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Abstract

Episodic memory formation and spatial navigation are core functions of the
hippocampus. Embedded in a path integration based navigational system, the
hippocampus generates orthogonal codes for different environments. To separate
events within the same spatial map, the magnitude of individual place cell firing is
modulated by external sensory information. The rate differences are also expressed to
separate different running directions within an environment. Previous work suggested
that the maps can be perturbed by external cues, but that the rate perturbations are not
associatively stored. The present result shows that the rate code is reinstated offline and
thus likely associatively stored, which fits well with the theory that describes the
hippocampus as generating an index code for episodic memories to assist in retrieval of
distributed information stored in the cortex. Lastly, this thesis addresses the
methodological challenges of current electrophysiological techniques in detecting

excitatory local connectivity on the example of the prefrontal cortex.
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Chapter 1 General Introduction

Memory is the ability to encode, store and recall information and to use this information
to construct a model of the world that facilitates adaptive behavior. Memories have
often been viewed as information stored in associated patterns of connections between
neurons that give rise to a neural representation of this memory. Hebb (1949) proposed
a mechanism that enables a change of the strength of the connection among neurons
that could explain how memory representations can be formed. He introduced the
concept of synaptic plasticity based on correlated activity: “whenever an axon of cell A is
near enough to excite a cell B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A's
efficiency as one of the cells firing B is increased". About 20 years after this hypothetical
proposal, Bliss and Lgmo and (1973) Bliss and Gardner-Medwin (1973) described a
durable increase in efficiency of transmission after repeated stimulation at the perforant
path-granule cell synapse in the rabbit hippocampus, a phenomenon currently referred
to as long-term potentiation (LTP). This finding was not linked to Hebb’s idea until a few
years later, when McNaughton et al. (1978) demonstrated that synaptic enhancement is
a cooperative process and requires the concurrent activity of many perforant path
fibers. The hippocampus has long been used as an example system to model how

memories can be stored through autoassociative, symmetric connections between
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coactive neurons that Hebb called ‘cell assemblies’ (1949) in the recurrent network of

CA3 (McNaughton and Morris, 1987).

DIFFERENT TYPES OF MEMORY

According to Squire (2004), various types of memory are supported by different systems
(in the anatomical and functional sense) (Tulving, 1985; Sherry and Schacter, 1987;
Squire, 2004). Generally memory is divided into declarative and nondeclarative memory.
Declarative memory can be verbally reported and provides an internal representation of
the world with informational contents that can be compared and contrasted. It depends
on temporal lobe and diencephalic structures. Declarative memory is further subdivided
into episodic (i.e., autobiographic) and semantic (memory of facts) memory (Tulving,
1972). In contrast, non-declarative memory is dependent on the system it was acquired
with, cannot be verbally reported and its retrieval becomes apparent through
performance rather than through recollection. Examples of non-declarative memories
are procedural memory (skills and habits) dependent on the striatum, priming and
perceptual learning (dependent on the neocortex), simple classical conditioning
(emotional responses are dependent on the amygdala and the skeletal responses are
dependent on the cerebellum), and finally nonassociative learning (dependent on reflex

pathways)(Squire, 2004).



MEMORY CONSOLIDATION

Following observations of patients that suffered amnesia after trauma, the early French
psychologist Theodule-Armand Ribot described that recent memories around and
leading up to the event are more affected than much more remote memories (Ribot,
1882). German experimental psychologists, Miller and Pilzecker (1900), investigated
how new learning interferes with the retrieval of a memory acquired just before the new
learning occurred. These observations led Miiller and Pilzecker to the conclusion that
memory initially exists in a fragile state and becomes strengthened (‘consolidated’) over
time (Lechner et al.,, 1999). The seminal case study on one of the most famous and
extensively studied patients in history, patient H.M., of Scoville and Milner (1957) linked
the ideas and early experimental results on learning and memory research to a
neurobiological substrate: the hippocampal formation. Henry Molaison (H.M.) suffered
from severe epilepsy that was cured with bilateral dissection of the hippocampus and
related temporal lobe structures. However, the procedure had dramatic consequences
regarding his memory functions. H.M now suffered from anterograde and graded
retrograde amnesia, i.e., the inability to form new episodic memories and to retrieve

recently acquired ones (Scoville and Milner, 1957).

THE HIPPOCAMPAL FORMATION

The hippocampal formation can be described along two main axes that are oriented

perpendicular to each other: the longitudinal axis, extending from the septal pole
3



(rostrodorsally, close to the septal nuclei) to the temporal pole (caudoventrally in the
incipient temporal lobe) and the transverse or proximo-distal axis, extending from the
dentate gyrus (proximal) to the entorinal cortex (distal) (Figure 1.1).

The hippocampus is a C-shaped structure buried in the medial temporal lobe. It
consists of a 3-layer archi-cortex comprised of the subfields Dentate Gyrus (DG) and
cornu ammonis (CA) 1,2 and 3. Beginning with the DG, the most superficial layer and
closest to the hippocampal fissure, is the almost cell free molecular layer. Underneath it
is the granule cell layer that contains densely packed granule cells, which are the
principal cells of the DG and innervate CA3. The deepest layer is a polymorph layer and
contains afferents, efferents and interneurons. The most known cell type in the
polymorph layer is probably the mossy cell, which is glutamatergic, like the granule cells.
The mossy cells send axons to the dendrites of the granule cells in the ipsilateral and
contralateral inner third of the molecular layer via the associational and commissural
projections. The DG receives its main input from the entorhinal cortex, predominantly
layer I, via the perforant pathway. This input can be divided into a lateral pathway that
arises from the lateral entorhinal cortex and terminates in the most superficial third of
the molecular layer, and into a medial pathway, arising from the medial entorhinal
cortex and terminating in the middle third of the molecular layer. The projections from
both parts of the entorhinal cortex target the entire transverse extent of the molecular
layer. Apart from the entorhinal input, there are also minor projections from the pre-

and parasubiculum entering the molecular layer of the DG. The granule cells innervate



CA3 through unmyelinated mossy fibers, which are mainly located in the stratum
lucidum (just above the CA3 pyramidal layer). In proximal CA3, mossy fibers are also
located below and within the pyramidal layer. CA2 does not receive mossy fiber input,
which marks a clear border between the two CA subfields. Each granule cell targets
about 15 CA3 pyramidal cells, distributed across the entire transverse extent (Acsady et
al., 1998). As granule cells outnumber the CA3 pyramidal cells by a factor of 12:1 at the
septal pole (the ratio drops to 2:3 at the temporal pole as the packing density of CA3
pyramidal cells and DG granule cells follows inverse gradients), it has been estimated
that each pyramidal cell receives input from about 50-72 granule cells (Henze et al.,
2000). Because the synapses of mossy fibers are relatively big (up to 3-5 microns in
diameter) and have a number of synaptic release sites (30-40)(Henze et al., 2000), a
spike train from a single granule cell can activate a CA3 pyramidal cell (Henze et al,,
2002). The deepest layer of the CA regions is the stratum oriens, a relatively cell-free
layer just below the pyramidal layer containing some of the CA3 to CA3 associational
connections and CA3 to CA1 Schaffer collateral connections. In this layer, the basal
dendrites of the pyramidal neurons and several classes of interneurons are located.
Deeper to this runs the thin fiber containing alveus. The suprapyramidal layer (directly
above CA1 and CA2 and above stratum lucidum in CA3) is the stratum radiatum, which
contains the CA3 to CA3 associational connections and the CA3 to CA1l Schaffer
collaterals. The most superficial layer in CA1 and CA2 is the stratum lacunosum

moleculare, in which the entorhinal and thalamic nucleus reunions inputs terminate. The



hippocampus proper is surrounded by the parahippcampal region (PHR) that is
bordering the subiculum. The PHR is comprised of the presubiculum, the parasubiculum,
the entorhinal cortex, which is further divided into a medial and lateral area, the
perirhinal cortex and postrhinal cortex. The PHR is generally described as 6-layer cortex

(Amaral and Lavenex, 2007).



Figure 1.1 Orientation of the hippocampus in a 3-dimensional drawing of the rat brain
Lateral view on the rat brain with the C-shaped hippocampus located in it. The septal and
temporal pole are marked. A section is magnified with the subfields of the hippocampal
formation indicated as well as the transverse axis running from proximal (close to the DG) to
distal (close to the EC) (Witter et al., 2000).



CIRCUITRY

The original description of the trisynpatic pathway (Andersen et al., 1971) in the
hippocampal formation is a simplified version of the today’s accepted ‘classical pathway’
(van Strien et al., 2009)(Figure 1.2). The entorhinal cortex provides the main input to the
hippocampus proper. Layer |l projects to the area CA3 and collaterals of the same cells
also reach the DG. The mossy fibers project from the DG to CA3 pyramidal neurons,
which in turn send the Schaffer collaterals to area CA1. Entorhinal cortex layer Il cells
send direct projections to CA1, with proximal CA1 receiving input from medial entorhinal
cortex and distal CA1 receiving input from lateral entorinal cortex, as well as to the
subiculum.

Area CA1 projects to the subiculum and both project back to the deep layers (V
and VI) of the entorhinal cortex and other cortical areas (Witter et al., 2000). The return
projections from pyramidal neurons in CA1 to the entorhinal cortex are roughly to the
same areas from which they receive their input. The subiculum targets the lateral septal
nuclei, the nucleus accumbens and the mammillary nuclei. The Pre- and Parasubiculum
have reciprocal connections with the subiculum and project to the superficial layers of
the entorhinal cortex. Projections from layer V to layer Il and lll of entorhinal cortex

close the loop (not in figure) (Amaral and Lavenex, 2007).
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Figure 1.2 The hippocampal formation
A) Output from entorhinal cortex layer Il targets the DG and CA3 via the perforant pathway.
Entorhinal cortex layer Il neurons project to CA1 and the subiculum. The granule cells in the DG
send the mossy fibers to CA3. The pyramidal cells in CA3 project to CA1 via the Schaffer
collaterals. Pyramidal cells in CA1 project to the subiculum and both CA1 and subiculum project
back to the deep layers of the entorhinal cortex. B) Projections of the hippocampal formation
along the transverse axis (Amaral and Lavenex, 2007).



This thesis is mainly concerned with dynamics in the CA3 region, which differs
from other subareas in terms of its recursive organization. The recurrent connections
run mainly in strata oriens and radiatum (Sik et al., 1993; Wittner et al., 2007) and
involve only a few synaptic release sites. They are generally weaker than the synapses
from the mossy fibers. The synapses onto interneurons, however, are more effective (Le
Duigou et al., 2014). Because of its recurrent nature, CA3 has been described as an
autoassociative network, which associates the input to its principal cells with their
output. This enables it to complete a stored representation when only presented with a
fragmented version of the original (McNaughton and Morris, 1987) and even
reverberate activity so that sequential patterns (what Hebb called “phase sequences”)

can be associated with each other and recalled in order (McNaughton and Morris, 1987).

