cells/75 cm

2
 flask and incubated at 37°C for 72 

h prior to treatment. Following treatment, rounded cells were collected by mechanical 

shake-off and counted using a Luna automated cell counter (Logos Biosystems). The cells 

were then re-seeded. It was necessary to seed treated cells at a higher density by 

comparison to the not treated cells, to account for the cell death induced by the genotoxic 

agents. The 6 well plates were incubated at 37°C for 14 d and media were changed every 

3-4 d. The cells were then fixed and stained with 6% (v/v) glutaraldehyde (Ted Pella Inc; 

18426) and 0.5% (w/v) crystal violet (Electron Microscopy Services; 12785) diluted in 

deionised water at room temperature for 30 min. The wells were rinsed with deionised 

water and left to dry at room temperature. The number of colonies were counted using 

Image J software. Only colonies containing 50 or more cells were considered viable. This 

was verified by light microscopy. Not treated cells were then analysed to determine 

plating efficiency (PE) using the formula: 

PE = number of colonies formed/number of cells seeded x 100 

The surviving fraction (SF) for the surviving cells was then calculated using the formula: 
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SF = number of colonies formed after treatment/(number of cells seeded x PE). 

Experiments were performed three times. 

3.3.4 Time-lapse video microscopy 

HT-29 cells were plated at 3.0 x 10
5
/25 cm

2
 flask and incubated at 37°C for 72 h 

prior to treatment. Time-lapse video microscopy images were collected from the start of 

treatment, using a Lumascope 500 microscope (etaluma) powered by LumaView software 

(etaluma; V.13.4.25.99). Images were captured every 10 min for 96 h. Cells were 

manually scored for mitotic entry by observing whether they displayed a rounded 

morphology, indicative of mitosis, or not between 0 and 96 h. Cells that left the field of 

view before rounding were not counted. At least 250 HT-29 cells were counted for each 

treatment. Experiments were performed three times. 

3.3.5 Trypan blue assay to detect cell survival 

 HT-29 cells were seeded at precisely 1.0 x 10
5
/well of a 6 well plate and incubated 

at 37°C for 72 h prior to treatment. Following treatment cells were washed with PBS and 

collected by trypsinisation. An equal amount of medium was added and a 50 µl aliquot 

was removed. Cells were then mixed with trypan blue solution at a ratio of 1:1. Cells 

were counted twice using a Luna automated cell counter (Logos Biosystems) to determine 

the number of live cells present in each treated cell population. An average of the two 

values was calculated and used to determine the relative viability of cells from each 

treated cell population, normalised to cells treated with 0.1% (v/v) DMSO. The 

normalised percent viability was calculated as shown: 
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Normalised percent viability = (number of live treated cells/number of live DMSO treated 

cells) x 100 

3.3.6 Statistical analysis 

Graphs were produced using Microsoft Excel 2010 software. Data were collected 

and plotted as means ± standard error of the means from three separate experiments. 

Statistical significance was calculated using the student’s t-test for two paired sample 

means and values were considered significantly different when p < 0.05. 

 

3.4 Results 

3.4.1 A small number of HT-29 cells can survive entry into mitosis after treatment with 30 

µM cisplatin 

 We first investigated if any of the cells that entered mitosis 72 h after treatment 

with 30 µM cisplatin were able to survive. HT-29 cells were treated for 72 h with 30 µM 

cisplatin and the rounded mitotic cells were collected by mechanical shake-off. Mitotic 

cells were then re-cultured without further treatment for over 30 d and observed by light 

microscopy. Images were captured 96 h, 10 d, 21 d and 31 d after mechanical shake-off 

(Figure 3.1). Not treated cells were collected as controls. 

Multiple colonies were present in the not treated cell culture 96 h after shake-off 

and these expanded over time. By 10 d the not treated cell culture had reached 

confluence. The mitotic cells collected after treatment with cisplatin colonised the culture 

dish after mechanical shake-off (Figure 3.1A). Small colonies were observed 96 h after 

mechanical shake-off and these continued to expand for over 30 d. Fewer cells were 



135 
 

present in the cisplatin treated colonies at 10 d by comparison to the number of cells 

present in not treated colonies.  

Having identified that cisplatin treated cells could survive checkpoint adaptation 

we used treatment with a second genotoxic agent, CPT, to confirm that cells can survive 

checkpoint adaptation following treatment with a genotoxic agent that has a different 

mechanism of action by comparison to cisplatin. The CPT treated mitotic cells also 

colonised the culture dish (Figure 3.1B) and fewer cells were present in the CPT treated 

colonies at 10 d by comparison to the number of cells present in not treated colonies. 

 We next used the clonogenic assay to quantify the number of cells that survived 

checkpoint adaptation following treatment with cisplatin (Figure 3.2). HT-29 cells were 

treated for 72 h with 30 µM cisplatin and mitotic cells were collected by mechanical 

shake-off, counted and then cultivated without further treatment for 14 d. Mitotic cells 

from not treated cell populations were also collected, as controls. Five hundred and 1,000 

not treated cells were cultivated. It was necessary to plate more treated cells than not 

treated cells to account for the cell death induced by treatment with cisplatin. Numerous 

colonies were formed when the mitotic not treated cells were cultured. The percentage of 

colonies formed was used to determine the plating efficiency of mitotic HT-29 cells 

(17.4%). The clonogenic survival of mitotic cells collected from cells treated with 

cisplatin was 0.01 ± 0.005%.  

We also quantified the number of cells that survive checkpoint adaptation 

following treatment with a second genotoxic agent, CPT (Figure 3.2). When mitotic cells 

were collected after treatment with 50 nM CPT, 0.09 ± 0.03% survived. These data 
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demonstrate that a small percentage of cells that undergo checkpoint adaptation following 

treatment with either cisplatin or CPT can survive. 

3.4.2 Entry into mitosis can be prevented in HT-29 cells co-treated with 30 µM cisplatin 

and 10 µM CR8 

 We previously confirmed that 30 µM cisplatin is cytotoxic to HT-29 cells, and 

demonstrated that cells treated with 30 µM cisplatin undergo checkpoint adaptation prior 

to cell death (Chapter 2). We also found that a small number of mitotic cells collected by 

mechanical shake-off were able to survive checkpoint adaptation. To test if mitosis was 

required for cell death in the 99% of cisplatin treated cells that died, we first confirmed 

that we could prevent entry into mitosis in cisplatin treated cells that were destined to 

undergo checkpoint adaptation (Figure 1.3). To prevent entry into mitosis in cisplatin 

treated cells we chose to use CR8, a small molecule inhibitor of Cdk1 (Bettayeb et al. 

2008) because it has been well described in the literature and has been previously shown 

to prevent cells from entering mitosis in our laboratory (Kubara et al. 2012). HT-29 cells 

were co-treated with 30 µM cisplatin and 10 µM CR8 and observed by time-lapse video 

microscopy. Images were captured every 10 min for 96 h (Figure 3.3A-C) and individual 

cells were manually observed to detect the presence or absence of cell rounding. The 

percentages of cells that entered mitosis post-treatment were then determined (Figure 

3.3D). Not treated and 30 µM cisplatin treated cells were used as controls and data from 

these treatments have been previously presented in Figure 2.6. Nearly all not treated (99 ± 

0.06%) and most cisplatin treated (81 ± 3%) cells entered mitosis after treatment. Only 5 

± 1% of cells co-treated with cisplatin and CR8 entered mitosis. This confirmed that CR8 

could block mitosis in this experimental model. 
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3.4.3 The cytotoxicity of either 30 µM cisplatin or 50 nM CPT is maintained when HT-29 

cells are prevented from entering mitosis 

 We then used HT-29 cells co-treated with cisplatin and CR8 to determine whether 

it was necessary for cells treated with cisplatin to enter mitosis to die. Cells were either 

treated with 30 µM cisplatin for 96 h or co-treated with 30 µM cisplatin for 96 h and 10 

µM CR8 for 72 h. In the co-treated cell population cells were treated with 30 µM 

cisplatin for 24 h prior to the addition of CR8, to ensure that a DNA damaging event had 

occurred prior to inhibiting mitosis. This method of co-treatment was identical to 

conditions previously used to prevent entry into mitosis by co-treating HT-29 cells with 

CPT and CR8 (Kubara et al. 2012). Not treated and 10 µM CR8 treated cells were used as 

controls. The treated cells were observed by light microscopy at 24, 48, 72 and 96 h after 

treatment with cisplatin. Representative images of cells at 96 h are shown (Figure 3.4A). 

Fewer cells were present in the cisplatin treated and the cisplatin and CR8 co-treated cell 

populations, by comparison to the control cell populations which were either not treated 

or treated with CR8. 

 Having observed the treated cells by light microscopy, we used trypan blue 

staining to quantify the number of live cells present after treatment. HT-29 cells were 

either treated with 30 µM cisplatin for 96 h or co-treated with 30 µM cisplatin for 96 h 

and 10 µM CR8 for 72 h. Not treated cells were used as controls. The values from each 

treatment condition were normalised to treatment with 0.1% (v/v) DMSO. Relative 

viability was calculated as percentage of control (Figure 3.4B). There was no significant 

difference in relative cell viability between cells treated with cisplatin (1.2 ± 0.2%) and 

cells co-treated with cisplatin and CR8 (1.2 ± 0.2%). 
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We then determined if mitosis was required for cell death using a different source 

of genotoxicity, CPT. Although it had been shown previously that co-treating cells with 

CPT and CR8 prevented cells from entering mitosis (Kubara et al. 2012), it has not been 

reported whether cells treated with CPT need to enter mitosis to die. HT-29 cells were 

either treated with 50 nM CPT for 96 h or co-treated with 50 nM CPT for 96 h and 10 µM 

CR8 for 72 h and then observed by light microscopy (Figure 3.4A). In parallel, cells were 

either not treated or treated with 10 µM CR8 alone. By contrast to the not treated and 

CR8 treated cell populations, fewer cells were present in CPT treated or CPT and CR8 

co-treated cell populations. We also quantified the number of live cells present after 

treatment (Figure 3.4B). HT-29 cells were either treated with 50 nM CPT for 96 h or co-

treated with 50 nM CPT for 96 h and 10 µM CR8 for 72 h. Not treated cells were used as 

controls. Trypan blue staining was performed and cell viability calculated. There was 

little difference in the percentage of viable cells when cells were either treated with CPT 

(0.7 ± 0.2%) or co-treated with CPT and CR8 (0.9 ± 0.2%). These data suggest that 

mitosis is not required for cell death when cells are cultivated under conditions that 

induce checkpoint adaptation following treatment with two different genotoxic agents. 

 

3.5 Discussion 

Checkpoint adaptation is defined by three steps: 1) a cell cycle arrest induced by 

DNA damage; 2) overcoming this arrest and 3) resuming the cell cycle with damaged 

DNA (Toczyski et al. 1997). Checkpoint adaptation occurs in irradiated U2OS 

osteosarcoma (Syljuåsen et al. 2006) and MOLT4 leukaemia cells (Rezacova et al. 2011), 

in HT-29 cells treated with either CPT or etoposide and in M059K glioma cells treated 
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with CPT (Kubara et al. 2012). Furthermore, as described in chapter 2, we found that the 

majority of HT-29 cells treated with a low but cytotoxic concentration of cisplatin also 

undergo checkpoint adaptation.  

Mitotic cell death has been observed in different cell lines treated with different 

genotoxic agents such as ionising radiation (Ianzini and Mackey 1997), bleomycin 

(Tounekti et al. 1993), cisplatin (Vakifahmetoglu et al. 2008), 5-fluorouracil (Yoshikawa 

et al. 2001), doxorubicin (Chang et al. 1999; Eom et al. 2005) and the atypical DNA 

binding compound S23906 (Cahuzac et al. 2010). The range of genotoxic treatments with 

different mechanisms of action that induce mitotic cell death suggests that this response is 

biologically important. Investigating the role of mitosis in cell death may therefore be 

central to improving the efficacy of genotoxic anti-cancer drugs. Although genotoxic 

agents are a mainstay of anti-cancer therapy, the majority of these drugs are not always 

curative in a clinical setting and are limited by factors such as acquired resistance, tumour 

metastasis and the formation of secondary tumours (Khanna 2015) which can lead to 

either tumour recurrence or progression. 

Genomic instability can be caused by single base mutations, DNA deletions, DNA 

insertions, DNA translocations and a change in copy number (Stratton 2009) affecting 

key cellular processes such as cell division, cell growth, cell function and cell death (Shen 

2011). Cells that are treated with cisplatin have an increased number of chromosomal 

aberrations by comparison to not treated cells. Chinese hamster ovarian (CHO) cells 

treated with a range of concentrations of cisplatin (3-40 µM) and analysed by metaphase 

spreads in either the first or second mitosis following treatment displayed an increased 

number of chromosome aberrations, in the form of chromosome/chromatid breaks and 
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chromosome/chromatid exchanges, by comparison to not treated cells (Krishnaswaky and 

Dewey 1993). Cisplatin also induces chromosome aberrations in bone marrow cells 

collected from Wistar rats (Edelweiss et al. 1995) and mice (Adler and El-Tarras 1989). 

In Wistar rats the majority of chromosome aberrations were observed 6-24 h after 

treatment and consisted of chromosome breaks. The percentage of cells with chromosome 

aberrations ranged from 17.7% at 6 h to 5% at 96 h (Edelweiss et al. 1995). In mice, the 

number of cells with chromosome aberrations also increased with cisplatin dose and these 

chromosome aberrations also consisted of breaks (Adler and El-Tarras 1989). These data 

indicate that treatment with cisplatin is capable of inducing genomic change in both cell 

lines and animal models. However, because these cells were fixed in the first and second 

mitoses after treatment these studies did not address if cells subsequently survived 

cisplatin treatment with rearranged genomes.  

Entry into mitosis with damaged DNA can also induce genomic change when 

DNA is damaged by either treatment with etoposide or by replication stress. In 2006, 

Nakada et al. demonstrated that when ATM-deficient fibroblast cells entered mitosis 

following treatment with etoposide some cells survived with chromosomal translocations 

and formed stable clones (Nakada et al. 2006). It has also been demonstrated that entry 

into mitosis with damaged DNA acquired by replication stress in U2OS cells 

overexpressing the oncogene E2F1 resulted in chromosome bridge formation and 

aneuploidy (Ichijima et al. 2010). Additionally, Ichijima et al. (2010) found that entry 

into mitosis with replication stress induced DNA damage in MEF mouse embryonic 

fibroblast cells induced tetraploidy followed by cell immortalisation. Furthermore, 

induction of replication stress in chromosomal instability positive (CIN
+
) (aneuploid) 
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human colorectal carcinoma cell lines resulted in an increase in the percentage of cells 

with DNA damage in prometaphase, which was associated with structurally abnormal 

chromosomes that mis-segregated in mitosis (Burrell et al. 2013). 

When cells enter mitosis with damaged DNA it can cause the production of 

acentric (lacking a centromere) chromosome fragments (Jeggo and Lӧbrich 2006). 

Because these fragments do not contain a centromere they will not be attached to the 

mitotic spindle and may be lost during cell division (Hall and Giaccia 2012). Irradiation 

or etoposide treatment of LA-9 murine cells containing a stable chromosome with an 

integrated green fluorescent protein (GFP) gene increased chromosome loss, as detected 

by an increase in the percentage of non-fluorescent cells (Burns et al. 1999). These data, 

which indicate that treatment with a genotoxic agent can induce loss of genetic material, 

are supported by preliminary data which indicates that cells surviving checkpoint 

adaptation following treatment with CPT contain fewer chromosomes than not treated 

cells (Rahman 2013). 

 It has also been suggested that chromosomes with regions of damaged DNA 

might mis-segregate during mitosis because sister chromatids are connected by DNA-

DNA or DNA-protein crosslinks (Lengauer et al. 1998). This would induce aneuploidy, a 

change in the number of chromosomes contained in a cell. Moreover, it has been 

proposed that DNA damage interferes with the correct attachment of microtubules to 

kinetochores in mitosis (Rieder 2004) and this might also result in the loss of genetic 

material or aneuploidy.  

One outcome of aberrant mitosis is the formation of micronuclei. Micronuclei can 

be formed when lagging acentric chromosomes or chromosome fragments do not 
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segregate correctly at anaphase, as a result of either misrepaired or unrepaired DNA 

strand breaks, and are subsequently enclosed in a separate nuclear membrane (Fenech et 

al. 2011). The formation of micronuclei requires either a mitotic or meiotic division 

(Kirsch-Volders et al. 2011) and has been observed in several cell lines treated with 

different genotoxic agents such as bleomycin (Tounekti et al. 1993), cisplatin 

(Vakifahmetoglu et al. 2008), ionising radiation (Ianzini and Mackey 1997; Chang et al. 

1999; Balajee et al. 2014), doxorubicin, aphidicolin, cytarabine or etoposide (Chang et al. 

1999). An increased number of cells with micronuclei have also been detected in clinical 

samples of oral (Bhattathiri et al. 1998; Bhattathiri 2001; Kumari et al. 2005) and cervical 

(Zolzer et al. 1995; Widel et al. 1999) carcinomas following treatment with ionising 

radiation.  

The formation of micronuclei can induce genomic instability in two ways. First, 

the DNA present in the micronucleus can be permanently lost from the main nucleus 

(Ford et al. 1988), although the frequency of chromosome loss induced by 

micronucleation is debated (Huang et al. 2012). Second, the formation of micronuclei can 

induce chromosome shattering which can be followed by reincorporation of the damaged 

chromosome into the main nucleus (Crasta et al. 2012; Zhang et al. 2015). In 2012, Crasta 

et al. found that micronuclei can further induce genomic rearrangement through 

chromosome pulverisation (Crasta et al. 2012). They generated and then followed 

micronuclei as cells progressed through the cell cycle and observed that premature 

chromosome compaction led to chromosome pulverisation when micronucleated cells 

entered mitosis before DNA replication was complete. Strikingly, Crasta et al. found that 

chromosomes reincorporate from micronuclei into daughter nuclei at a frequency of 38%. 
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Thus entry into mitosis with damaged DNA may lead to genomic instability by inducing 

the formation of micronuclei, which can subsequently lead to the reincorporation of 

damaged chromosomes into the main nuclei (Crasta et al. 2012). A follow-up study from 

the same research group used live cell imaging and single-cell genome sequencing to 

characterise the relationship between micronuclei and chromosome shattering (Zhang et 

al. 2015). They found that mis-segregated chromosomes contained a large number of 

genomic rearrangements when compared to chromosomes that segregated correctly. 

The chromosome shattering observed by Crasta et al. is called chromothripsis, a 

phenomenon that was discovered using next generation sequencing of both tumour 

samples from cancer patients and cancer cell lines (Stephens et al. 2011). In 

chromothripsis, tens to hundreds of genomic rearrangements are acquired in an event 

involving localised genomic regions, such as regions of one or several chromosomes 

(Stephens et al. 2011). Because checkpoint adaptation provides a mechanism by which 

cells can enter mitosis with damaged DNA, it may be a source of genomic instability by 

loss of genetic material, chromosomal translocation or chromothripsis induced by the 

formation of micronuclei.  

Checkpoint adaptation is a mechanism by which damaged DNA is transmitted to 

daughter cells. This process likely induces genomic instability in human cells, although to 

date genomic instability induced by checkpoint adaptation has only been directly 

observed in S. cerevisiae (Galgoczy and Toczyski 2001) and A. cepa root meristemic 

cells (Carballo et al. 2006). Galgoczy and Toczyski (2001) found that checkpoint 

adaptation proficient S. cerevisiae cells experienced increased chromosome loss and 

translocation by comparison to checkpoint adaptation deficient cells (Galgoczy and 
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Toczyski 2001). Carballo et al. (2006) observed that A. cepa cells irradiated with 5, 10, 

20 and 40 Gray X-rays entered mitosis following treatment and that broken chromatids, 

acentric chromosomal fragments and chromosome bridges were present in some of these 

mitotic cells (Carballo 2006). These studies, from two different eukaryotic organisms, 

suggest that checkpoint adaptation might also induce genomic instability in human cancer 

cells. The transmission of damaged DNA to daughter cells during cell division may also 

be enhanced because cells do not repair damaged DNA in mitosis (Orthwein et al. 2014). 

This means that if cells do not die in mitosis following treatment, then it is likely that they 

will exit mitosis and enter G1 with damaged DNA. Many cancer cells also have a 

defective G1/S DNA damage checkpoint owing to mutations in genes encoding proteins 

that are essential for the initiation and maintenance of this checkpoint such as p53, p21 

and pRb (Schwartz and Shah 2005; Rausch et al. 2012; Manning et al. 2013). This allows 

the cell to once again progress through the cell cycle with damaged DNA. Furthermore, 

once a cell has completed mitosis with damaged DNA, even if the damage is 

subsequently repaired in a different phase of the cell cycle, it is likely that the cell will 

contain a rearranged genome as a result of segregating damaged DNA prior to DNA 

damage repair.  

It is only possible for checkpoint adaptation to be a source of genomic change if 

cells can survive this process. We therefore first investigated whether cells treated with 

cisplatin can survive checkpoint adaptation. Although the number of survival cells was 

very small (0.01%), the number of cells in a tumour make even small percentages 

biologically significant. It is reported that 1 cm
3
 of an epithelial tumour contains 1 x 10

8
 

cells (Del Monte 2009). This means that for every 1cm
3 

of tumour up to 10,000 cells 
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could survive checkpoint adaptation following treatment with cisplatin. We also found 

that 0.09% of cells survive checkpoint adaptation following treatment with CPT. CPT is a 

topoisomerase I inhibitor that induces the formation of DNA strand breaks (Pommier 

2006), whereas cisplatin is a crosslinking agent that forms intra- and inter- strand DNA 

crosslinks (Eastman 1987). These results indicate that a cell’s ability to survive 

checkpoint adaptation is likely independent of type of DNA damage.  

Clinically the efficacy of cisplatin is limited by resistance (Oliver et al. 2010). 

Resistance can be either intrinsic, where resistance is already present at the time of 

diagnosis or acquired, where cells develop resistance following treatment (Giaccone and 

Pinedo 1996). Acquired resistance to cisplatin is complex and multifactorial (Mayer et al. 

2003). Common mechanisms of cisplatin resistance are decreased drug accumulation in 

the cell, increased levels of thiol containing species in the cytoplasm, increased repair of 

DNA damage and resistance to cell death pathways (Woźniak and Błasiak 2002; Kelland 

2007). The pathways of resistance are associated with numerous molecular changes in the 

cell and these are often the consequence of genetic and epigenetic changes (Shen et al. 

2012). One of the most common changes found in cisplatin resistant cells is the 

overexpression of proteins, including those that contain thiols that bind to platinum, 

leading to detoxification (Kelland 2007) and those involved in DNA damage repair by 

nucleotide excision repair (NER) (Florea and Büsselberg 2011).  