SPATIAL NAVIGATION AND ATTRACTOR DYNAMICS IN THE HIPPOCAMPAL FORMATION

The discovery of spatial selective cells, so called ‘place cells’ in the hippocampus by
O’Keefe and Dostrovsky (1971) led to the proposal that the hippocampus is the neural
substrate of a ‘cognitive map’ forming a mental representation of the environment and
the animal within it. The current location of an animal is encoded in the ensemble
activity of place cells (Wilson and McNaughton, 1993). However, ensemble activity in
different environments is typically unrelated and therefore does not allow predictions of
the animal’s position in other but the already explored environments (Muller and Kubie,

1987; Leutgeb et al., 2004; Leutgeb et al., 2005b; Colgin et al., 2008; Colgin et al., 2010).
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A computational study implemented a map-based path integration system
(Samsonovich and McNaughton, 1997), but since the 2-dimensional spatial maps or
charts are limited, the question of what happens when the animal goes beyond the
represented space, arises. Samsonovich and McNaughton (1997) proposed periodic
boundaries, which implies that cells activate repeatedly. This is has not been reported
for place cells, although they can express multiple fields in large environments (Maurer
et al., 2006a; Kjelstrup et al., 2008; Park et al., 2011). However, such a cell type exists
upstream of the hippocampus in the medial entorhinal cortex and is called ‘grid cells’
(Fyhn et al., 2004; Hafting et al., 2005). Grid cells show spatially periodic firing fields in a
hexagonal pattern that spans the entire environment. Neighboring grid cells show
similar spacing and field size. Their phases are offset to each other, but their relative
firing relationships are maintained across environments (Hafting et al., 2005). The size of
grid fields scales along the dorso-ventral axis in discretized steps (Stensola et al., 2012)
and suggests a modular organization. The converging input from grid cells of different
scales can lead to non-periodic place fields, which are also scaling field size along the
septo-temporal axis (Jung et al., 1994; Maurer et al., 2005; Maurer et al., 2006a; Solstad
et al., 2006; Kjelstrup et al., 2008).

Path integration is based on updating positional information by keeping track of
distance travelled using internal cues, such as proprioceptive and vestibular information
as well as visual flow and motor efference copy. It is a continuous rather than discrete
process. Because of the regular geometrical firing pattern, grid cells have been proposed

11



to form a continuous attractor network for path integration, along which activity moves
as the animal moves in space (McNaughton et al.,, 2006). In a continuous attractor,
stable activity can be formed and maintained and, different from discrete attractors,
moved continuously along the attractor network (Amit, 1989; Tsodyks, 1999;
Trappenberg, 2010). The grid cells’ activity across environments and persistence against
manipulations of landmark features (Hafting et al., 2005; Fyhn et al., 2007) is in
consensus with this role. Locally generated activity can be pushed along a continuum of
attractor states through head direction information (McNaughton et al., 2006). Cells
sensitive to head direction are found in the presubiculum (Taube et al., 1990) and in the
medial entorhinal cortex, intermingled with cells that show conjunctive head direction
and grid firing (McNaughton et al., 1991; Sargolini et al., 2006; Giocomo et al., 2014).
Landmarks can be bound onto the spatial metric system and reinstate the activity at the
appropriate location (McNaughton et al., 2006; Fyhn et al., 2007; Derdikman et al., 2009;
Jezek et al., 2011) to prevent accumulation of error. Independent alighment of
entorhinal modules could lead to unique representations in the hippocampus for
different environments (Monaco and Abbott, 2011) and the hippocampal ensemble
activity could therefore be understood as the result of continuous attractor dynamics in

the MEC (McNaughton et al., 2006).
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REMAPPING IN THE HIPPOCAMPUS

It appears to be at the core of hippocampal function to contribute to the formation of
episodic and semantic memory, and thus it is of utmost importance that even similar
events are stored in a way to enable unambiguous retrieval. Two forms of pattern
separation exist and can be observed in different experimental conditions. The
decorrelation of events in different places is referred to as global remapping and
manifests in orthogonal (statistically independent) spatial maps for different
environments. Global remapping is observed when animals move between different
locations (Leutgeb et al.,, 2005b; Leutgeb et al., 2007; Colgin et al., 2010) or when a
single environment is substantially altered (Jeffery et al., 2003). The second form of
remapping is referred to as rate remapping and corresponds to a change in the rate
distribution within an otherwise stable spatial map (Leutgeb et al., 2005b). This form of
pattern separation can be observed when a subset of cues such as geometrical shape,
wall colors or task demands are changed within an environment (Muller and Kubie,
1987; Anderson and Jeffery, 2003; Leutgeb et al., 2005a; Leutgeb et al., 2005b; Leutgeb
et al., 2007; Colgin et al., 2010; Allen et al.,, 2012). The key determinant of whether
global remapping is used appears to be whether there are differences in the spatial
input as provided by the medial entorhinal cortex (Leutgeb et al., 2007). The rate
modulation in rate remapping is likely due to lateral entorhinal cortex input (Lu et al.,

2013), which itself shows little spatial modulation and is thought to provide the
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hippocampus with the external sensory content and processing of local cues (Hargreaves
et al., 2005; Neunuebel et al., 2013; Knierim et al., 2014).

The observation of abrupt transitions between stored representations, as in
global remapping, and the persistence of hippocampal ensemble activity against minor
changes, resemble discrete attractor dynamics. Spatial and contextual information have
been proposed to be stored associatively in the recurrent network of CA3 (Hopfield,
1982; McNaughton and Morris, 1987; Amit and Treves, 1989). In a recent study,
however, in which one familiar shape was morphed into another, CA3 ensemble and
single unit activity showed hysteresis (i.e., lag in the change of representation) and
abrupt transitioning coherently at the midpoint of the morph series from one place field
configuration into another, but only when the animal was familiarized with the shapes in
different spatial locations during training. When both shapes were experienced at the
same location, morphing between them resulted in a gradual transition between the
two different firing rate distributions in CA3 associated with the two familiar shapes with
almost no change in the location of cell firing (Leutgeb et al., 2005a; Colgin et al., 2010).
The attractor-like dynamics observed in the hippocampus during global remapping
might therefore be a result of the continuous attractor dynamics upstream in the medial
entorhinal cortex, rather than the result of discrete attractor dynamics within the
hippocampus, as context alone was insufficient to elicit an abrupt shift in the neural
representation. The current understanding of spatial processing suggests that internal
information about position that is based on speed and head direction information

14



moves activity along a continuum of grid cells in the medial entorhinal cortex, which
activate different subsets of CA3 place cells in different parts of the environment,
resulting in global remapping. The gradual transitioning between the rate distributions,
observed when both shapes were experienced at the same location originally, was a
result of averaging across a population of cells that showed a mix of gradual and abrupt
transitions at different points in the morph sequence (Colgin et al.,, 2010).
Computational studies have addressed this observation by proposing local attractor
dynamics for rate remapping (contextual information) embedded in a continuous
attractor for spatial position (Solstad et al., 2014). In this study, lateral entorhinal cortex
(LEC) input to CA3 was set up to be spatially homogenous, but different for different
contexts, whilst medial entorhinal cortex (MEC) input to CA3 had a unimodal spatial
profile that was identical for all contexts. CA3 was modelled as a recurrent network in
which memories were stored using a Hebbian learning rule, in which the synaptic
weights between CA3 units depended on the Euclidean distance between their field
peak positions and peak firing rates in each of the two memories that were stored. In
this model, combined inputs from LEC and MEC result in CA3 activity that represents the
rat’s position in an environment, determined by the identity of active CA3 units, with a
given context, specified in the pattern of firing rates stored at that location. The
hypothesis was that if discrete memories were stored in the network as attractor states,
the feedback connections should affect the output of the network when LEC input is
linearly changed from memory A to memory B. Indeed, the network responses
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resembled the ones that were observed experimentally in terms that the average
population response showed a smooth transition from representation A to B, but
individual responses were heterogeneous. Some units transitioned gradually and some
showed abrupt transitions at different points along the morph series. In chapter 4, the
guestion, whether the rate distributions, that are modelled in Solstad et al., (2014) to be
stored in the recurrent network of CA3, are reactivated during sleep after behavior and

thus amenable to retrieval, is addressed.

OSCILLATORY PATTERNS IN THE HIPPOCAMPUS

The dense layers in the hippocampus generate high amplitude electroencephalographic
(EEG) patterns, because the fields generated by individual cells summate due to the
parallel alignment of the dendritic arbors. One prominent pattern, which is observed
during (voluntary) motor behaviors, such as walking, rearing, postural adjustment
(Vanderwolf, 1969), and during REM sleep (Jouvet, 1969; Vanderwolf, 1969), is the
hippocampal theta rhythm, a large (exceeding 1mV) sinusoidal pattern with a frequency
of 6-10 Hz in the rat that depends on septal input (Petsche et al., 1962; Mizumori et al.,
1990; Brandon et al., 2011; Koenig et al., 2011). Theta has also been recorded in other
mammals, such as bats, monkeys and humans (Ekstrom et al., 2003; Hori et al., 2003;
Ulanovsky and Moss, 2007). The largest amplitude theta signal is recorded near the
hippocampal fissure, which separates the molecular layer of CA1 from molecular layer in

the DG. The phase of the hippocampal principal neurons’ firing correlates with the
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animal’s location in the place field. As the animal advances through the field,
hippocampal units fire at a progressively earlier phase of each successive theta cycle
until they advanced about one full theta cycle (O'Keefe and Recce, 1993; Skaggs et al.,
1996; Huxter et al., 2003; Dragoi, 2013). CA3 spike times advance only about half a theta
cycle (Mizuseki et al., 2012). This so-called phase precession implies that the pyramidal
neurons’ intrinsic firing frequency (~10 Hz) is slightly greater than the local field
potential theta (~8 Hz)(Maurer et al., 2006a).

Another prominent pattern that characterizes hippocampal activity during slow
wave sleep and quiet wakefulness are the sharp wave ripple (SPWR) complexes (Buzsaki,
1986). Sharp waves are field potentials of about 50-150 ms duration and arise from
excitation build up in the recurrent network of CA3. They occur stochastically at a
frequency of 0.02-3 Hz (Ylinen et al., 1995). Sharp waves co-occur with a high-frequency
oscillation (150-200 Hz), the so-called ‘ripples’. The excitatory input from the Schaffer
collaterals to the apical dendrites of CA1 causes strong depolarization, which can lead to
voltage-dependent sodium channel activation and rhythmic discharge (Ylinen et al.,
1995; Csicsvari et al., 2000). Parvalbumin-positive basket cells may be involved in the
control of spike timing (Ylinen et al., 1995) as these inhibitory neurons phase-lock their
firing through recurrent connections and feed forward the phase-locked inhibition to
CA1 (Ylinen et al., 1995; Schlingloff et al., 2014). Sharp wave ripple complexes have been
associated with memory reactivation (Wilson and McNaughton, 1994; Kudrimoti et al.,
1999; Diekelmann and Born, 2010) and interruption of these events impairs learning of
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spatial memory tasks (Girardeau et al.,, 2009; Nakashiba et al., 2009; Ego-Stengel and

Wilson, 2010).

HIPPOCAMPAL SEQUENCE PATTERNS

Hippocampal neurons appear to fire in spatiotemporal patterns. The order of place cell
firing within one theta cycle reflects the order of place fields in a given trajectory in a
compressed manner, sometimes referred to as sequence compression (Skaggs et al.,
1996; Dragoi and Buzsaki, 2006; Dragoi, 2013). The temporal sequence within a theta
cycle is compressed about 8-16 times compared to the distance of the fields (Skaggs et
al., 1996; Dragoi and Buzsaki, 2006; Dragoi, 2013). The activity of a neuron is best
predicted by the activity of its peers within a window of 10-30 ms (Harris et al., 2003).
Through sequence compression, the cofiring of pyramidal neurons is brought within this
window, which also corresponds to the membrane time constant of pyramidal neurons
(Spruston and Johnston, 1992), the window for spike time dependent plasticity (Magee
and Johnston, 1997) and the period of the gamma oscillation (Csicsvari et al., 2003b).
Thus, sequence compression might be a suitable mechanism to use LTP for storing the
temporal pattern of the animal’s experience (Skaggs et al., 1996).