The acquisition of cisplatin resistance is associated with changes at the genetic 

level. Cisplatin resistant cell lines and tumour samples exhibit chromosomal 

abnormalities, such as loss of chromosomal regions, which are not present in cisplatin 

sensitive cell lines and tumour samples; however, a specific genotype associated with 
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resistance has yet to be identified (Wasenius et al. 1997; Rao et al. 1998; Leyland-Jones 

et al. 1999; Nessling et al. 1999; Wilson et al. 2005; Noel et al. 2008; Österberg et al. 

2009; Oliver et al. 2010). This might be because there are many pathways that can lead to 

resistance. Additionally, the majority of studies that have investigated genomic change in 

samples resistant to cisplatin used cytogenetic techniques such as comparative genomic 

hybridisation either alone or in combination with microarrays to detect changes in gene 

expression (Wilson et al. 2005) or single nucleotide polymorphism analysis (Noel et al. 

2008). Whereas these techniques have been successful in detecting genomic change such 

as chromosome loss in resistant cancer cells, it will be interesting to compare cisplatin 

resistant cell lines and tumour samples to cisplatin sensitive cell lines and tumour samples 

using next generation sequencing techniques which provide enhanced sensitivity for the 

detection of genomic instability including loss of genetic material, chromosomal 

translocations and chromosomal shattering (Stephens et al. 2011). It is plausible that some 

cells that survive checkpoint adaptation may develop acquired resistance following 

treatment with cisplatin. By preventing cells from entering mitosis with damaged DNA 

(the final step of checkpoint adaptation) it might be possible to prevent cells from 

surviving treatment with rearranged genomes and therefore prevent some cells from 

acquiring resistance to treatment. 

To determine the relationship between checkpoint adaptation and genomic change 

it is necessary to characterise the extent of genomic rearrangement in cells that survive 

this process. This can be investigated using cytogenetic techniques such as fluorescence 

in situ hybridisation (FISH) to observe centromeres, telomeres and highly specific 

chromosomal regions (Bishop 2010; Rahman 2013) and spectral karyotyping (SKY) 
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which uses different coloured fluorescent probes to detect different chromosomal regions 

(Imataka and Arisaka 2012). As single cell sequencing techniques advance it will also be 

possible to sequence the genomes of individual cells that survive checkpoint adaptation 

(Leung et al. 2015).   

Entry into mitosis with damaged DNA can be prevented by inhibiting Cdk1 

(Kubara et al. 2012). However, it was not known whether mitosis was necessary for cell 

death in cells that die following checkpoint adaptation, and it has been suggested that 

cells may undergo checkpoint adaptation so that they can induce cell death in other 

phases of the cell cycle (Lupardus and Cimprich 2004; Syljuåsen 2007). We explored 

whether entry into mitosis is required for cell death in cells treated with either cisplatin or 

CPT by co-treating cells with a small molecule inhibitor of Cdk1, CR8 (Bettayeb et al. 

2008). We found that percentage of cell death is not significantly changed when cells 

treated with either cisplatin or CPT are co-treated with CR8. Because CPT and cisplatin 

are genotoxic agents with different mechanisms of action, these data suggest that the 

strategy of preventing checkpoint adaptation to prevent genomic rearrangement could be 

successful in cancer cells treated with different genotoxic agents.  

Cdk1 inhibitors have already been tested in combination with cisplatin in animal 

models and cell lines (Coley et al. 2007; Chen et al. 2015). In 2013, 13 Cdk1 inhibitors 

were being tested in clinical trials (Bruyère and Meijer 2013). The rationale behind using 

Cdk inhibitors as cancer treatments is that Cdk activity is necessary for cell division to 

occur. By inhibiting Cdk activity, cell division should also be inhibited (Johnson and 

Shapiro 2010). However, the therapeutic efficacy of Cdk inhibitors in clinical trials has 

been modest to date (Siemeister et al. 2012). Our results indicate that although percentage 
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of cell death is similar when cells are either treated with cisplatin alone or co-treated with 

cisplatin and CR8, co-treatment with a Cdk1 inhibitor might prevent cancer cells from 

surviving treatment with rearranged genomes. These results provide a rationale for the 

use of Cdk1 inhibitors in the clinic and warrant the investigation of the effects of co-

treatment with genotoxic agents and a Cdk1 inhibitor in an animal model.  

Our results provide a rationale for inhibiting entry into mitosis with damaged 

DNA (the final step of checkpoint adaptation) in cells treated with genotoxic agents. We 

show that cell death is maintained when cells are prevented from entering mitosis while 

undergoing checkpoint adaptation. It is likely that inhibiting entry into mitosis with 

damaged DNA will prevent some cells from acquiring additional rearrangement to their 

genomes. However, treatment with a genotoxic agent can also induce genomic instability 

if DNA strand breaks are mis-repaired in interphase prior to entry into mitosis. For 

example, non-homologous end-joining re-joins DNA strand breaks without using 

homologous sequence as a template. This can induce chromosomal rearrangements when 

more than two DNA strand breaks are present, because breaks on different chromosomes 

can be joined together (Mani and Chinnaiyan 2010). It is therefore likely that both 

checkpoint adaptation and entry into mitosis with mis-repaired DNA damage contribute 

to genomic instability following treatment with genotoxic agents. 

Genotoxic agents are not always curative and tumours often progress or recur. In 

an animal model we predict that co-treatment with cisplatin and a Cdk1 inhibitor would 

prevent some cells from surviving treatment with rearranged genomes. This could be 

investigated by determining the relationship between treatment and genomic 

rearrangement in animals either treated with cisplatin alone or treated with cisplatin and a 
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Cdk1 inhibitor. We hypothesise that cancer cells of animals treated with cisplatin alone 

would contain more genomic change by comparison to the cancer cells of animals co-

treated with cisplatin and a Cdk1 inhibitor. If our predictions are correct it is likely that 

the cancer cells of animals co-treated with cisplatin and a Cdk1 inhibitor would be 

prevented from acquiring resistance to treatment and would be susceptible to further 

rounds of treatment. This could mean that a recurring tumour would either take longer to 

return or not return at all. 

In summary, our findings indicate that cells treated with either cisplatin or CPT 

can survive checkpoint adaptation. We also show that cell death is maintained when cells 

treated with either cisplatin or CPT are prevented from entering mitosis with damaged 

DNA. As such, preventing cells from entering mitosis following treatment with genotoxic 

agents warrants further investigation, because this may prevent cells from surviving 

treatment with genotoxic agents and prevent treatment induced genomic instability. 
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Figure 3.1 Some HT-29 cells can survive checkpoint adaptation following treatment with 

30 µM cisplatin. A. HT-29 cells were either not treated (NT) or treated with 30 µM 

cisplatin for 72 h. Rounded cells were collected by mechanical shake-off and cultured 

without further treatment. Cells were observed by phase-contrast light microscopy at 96 

h, 10 d, 21 d and 31 d. Representative images are shown. Scale bar equals 100 µm. 

B. HT-29 cells were either not treated (NT) or treated with 50 nM CPT for 48 h. Cells 

were collected and observed as described in (A). 
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Figure 3.2 A small percentage of HT-29 cells can survive checkpoint adaptation 

following treatment with 30 µM cisplatin. A. HT-29 cells were either not treated (NT), 

treated with 30 µM cisplatin for 72 h or treated with 50 nM CPT for 48 h. Rounded cells 

were collected by mechanical shake-off and cultured without further treatment for 14 d. 

Colonies were then analysed by the clonogenic assay. Representative images of colonies 

are shown. Scale bar equals 17.5 mm. B. HT-29 cells were treated and collected as in (A). 

Mean percentages of clonogenic survival were calculated from three separate experiments 

and standard errors of the means are shown. 
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Figure 3.3 Entry into mitosis can be chemically inhibited in HT-29 cells treated with 30 

µM cisplatin. A. HT-29 cells were not treated (NT) and observed by time-lapse video 

microscopy. Images were captured every 10 min for 96 h and representative images 

captured every 24 h from 0-96 h are shown. Arrows indicate mitotic cells. Scale bar 

equals 100 μm. B. HT-29 cells were treated with 30 μM cisplatin and observed as in (A). 

C. HT-29 cells were co-treated with 30 µM cisplatin and 10 µM CR8 and observed as in 

(A). D. The mean percentages of cells that enter mitosis between 0 and 96 h post-

treatment were calculated from three separate experiments. Standard errors of the means 

are shown. Asterisks show significant differences, paired student’s t-test, 2 degrees of 

freedom, p < 0.05. 
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Figure 3.4 Cytotoxicity is maintained when cells treated with either 30 µM cisplatin or 50 

nM CPT are prevented from entering mitosis. A. HT-29 cells were either not treated 

(NT), treated for 72 h with 10 µM CR8, treated for 96 h with 30 µM cisplatin, treated 

with 30 µM cisplatin for 24 h and then co-treated with 30 µM cisplatin and 10 µM CR8 

for 72 h, treated for 96 h with 50 nM CPT or treated with 50 nM CPT for 24 h and the co-

treated with 50 nM CPT and 10 µM CR8 for 72 h. Cells were observed by phase-contrast 

light microscopy 96 h after treatment with either cisplatin or CPT. Representative images 

are shown. Scale bar equals 100 µm. B. HT-29 cells were either not treated, treated for 96 

h with 30 µM cisplatin, treated with 30 µM cisplatin for 24 h and then co-treated with 30 

µM cisplatin and 10 µM CR8 for 72 h, treated for 96 h with 50 nM CPT or treated with 

50 nM CPT for 24 h and then co-treated with 50 nM CPT and 10 µM CR8 for 72 h. 

Trypan blue staining was then used to measure cell viability. The results from each 

treatment were normalised to treatment with 0.1% (v/v) DMSO. Mean percentages of 

relative viability were calculated from three individual experiments. Standard errors of 

the means are shown. 
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CHAPTER 4 

Investigation of the process of checkpoint adaptation in human cancer cells treated 

with either cisplatin or camptothecin 

4.1 Abstract 

Checkpoint adaptation is a major response to treatment with either cisplatin or 

CPT in HT-29 human colorectal adenocarcinoma cells. This process might be a source of 

genomic instability in some human cancer cells and could lead to acquired resistance to 

treatment. It may therefore be possible to improve the efficacy of current genotoxic anti-

cancer drugs by preventing treated cancer cells from entering mitosis with damaged DNA 

(the final step of checkpoint adaptation), so that these cancer cells do not survive 

treatment with rearranged genomes. We reasoned that if checkpoint adaptation is to be 

targeted therapeutically then it is necessary to understand whether the process is the same 

or different in response to treatment with different genotoxic agents. We therefore 

compared checkpoint adaptation in human cancer cells treated with either cisplatin or 

CPT. We report that CPT treated HT-29 cells enter mitosis with damaged DNA 24 h 

earlier than cisplatin treated cells. At 24 h 58% of CPT treated HT-29 cells are positive 

for cyclin B1, whereas only 24% of cisplatin treated cells are positive for cyclin B1. At 48 

h, 10% of CPT treated cells are rounded and 9% of cells are positive for phospho-Ser10 

histone H3 staining. By contrast, mitotic cells do not accumulate following treatment with 

cisplatin until 72 h when 7% of cells are rounded and 7% of cells are positive for 

phospho-Ser10 histone H3 staining. Additionally, at 24 h, 92% of CPT treated cells are 

positive for histone γH2AX staining, by comparison to 56% of cisplatin treated cells. 

CPT treated cells also spend an average of 440 min in mitosis whereas cisplatin treated 
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cells spend an average of 280 min in mitosis. These data demonstrate that the steps of 

checkpoint adaptation are similar in HT-29 cells treated with either cisplatin or CPT, but 

that the timing of checkpoint adaptation is different. We also found that the timing of 

entry into mitosis is similar in M059K glioma cells treated with either cisplatin or CPT; 

however, the duration of mitosis is longer in M059K cells treated with CPT by 

comparison to cells treated with cisplatin. These data indicate that length of time spent in 

mitosis is different when two human cancer cell lines are treated with either cisplatin or 

CPT and undergo checkpoint adaptation. 

 

4.2 Introduction 

 Checkpoint adaptation consists of three steps 1) initiation of a DNA damage 

induced cell cycle arrest; 2) overcoming this arrest and 3) continuing the cell cycle with 

damaged DNA. HT-29 human colorectal adenocarcinoma cells treated with either 

camptothecin (CPT) (Kubara et al. 2012) or cisplatin (Chapter 2) undergo checkpoint 

adaptation. These genotoxic agents damage DNA by different mechanisms of action; CPT 

is a topoisomerase I inhibitor (Hsiang et al. 1985) and induces DNA strand breaks 

(Pommier 2006) whereas cisplatin is a crosslinking agent that induces monofunctional 

DNA adducts and intra- and inter- strand DNA crosslinks (Eastman 1987). Checkpoint 

adaptation has also been observed in different human cancer cell lines treated with either 

ionising radiation (Syljuåsen et al. 2006; Rezacova et al. 2011) or etoposide (Kubara et al. 

2012). Furthermore mitotic catastrophe, which under some conditions is an outcome of 

checkpoint adaptation, has been detected in HT-29 cells treated with a representative 
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range of genotoxic agents, but the precise steps and timing of checkpoint adaptation have 

not been investigated (Cahuzac et al. 2010).  

 In chapter 2 we demonstrated that biochemical processes guide cells to undergo 

checkpoint adaptation because cells treated with two different cytotoxic concentrations of 

cisplatin died by either undergoing checkpoint adaptation or by apoptosis. In chapter 3 we 

demonstrated that HT-29 cells treated with either cisplatin or CPT will die when they are 

prevented from entering mitosis, the final step of checkpoint adaptation. These results 

suggest that treated cells make a biochemical “decision” to undergo checkpoint 

adaptation. Cells are capable of inducing cell death without undergoing checkpoint 

adaptation and will die by apoptosis when treated with a higher concentration of cisplatin, 

which induces a higher level of damaged DNA. However, the biochemical events that 

underlie whether cells undergo checkpoint adaptation or apoptosis are not well 

understood.  

Genotoxic agents are widely used to treat cancer patients but are not always 

curative. Many of these agents, such as cisplatin, are limited by the development of 

resistance to treatments (Cheung-Ong et al. 2013) and genomic change can be responsible 

for this acquisition of resistance to treatment (Shen et al. 2012). Checkpoint adaptation 

may be a source of genomic change in treated cancer cells because some cells can survive 

this process, which involves entry into mitosis with damaged DNA (Kubara et al. 2012; 

Rahman 2013; Chapter 3). Cells that survive checkpoint adaptation might therefore be the 

source of some cells that acquire resistance to treatment. In chapter 3 we demonstrated 

that it is possible to induce cell death when entry into mitosis with damaged DNA (the 

final step of checkpoint adaptation) is prevented in HT-29 cells treated with either 
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cisplatin or CPT. If checkpoint adaptation is to be targeted to prevent cells surviving with 

rearranged genomes, then it is necessary to understand if the process is the same or 

different in response to treatment with different genotoxic agents. Furthermore, 

identification of differences in the engagement of checkpoint adaptation may provide 

insights into the biochemical pathways that induce it. Checkpoint adaptation has not 

previously been compared in the same cancer cell line treated with two different 

genotoxic agents. We therefore compared the cellular response of checkpoint adaptation 

in HT-29 cells treated with either cisplatin or CPT. 

We report that HT-29 cells treated with either cisplatin or CPT demonstrate 

differences in their initiation of checkpoint adaptation following treatment. HT-29 cells 

treated with CPT signal damaged DNA 24 h earlier by comparison to cisplatin treated 

cells. CPT treated HT-29 cells also enter mitosis 24 h earlier than cells treated with 

cisplatin. Furthermore, these CPT treated cells spend a longer time in mitosis by 

comparison to cells treated with cisplatin. We also find that in a second unrelated cell 

line, M059K, cells treated with CPT spend longer in mitosis by comparison to cells 

treated with cisplatin. 

 

4.3 Materials and methods 

4.3.1 Cell culture 

The human cell lines HT-29 (ATCC HTB-38) and M059K (ATCC CRL-2365) 

were obtained from the American Type Culture Collection (ATCC). HT-29 cells were 

maintained in RPMI 1640 medium (Gibco; 21870-092) supplemented with 10% (v/v) 

heat inactivated fetal bovine serum (FBS) (Gibco; 12484028) and 1.6 mM GlutaMAX 
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(Gibco; 35050-061). M059K cells were maintained in Dulbecco’s Modified Eagle 

Medium/F-12 (Gibco; 11320-082) supplemented with 10% (v/v) heat inactivated FBS 

(Gibco; 12484028), 2 mM Modified Eagle Medium non-essential amino acids (Gibco; 

11140050) and 15 mM HEPES, pH 7.4. Cells were grown at 37°C in 5% CO2 and media 

were changed every 3-4 d. HT-29 cells were plated at a density of 3.0 x 10
5
 cells/25 cm

2 

flask and cultured for 72 h prior to treatment. M059K cells were plated at a density of 7.5 

x 10
5
/75 cm

2
 flask and cultured for 24 h prior to treatment. The compound cisplatin 

(Sigma; 479306-1G) was dissolved in dimethyl sulphoxide (DMSO) (Sigma-Aldrich; 

D2438) to a concentration of 100 mM and stocks were freshly made every two weeks. 

CPT (Sigma; 7689-03-4) was dissolved in DMSO to a concentration of 10 mM. The 

compounds were stored at -20°C until use. Not treated cells were treated with the solvent 

only (0.1% (v/v) DMSO). 

4.3.2 Cytotoxicity assay 

The cytotoxicity of either cisplatin or CPT was measured by the MTT (3-(4,5)-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay (Sigma-Aldrich; M2128-

1G)). HT-29 cells were plated at 3.8 x 10
5
 cells/96 well culture plate and cultured at 37°C 

for 72 h prior to treatment. M059K cells were plated at 2.5 x 10
5 

cells/96 well culture 

plate and cultured at 37°C for 24 h prior to treatment. All treatments were run in triplicate 

at 24, 48, 72 and 96 h and experiments were performed three times. After the specified 

treatment time, 20 µl MTT solution (5 mg/ml MTT in phosphate buffered saline (PBS) 

(137 mM NaCl, 3 mM KCl, 100 mM Na2HPO4, 18 mM KH2PO4) was added to the media 

in each well and the plates were incubated at 37°C for 3.5 h. The media were then 

aspirated and 100 µl MTT solvent (4 mM HCl, 0.1% (v/v) 
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octylphenoxypolyethoxyethanol, in isopropanol) was added to each well. Plates were 

placed on a shaker for 30 min in the dark, and absorbance was measured at 590 nm using 

a BioTek microplate spectrophotometer powered by Eon software. Results were 

expressed as IC50 concentrations; the concentration of the compound that reduced the 

absorbance of MTT by 50%, by comparison to 0.1% (v/v) DMSO treated cells. The 

normalised percent absorbance was calculated as shown: 

Normalised percent absorbance = (absorbance/DMSO absorbance) x 100 

The log concentrations of the compound were plotted against the normalised 

percent absorbance using Microsoft Excel software. Analysis was performed with 

GraphPad Prism 5 software, using non-linear regression (log(inhibitor) versus normalised 

response), to estimate the IC50 concentrations. Standard curves were plotted using the 

equation: 

Y = maximum + (maximum – minimum)/(1+10
(x-LogIC50)

) 

Where maximum is the percentage of viable cells after treatment with 0.1% DMSO, 

minimum is the percentage of viable cells after treatment with the highest concentration 

of the genotoxic molecule and x is the log10 value of the treatment concentration. 

4.3.3 Light microscopy 

HT-29 cells were seeded at 1.0 x 10
5
/well in a 6 well culture plate and incubated 

at 37°C for 72 h prior to treatment. Images were captured at room temperature with an 

Infinity 1 camera powered by Infinity Capture imaging software (Lumenera Corporation) 

on an Olympus CKX41 inverted microscope. Images were processed using Adobe 

Photoshop (CC 2014.1.0) and Image J (IJ 1.46r) software. At least 500 cells were counted 

for each treatment and experiments were performed three times. 
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4.3.4 Immunofluorescence microscopy  

HT-29 cells were plated on glass coverslips at 1.0 x 10
5
/well in a 6 well culture 

plate and incubated at 37°C for 72 h prior to treatment. After treatment, cells were fixed 

at room temperature for 20 min in 3% (v/v) formaldehyde (Ted Pella Inc; 18505), diluted 

in PBS. Fixation was quenched with 50 mM NH4Cl in PBS, and cells were permeabilised 

for 5 min using 0.2% (v/v) Triton X-100 in PBS and blocked for 1 h with 3% (w/v) 

bovine serum albumin (BSA) in PBS-T (0.1% (v/v) Tween-20 diluted in PBS). Cells 

were then incubated with primary antibodies as described: anti-histone γH2AX 

(Millipore; 05-636; 1:400) for 1 h at room temperature; anti-cyclin B1 (Santa Cruz 

Biotechnology; SC-752; 1:100) for 2 h at room temperature or anti-phospho-Ser10 

histone H3 (Millipore; 06-570(CH); 1:1000) for 18 h at 4°C. After washing with PBS-T, 

cells were incubated with secondary antibodies for 2 h at room temperature as follows: 

Alexa Fluor 488-conjugated anti-mouse (Life Technologies; A11059; 1:400) for anti-

histone γH2AX and Texas Red-conjugated anti-rabbit (Jackson ImmunoResearch; 111-

075-003; 1:400) for anti-phospho-Ser10 histone H3 and anti-cyclin B1. Nuclei were 

stained with 300 nM 4′,6-diamidino-2-phenylindole (DAPI) in PBS for 15 min and 

coverslips were mounted onto microscope slides using ProLong Gold Antifade reagent 

(Molecular probes; P36934). Cells were observed on an Olympus BX41 microscope and 

images were captured using an Infinity 3 camera operated by Infinity Capture imaging 

software (Lumenera Corporation). Images were prepared using Adobe Photoshop (CC 

2014.1.0) software. Cells positive for histone γH2AX, phospho-Ser10 histone H3 and 

cyclin B1 were counted using Image J (IJ 1.46r) software. At least 500 cells were counted 

for each treatment and experiments were performed three times. 
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4.3.5 Time-lapse video microscopy 

HT-29 cells were plated at 3.0 x 10
5
/25 cm

2
 flask and incubated at 37°C for 72 h 

prior to treatment. M059K cells were plated at 2.0 x 10
5
/25 cm

2 
and incubated at 37°C for 

24 h prior to treatment. Time-lapse video microscopy images were collected from the 

start of treatment at 37°C, using a Lumascope 500 microscope (etaluma) powered by 

LumaView software (etaluma; V.13.4.25.99). Images were captured every 10 min for 96 

h. Cells were manually scored for mitotic entry by observing whether they displayed a 

rounded morphology, indicative of mitosis, or not between 0 and 96 h. Cells that left the 

field of view before rounding were not counted. At least 250 HT-29 cells and 50 M059K 

cells were counted for each treatment. Time-lapse video microscopy images were also 

analysed to determine how long cells spent in mitosis. Thirty individual HT-29 cells and 

20 individual M059K cells were analysed for each of the treated cell populations between 

48 and 96 h, to determine how long cells displayed a rounded morphology for, to the 

nearest 10 minutes. Experiments were performed three times. 