Interestingly, a similar compression of place cell sequences can be observed
during sharp-wave ripple complexes, which correspond extremely well to the ones in
behaviour (Skaggs and McNaughton, 1996; Kudrimoti et al., 1999; Nadasdy et al., 1999;

Lee and Wilson, 2002; Dragoi, 2013). The duration of ripples (60-120 ms) corresponds
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roughly to the length of a theta cycle. Evidence for sequence replay from sleep episodes
following a behavioral epoch supports the notion that place cell sequences that have
been activated during behavior are replayed offline during sleep so as to strengthen the
connections among their neocortical targets (Wilson and McNaughton, 1994; Kudrimoti

et al., 1999; Nadasdy et al., 1999; Lee and Wilson, 2002).

THESIS OUTLINE

The formation of memory and the extraction of knowledge from it, is the basis of
intelligence and adaptive behavior. Distributed neural ensembles are able to process
and store information of different sensory domains into a coherent representation by
means of coordinated activity during behavior and subsequent sleep. The hippocampal
formation is anatomically and functionally in a suitable position to coordinate the
storage and retrieval of episodic information efficiently by means of an index code that
is based on spatial information. Chapter 2 explains the need of a hierarchical cortical
organization due to the limited number of cortical intercolumnar connections and
introduces the indexing theory as a possible solution to this computational problem. The
hippocampus, as top of the hierarchy, is thought to form an index code that is
broadcasted to the cortex during sleep to coordinate recall and allow synaptic
reorganization.

The hippocampus is part of the navigational system of the brain. Its principal cells

fire selectively in space and, as ensembles, establish spatial maps onto which contextual
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information can be bound. Different episodes occurring in the same space can be
separated by means of different firing rate distributions. This feature of hippocampal
coding is called rate remapping. In chapter 3 it is demonstrated that different running
directions are a possible paradigm to induce rate remapping, which is a plastic
phenomenon and learned within the first day.

It is well established that the hippocampal place code is reactivated during sleep
following behavior, and hypothesized to serve as index code into the cortical columns to
allow correct retrieval of contextual information associated with the spatial index.
However, if the spatial code is retrieved without the associated firing rate distribution
for a specific event, then the index code is ambiguous and would likely lead to mixed
and erroneous recall. It seems obvious therefore, that during replay the hippocampus
would also need to reactivate the correct firing rate distribution, i.e. rate remapping.
However, a recent neurophysiological study indicates that only differences in spatial
location are able to induce associative recall, whereas the feature (i.e., 'episodic')
information is not. This presents a major problem for the central theory, and the main
experiment in this thesis was designed to test whether both spatial and episodic
components can be reactivated during sleep. Chapter 4 deals with this question by
taking advantage of the directionality paradigm established in chapter 3 and comparing
the firing rate distributions in sleep during sharp wave ripple episodes with the firing

rate distributions associated with the two running directions during behavior.
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All memory theory is based on Hebb’s fundamental notion of neurons that “fire
together, wire together” and information storage in the neocortex is assumed to be
based on the (plastic) connectivity between pyramidal neurons, the most abundant cell
type. To test whether extracellular large-scale single unit recordings are able to capture
the abundance of presumably mainly weak connections between excitatory neurons, 25
hour long spike trains recorded in rat medial prefrontal cortex were analyzed using cross
correlations (chapter 5). The approach developed in this work provides a possible
method to assess changes in synaptic connectivity that might take place during “cell
assembly formation” and memory consolidation in neocortex.

The results of this thesis and their implications for future research are discussed

in chapter 6.
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ABSTRACT

The formation of memory and extraction of knowledge from it is the basis of
intelligence. It is believed that, during slow wave sleep, the brain reorganizes its
connectivity matrix so as to store new information optimally. As the probability of direct
synaptic connection between arbitrarily chosen neurons in the cortex is extremely low
(on the order of 10°®), a combination of modular and hierarchical organization appears
to be necessary to enable rapid association of arbitrary items. During waking, an ‘index’
of the neural pattern in lower order cortical modules may be created and stored in the

highest order association cortex, the hippocampus, and broadcast back to the relevant
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cortical modules, where it is stored with the local data. In this manner, the pattern can
be spontaneously reactivated and reinstated in all modules to enable the establishment
of crossmodular connections. Such replay of patterns of neural activity or ‘phase
sequences’ has been observed in hippocampus and neocortex. In prefrontal cortex, the
playback of ‘phase sequences’ is associated with periods of intense up down state
transitions, and can be accelerated 5-8 fold relative to the waking state. The playback
speed declines over time as does the strength of the replay, which is consistent with a
simple decay of an asymmetric component of the synaptic weight matrix induced during
the experience itself. Since the hippocampal events associated with memory
reactivation (sharp-wave-ripple events) tend to be correlated with up transitions in the
neocortex, hippocampus may coordinate reactivation in neocortex, at least under some

conditions.

CORTICAL MODULAR ORGANIZATION AND MEMORY INDEXING

The ability to remember facts and episodes is a critical component of thought and
intelligence. Hebb (1949) proposed that memory is based on the formation of
assemblies of cells that are mutually connected with strengthened synapses. The
problem with this general idea is that the average connectivity of the cortex is extremely
sparse (less than about 10°®), and, therefore, the cortex cannot support the acquisition
of new, arbitrary associations by modifying pre-existing connections alone; however,

activity in two neurons that are not themselves directly connected can, nevertheless, be
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associated by virtue of their common reciprocal connections with a third, higher order
neuron. Thus, by organizing the cortex into functional modules that are reciprocally
connected and arranged in a hierarchical structure, sparsely distributed connections
may be sufficient to organize the acquisition and storage of information effectively.
Within this conceptual framework, the lowest level modules are represented by primary
cortices, the level above by association cortices and at the top resides the hippocampal
formation, which has been recognized as the highest order association cortex (Swanson,
1983)(Figure 2.1 left). This organizational principle links neurons that are receiving and
processing similar information to form modules that subserve a common function.
Connectivity within modules is presumably high, enabling local (within module)
associations, whereas connectivity between modules is very sparse. Therefore, slow
growth and rearrangement of connections would be required to connect cells of
different modules that together represent an experienced episode. The pattern of
‘vertical’ information flow, from primary to higher order association cortices, would
ultimately give rise to a unique pattern that is stored in the hippocampus. In addition,
the hippocampal output pattern at the time of the experience would also be stored in
the lower level modules as part of their ‘current input’. In this manner, each module
would store module-specific information plus a small component of common
information that it receives from the hippocampus. The common information could thus
serve as an index pattern that could be used to coordinate retrieval and memory trace
reactivation. Recreating the index pattern would evoke the corresponding patterns in
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the lower level modules, thus completing the retrieval of the whole memory (Figure 2.1
right). The trace reactivation theory of memory consolidation holds that reactivation of
cortical modules that were involved during the original encoding of the pattern provides
a training trial through which the modules can become appropriately connected through
growth and rearrangement of horizontal, intermodular connections. In this manner, a
cortical representation could be established which is independent of the hippocampus.

Presumably this representation would differ in some ways from the original form.

A
Hippocampus
Association v v
Cortex
Cortex

Compound event Retrieval cued Slow growth of horizontal
encoded over by external connectionsbetween modules

different modules event throughrepeated replay may

establish an independent or
modified cortical trace

Figure 2.1 Hierarchical organization of cortex and hippocampus and the indexing encoding
principle
In the foregoing theoretical framework, rapid plasticity (LTP) in different encoding stages
supports the indirect association of modules via an 'index' pattern generated in the
hippocampus. The ascending input from sensory areas to association cortices and
hippocampus, mainly entering the hippocampus through entorhinal cortex layers Il and
I, and also the descending outputs from the hippocampus (Swanson and Kohler, 1986),

should undergo rapid plasticity (Insausti et al., 1997). The hippocampal output is
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predominantly directed back to the NMDA-receptor rich(Monaghan and Cotman, 1985),
superficial layers of almost the entire neocortical mantle either directly through the
deep layers of the entorhinal cortex or indirectly via the perirhinal cortex (Insausti et al.,
1997). Within-hippocampus and within-module plasticity processes would also be
essential to enable the formation of local cell assemblies that can be retrieved
autoassociatively. Through lengthy and slow plasticity processes, involving the
rearrangement of intermodular connections, the modules would become directly linked.
In patients with anterograde amnesia, the ability to form new memories and to
incorporate information from these into the existing semantic knowledge base is
dramatically impaired. Such patients almost always have severe damage to the
hippocampus and are therefore missing the module that, according to theory, enables
indirect association among lower cortical modules. After hippocampal damage,
however, some remote memories, cognitive functionality and categorized knowledge
are left intact. According to the Standard Consolidation Theory, the hippocampus
supports memory storage and recall only for a limited amount of time, after which the
memory or the links are thought to be transferred to neocortical sites and protected
from hippocampal damage through a process of systems consolidation. Accumulating
evidence calls this theory into question (Sutherland et al.,, 2010) because, in many
studies with hippocampal lesions or temporary inactivations, the memory deficits are
not graded, meaning that memories that have been acquired further back in time are
impaired as much as recent ones (Martin et al., 2005; Sutherland et al., 2008). This
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phenomenon seems to be independent of the extent of hippocampal damage and the
memory task used. Only a small number of studies make an exception to this
observation (Clark et al., 2002; Tse et al., 2007). Although episodic memory recall seems
to depend on the hippocampus at all time intervals measured, it is unlikely that the
memory persists in its original form throughout life. More likely, information may be
extracted from these memory traces and incorporated into what is generally called
‘semantic memory’ or knowledge (McClelland et al., 1995). Thus, whereas the
hippocampal code represents direct associations of details that compose the
experienced event, the cortical code represents the knowledge and general information
that can be educed from it. ‘Consolidated’ information is no longer necessarily linked to
specific space and time information, but probably incorporated into the pre-existing
semantic knowledge about the world through a classification process (Marr, 1970,
1971).

It is now generally believed that the process of extracting knowledge from
memory occurs mainly during sleep, when the brain is not occupied with processing
current sensory information, and is essentially functionally disconnected from the
environment (Marr, 1971). A way to accomplish the post learning re-sorting of
information would be to ‘replay’ the episodic information interleaved with knowledge
representations from past experience (McCloskey and Cohen, 1989; McClelland et al.,
1995). Indeed, there is abundant evidence in rats that behavioral activity patterns are re-
expressed during post behavioral sleep episodes (Wilson and McNaughton, 1994;
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Kudrimoti et al., 1999; Euston et al., 2007; Lansink et al., 2008; O'Neill et al., 2008;
Karlsson and Frank, 2009; Lansink et al., 2009; Dupret et al., 2010). Such synchronous
reactivation of various subcomponents of the memory that may be stored in different
cortical modules may enable the rearrangement and strengthening of selective
connections at this time. After the gradual formation and/or reorganization of the
horizontal connections, the memory might be sustainable through the new associations
(possibly in ‘semanticized’” form) without the top-down linkage from the hippocampus.
However, multiple reinstatements of the experience that trigger replay episodes are
likely a requirement to establish a hippocampus-independent memory trace. If the
amount of replaying episodes does not suffice to establish a strong enough extra-
hippocampal representation, the memory will likely not be spared after inactivation of
the hippocampus.