4.3.6 Statistical analysis 

Graphs were produced using Microsoft Excel 2010 software. Data were collected 

and plotted as means from three separate experiments ± standard errors of the means. 

Statistical significance was calculated using the student’s t-test for two paired sample 

means and values were considered significantly different when p < 0.05. 

 

4.4 Results 

4.4.1 Both 30 µM cisplatin and 50 nM CPT are cytotoxic to HT-29 cells 
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To compare the response of checkpoint adaptation it is necessary to draw from 

data previously presented in this thesis. For convenience these data are presented for a 

second time in this chapter. By using these previously presented data and combining them 

with new data we are able to answer new questions about checkpoint adaptation because 

checkpoint adaptation has not previously been compared in the same cell line treated with 

two different genotoxic agents. We first compared the cytotoxicity of 30 µM cisplatin or 

50 nM CPT on HT-29 cells. HT-29 cells were treated with different concentrations of 

either cisplatin or CPT for 24, 48, 72 and 96 h and cell viability was measured using the 

MTT assay (Figure 4.1). The results from each treatment condition were normalised to 

treatment with 0.1% (v/v) DMSO.  

HT-29 cell viability decreased in a time dependent manner, as the concentration of 

either cisplatin or CPT increased. The IC50 values for cisplatin ranged from 120 μM at 24 

h to 5 μM at 96 h (Table 4.1). The IC50 values for CPT ranged from 517 nM at 24 h to 16 

nM at 96 h (Table 4.1). As described in previous chapters, we selected 30 μM cisplatin 

and 50 nM CPT as cytotoxic concentrations, because they were higher than the respective 

IC50 values at 96 h and yet below suprapharmacological concentrations (Swift and 

Golsteyn 2014). 

4.4.2 Cisplatin treated cells take longer to signal damaged DNA by comparison to CPT 

treated cells 

 We next investigated if cells treated with either cisplatin or CPT signalled 

damaged DNA at different times by using immunofluorescence microscopy to detect 

histone γH2AX staining. HT-29 cells were treated with either 30 μM cisplatin or 50 nM 

CPT and analysed for histone γH2AX staining at 24, 48 and 72 h (Figure 4.2). Not treated 
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cells were used as controls. At 24 h, a higher percentage of CPT treated cells were 

positive for histone γH2AX staining (92 ± 1%) by comparison to cisplatin (56 ± 4%). 

However, at 48 and 72 h similar percentages of cisplatin and CPT treated cells were 

positive for histone γH2AX staining. At 48 h, 96 ± 1% of 30 μM cisplatin treated cells 

and 94 ± 3% of CPT treated cells were positive for histone γH2AX. At 72 h, 93 ± 4% of 

cisplatin treated cells and 94 ± 4% of CPT treated cells were positive for histone γH2AX 

staining. These results indicate that CPT damages DNA earlier by comparison to 

cisplatin. 

4.4.3 Cisplatin treated cells take longer to accumulate cyclin B1 by comparison to CPT 

treated cells 

To explore if there were differences between the numbers of cells expressing 

cyclin B1, which is required for cells to undergo the final step of checkpoint adaptation, 

we examined HT-29 cells treated with either 30 μM cisplatin or 50 nM CPT by 

immunofluorescence microscopy at 24, 48 and 72 h to detect cyclin B1 staining (Figure 

4.3). Not treated cells were used as a control. The percentages of cyclin B1 positive cells 

present in the not treated cell population were 6 ± 1% at 24 h, 5 ± 1% at 48 h and 2 ± 

0.3% at 72 h. 

At 24 h, 58 ± 5% of CPT treated cells were positive for cyclin B1, by comparison 

to 24 ± 3% of cisplatin treated cells. However, at 48 and 72 h, similar percentages of 

cisplatin and CPT treated cells were positive for cyclin B1 staining. At 48 h, 94 ± 1% of 

cisplatin treated cells and 95 ± 1% of CPT treated cells were positive for cyclin B1. At 72 

h, 95 ± 1% of cisplatin treated cells and 93 ± 1% of CPT treated cells were positive for 
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cyclin B1. These results indicate that cells treated with CPT accumulate cyclin B1 earlier 

than cisplatin treated cells. 

4.4.4 Mitotic cells are present 24 h earlier in HT-29 cells treated with CPT by 

comparison to cells treated with cisplatin 

 In chapter 2, light microscopy images (Figure 4.4A) suggested that rounded cells 

were present 24 h earlier in cells treated with CPT, by comparison to cells treated with 

cisplatin. We determined the percentage of mitotic HT-29 cells present at 24, 48, 72 and 

96 h after treatment with either 30 μM cisplatin or 50 nM CPT (Figure 4.4B). Not treated 

cells were used as controls. Mitotic cells were present as part of a normal proliferating 

culture but did not accumulate in the not treated cell population. The percentage of 

mitotic cells also decreased in a time dependent manner, consistent with a slowing of the 

cell cycle when cells reached confluence. Mitotic cells were first present 48 h after 

treatment with CPT (10 ± 2%) and remained at 72 h (19 ± 2%) and 96 h (13 ± 3%). By 

contrast, few mitotic cells were present in the cisplatin treated cell population until 72 h 

after treatment (7 ± 0.04%).  

 After finding that cells treated with CPT were entering mitosis at 48 h and that 

cells treated with cisplatin entered mitosis at 72 h, we used time-lapse video microscopy 

to determine the percentages of cells in mitosis at 12 h intervals between 0 and 72 h after 

treatment with either 30 μM cisplatin or 50 nM CPT (Figure 4.5). Not treated cells were 

used as controls and mitotic cells were present as part of a normal proliferating cell 

culture. At 12 and 24 h few cells treated with either cisplatin or CPT entered mitosis. At 

36 h the percentage of cisplatin treated cells in mitosis remained low (1 ± 0.5%) whereas 

the percentage of CPT treated cells in mitosis increased (8 ± 1%). A similar result was 
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observed at 48 h, 2 ± 0.5% of cisplatin treated cells and 21 ± 2% of CPT treated cells 

were in mitosis. At 60 h, cisplatin treated cells were beginning to enter mitosis (5 ± 1%) 

and the percentage of CPT treated cells in mitosis remained high (27 ± 2%). At 72 h, 10 ± 

1% of cisplatin treated cells and 18 ± 1% of CPT treated cells were in mitosis.  

 Finally, we used phospho-histone H3 staining to confirm that the rounded cells 

observed by light and time-lapse video microscopy were in mitosis. HT-29 cells were 

treated with either 30 μM cisplatin or 50 nM CPT for 24, 48 and 72 h and observed by 

immunofluorescence microscopy to detect phospho-Ser10 histone H3 staining (Figure 

4.6). Not treated cells were used as a control. Phospho-histone H3 positive cells were 

present in the not treated cell population at 24 h (6 ± 1%), 48 h (5 ± 1%) and 72 h (2 ± 

0.3%) and values were similar to those determined by light microscopy. 

 At 24 h, the percentages of phospho-Ser10 histone H3 positive cells were low in 

cells treated with either cisplatin (0.2 ± 0.07%) or CPT (0.2 ± 0.1%). By contrast, the 

percentage of phospho-Ser10 histone H3 positive cells was significantly higher in CPT 

treated cells at 48 h (9 ± 0.05%) by comparison to cells treated with cisplatin (1 ± 0.3%) 

(p <0.05). At 72 h, the percentages of cells staining positive for phospho-Ser10 histone 

H3 were similar in cell populations treated with either cisplatin (7 ± 1%) or CPT (9 ± 

1%). These results indicate that cells treated with CPT enter mitosis 24 h before cells 

treated with cisplatin. 

4.4.5 Most HT-29 cells treated with either cisplatin or CPT enter mitosis following 

treatment 
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 It has been reported that the majority of cells treated with either cisplatin (Chapter 

2) or CPT (Kubara et al. 2012) enter mitosis following treatment. However, the fraction 

of cells entering mitosis following treatment with either cisplatin or CPT has not been 

previously compared. We used time-lapse video microscopy to observe cells treated with 

either 30 μM cisplatin or 50 nM CPT. Not treated cells were used as a control. Images 

were captured every 10 min for 96 h (Figure 4.5) and individual cells were manually 

observed to detect the presence or absence of cell rounding. The percentages of cells that 

entered mitosis post-treatment were then determined (Figure 4.7). Nearly all not treated 

cells (99 ± 0.06%) entered mitosis. The majority of cells treated with either cisplatin (81 

± 3%) or CPT (94 ± 1%) entered mitosis after treatment.  

4.4.6 CPT treated HT-29 cells spend a longer time in mitosis by comparison to cisplatin 

treated cells 

 The majority of not treated, cisplatin treated and CPT treated cells entered mitosis 

when observed by time-lapse video microscopy. We noted that entry into mitosis per se 

was not sufficient as a criterion to distinguish not treated cells from those treated with 

either cisplatin or CPT because under each condition cells would enter mitosis, albeit at 

different times. However, during the course of our experiments we observed that cells 

remained in mitosis for different lengths of time, we therefore decided to measure this 

precisely using time-lapse video microscopy. Images were captured every 10 min for 96 

h, as such results are presented to the nearest 10 min (Figure 4.8). Not treated cells spent 

an average of 50 ± 0 min in mitosis. By contrast to the not treated cells, cells treated with 

either cisplatin (280 ± 30 min) or CPT (440 ± 20 min) spent a longer time in mitosis. 
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Cells treated with CPT also spent a significantly longer time in mitosis (160 min) by 

comparison to cells treated with cisplatin (p < 0.05). 

4.4.7 Both 10 µM cisplatin and 50 nM CPT are cytotoxic to M059K cells 

 Having identified that CPT treated HT-29 cells undergo checkpoint adaptation 24 

h before cisplatin treated cells, we used a second cell line to investigate whether these 

cells exhibited a similar response to treatment with two different genotoxic agents. It was 

first necessary to investigate the cytotoxicity of either cisplatin or CPT on M059K cells. 

M059K cells were treated with different concentrations of either cisplatin or CPT for 24, 

48, 72 and 96 h and cell viability was measured by the MTT assay (Figure 4.9). The 

results from each treatment condition were normalised to treatment with 0.1% (v/v) 

DMSO. 

 M059K cell viability decreased in a time and concentration dependent manner 

following treatment with either cisplatin or CPT. The IC50 values for cisplatin ranged 

from 30 µM at 24 h to 1 µM at 96 h (Table 4.2). The IC50 values for CPT ranged from 

567 nM at 24 h to 6 nM at 96 h (Table 4.2). We selected 10 µM cisplatin and 50 nM CPT 

for further study because they were higher than the respective IC50 values at 96 h, below 

the suprapharmacological concentrations for these drugs (Swift and Golsteyn 2014), and 

were equitoxic. It has also been reported that M059K cells treated with a similar 

concentration of CPT undergo checkpoint adaptation (Kubara et al. 2012) and 50 nM 

CPT was used as a positive control treatment for checkpoint adaptation in M059K cells in 

chapter 2.  
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4.4.8 Similar percentages of M059K cells enter mitosis following treatment with either 

cisplatin or CPT 

 To understand better the relationship between M059K cells treated with either 10 

μM cisplatin or 50 nM CPT we compared the fraction of cells entering mitosis following 

treatment using time-lapse video microscopy. Not treated cells were used as a control. 

Images were captured every 10 min for 96 h (Figure 4.10A-C) and individual cells were 

manually observed to detect the presence or absence of cell rounding. The percentages of 

cells that entered mitosis were then determined (Figure 4.10D). Nearly all not treated (99 

± 0.7%) cells entered mitosis. Similar percentages of cells treated with either cisplatin (75 

± 5%) or CPT (75 ± 8%) entered mitosis following treatment. 

4.4.9 M059K cells treated with either cisplatin or CPT undergo checkpoint adaptation at 

similar times 

 Having identified that 10 μM cisplatin and 50 nM CPT were equitoxic 

concentrations of genotoxic agents that induced similar numbers of cells to enter mitosis 

following treatment, we investigated if M059K cells treated with either cisplatin or CPT 

entered mitosis at different times. M059K cells were treated with either 10 µM cisplatin 

or 50 nM CPT and observed by time-lapse video microscopy to determine the percentage 

of cells in mitosis at 12 h intervals between 0 and 72 h after treatment (Figure 4.11). 

Images were captured every 10 min. Not treated cells were used as controls and mitotic 

cells were present as part of the normal proliferating culture. The percentages of mitotic 

cells in the cisplatin treated cell population remained relatively constant and ranged from 

2 ± 1% at 12 h to 4 ± 1% at 48, 60 and 72 h. By contrast, the percentages of mitotic cells 

in the CPT treated cell population increased from 2 ± 1% at 12 h to 7 ± 2% at 48 h and 60 
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h and 7 ± 0.3% at 72 h. These data indicate that M059K cells treated with either cisplatin 

or CPT do not undergo checkpoint adaptation at different times. 

4.4.10 CPT treated M059K cells spend a longer time in mitosis by comparison to 

cisplatin treated cells 

 Although we did not see a difference in the timing of checkpoint adaptation in 

M059K cells treated with either cisplatin or CPT, we reasoned that these cells might still 

spend different periods of time in mitosis by comparison to not treated cells and each 

other. M059K cells were treated with either 10 µM cisplatin or 50 nM CPT and observed 

by time-lapse video microscopy. Images were captured every 10 min for 96 h and results 

are presented to the nearest 10 min (Figure 4.12). Not treated cells spent an average of 50 

± 0 min in mitosis. By contrast, cells treated with either cisplatin (170 ± 10 min) or CPT 

(240 ± 10 min) spent a longer time in mitosis. Cells treated with CPT also spent a 

significantly longer time in mitosis (70 min) by comparison to cells treated with cisplatin 

(p < 0.05). 

 

4.5 Discussion 

Checkpoint adaptation occurs when cells arrest at and then abrogate the G2/M 

checkpoint to enter mitosis with damaged DNA. HT-29 cells undergo checkpoint 

adaptation when they are treated with either cisplatin (chapter 2) or CPT (Kubara et al. 

2012). Checkpoint adaptation also occurs in human cancer cell lines treated with either 

ionising radiation (Syljuåsen et al. 2006; Rezacova et al. 2011) or etoposide (Kubara et al. 
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2012). It has therefore been proposed that checkpoint adaptation is a key cellular response 

to treatment with different genotoxic agents in human cancer cells.  

In chapter 3 we found that some HT-29 cells treated with cisplatin can survive 

checkpoint adaptation. Because these cells enter mitosis with damaged DNA we predict 

that some of these survival cells will contain rearranged genomes which could induce 

acquired resistance to treatment. We also found that cell death can be maintained when 

entry into mitosis is inhibited in HT-29 cells treated with either cisplatin or CPT. We 

therefore suggest that preventing entry into mitosis with damaged DNA (the final step of 

checkpoint adaptation) might increase the efficacy of genotoxic anti-cancer drugs by 

preventing cancer cells from surviving treatment with rearranged genomes.  

If checkpoint adaptation is to be targeted to improve the efficacy of current 

genotoxic anti-cancer treatments, then it is necessary to understand if this process is the 

same or different in cancer cells treated with genotoxic agents that damage DNA by 

different mechanisms of action. Additionally, the biochemical processes that underlie the 

engagement of checkpoint adaptation are not well understood. Investigation of 

differences in the induction of checkpoint adaptation may provide new information about 

the biochemical steps that precede and induce this event. We therefore compared the 

cellular response of checkpoint adaptation in HT-29 cells treated with either cisplatin or 

CPT. 

To compare checkpoint adaptation in HT-29 cells treated with either cisplatin or 

CPT, we first identified that 30 µM cisplatin and 50 nM CPT were equitoxic to HT-29 

cells by the MTT assay. Most cells treated with either 30 µM cisplatin or 50 nM CPT 

died by 96 h and both of these concentrations were above the IC50 concentrations of the 
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compounds at 96 h. When we compared the response of HT-29 cells treated with cisplatin 

to cells treated with CPT we identified that cells treated with either cisplatin or CPT 

undergo similar biochemical events during checkpoint adaptation. Cell populations 

treated with either cisplatin or CPT signal damaged DNA, accumulate cyclin B1 and enter 

mitosis, as determined by phospho-Ser10 histone H3 staining and cell rounding observed 

by both light and time-lapse video microscopy. These data support the suggestion that 

checkpoint adaptation occurs in response to treatment with different genotoxic agents. 

Moreover, because these cells underwent the same biochemical events to enter mitosis 

with damaged DNA, these data support our observations from chapter 3 that cancer cells 

treated with genotoxic agents can be co-treated with Cdk1 inhibitors, to prevent them 

from entering mitosis with damaged DNA. 

However, although biochemical events were the same in cells that underwent 

checkpoint adaptation following treatment with either cisplatin or CPT, we found the 

biochemical events that induce checkpoint adaptation occur at different times in HT-29 

cells treated with either cisplatin or CPT. Cells treated with CPT display cell rounding at 

36 h and are positive for phospho-Ser10 histone H3 staining at 48 h, whereas cells treated 

with cisplatin display cell rounding at 60 h and are positive for phospho-Ser10 histone H3 

staining at 72 h. Twice as many CPT treated cells are also positive for cyclin B1 at 24 h, 

by comparison to cisplatin treated cells. Additionally, most CPT treated cells are positive 

for damaged DNA at 24 h by comparison to only half of cisplatin treated cells, indicating 

that CPT treated cells signal damaged DNA earlier than cisplatin treated cells.  

Peak histone γH2AX staining in HL-60 promyelocytic leukemic cells treated with 

150 nM topotecan (TPT), a water soluble analogue of CPT, occurred 1.5 h following 
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treatment. By contrast, histone γH2AX staining did not peak in cisplatin treated cells until 

3 h following treatment (Huang et al. 2004). At 3 h 38% of cells were positive for histone 

γH2AX staining, as determined by flow cytometry, when cells were treated with 1 μM 

cisplatin (Huang et al. 2004). These data suggest that a difference in the timing of histone 

γH2AX induction is a common phenomenon when cells are treated with either cisplatin 

or a CPT related topoisomerase I inhibitor. The authors suggest that these differences in 

timing can be explained if the repair of the DNA lesions induced by cisplatin, as opposed 

to the DNA lesions themselves, induced histone γH2AX formation (Huang et al. 2004). 

However, this is debated by Olive and Banáth (2009) who found that DNA replication is 

the source of histone γH2AX formation in cisplatin treated cells (Olive and Banáth 2009).  

Our results indicate that the response of checkpoint adaptation is distinguishable 

when DNA is damaged by two different genotoxic agents with different mechanisms of 

action. We suggest that the timing of checkpoint adaptation could be linked to the time 

when cells signal damaged DNA, because almost all CPT treated cells signal damaged 

DNA at 24 h by comparison to half of cisplatin treated cells. However, one might expect 

that the cisplatin treated cells with damaged DNA at 24 h would enter mitosis at similar 

times to the CPT treated cells. It might be that the CPT treated cells that enter mitosis 

earlier by comparison to cisplatin treated cells signal damaged DNA earlier than any of 

the cisplatin treated cells. If there is a link between the timing of DNA damage signalling 

and time of entry into mitosis, then this could be investigated at the single cell level by 

time-lapse video microscopy of cells expressing fluorescent mediator of DNA damage 

checkpoint 1 (MDC1) (Liang et al. 2014). MDC1 is a DNA damage response protein that 
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binds to histone γH2AX foci at sites of damaged DNA. This allows quantification of 

damaged DNA in single cells. 

By time-lapse video microscopy, we also identified that cells treated with either 

cisplatin or CPT spend a longer time in mitosis by comparison to not treated cells. Cells 

that have damaged DNA in mitosis are unable to satisfy the spindle assembly checkpoint 

(SAC) and spend a prolonged time in mitosis. Irradiated HeLa cells co-treated with the 

Chk1 inhibitor UCN-01 spent a prolonged time arrested at the metaphase-anaphase 

transition of mitosis by comparison to not treated cells and time spent in mitosis was 

associated with treatment dose (On et al. 2011). Cells treated with 15 Gray ionising 

radiation spent less time in mitosis by comparison to cells treated with 40 Gray ionising 

radiation.  Furthermore, when the SAC was inhibited by depleting or inhibiting the SAC 

protein Mad2 then mitosis was shorter (On et al. 2011). The SAC also delayed HeLa cells 

in mitosis when they were irradiated with laser pulses and this was also attributed to 

Mad2 which was present at kinetochores in these cells (Mikhailov et al. 2002). HeLa cells 

treated with aphidicolin also spent a prolonged time in mitosis by comparison to not 

treated cells (Nitta et al. 2004). Our data therefore provide further indication that HT-29 

cells treated with either cisplatin or CPT enter mitosis with damaged DNA. If treated cells 

entered mitosis with fully repaired DNA damage, then one would expect them to respond 

similarly to not treated cells. Additionally, cells treated with CPT spent 1.6 times longer 

in mitosis by comparison to cisplatin treated cells.  

Having identified that HT-29 cells treated with CPT undergo checkpoint 

adaptation 24 h before cells treated with cisplatin and that CPT treated cells spend longer 

in mitosis by comparison to cisplatin treated cells, we investigated if these differences 
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were also observed in a second unrelated cell line, M059K. We first identified, by the 

MTT assay, that 10 µM cisplatin and 50 nM CPT were equitoxic to M059K cells. We 

also demonstrated that a similar percentage of M059K cells (75%) entered mitosis 

following treatment with either 10 µM cisplatin or 50 nM CPT. We then used time-lapse 

video microscopy to observe cell rounding and found that M059K cells treated with 

cisplatin entered mitosis in similar numbers between 0 and 72 h, whereas the number of 

mitotic cells in the CPT treated cell population increased between 24 and 48 h. This could 

be because, by contrast to HT-29 cells, M059K cells signal damaged DNA at similar 

times when treated with either cisplatin or CPT.  