Most of the experimental data, which gives clues about memory consolidation in
the mammalian cortex is derived from electrophysiological ensemble recordings, mainly
from the rat brain. In this chapter we discuss how these data are acquired, organized
and analyzed, as well as what is our current knowledge about memory trace reactivation

in the hippocampo-neocortical circuit during slow wave sleep.

SPARSE VS. DISTRIBUTED CODING TO MAXIMIZE STORAGE CAPACITY

The degree of sparsity in coding appears to differ systematically as one ascends in the

hierarchy of cortical modules and peaks in the hippocampus. In a sparse code, the
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proportion of units used to store a memory (a) is minimized to maximize the number of
distinct patterns that can be stored. In low-level modules, such as primary sensory or
motor cortex, where high resolution and smooth generalization is emphasized rather
than rapid information storage, coding is not sparse but rather fully distributed (a = 0.5).
In some areas of the hippocampus, coding appears to be optimized to store a maximal
number of patterns rapidly in the network, thus a must be minimal. Electrophysiological
recordings and immediate early gene (IEG) studies together confirm that the proportion
of hippocampal neurons active at any given location is, in general, extremely small, and
that sparsity is greatest in DG, and becomes progressively less in CA3, CA1, subiculum
and deep entorhinal cortex (Alme et al.; Barnes et al., 1990; Guzowski et al., 1999;
Leutgeb et al., 2004; Vazdarjanova and Guzowski, 2004; Alme et al., 2010).

Although sparse coding maximizes the number of items that can be stored, it does so at
a cost of reduced information transmission per neuron. Thus, where only transmission
and not storage is required, it is more economical to use a more distributed code so that
the same amount of information can be sent over fewer channels. It appears that the
hippocampal formation exploits this possibility by compressing the CA3 and CA1 output
to a less sparse code prior to transmission back to the neocortex via the subiculum and
deep layers of the entorhinal cortex (Barnes et al., 1990).

The main outputs of the hippocampal formation target the superficial layers of the
neocortex. Recent evidence based on activity-dependent immediate-early gene
activation indicates that, whereas the deep layers of the neocortical modules express
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purely domain-specific information (e.g., touch, taste, vision, movement, etc.), neurons
in the superficial layers express the conjunction of spatial context and the domain-
specific information (Burke et al., 2005). Although further study is needed, these
observations are consistent with the ‘indexing’ theory (Teyler and DiScenna, 1986;
Teyler and Rudy, 2007), which postulates that the pattern transmitted from the
hippocampus back to the neocortex is stored in the superficial layers of neocortex along
with information about the current experience or motor output, thus serving as a means
of top-down associative retrieval. Also consistent is the fact that the superficial layers
possess the highest density of NMDA-receptors (Monaghan and Cotman, 1985) and thus

may be more susceptible to rapid plasticity.

BASIC DATA STRUCTURE AND ANALYSIS OF ENSEMBLE RECORDINGS

In order to present the neurophysiological evidence for memory trace reactivation, it is
useful first to discuss some general ways that neural ensemble recording data can be
conceptualized and analyzed. In single-unit extracellular recordings (and, more recently,
in optical imaging studies), spike trains (i.e., lists of action potentials over an arbitrary
time interval) of a sample of a few hundred cells can be obtained with today’s available
technology. These lists comprise a matrix (i.e., N x T spike rate matrix Q, where N is the
number of cells and T is the number of time intervals) that contains information about
the animal’s brain state at various time points (Figure 2.2A). Each row corresponds to

one cell’s activity across the recorded time intervals (rate vector, reflecting the firing
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rate of one neuron) and each column corresponds to the ensemble activity of all
neurons at a certain moment (state vector, reflecting the brain state by the ensemble
activity at a given time). Summation along the first dimension would result in a vector
containing the mean firing rates of all neurons. Summation along the second dimension
would result in a time series of the mean population activity, which is sometimes
considered to be reflected in the filtered local field potential trace. The simple
correlation between any two rate vectors (temporal correlation) represents the
correlation of firing between two neurons over a certain time interval, while the
correlation between any two state vectors (state correlation) estimates the similarity of

the global states of the system at the corresponding times.
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Figure 2.2 Data analysis of multi-unit recordings
(A) Modern neurophysiologic methods allow the simultaneous recordings of about a few
hundred neurons. In this plot, the spike activity (colored vertical ticks) of about 50 neurons is
plotted for about 10 seconds. This constitutes the N x T spike rate matrix (Q), where each row
represents the spike activity of an individual neuron and the columns can be considered as time,
binned into regular intervals of arbitrary size. Column-wise correlation measures similarity of
brain states, while row-wise correlation detects co-firing between neuron pairs. (B) Data
analyses of multi-unit recordings. The column-wise correlation of the Q-matrix yields the Tx T
state correlation matrix (S-matrix). The S-matrix can be divided into subdivisions corresponding
to the different epochs correlated with each other. Along the diagonal, within-epoch
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correlations will be high on average if the behaviour is repetitive. The subdivisions S1-M and M-
S2 are of main interest in terms of reactivated patterns in sleep. The row-wise correlation of the
Q-matrix results in separate R-matrices (rate correlation matrices) for each epoch. (C)
Distribution of state-vector correlation values. Correlation values between post-task sleep and
behaviour are higher than correlation values between pre-task sleep and behaviour, which peak
around 0. The shift toward higher values of the state-vector correlation distribution of M-S2
indicates that behavioural firing patterns are re-expressed in sleep after behaviour
(McNaughton, 1998).

An established method to quantify memory reactivation is to express the Pearson
correlation coefficients of the temporal correlations (rate vector correlations) between
neuron pairs for each epoch (pre-task sleep, task, post-task sleep) and assemble them
into single matrices. Memory trace reactivation is measured by computing how much of
the variance in the firing rate correlation matrix in post-task sleep can be accounted for
by the variance in the correlation matrix of the firing patterns established during the
task, when controlling for all effects that were already present in the active cell

population in pre-task sleep (Kudrimoti et al., 1999; Tatsuno et al., 2006).

Another way to assess memory reactivation is to compare state vectors between
epochs to identify patterns that emerge during behavior and are re-expressed during
post-task sleep. If there is increased probability of a state vector to reappear in sleep
after its appearance in a behavioral episode, either because of the formation of new cell
assemblies through associative synaptic modifications or because they were already
defined in the synaptic matrix before the behavioral epoch, it suggests that there is

some form of memory being reactivated. By constructing a (T x T) correlation matrix S of

all state vector correlations, which will consist of different submatrices (Figure 2.2B), of
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which S1-M and M-S2 are of main interest, one can compare the means of the
correlation distribution for the S1-M and M-S2 matrix. If activity states of the preceding
behavior are being re-expressed in S2 then we expect the average of the elements of the
M-S2 matrix to be significantly larger than of S1-M. Consequently, the distribution of
state-vector correlations for M-S2 is shifted towards higher values than the distribution
of M-S1 (Figure 2.2C).

A more sophisticated and elegant approach to determine state vector similarities
among task and sleep epochs is to define a series of state vectors during behavior as a
template and shift it across a target period (pre-task and post-task sleep, respectively) to
identify matching episodes (Louie and Wilson, 2001)(Louie and Wilson, 2001). Unlike the
previously described analytic methods, the template matching procedure is sensitive to
the temporal sequence of state vectors and also to possible temporal compression of

the template pattern (Tatsuno et al., 2006).

USING PLACE CELLS TO STUDY MEMORY

The dominant characteristic of neuronal activity in the rodent hippocampus is selectivity
for spatial location, a discovery, which led to the term ‘place cells’ (Figure 2.3)(0'Keefe
and Dostrovsky, 1971). This feature makes them particularly suitable to study memory
because it is generally the case that simply being in different locations leads to distinct
patterns of neuronal activity, which can subsequently be identified during potential

retrieval periods such as sleep. How could we tell if memory traces were being
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reactivated during sleep after a behavioral episode? Cells that fired together during the
task should also fire together during subsequent sleep (Wilson and McNaughton, 1994),
whereas cells that did not fire together during the task should not do so afterwards
(Figure 2.4). By recording a large ensemble of cells in the hippocampus during task and
sleep, a multiple regression analysis of pairwise firing rate correlations can be used to
guantify memory trace reactivation (Kudrimoti et al., 1999)(Figure 2.4B). The spike rate
correlation structure has been observed to persist during rest for up to 30-60 minutes
following an episode of behavior, such as track running. This phenomenon is dependent
on NMDA-receptor activation, as the correlation persistence disappears when NMDA-
receptors are blocked (Stanis et al., 2004) during the behavioral epoch. Reactivation can
also be observed using the state vector approach. In a typical maze running task, a rat
runs laps repetitively, so the same states in the hippocampus repeat periodically at a
rate that is dependent on the animal’s speed. This repetitive pattern is reflected in high
correlation values along the diagonal of a state vector correlation matrix for the
behavioral episode. If one compares the similarity of each state vector in sleep to each
state vector during behavior (Figure 2.2), then it is observed that there is generally a
higher similarity of S2 vectors to the behavior than there is for S1, which is what one

would expect if memories were retrieved during S2.
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Figure 2.3 Place cells in the hippocampus
Sixteen firing rate maps from representative dorsal hippocampal neurons (CA1) which had
'place fields' in a 70 x 70 cm enclosure while the rats foraged for randomly scattered food pellets
are depicted (Jung et al., 1994).

Experiences and memories for them are not typically discrete events but rather play out
as temporal sequences. The neural basis for this temporal evolution was first proposed
by D.O. Hebb (1949), who proposed the concept of “phase sequences”, which he
envisioned as sequences of cell assemblies which become directionally (i.e.,
asymmetrically) linked by strengthening connections from cells active earlier in the
sequence onto cells active later. One prediction of this concept is that, due to the rapid
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forward spread of neural activation, subsequent activation of cells earlier in the
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Figure 2.4 Connectivity matrix and pairwise correlations between hippocampal neurons during
pre-task sleep, behavior and post-task sleep
(A) Diagram of synaptic connections among simultaneously recorded hippocampal neurons
during pre-task sleep, behaviour and post-task sleep. Lines indicate positive correlations
between neuron pairs with the magnitude of the correlations coded in false colours (red: max,
blue: min). Bold lines indicate pairs that were correlated during RUN and also correlated during
either PRE or POST. Cell pairs that are strongly correlated during RUN are mostly also correlated
during POST but generally absent in the pre-task sleep (Wilson and McNaughton, 1994). (B)
Scatterplots to illustrate the relationships of hippocampal pairwise correlations between track
running and pre-task sleep and between track running and post-task sleep, respectively. A
simple linear regression line can be fit to the correlation data between run and post-task sleep
(Kudrimoti et al., 1999).

sequence would lead to activity in the cells at later points, before those points were
actually reached. This phenomenon has been observed in hippocampal place cells,
which expand their fields with experience in the direction opposite to the rat’s
movement (Mehta et al.,, 1997). If cells have become sequentially linked during
behavior, one might expect to see evidence of this linkage during off-line retrieval. A
simple test would be to compute the temporal cross-correlograms of cells during sleep
and compare their symmetry characteristics to the preceding behavior. For example, if
cell A leads cell B in its firing during behavior, it should also tend to lead cell B during
sleep after behavior. This was indeed observed by Skaggs and McNaughton (1996) and

the reactivation of sequence data during sleep has now been documented using several
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different analytical approaches and in several different brain regions (Kudrimoti et al.,
1999; Louie and Wilson, 2001; Hoffman and McNaughton, 2002; Tatsuno et al., 2006;
Euston et al., 2007; O'Neill et al., 2008; Karlsson and Frank, 2009; Lansink et al., 2009;
Dupret et al., 2010). Explained variance has proven to be a fairly robust measure of
memory reactivation. The reason for this is that the measurement is based on pair-wise
correlations of binned spike trains of neurons within the time window of interest
without taking into account complex fine time-scale sequences expressed by the
ensemble of neurons. Therefore shuffling the ‘population vectors’ (i.e., columns in the
Q-matrix), which equals segmented or incomplete replay of sequences, would not affect
the correlation values. Sequences replayed at speeds different from the original
encoding do not compromise the strength of the multiple correlations, but they do
affect results obtained from template matching. Template matching, a powerful method
to identify matching sequences of population vectors in two recording epochs, would
need to employ an exhaustive and computationally expensive search to identify

compression factors.