M059K cells do not enter mitosis at different times in response to treatment with 

either cisplatin or CPT. However, these cells do exhibit differences in the length of time 

spent in mitosis. Cells treated with either cisplatin or CPT spend a longer time in mitosis 

by comparison to not treated cells. CPT treated cells also spend 1.4 times longer in 

mitosis by comparison to cisplatin treated cells. The differences between the amount of 

time that cells treated with either cisplatin or CPT spend in mitosis mirrors that observed 

in HT-29 cells, but is less pronounced. It has been shown that HT-29 cells treated with 

either nocodazole or taxol spend a longer time arrested in mitosis by comparison to RKO 

human colon carcinoma and H1703 human non-small cell lung cancer cells (Gascoigne 

and Taylor 2008). HT-29 cells treated with 1 µM AZ138 (an Eg5 mitotic kinesin 

inhibitor) also spend longer in mitosis by comparison to the DLD-1 human colorectal 

adenocarcinoma, HCT-116 human colorectal adenocarcinoma, RKO human colon 

carcinoma and SW480 human colorectal adenocarcinoma cell lines (Gascoigne and 

Taylor 2008). Thus one explanation for our observations is that HT-29 cells arrest in 
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mitosis for a longer time by comparison to M059K cells and so differences between cells 

treated with either cisplatin or CPT are more pronounced in HT-29 cells by comparison to 

in M059K cells.  

HT-29 cells treated with either taxol or nocodazole arrest in mitosis for similar 

times (Gascoigne and Taylor 2008). These drugs both arrest cells at the SAC by 

interfering with the mitotic spindle, but have different mechansims of action. Taxol 

stabilises microtubules whereas nocodazole inhibits microtubule assembly (Gascoigne 

and Taylor 2008). We found that cells treated with CPT spend longer in mitosis by 

comparison to cells treated with cisplatin. This suggests that CPT and cisplatin do not 

induce mitotic arrest for different times by acting on the mitotic spindle because if this 

were the case then we would expect length of time in mitosis to be similar, as for HT-29 

cells treated with either taxol or nocodazole. It is therefore likely that the genotoxic 

agents cisplatin and CPT induce cells to arrest in mitosis for different times by an action 

that is not related to formation of the mitotic spindle. However, it also possible that length 

of time spent in mitosis is a concentration dependent effect. If length of time spent in 

mitosis is concentration dependent, then we would expect cells treated with lower 

concentrations of CPT to spend less time in mitosis by comparison to cells treated with 

higher concentrations of CPT. Thus HT-29 cells treated with a concentration of CPT 

lower than 50 nM might spend a similar amount of time in mitosis by comparison to HT-

29 cells treated with 30 µM cisplatin. 

Our data suggest that the biochemical events occurring during checkpoint 

adaptation (accumulation of cyclin B1 and entry into mitosis with damaged DNA) are 

similar when HT-29 cells are treated with either cisplatin or CPT. We also show that once 



179 
 

DNA has been damaged these events occur at different times in HT-29 cells. The 

difference in timing of the induction of checkpoint adaptation in HT-29 cells treated with 

either cisplatin or CPT could be used to elucidate the biochemical steps that underlie this 

process. Identification of these steps might provide further information about how best to 

target checkpoint adaptation to improve the efficacy of genotoxic anti-cancer drugs.  

We also found that both HT-29 and M059K cells treated with CPT spend a longer 

time in mitosis by comparison to cisplatin treated cells. These data indicate that following 

checkpoint adaptation the length of mitotic arrest in response to treatment with two 

different genotoxic agents, either cisplatin or CPT, is different. The cellular response of 

checkpoint adaptation is therefore not identical in human cancer cells treated with two 

different genotoxic agents. 
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Figure 4.1 Both 30 µM cisplatin and 50 nM CPT are cytotoxic to HT-29 cells. A. HT-29 

cells were treated with different concentrations of cisplatin for 24 h (diamonds), 48 h 

(triangles), 72 h (circles) and 96 h (squares). The MTT assay was used to measure cell 

viability. Each treatment was run in triplicate and the results from each treatment 

condition were normalised to treatment with 0.1% (v/v) DMSO. Mean percentages of 

viability were calculated from three separate experiments and standard errors of the 

means are shown. B. HT-29 cells were treated with different concentrations of CPT for 24 

h (diamonds), 48 h (triangles), 72 h (circles) and 96 h (squares). The MTT assay was used 

to measure cell viability as described in (A). 
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Table 4.1 Mean IC50 concentrations of either cisplatin or CPT used to treat HT-29 cells 

for 24, 48, 72 and 96 h. 

 Time (h) 

Genotoxic agent 24 48 72 96 

Cisplatin (µM) 120 31 14 5 

CPT (nM) 517.2 126.4 44.1 15.7 
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Figure 4.2 More HT-29 cells treated with CPT are positive for histone γH2AX staining at 

24 h, by comparison to cells treated with cisplatin. A. HT-29 cells were either not treated 

(NT), treated with 30 µM cisplatin or treated with 50 nM CPT for 24, 48 or 72 h. Cells 

were stained with DAPI to detect DNA (blue) and with anti-histone γH2AX antibodies 

(green) and analysed by immunofluorescence microscopy. Representative images are 

shown. Scale bar equals 100 µm. B. The percentages of cells staining positive for histone 

γH2AX 24, 48 and 72 h after treatment were determined using Image J software. At least 

500 cells were counted for each treatment per experiment. Mean percentages of cells 

staining positive for γH2AX, calculated from three separate experiments, and standard 

errors of the means are shown. Asterisks show significant differences, paired student’s t-

test, 2 degrees of freedom, p < 0.05. 
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Figure 4.3 More HT-29 cells treated with CPT are positive for cyclin B1 staining at 24 h, 

by comparison to cells treated with cisplatin. A. HT-29 cells were either not treated (NT), 

treated with 30 µM cisplatin or treated with 50 nM CPT for 24, 48 or 72 h. Cells were 

stained with DAPI to detect DNA (blue) and with anti-cyclin B1antibodies (red) and 

analysed by immunofluorescence microscopy. Representative images are shown. Scale 

bar equals 100 µm. B. The percentages of cells staining positive for cyclin B1 24, 48 and 

72 h after treatment were determined using Image J software. At least 500 cells were 

counted for each treatment per experiment. Mean percentages of cells staining positive 

for cyclin B1, calculated from three separate experiments, and standard errors of the 

means are shown. Asterisks show significant differences, paired student’s t-test, 2 degrees 

of freedom, p < 0.05. 
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Figure 4.4 Mitotic cells are present earlier in HT-29 cell populations treated with CPT, by 

comparison to cell populations treated with cisplatin. A. HT-29 cells were either not 

treated (NT), treated with 30 μM cisplatin or treated with 50 nM CPT and observed by 

phase-contrast light microscopy. Representative images are shown. Scale bar equals 100 

µm. B. HT-29 cells were either not treated (NT), treated with 30 µM cisplatin or treated 

with 50 nM CPT. The mean percentages of rounded mitotic cells were manually 

determined using Image J software at 24, 48, 72 and 96 h. At least 500 cells were counted 

for each treatment per experiment and experiments were performed three times. Standard 

error of means are shown. Asterisks show significant differences, paired student’s t-test, 2 

degrees of freedom, p < 0.05. 
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Figure 4.5 Mitotic cells are present earlier in HT-29 cell populations treated with CPT, by 

comparison to in cell populations treated with cisplatin. A. HT-29 cells were not treated 

(NT) and observed by time-lapse video microscopy. Images were captured every 10 min 

for 96 h and representative images from 0, 24, 48, 72 and 96 h are shown. Arrows 

indicate mitotic cells. Scale bar equals 100 μm. B. HT-29 cells were treated with 30 μM 

cisplatin and observed by time-lapse video microscopy, as described in (A). C. HT-29 

cells were treated with 50 nM CPT and observed by time-lapse video microscopy, as 

described in (A). D. HT-29 cells were either not treated (NT), treated with 30 µM 

cisplatin or treated with 50 nM CPT and observed by time-lapse video microscopy, as 

described in (A). The mean percentages of rounded mitotic cells from three separate 

experiments were calculated at 12 h intervals from 0-72 h. At least 250 cells were counted 

per experiment. Standard errors of the means are shown. Asterisks show significant 

differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 4.6 Mitotic cells are present 24 h earlier in HT-29 cell populations treated with 

CPT, by comparison to cell populations treated with cisplatin. A. HT-29 cells were either 

not treated (NT), treated with 30 µM cisplatin or treated with 50 nM CPT for 24, 48 or 72 

h. Cells were stained with DAPI to detect DNA (blue) and with anti-phospho Ser10 

histone H3 antibodies (PH3) (red) and analysed by immunofluorescence microscopy. 

Representative images are shown. Scale bar equals 100 µm. B. The percentages of cells 

staining positive for phospho Ser10 histone H3 (PH3) 24, 48 and 72 h after treatment 

were determined using Image J software. At least 500 cells were counted for each 

treatment per experiment. Mean percentages of cells staining positive for PH3, calculated 

from three separate experiments, and standard errors of the means are shown. Asterisks 

show significant differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 4.7 Most HT-29 cells treated with either cisplatin or CPT enter mitosis. HT-29 

cells were either not treated (NT), treated with 30 μM cisplatin or treated with 50 nM 

CPT and observed by time-lapse video microscopy as described in Figure 4.5. Images 

were manually analysed to determine the mean percentages of cells that entered mitosis 

between 0 and 96 h post-treatment from three separate experiments. At least 250 cells 

were counted per experiment. Standard errors of the means are shown. Asterisks show 

significant differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 4.8 HT-29 cells treated with CPT spend a longer time in mitosis by comparison to 

cisplatin treated cells. HT-29 cells were either not treated (NT), treated with 30 μM 

cisplatin or treated with 50 nM CPT and observed by time-lapse video microscopy 

as described in Figure 4.5. Images were manually analysed to determine how long 

individual cells spent in mitosis, to the nearest 10 min. Thirty cells were analysed 

for each treatment. Mean times in mitosis from three separate experiments were 

calculated and standard errors of the means are shown. Asterisks show significant 

differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 4.9 Both 10 μM cisplatin and 50 nM CPT are cytotoxic to M059K cells. A. 

M059K cells were treated with different concentrations of cisplatin for 24 h (diamonds), 

48 h (triangles), 72 h (circles) and 96 h (squares). The MTT assay was used to measure 

cell viability. Each treatment was run in triplicate and the results from each treatment 

condition were normalised to treatment with 0.1% (v/v) DMSO. Mean percentages of 

viability were calculated from three separate experiments and standard errors of the 

means are shown. B. M059K cells were treated with different concentrations of CPT for 

24 h (diamonds), 48 h (triangles), 72 h (circles) and 96 h (squares). The MTT assay was 

used to measure cell viability, as described in (A). 
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Table 4.2 Mean IC50 concentrations of either cisplatin or CPT used to treat M059K cells 

for 24, 48, 72 and 96 h. 

 Time (h) 

Genotoxic agent 24 48 72 96 

Cisplatin (µM) 29.5 9.4 1.6 1.4 

CPT (nM) 567.2 39.1 4.8 5.6 
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Figure 4.10 Similar percentages of M059K cells enter mitosis following treatment with 

either cisplatin or CPT. A. M059K cells were not treated (NT) and observed by time-

lapse video microscopy. Images were captured every 10 min for 96 h and representative 

images captured every 24 h from 0-96 h are shown. Arrows indicate mitotic cells. Scale 

bar equals 100 μm. B. M059K cells were treated with 10 μM cisplatin and observed using 

time-lapse video microscopy, as described in (A). C. M059K cells were treated with 50 

nM CPT and observed using time-lapse video microscopy, as described in (A). D. 