COHERENT REACTIVATION OF MEMORY TRACES IN HIPPOCAMPUS AND NEOCORTEX

The trace reactivation theory of memory consolidation requires that the reactivation of
subcomponents of an experience is coherent across all the modules in which these

subcomponents are stored. Such coherence is necessary to ensure that the correct
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features are associated with one another. Here we summarize the evidence supporting
this requirement and review the current knowledge about the dynamics of the process.

Whereas, during behavior and REM sleep, the hippocampal EEG is dominated by 8-12 Hz
oscillations (theta), during slow wave sleep, the hippocampal EEG is characterized by
‘sharp waves’ and ‘ripples’. Sharp waves reflect strong depolarizations of the CA1l
dendrites due to synchronous activation of many Schaffer collaterals of CA3 pyramidal
cells, which make excitatory synapses there. These sharp waves often have high
frequency oscillations called ripples (synchronous population discharge of CA1 pyramidal
cells at ~150 Hz) superimposed on them. It is predominantly, if not exclusively during
these synchronized population events, that memory traces are reactivated in the
hippocampus (Kudrimoti et al., 1999)(Figure 2.5). The temporal relationships of the
reactivating ensemble in sleep after behavior are preserved (Skaggs and McNaughton,

1996). If the hippocampus orchestrates the reinstatement of experience-specific
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Figure 2.5 Hippocampal EEG and concurrent spike activity during REM and slow wave sleep
Hippocampal EEG and concurrent spike activity during a REM (left) and slow wave sleep (right)
episode. The size of the windows is 2 s. The top trace in both panels is the raw EEG trace
(sampling rate 200 Hz), the two traces below are the EEG band pass filtered between 6 and 10
Hz (second trace) and between 100 and 300 Hz (third trace). Below, each row represents the
spiking activity of a hippocampal pyramidal neuron. Each tick mark represents a spike. (left)
Theta activity is prominent in the EEG during REM sleep, but is absent in slow wave sleep (right,
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missing 7-8 Hz component in filtered hippocampal trace). The third EEG trace shows 100-300 Hz
components (ripples) in slow wave sleep, which entail increased spiking activity of pyramidal
neurons that are essentially silent in the absence of ripples. Adapted from (Kudrimoti et al.,
1999).

patterns in the neocortex, as suggested by consolidation theories, then coordinated
firing between hippocampal and neocortical units should emerge. Evidence supporting
this hypothesis was obtained by recording from hippocampus and parietal cortex
simultaneously (Qin et al., 1997). Simple correlation analyses of spike trains within and
between areas showed that co-firing during behavior has effects on co-firing during
subsequent sleep when taking into account pre-existing correlations during pre-
behavioral sleep. The indexing theory postulates that hippocampal memory retrieval
would coordinate reactivation of the relevant information in lower level modules to
establish the necessary connections for pattern completion to occur without the indirect
hippocampal associations. Consistent with this prediction, coherent reactivation among
widespread neocortical modules has been observed following a simple reaching task in
monkey (Hoffman and McNaughton, 2002). Activity patterns in motor, somatosensory,
and parietal cortex were significantly reactivated. Contrary to at least the simple version
of the theory, however, Ji and Wilson (2007) observed that during spontaneous retrieval
in primary visual cortex and hippocampus, short sequences in the cortex may precede
sequences in the hippocampus by about 50 ms after running on a highly familiar figure-
8-shaped maze. Similarly, preliminary data suggests that in sleep after performing a

highly familiar sequence task, medial prefrontal unit activity tends to lead hippocampal

39



unit activity (Euston et al., 2008). However, direct pairwise correlations between
hippocampal and prefrontal neurons during sleep after various spatial tasks reveal a
consistent lead of hippocampal neurons during sharp wave events (Wierzynski et al.,
2009). Although it is unclear how familiar the tasks are in the latter study, these data
may suggest that the direction of interaction in initiating replay events in sleep after
behavior might depend on the degree of ‘consolidation’ of the memory. Reactivation of
recent memory may be led by the hippocampus, while reactivation of already
established memory traces may be coordinated by the medial prefrontal cortex, at least
in certain cases. One possible scenario could be the integration of new information into
an already existing, 'consolidated’” memory trace. In this case, the pattern would be
reinstated in the cortical modules first and hippocampal activity would follow, which
would allow the addition of the new episodic information to be incorporated into the
cortical pattern. These observations remain to be studied and analyzed in more detail to
allow for further interpretations. Since the actual memories are thought to be stored
over multiple neocortical modules, it is also possible that reactivation of even a novel
memory may be initiated within one of the relevant modules, which would trigger the
reactivation of the hippocampal index code and lead to the synchronous reactivation of
the entire memory.

Spontaneous memory trace reactivation has also been observed in subcortical
structures, such as the ventral striatum (Pennartz et al., 2004). Neurons in that area also
engage in memory trace reactivation, but only those neurons whose activity is
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modulated by sharp waves in the hippocampus, suggesting a close coordination
between structures (Pennartz et al., 2004). This is consistent with the idea that the
hippocampus acts as the coordinating module during spontaneous reactivation episodes
in its projection areas. Furthermore, only neurons coding for motivationally relevant
information (such as reward) in the ventral striatum exhibited reactivation with
hippocampal place units in a forward direction (Lansink et al., 2008; Lansink et al., 2009).
Despite the accumulating data on reactivation in different brain regions, there is still no
compelling evidence that memory trace reactivation is beneficial or critical for correct
memory retrieval. Individual differences in reactivation scores in rats explain significant
variance of performance in the water maze spatial task and therefore provide a piece of
evidence suggesting that there is a direct relationship between reactivation and memory
performance (Gerrard et al., 2008). This idea is further supported by the observation of
impaired performance of a spatial reference task after selective interruption by
electrical stimulation of hippocampal ripples in sleep after behavior (Girardeau et al.,
2009; Ego-Stengel and Wilson, 2010). Nevertheless, the more direct evidence for this

hypothesis remains a major challenge in the field.

MEMORY TRACE REACTIVATION DYNAMICS DURING SLOW WAVE SLEEP

Slow wave sleep is characterized by a bimodal distribution of spike activity after the
onset of slow oscillations and K-complexes (Johnson et al., 2010) and has become more

strongly associated with memory reactivation than other sleep stages (Louie and Wilson,
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2001; Euston et al., 2007; Johnson et al., 2010). Memory reactivation in the prefrontal
cortex during slow wave sleep is dynamically modulated by various patterns in the
cortical EEG. One prominent pattern associated with reactivation is the K-complex. K-
Complexes are rapid voltage transitions that typically appear when the down to up state
transition is extremely synchronized among a number of pyramidal neurons and are
typically followed by a low voltage spindle (LVS, 6-20 Hz in rat)(Figure 2.6A). Periods of
frequent K-complexes, LVS and the down to up state transitions are correlated with
strong cortical memory reactivation as measured with EV and template matching (Figure
2.6B)(Johnson et al., 2010). During high voltage spindles (HVS, 6-8 Hz in rat), however,
reactivation appears to be fairly weak (Johnson et al., 2010). In the prefrontal cortex,
replay of activity patterns of a highly stereotyped behavior is compressed by a factor of
six to seven (Euston et al., 2007), which can be inferred from similarly shaped cross
correlations of neuron pairs of the task and the post-task sleep epoch, with the only
difference being the temporal scale (Figure 2.7). This observation is consistent with the
notion that memory replay speed is not constrained to real-time parameters during
encoding, but rather proceeds at speeds determined by network parameters such as
synaptic strength and connection asymmetry, dendritic integration times, and
conduction speeds. The compression factor declines during a prolonged sleep session
concomitant with a reduction of reaction strength (Tatsuno et al., 2006). This is
consistent with the hypothesis of a gradual decline of the synaptic potentiation
underlying the memory.
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Figure 2.6 The relationship between K-complexes and memory reactivation
(A,top) K-complex/LVS epochs occur during periods of low-frequency, high-amplitude activity in
the local field potential (LFP)(first panel). These periods correspond to periods of up state/down
state fluctuations in the total spike activity (124 cells, 30 ms bins, second panel). A clear example
LVS preceded by a K-complex is marked by the arrow in the top panel. Each K-complex in the LFP
is matched by a network down state in the total spike activity (red bars). In the spectrogram of
the LFP (third panel), the K-complexes correspond to high power in the 2—-6 Hz range, while LVSs
correspond to a peak in the 10 —20 Hz range. (B) Linear regression plot showing the relationship
between memory reactivation, measured with explained variance, and the number of down
states and K-complexes, respectively. The data points for sleep and behavioural epochs are
compiled. Memory reactivation strength is positively correlated with the number of K-complexes
(top) and down to up transitions (bottom) in a given epoch. Adapted from (Johnson et al., 2010).

Memory replay in the prefrontal cortex and hippocampus are most likely not isolated
events, but may influence each other. This assumption is based on the observation that
hippocampal sharp waves are most likely to occur at down to up state transitions in the

cortex during slow wave sleep (Battaglia et al., 2004b; Moélle et al., 2006)(Figure 1.8). It is
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possible to detect frequently reactivated patterns in the prefrontal cortex with a high
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Figure 2.7 Cross correlations between neuron pairs in medial prefrontal cortex during task and
sleep
(A) Cross correlations of neuron pairs in the rat medial prefrontal cortex. Each row corresponds
to a different behavioural epoch (pre-task sleep, task and post-task sleep). Each column
corresponds to a different cell pair. Note that the peaks of the correlogram of the task epoch are
re-expressed in post-task sleep in a compressed fashion, but are not identifiable in pre-task
sleep. This suggests that cells that have been active together during the behavioural epoch
reactivate together during sleep after behaviour. (B) In each panel cross correlations are sorted
according to the peak in their correlogram for the task epoch. For two rats, the cell pairs are
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depicted for pre-task sleep, task and post-task sleep. Note that the patterns of the peaks in the
correlograms are similar in task and post-task sleep but the temporal scale varies. Activity seems
to be sped up by a factory of 6 to 7 in post-task sleep compared to behavior (Euston et al., 2007).

temporal precision and relate their times of occurrence to hippocampal sharp-wave
ripple events (Peyrache et al., 2009). This is achieved by applying principal component
analysis, a statistical tool to identify the structure of the data by converting a number of
correlated variables into a smaller number of uncorrelated values. In fact, principal
components representing sequences of replayed firing patterns from the behavioral
episode of a highly familiar task are reinstated as often in pre-task sleep as in post-task
sleep. However, during post-task sleep the principal components have a stronger
correlation with the appearance of sharp waves in the hippocampus. This suggests the
conclusion that, after consolidation, the reactivation of familiar events has become
relatively independent of the hippocampus, but when the memory is reinstated, new

bouts of reactivation episodes are triggered in the hippocampus.
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Figure 2.8 Relationship between neocortical neural activity and hippocampal sharp waves
(A) Peri-event time histogram (PETH) of cortical neural population activity during identified
delta/slow wave oscillations centered on hippocampal sharp wave events. At the time of sharp
waves, there is a transient increase of cortical activity and a subsequent increase in firing rates
as compared to before the sharp waves. The sharp peak in the cortical activity is preceded by a
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dip (200-400 ms) as can be seen in the same PETH with a finer timescale (B). This transient
decreased activity could be entailed by delta oscillations that are occurring in phase. (C) PETH of
hippocampal sharp wave events centered on the transitions from cortical down to up states.
Sharp wave occurrence was maximal at down to up state transitions of cortical population
activity. Baseline activity is higher during down (left of 0) than during up states, indicating that
sharp waves are more likely to occur during down than during up states. Adapted from (Battaglia
et al., 2004b).
Memory trace reactivation is a process with complex dynamics that are not yet fully
understood. The power of the analysis methods that are currently in use to assess
reactivation processes increases with the number of units recorded, and substantial
increases in this number can be expected to result from ongoing technical developments
in many laboratories, including the application of optical recording methods. With the
existing evidence, we can already attempt to make some speculations about how the
cortex and hippocampus interact to replay memories. During sharp-wave ripple events
in the hippocampus, events experienced in the immediate past are either spontaneously
retrieved or their retrieval may be triggered by partial recall of the event in a cortical
module. The hippocampal outflow during sharp waves coordinates reactivation of the
relevant information distributed over multiple neocortical modules. Sharp waves tend to
coincide with the down to up fluctuations in the cortical slow rhythm, but tend to be of
shorter duration than the up states. Thus, hippocampal reactivation may simply initiate
the retrieval of neocortical sequences which play back during the remainder of the up

state. During the up state, reactivated cortical neurons may strengthen or rearrange

their synaptic connections with other neurons that were engaged in the sequence that is
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being replayed. This could be a mechanism through which knowledge is extracted from

acquired memory and established in horizontal intermodular cortical connections.
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ABSTRACT

When rodents engage in irregular foraging in an open field environment,
hippocampal principal cells exhibit place-specific firing that is statistically independent of
the direction of traverse through the place field. When the path is restricted to a track,
however, in-field rates differ substantially in opposite directions. Frequently, the
representations of the track in the two directions are essentially orthogonal. We show

that this directionally selective firing is not hard-wired, but develops through
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experience-dependent plasticity. During the rats’ first pass in each direction, place fields
were highly directionally symmetric, whereas over subsequent laps, the firing rates in
the two directions gradually but substantially diverged. We conclude that, even on a
restricted track, place cell firing is initially determined by allocentric position, and only
later, the within-field firing rates change in response to differential sensory information
or behavioral cues in the two directions. In agreement with previous data, place fields
near local cues, such as textures on the track, developed less directionality than place
fields on a uniform part of the track, possibly because the local cues reduced the net
difference in sensory input at a given point. Directionality also developed in an open
environment without physical restriction of the animal’s path, when rats learned to run
along a specified path. In this case, directionality developed later than on the running
track, only after the rats began to run in a stereotyped manner. Although the average
population firing rates exhibited little if any change over laps in either direction, the
direction-specific firing rates in a given place field were up- or down-regulated with
about equal probability and magnitude, which was independent in the two directions,
suggesting some form of competitive mechanism (e.g., LTP/LTD) acting coherently on

the set of synapses conveying external information to each cell.
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INTRODUCTION

Principle neurons in the hippocampus proper exhibit activity correlated with the
location in which an animal is located (O'Keefe and Dostrovsky, 1971). In an open
environment, when an animal is moving around in a random path, such as while foraging
for food, the majority of place cells fire at rates that are independent of the direction in
which the animal is passing through the cell’s ‘place field’ (Muller et al., 1987). These
findings are consistent with the predominant view of the hippocampus encoding an
allocentric representation of space (O’Keefe and Nadel, 1978). It is clear that the
hippocampus is necessary for spatial memory (e.g. Morris et al., 1982); however, the
degree to which this structure encodes changes in sensory cues or behavioral
contingencies occurring in a single spatial environment is still debated (e.g. Eichenbaum
et al., 1999).

One view is that the selection of which hippocampal cells fire at a given location
is initially determined by path integration mechanisms (McNaughton et al., 1996),
whereas sensory information that may vary at that location may become associatively
linked to the selected cells, thus enabling future correction of path integrator errors.
Such associative linking would typically not involve changing the membership of the
active population (which would be considered ‘global remapping’), but could affect their
relative firing rates (‘'rate remapping'; Leutgeb et al., 2005b). Global remapping is

typically induced when a rat is transferred between separate, distinct, recording rooms
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(Leutgeb et al., 2004), when the rat locomotes between two boxes (Skaggs and
McNaughton, 1998; Colgin et al.,, 2010), or when a large mismatch is introduced
between its path-integrated heading direction and familiar visual landmarks (Knierim et
al., 1998; Fuhs et al., 2005). In addition to local sensory information, internal information
such as working memory, current goals, behavioral set, and possibly even circadian
rhythms may also affect firing rates without significantly changing the locations at which
the hippocampal cells fire (O'Keefe and Conway, 1978; Hetherington and Shapiro, 1997;
Wood et al., 2000; Leutgeb et al., 2005b; Leutgeb et al., 2006; Sparks et al., 2010).

A long unresolved problem with the mainly allocentric view of hippocampal place
cells has been that whereas, in an open environment, a large majority of place cells
exhibit firing that is not direction specific (Muller et al., 1994; Markus et al., 1995), on a
track that is repeatedly traversed along a specific path, the activity of place cells in each
direction differs substantially (McNaughton et al., 1983a; Muller et al., 1994). In addition
to the configuration of the traversable portion of the environment, the task the animal is
performing also affects directionality of place cells: if the animal is repeatedly running a
path between specified goal locations even in an open environment, the place cells
show distinct directional firing (Markus et al., 1995). Interestingly, the presence of many
local cues on the track reduces the difference in firing between the two running
directions (Battaglia et al., 2004a), but the complexity of distal room cues appears not to

affect directionality (Markus et al., 1995).
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Recent findings suggest that the firing of ‘grid cells’ in the medial entorhinal
cortex is generated by path integration and is the primary source of relative position
information to the hippocampus (Hafting et al., 2005; Fyhn et al., 2007). Also notably,
under conditions that induce rate remapping in hippocampal cells, grid cells do not
exhibit changes in firing location or relative firing rate; however, conditions that induce
global remapping in hippocampal cells also induce global remapping in grid cells (Fyhn et
al., 2007). Overall, current data suggest that path integration occurs in the medial
entorhinal cortex (McNaughton et al., 2006), and this information is then passed on to
the hippocampus, which can combine it with other information, such as landmarks or
other spatial cues, and task demands or other internal state variables, to form a
conjunctive code for locations and the events that occur there (Leutgeb et al., 2005b).
Path integration by the medial entorhinal cortex does not, however, explain why the
place cell activity in two running directions on a track is so different, while the activity in
an open environment is essentially independent of direction of travel. In the current
study, we recorded from hippocampal cells while a rat traversed a circular track in both
directions, beginning with the very first time that the rat had experienced the track in a
given spatial context. We observed that, while the track was novel to the animal, the
two running directions were in fact highly correlated. During repeated traversals of the
track, the firing rates of place cells changed in both running directions, becoming highly
dissimilar by the end of the session, as previous studies had shown. We present
evidence that, unlike the expression of place fields per se, directional selectivity is an
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experience-dependent phenomenon driven by gradual changes in the response of a cell
to external sensory cues and/or internal variables such as goals or recent trajectories

which occurs when the traversal of a path becomes stereotyped.

METHODS

Subjects. Five male rats (four Brown Norway-Fisher hybrids and one Brown Norway)
were used for this study. The rats were housed individually and kept on a 12-hr dark /
12-hr light schedule. Training and experiments and occurred during the dark phase.
During pre-training, and then again during recording, they were kept at ~85% of their
free-feeding body weight, in order to be motivated to run for food rewards. All animal
protocols complied with National Institutes of Health guidelines and Canadian Council
for Animal Care (CCAC) regulations under the guidance of the University of Arizona
Institutional Animal Care and Use Committee (IACUC) or the institutional animal care
committee at the University of Lethbridge.

‘Hyperdrive’ assembly and implant. Rats were implanted with a ‘hyperdrive’ consisting of
14 individually movable tetrodes. Each tetrode consisted of four strands of insulated 13
pum nichrome wire twisted together, and was inserted in silica tubing and secured with
cyanoacrylate glue to a drive cannula. The drive cannula was coupled by a plastic nut to
a drive screw, so that rotation of the nut allowed vertical movement of the tetrodes
through another (30 gauge) guide cannula. The 14 guide cannulae were placed within

the inverted conical core of the hyperdrive, evenly spaced and angled at 30° from the
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vertical axis at the top, and bundled together and vertical to the brain surface at the
bottom of the hyperdrive, where they would be contacting the brain. For rats 1-3, the
guide cannulae were bundled into a 2x7 linear array, to be placed along the proximal-
distal axis of dorsal CAl. The remaining 2 animals (rats 4&5) were implanted with
hyperdrives with a bundle forming a circle, and lowered to dorsal proximal-mid CA3. A
more detailed explanation of the hyperdrive, implantation and recording techniques is
published in Gothard et al. (1996a).

Surgery was performed under Isofluorane anesthesia. A 3mm in diameter craniotomy
was opened above the right dorsal hippocampus (coordinates of the center of the
craniotomy differed slightly between rats, between 3.3-3.8mm posterior and 2.0-3.0
mm lateral). The Dura was removed, the hyperdrive bundle was centered above the
craniotomy, with guide tubes just touching the surface of the brain, and the craniotomy
was sealed with Kwik-Sil and then cemented in place with dental acrylic anchored by
dental screws spread over the rest of the dorsal surface of the skull. After surgery rats
were administered 26mg of acetaminophen orally for pain relief, and given Ampicillin in
their food for 10 days or given subcutaneous injections of Metacam and Tribrissen to
prevent infection. All tetrodes were lowered into the brain immediately following
surgery by turning the screws three full turns (954 um).