M059K cells were either not treated (NT), treated with 10 µM cisplatin or treated with 50 

nM CPT and observed by time-lapse video microscopy as described in (A). Images were 

manually analysed to determine the mean percentages of cells that entered mitosis 

between 0 and 96 h post-treatment from three separate experiments. At least 50 cells were 

counted per experiment. Standard errors of the means are shown. Asterisks show 

significant differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 4.11 M059K cells treated with either cisplatin or CPT enter mitosis at similar 

times following treatment. M059K cells were either not treated (NT), treated with 10 µM 

cisplatin or treated with 50 nM CPT and observed by time-lapse video microscopy, as 

described in Figure 4.10. The mean percentages of rounded mitotic cells from three 

separate experiments were calculated at 12 h intervals from 0-72 h. At least 50 cells were 

counted per experiment. Standard errors of the means are shown. Asterisks show 

significant differences, paired student’s t-test, 2 degrees of freedom, p < 0.05. 
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Figure 4.12 M059K cells treated with CPT spend a longer time in mitosis by comparison 

to cisplatin treated cells. M059K cells were either not treated (NT), treated with 10 μM 

cisplatin or treated with 50 nM CPT and observed by time-lapse video microscopy as 

described in Figure 4.10. Images were manually analysed to determine how long 

individual cells spent in mitosis, to the nearest 10 min. Twenty cells were analysed for 

each treatment. Mean times in mitosis from three separate experiments were calculated 

and standard errors of the means are shown. Asterisks show significant differences, paired 

student’s t-test, 2 degrees of freedom, p < 0.05. 
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CHAPTER 5 

General discussion 

 In this thesis we investigated checkpoint adaptation in human cancer cells treated 

with cisplatin. When cells undergo checkpoint adaptation following a genotoxic event 

they arrest at and then abrogate the G2/M checkpoint and enter mitosis with damaged 

DNA (Toczyski et al. 1997). We hypothesised that cancer cells treated with cisplatin 

undergo checkpoint adaptation because cisplatin can induce cell death by mitotic 

catastrophe (Demarq et al. 1994; Chang et al. 1999; Vakifahmetoglu et al. 2008). Our 

results show that the majority of HT-29 human colorectal adenocarcinoma cells treated 

with a relatively low but cytotoxic concentration of cisplatin undergo checkpoint 

adaptation before dying. By contrast, cells treated with a suprapharmacological 

concentration of cisplatin die by apoptosis. We also found that M059K glioma cells 

treated with different concentrations of cisplatin undergo dual modes of cell death. 

 A concentration dependent induction of dual modes of cell death has been 

observed in human colorectal adenocarcinoma cell lines treated with 5-fluorouracil 

(Yoshikawa et al. 2001), hepatocarcinoma cell lines treated with doxorubicin (Eom et al. 

2005) and Chinese hamster lung fibroblasts treated with bleomycin (Tounekti et al. 1993). 

These studies and our data suggest that the induction of dual modes of cell death is a 

common response to treatment with different concentrations of a genotoxic agent, 

because the agents used in these studies damage DNA by different mechanisms of action. 

It is therefore important to explore the relationship between concentration or dose of 

treatment and cytotoxicity in experiments where cell death is being investigated because 
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concentrations of treatments that induce apoptosis may be above those required to induce 

cell death.  

 Checkpoint adaptation is a mechanism that might transmit damaged DNA to 

daughter cells. Checkpoint adaptation has been shown to induce genomic instability in 

Saccharomyces cerevisiae (Galgoczy and Toczyski 2001) and Allium cepa root 

meristemic cells (Carballo et al. 2006). It is therefore likely that checkpoint adaptation 

can induce genomic instability in human cells. If the biochemical pathway that induces 

cells to switch between checkpoint adaptation and apoptosis were identified, then it might 

be possible to prevent cells from undergoing checkpoint adaptation and induce cell death 

by apoptosis. This should prevent cells from surviving treatment with rearranged 

genomes. Our data indicate that cells treated with a lower concentration of cisplatin 

contain less damaged DNA, by comparison to cells treated with a higher concentration of 

cisplatin. We therefore predict that the switch between checkpoint adaptation and 

apoptosis is regulated by levels of damaged DNA. 

 To quantify further the levels of damaged DNA in cells treated with different 

concentrations of cisplatin, cells could be transfected with fluorescent mediator of DNA 

damage checkpoint protein 1 (MDC1), a protein that binds to histone γH2AX at sites of 

damaged DNA (Stewart et al. 2003). These transfected cells could then be observed by 

time-lapse video microscopy (Liang et al. 2014) and the amount of fluorescent signal 

could be quantified and compared. By quantifying the amount of damaged DNA in cells 

treated with a range of concentrations of cisplatin it should be possible to identify the 

amount of damaged DNA that is necessary to induce cells to die by apoptosis instead of 

by undergoing checkpoint adaptation. If the switch between the induction of checkpoint 
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adaptation or apoptosis is linked to a specific amount of damaged DNA then this would 

provide a measure for the induction of checkpoint adaptation that does not rely on 

treatment concentration and that might be applicable to different genotoxic agents. 

 Having identified that checkpoint adaptation is a key cellular response in HT-29 

cells treated with a low but cytotoxic concentration of cisplatin, we asked if any cells 

could survive this process. Checkpoint adaptation can only be a source of genomic 

instability if cells can survive it. We found that a small but biologically significant 

number of cells can survive checkpoint adaptation following treatment with cisplatin. To 

understand better the consequences of checkpoint adaptation in cancer cells treated with 

genotoxic agents it will be necessary to characterise the extent of genomic rearrangement 

in these survival cells. 

Cells that survive checkpoint adaptation could be studied using fluorescence in 

situ hybridisation (FISH), using fluorescent probes specific for telomeres and centromeres 

(Bishop 2010; Rahman 2013). If genomic rearrangement was occurring in cells surviving 

checkpoint adaptation, then telomeres and centromeres might be over represented on 

certain chromosomes and under represented on others (Rahman 2013). A special type of 

FISH, spectral karyotyping (SKY), could also be used to paint all of the chromosomes in 

a cell. This would allow the observation of chromosomal translocations and large 

insertion and deletion events (Imataka and Arisaka 2012) in survival cells. The 

occurrence of micronuclei could also be quantified to assess levels of genomic instability 

in cells that survive checkpoint adaptation (Lewis 2014). Furthermore, cells could be 

transfected with fluorescent histone H2B (Kanda et al. 1998) and observed by high 

resolution time-lapse video microscopy (Rello-Varona et al. 2010) to identify DNA strand 
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breaks and follow the movement of chromosomes in cells undergoing checkpoint 

adaptation. This would allow the observation of genome rearrangement in real-time and 

would provide information about how common and extensive genomic rearrangement is 

following checkpoint adaptation. Finally, as single cell sequencing techniques advance, it 

will also be possible to sequence the genomes of individual cells that survive checkpoint 

adaptation (Leung et al. 2015). We would expect that every genome would be different in 

these cells, because DNA is not damaged identically in all cells treated with genotoxic 

agents such as cisplatin. 

If, as suggested, checkpoint adaptation is a source of genomic instability in treated 

cancer cells then it may be a mechanism by which some cancer cells acquire genomic 

change that leads to resistance to further treatment. Acquired resistance to cisplatin is 

known to be induced by genetic change. Cancer cell lines and tumour samples that are 

resistant to cisplatin exhibit chromosomal abnormalities such as loss of chromosomal 

regions which are not present in cisplatin sensitive cancer cell lines and tumour samples 

(Wasenius et al. 1997; Rao et al. 1998; Leyland-Jones et al. 1999; Nessling et al. 1999; 

Wilson et al. 2005; Noel et al. 2008; Ӧsterberg et al. 2009; Oliver 2010). When cells 

acquire resistance to treatment, this can lead to tumour progression or cancer relapse.  

Preventing cells from entering mitosis with damaged DNA (the final step of 

checkpoint adaptation) before dying might prevent cells from surviving treatment with 

rearranged genomes. However, it is unknown whether cells that usually die following 

checkpoint adaptation need to enter mitosis for cell death to occur and it has been 

suggested that cells may undergo checkpoint adaptation because they are unable to die in 

G2 (Lupardus and Cimprich 2004; Syljuåsen et al. 2006). Our results show that HT-29 
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cells treated with either camptothecin (CPT) or cisplatin are capable of dying when 

mitosis is inhibited by co-treating cells with CR8. However, chemical inhibitors often 

target several enzymes. Although we confirmed that mitosis was inhibited when cells 

were treated with CR8, it is possible that cell death was induced because of a secondary 

effect of CR8. Thus, the same response might not occur if cells were prevented from 

entering mitosis using a different Cdk1 inhibitor. To confirm that cells treated with either 

cisplatin or CPT can die when mitosis is inhibited, cell viability could be measured in 

cells where siRNA was used to knockdown Cdk1 (Xiao et al. 2009), and in cells co-

treated with different Cdk1 inhibitors. 

If checkpoint adaptation is to be targeted to increase the efficacy of current cancer 

treatments by preventing cells from undergoing checkpoint adaptation, then it is 

necessary to understand if checkpoint adaptation is the same or different following 

treatment with different genotoxic agents. We therefore compared the response of 

checkpoint adaptation in HT-29 cells treated with either cisplatin or CPT. We show that 

HT-29 cells treated with either cisplatin or CPT proceed through the same steps to 

undergo checkpoint adaptation. Cells treated with either cisplatin or CPT contain 

damaged DNA, high levels of cyclin B and the majority of cells from both treatments 

enter mitosis. However, the timing of entry into mitosis with damaged DNA is different 

in HT-29 cells treated with these different genotoxic agents. Cells treated with CPT enter 

mitosis 24 h earlier by comparison to cells treated with cisplatin. Both HT-29 and M059K 

cells treated with CPT also spend longer times in mitosis by comparison to cisplatin 

treated cells. The cellular response of checkpoint adaptation is therefore not identical in 

human cancer cells treated with two different genotoxic agents. 
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In conclusion, checkpoint adaptation is a key step that lies between cell cycle 

arrest and cell death in cisplatin treated cells. Because checkpoint adaptation occurs in 

cells treated with ionising radiation (Syljuåsen et al. 2006; Rezacova et al. 2011), CPT, 

etoposide (Kubara et al. 2012) and cisplatin, it is likely an important step that lies 

between cell cycle arrest and cell death following treatment with different genotoxic anti-

cancer drugs. To improve the efficacy of these drugs it is necessary to understand better 

the biochemical pathway that induces cells to undergo checkpoint adaptation in treated 

cancer cells, because some cells can survive checkpoint adaptation and these cells might 

contain rearranged genomes. Additionally, for the findings in this thesis to translate to the 

clinic, studies investigating whether checkpoint adaptation occurs in tumour models and 

in vivo need to be undertaken. 

In summary we have demonstrated that: 

1) Checkpoint adaptation is a major response to treatment with a relatively low but 

cytotoxic concentration of cisplatin, but cells die by apoptosis when they are treated with 

a suprapharmacological concentration of cisplatin (chapter 2). 

2) A small but biologically significant number of HT-29 cells treated with cisplatin can 

survive checkpoint adaptation (chapter 3). 

3) Cytotoxicity is maintained when entry into mitosis with damaged DNA is inhibited in 

HT-29 cells treated with either cisplatin or CPT (chapter 3). 

4) HT-29 cells enter mitosis with damaged DNA (the final step of checkpoint adaptation) 

at different times when they are treated with either cisplatin or CPT (chapter 4). 
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5) Both HT-29 and M059K cells treated with CPT spend longer in mitosis by comparison 

to cisplatin treated cells. This indicates there is a difference in the timing of checkpoint 

adaptation when cells are treated with two different genotoxic agents (chapter 4). 
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