Recording procedures. Twelve tetrodes were lowered over the course of 2-4 weeks to
CA1 (rats 1-3) or CA3 (rats 4&5). The remaining 2 tetrodes were lowered to the corpus
callosum, to serve as a reference, and the hippocampal fissure as an EEG recording
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probe. For recording, the hyperdrive was connected to a unity-gain headstage
(Neuralynx, Bozeman, MT), which allowed low noise transmission of signals from each of
the four channels of each tetrode, via a multi wire cable and a commutator mounted on
the ceiling, to digitally programmable amplifiers and then to the Neuralynx Cheetah
system. Local field potential activity was continuously sampled from one channel of each
tetrode at 2.4 kHz, amplified 500-1000 times, filtered between 1 and 300 Hz, and
recorded. For this analysis, only the LFP signal from the tetrode with the largest number
of cells on each day (the one most likely to be in the cell body layer) was used (filtered
off-line at 6-10 Hz to determine the theta signal). Spike signals from each channel of the
12 hippocampal tetrodes were referenced against the corpus callosum electrode signal,
amplified 1000-5000 times and filtered between 600-6000 Hz. Signals were digitized at
32 kHz, and a 1ms sample was recorded when the signal reached a pre-determined
threshold. The thresholds were adjusted manually for each channel, depending on the
noise level and spike amplitude on that channel. The headstage also contained a circular
array of LEDs that were detected by an overhead camera and recorded by the Cheetah
system along with the neural signals to allow tracking of the position of the rat on the
maze. Video spatial resolution was approximately 3 pixels/cm.

After the completion of recordings, the location of the tetrodes was ascertained by
creating a small electrolytic lesion at the tip of each tetrode (by passing 5 pA current for
10 s). Histological sections were Nissl stained to localize the lesions. Based on coronal
sections from the 3 CA1 rats, it was determined that the recordings of rats 1 and 2 came
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from a wide range of proximal-distal coordinates in CA1, and rat 3 was found to have
most tetrodes in proximal CA1, one tetrode in CA2, and 2 tetrodes in distal CA3. Thus
the day 1 recordings included 183 CAS3 cells, 22 CA2 cells, and 83 CA1 cells (51 from the
proximal half).

Pre-training and behavioral tasks. All rats were pre-trained prior to hyperdrive surgery
to run laps back and forth between food dishes on a circular track, as well as to forage
for randomly sprinkled food rewards in an open field environment. All pre-training
sessions occurred in a different room than the room in which recording took place. The
track used during recording was usually different from the one used during pre-training,
or when the same track was used, a different surface was placed on the track.

The first behavioral task involved the rats running on a circular track. Two rats ran on a
track 120 cm in diameter, one rat on a 115 cm track and one on a 152 cm diameter
track. A barrier was placed at one end of the track, with food dishes on either side of it,
so the rat would have to turn around and run back to get the next food reward. Small
objects and textures were placed on half of the track (‘cue-rich’), and the other half had
a uniform surface with no nearby objects (‘cue poor’). Each running session lasted 25-30
min, and was preceded and followed by 30 min-1hr of rest in a small pot near the track.
Because the rats were pre-trained to perform this task, three of the rats showed good
enough behavior during their very first exposure to the track to allow us to analyze
individual laps. Rat 3, however, did not run on the track during his very first exposure,
and ran too slowly and too few laps (6) during his second exposure for that data to be
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analyzed. Thus, the data analyzed as rat 3’s “session 1” is actually his third day being
placed on the track. Nevertheless, this data showed very similar results to the actual first
exposure of the other 3 animals, and so was included in this study. The second task
involved the rats running on a circular open platform. One rat ran on a platform 115 cm
in diameter, and the other rat on a 142 cm platform. A three-walled box was placed at
the edge of the platform, and the rat was acclimated to this environment for 5 minutes
prior to each running session, by being confined to the box with a barrier placed along
the opening. Once the barrier was removed, the rat was expected to run to the food
dish on the opposite edge of the platform, pick up a food reward, and return to the box
to eat the reward. The task was designed to be able to manipulate the speed of the rat
as he returned with food rewards of different sizes. That aspect of the task, however,
was not important to this study. Each running session lasted 30 minutes. The rats also
foraged for randomly distributed food rewards in the same environment every day for
30 minutes (prior to the shuttle task, with a 30 min rest between tasks). It took the rats
2-4 days to learn the shuttle task, but once they learned it, they were running over 20
laps per session, most of them directly between the box and the food dish. Only the
spikes occurring along a direct path were analyzed, and laps in which the rat diverged
from a direct path to the food dish for more than 20% of the run in either direction were
excluded from the analysis.

Spike sorting. Spikes recorded during the entire recording session (2-3 rest periods and
1-2 running epochs) were sorted based on energies and first 2 principle components of
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the waveforms recorded on each electrode of a tetrode, using a semi-automated
proceedure. An automated algorithm (KlustaKwik, K.D. Harris,
http://klustakwik.sourceforge.net/) was used to find clusters, which were then merged
and adjusted manually using a modified version of MClust 3.1 (A.D. Redish,
http://redishlab.neuroscience.umn.edu/MClust/MClust.html).

4.6. Position Tracking. The position during the running epochs was extracted at each
video frame by fitting a circle to the ring of LEDs on the headstage. The position
determined during previous frames was used to eliminate active pixels at a distance of
greater than 20 pixels, which could not have been from the headstage, but were a result
of other spurious light sources. This 2D position was then deconstructed into a 1D
representation along the track. For the circular track task, a circle was fit to the position
data, and the coordinate along the diameter of the track was determined for each frame
(with the barrier assigned a position of 0). For the shuttling task, principal component
analysis on the XY coordinates was used to find the axis of the ‘track’ and the
coordinates along that axis were used (with the outer edge of the home box assigned a
position of 0). Periods when the rat was stopped on the track were removed, by finding
any periods when the rat was moving at less than 2cm/s. Velocity was calculated by
smoothing XY position with a 1-second hamming window, and then calculating the
distance moved between subsequent frames. For the shuttling task, periods when the
rat diverged from the track (the coordinates along the axis orthogonal to the ‘track’
crossed a threshold value in either direction) were also removed from the analysis. If the
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rat diverged from the ‘track’ for more than 20% of the distance in either direction, the
whole lap (both directions) was removed from the analysis. Laps were identified by
finding the turn-around points at the ends of the track.

Field analysis. Individual fields were delineated by smoothing (with a hanning window of
5 bins) the firing rate in (2cm) position bins and automatically finding the peaks and
troughs on either side of those peaks. Peaks at a minimum of 0.8 Hz were considered
fields, and the first trough away from the peak that had a firing rate of less than 0.05 of
the peak rate was considered the field boundary. Fields that had two peaks that were
separated by a trough of at least 0.6 of the smaller peak rate were split in two. Fields
were outlined individually in each running direction, and then combined if the majority
of the field overlapped with the field in the opposite direction. This way all the spikes
from fields that had shifted in the forward running direction would be considered. If a
field was not found in the opposite direction, the spikes occurring in the same position
bins were considered as the opposite direction field. All field boundaries were checked
manually on a phase precession plot (figure 3.1), and overlapping fields, fields that did
not show phase precession in at least one running direction, or overlapped with food
dish locations were excluded. Approximately 30% of the fields found by the automated
algorithm were deleted in the manual step, most of these because they included few
spikes and did not show phase precession, or they overlapped with a food dish location.
The phase precession criterion was not applied very stringently, instead it was used in
conjunction with the other criteria, for example to differentiate low firing rate fields
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from spurious spikes, or to determine if overlapping fields could be successfully
separated with a single boundary or should not be used. The boundaries of
approximately 30% of the remaining fields were adjusted manually, because the
automated algorithm did not identify the full phase precession of a field (especially low
firing rate fields), or it included some noise spikes from outside of a field. Spikes
occurring within the boundaries thus set were then considered for the lap-by lap
analysis of each field. See table 3.1 for the number of cells and fields analyzed from each
animal.

Directionality index. The directionality of cells was determined by counting the number
of spikes fired in each direction within each field, because this measures rate remapping
better than a correlation. Spatial correlations are also influenced by the fact that fields
are often offset in the two running directions (Battaglia et al., 2004). Thus, we calculated
a ‘directionality index,” which was the difference in number of spikes fired in each
running direction divided by the total spikes in both directions on each lap, based on the
rate remapping difference ratio in Leutgeb et al. (2005). The difference between the
higher firing rate direction (on average over the whole session) and the lower firing rate
direction was used instead of the absolute value of the difference, because this way the
same direction is being subtracted for all laps. Negative directionality index values
resulted when the running direction in which more spikes occur switched between laps.

When a cell spiked only in one running direction, the directionality index was 1.
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RESULTS

To study whether and how the directionality of place cells changes during initial
experience on a track, we compared firing rates during passes through place fields in
either direction across laps during the animal’s first session on the track. For each cell,
each place field was delineated (see figure 3.1 and methods), and all spikes that
occurred within the field boundaries on each lap were counted. The ‘directionality index’
of each field was calculated for each lap. The ‘higher firing rate direction’ is defined as
the direction in which, over the whole session, the number of spikes fired is greater. The
directionality index (DI) is the number of spikes fired in the higher firing rate direction
minus the lower firing rate direction, divided by the total number of spikes in both
directions, and is the same as the rate remapping difference ratio used by Leutgeb et al.
(2005). The average directionality index increased from a very low value (cells show
almost identical firing in both directions) to a high value in about 5 laps of experience on
the track (figure 3.2), even though the average firing rates of the population stayed the
same (figure 3.4A). During the second and third sessions of experience on the track, the
directionality index was already high on the first lap, but still increased slightly during
the next few laps (figure 3.2). There was a significant difference between the
directionality index on the first lap compared to the last lap on all three days (paired t-
tests, day 1: p<0.0001, day 2: p<0.05, day 3: p<0.01). This was true for both the CA1 and
CA3 cells in our analysis, although, consistent with the more robust rate remapping in

CA3 reported by Leutgeb et al., (2005), the CA3 cells showed higher directionality at the
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end of the session (CA1 DI during last lap: 0.42, +/- SEM 0.056, CA3 DI during last lap:
0.66 +/- SEM 0.074, t-test: p<0.05). We cannot, however, rule out individual differences
between rats in this case, because the CA3 and CA1 samples came largely from different
animals. While the average pattern clearly shows that the directionality of place cells
increases from the first few laps to the end of the first session, individual cells showed
different patterns of firing rate changes within different fields (discussed below). Some

examples of firing rate changes in individual fields are shown in figure 3.3.

-~ > counterclockwise
1:/ < ————— cllockwisel
(] L
gl
2 ol
i QO 14‘10" 1§O
$1.5] -
@©
<
o 1 te,
o .
205/ -
0 . R
560 140_ 160
[ 15¢ h
n l. ANt
%. 1 [ f 2 .
O et .
205} AR |
0 LT e

60 80 100 120 140 160
Position on track (cm)

Figure 3.1 Assigning boundaries around fields

Top: Occupancy normalized firing rate for an example cell is plotted on the coordinates of the

circular track (the barrier was at 0 cm, which wraps around to 361.3 cm, and the food dishes
were near that, at ~10 cm and 351 cm). The firing rate in the clockwise direction (right to left on
this plot) is colored red, and the counter-clockwise direction is in blue. Fields were identified by

an automated algorithm, which found peaks (in each direction separately) in the smoothed

version of this plot, and set boundaries at the troughs around those peaks. If the majority of the
field found in one direction overlapped with a field in the opposite direction the two fields were
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combined, and the spikes within the boundaries outlined in each direction were considered for
further analysis. The boundaries were set separately for each direction to account for the
shifting of fields in the backwards running direction. If a field did not overlap with one in the
opposite direction, any spikes occurring in the same position bins were considered as the
opposite direction field. Dotted vertical lines indicate the beginning and solid lines the end of the
field. Bottom: All fields identified were visualized on a theta phase plot, to ensure they exhibited
phase precession. Fields that did not show complete phase precession in at least one direction,
overlapped with another field, or showed truncated phase precession because of overlap with a
food dish location were eliminated from the analysis.

Table 3.1 Statistics of each session analyzed
Two tasks were performed by 5 rats. Each rat ran a task for at least 3 days, and the first 3
sessions were analyzed. (Rat 1 ran on the circular track twice a day, so the afternoon session of
day 1 was considered session 2 and analyzed with the other rats’ day 2, and the morning session
of day 2 was session 3.) The numbers of laps completed by the rat, cells recorded, and fields
analyzed are displayed for each rat and session. The smallest number of laps traversed by any of
the rats during a given session was analyzed.

Rat # Session # | # full, direct laps run # cells # fields in analysis

Cue-rich cue-poor circular track

1 1 24 50 63
2 12 72 80
3 15 74 82

2 1 14 13 20
2 7 43 39
3 11 26 33

3 1 25 69 79
2 7 65 28
3 20 69 45

5 1 34 156 32
2 20 175 22
3 19 137 42

Shuttling Task

4 1 13 47 9
2 53 48 13
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3 77 39 18
5 1 20 94 15
2 21 69 10
3 29 81 14

The average running speed of the rats tended to increase throughout the session, as the
rats explored the track relatively slowly during the first few laps and later ran faster, now
purely to receive their rewards (from 14.2 cm/s, SEM = 0.25 on lap 1 to 26.7 cm/s, SEM =
0.78 on lap 10). It is known that the firing rate of place cells increases with running
speed (McNaughton et al., 1983a); however, as the rat runs faster, he passes through
each field more quickly, which compensates for the higher firing rate, and the total
number of spikes fired during the pass through the field is approximately the same
(Ekstrom et al., 2001). In our results, the number of spikes fired during each pass
through a field actually decreased slightly with running speed (analysis of variance of the
effect of velocity rank on number of spikes: F = 7.3, p<0.01; figure 3.4B). A decrease in
the number of spikes in both directions would not, however, affect the directionality
index, because this measure compensates for the total number of spikes. The number of
spikes did, in fact, decrease with velocity similarly in both running directions (interaction
between running direction and velocity rank: F=0.2, p>0.1; figure 3.4B), but changed in
opposite directions with chronological lap number (interaction between running
direction and chronological lap number, F=9.53, p<0.01; figure 3.4A). Thus, the observed
change in firing rates over the first few laps cannot be accounted for by the effects of

different running speeds seen during those laps.
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Figure 3.2 Development of directionality on a circular track
The number of spikes occurring within the field boundaries in each running direction was
analyzed. The directionality index was calculated for each field on each lap as the difference in
number of spikes fired in the preferred and non-preferred running directions divided by the total
spikes in both directions (see methods). The mean directionality index for all fields is plotted for
each lap and each session. Error bars represent standard error of the mean. Laps are cut off at
the least number of laps run by the four rats in a given session. Right: Comparing the
directionality index during the first lap and the last lap in each session shows a significant
increase from beginning to the end of each session.

Even though the track was narrow (~10 cm), it is possible the rats were following
slightly different paths in the clockwise vs. counter-clockwise directions. To study
whether a possible difference in paths could have affected place cell firing rates and
contributed to the directionality index, we analyzed the effect of the difference in paths
taken through a field on the directionality index. The difference in position along the
width of the track of paths taken on two subsequent passes through a single field was on
average 1.67 cm, and varied with a standard deviation of 1.86 cm. We found that the
difference between position along the width of the track during passes in either
direction accounted for only 0.2% of the variability in directionality indexes (R*=0.0023,
p=0.015) on day 1. During subsequent days, when the directionality index was greater,

the effect of difference in position between passes on directionality index was not
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significant (day 2: R>=0.00017, p=0.1; day 3: R?=0.00036, p=0.1). Thus, the differences in
firing rates in the two running directions are barely, if at all, affected by differences in

paths traversed.

A — Clockwise ‘ B
— Counter-clockwise | T - 7 — - L 7
o et L ] = 2 P
e 30— - S -
: — d
- 5| |
= I > R e -
90 - - ——— / R —— e
- v—— 40 | - B ——rs - -- 8 L
R - AN
N = 10 _ — — 10> S
£ c 45 i .
E 9 a 3 - 212 <
o © P - ©
E - E 50| L s =1 =l
= 15+ = \
100+ N 55¢ - . 16} )
—= 181 >
i I B B s et N
105) = _:_ ] \7 65¢ e ' - - = 224‘
1 + -.T' 25 \” pem e . - | . L - 24 1
0 100 200 300 0 20 0 100 200 300 0 50
Position on track (cm) Number of spikes Position on track (cm) Number of spikes
l : z 2 - - 2b /
30t = 30} i
o ar = i &
j p— 6 % — o )
40 = 8 a0f = = 8 )
== 10¢ = = 10¢
Tg 451 - . £ 45¢ = (
£ 17
- é 12f | - < 12
E 500 1= £ 50¢ 17 14l
= 14+ = -
551 16| 55 161 )
L 18F )
60 8 S 60+ /
20 . 20 7‘
65 65F
22+ ) i N 22¢ \
. h 24 e — | — " 24 .
0 200 300 0 50 0 100 200 300 0 20
Position on track (cm) Number of spikes Position on track (cm) Number of spikes

Figure 3.3 Examples of firing rate changes in individual cells on day 1
A. A proximal CA1 cell from rat 3 expressing a field on the cue rich side of the track showed a
typical pattern of directionality increase. Many cells (those falling in the category shown in figure
3.5B) showed a directionality increase such as this. B. Some cells expressed fields that started
with significant directionality in the first few laps, such as the highlighted field of the
intermediate CA1 cell shown here. Like this example, many cells in the category shown in figure
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3.5Cincreased their directionality even more after the first few laps. C. An intermediate CA1 cell
from rat 1 expressing a field on the cue-rich part of the track showed a small directionality
increase. Many cells remained bi-directional throughout the session. D. A few cells started
directional and became less so, or reversed their preferred direction of firing (cells in the
categories in figure 3.5E&F). This intermediate CA1 cell from rat 1 didn’t start firing until the
return (clockwise) direction on the first lap, and then, over the next 2 laps, increased its firing
rate in the counter-clockwise direction, eventually firing more spikes in that direction.
The change in relative firing rate within place fields in the two running directions has the
characteristics of rate remapping, because changes in rate occurred without overall
changes in firing location. To confirm this assessment, we analyzed several parameters
that would indicate global remapping. First, global remapping would predict that many
fields would appear in a novel location, which did not show firing during the first few
laps. During the first 3 laps, no spikes were fired only in 10 fields (5.2 percent), and 6 or
fewer spikes were fired in 26 (13 percent) fields in those first 3 laps. When these fields
were removed from the analysis, the average directionality index did not change
noticeably (DI on lap 1 including all fields: 0.12 +/-SEM 0.045, including only fields that
exhibited more than 6 spikes in the first 3 laps: 0.14 +/-SEM 0.045,). Second, global
remapping would predict that many cells stopped firing completely in one running
direction; however, even during rate remapping the changes in rate can be sufficient to
cause a few cells to have firing probabilities that approach zero in a given location in one
or other condition (Leutgeb et al., 2005). Forty-eight fields (25 percent) ended with no
spikes in at least one running direction. Removing these fields from the analysis reduced

the directionality index both at the beginning and end of the session, but the change in

directionality was still significant, both for the fields that ended with spikes in both
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directions, and for the fields that ended with no spikes in one direction (paired t-test
between DI on first and last lap, p<0.001 in both cases). Additionally, the size of each
place field was measured on each lap, as the distance between the first and last spike
(within the field boundaries) during that lap. The average field sizes did not change very
much (about 35% - figure 3.4C, compared to a 50% change in firing rates - figure 3.3A,
and only 20% when fields with no spikes are not included). To check for stability in the
locations of place fields, we analyzed the center of mass of each field on each lap. The
average center of mass (COM) of the fields shifted in the direction opposite to the
direction of running, as has been observed previously (Mehta et al., 1997), but no other
shifting of individual fields was observed (average COM shift from first to last lap was 4.6
+/- 12.6 cm, SEM=0.83; figure 3.4D). Interestingly, the experience-dependent backwards
center of mass shift was observed both in the direction in which the field was becoming
stronger, as well as in the direction in which the field was becoming weaker. The center
of mass shift was observed for both CA3 and CA1 cells on day 1, and also observed on
days 2 and 3 in the preferred firing direction of CA1 cells, but not CA3 cells (similar to

previous data of Lee et al., 2004).
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Figure 3.4 Control analyses
A. The average number of spikes fired in all fields did not change with lap number, even though
the firing rates in each direction did. B. The number of spikes fired within a field decreased
slightly with running speed, but not differentially for the two running directions. The average
number of spikes fired on the slowest pass through each field, the next slowest, and so on until
the fastest pass, was calculated. The first 4 laps were excluded from this analysis, because the
running speed was highly correlated with lap number in these laps. The slowest passes through
each field (excluding the first 4 laps) were on average 17.7 cm/s (SEM = 0.53), and the fastest
passes were on average 31.0 cm/s (SEM = 0.75), covering a range of the same size to the range
of the passes during laps 1-10. C. Average field size (measured as the distance from the first
spike to the last spike) changed in each running direction across laps by about 35%, but not as
much as the number of spikes fired (A). D. The center of mass (COM) of place fields shifted
backwards, in both preferred (higher firing rate) and non-preferred (lower firing rate) directions.

To understand how individual fields changed as the rat gained experience in the

environment, we plotted the directionality index during the first 3 laps versus the
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directionality index during the last 3 laps for each individual field (figure 3.5A). This plot
shows that while, on average, the directionality index increased with lap number,
individual fields exhibited a wide range of directionality indices both at the start of
exposure to the environment as well as after repeated runs. Consistent with the average
results, many fields showed a substantial increase in directionality index during the
behavior session, while many fewer fields showed a decrease in directionality index. To
check the significance of the directionality index for each individual field, we calculated
the chi square statistic comparing the number of spikes in each running direction for
each field, both in the first 3 laps, and in the last 3 laps. Of the 194 total fields expressed
on day 1, 77 showed significantly directional firing during laps 1-3, and 111 showed
significant directionality during the last 3 laps. Fifty-six of these showed directional firing
both at the beginning and end of the session. Of those 56 fields, 42 showed an increase
in directionality index from the first 3 to the last 3 laps. The last 62 fields did not show
significant directionality at the beginning or end of the session. Interestingly, of the 77
fields that showed significantly directional firing at the start of the session, 8 exhibited a
reversal in the preferred firing direction. At the beginning of the session, the firing rate
in these 8 fields was higher in the direction that became the lower firing rate direction
when averaged over the session (the ‘lower firing rate’, or ‘non-preferred’ direction). By
the end of the session, 7 of these fields showed a significant directionality in the
preferred direction, while 1 of them did not show significant directionality. We plotted
the number of spikes per lap separately for each of 5 categories of fields: fields that
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showed directional firing only at the end of the session (figure 3.5B, blue), fields that
showed directional firing (in the preferred direction) both at the start and end of the
session (figure 3.5C, green), fields that never showed directional firing (figure 3.5D,
cyan), fields that showed significant directional firing (in the preferred direction) only at
the start of the session (figure 3.5E, magenta), and fields that showed significant
directional firing in the non-preferred (lower firing rate) direction at the start of the
session (figure 3.5F, red). Separating the fields into groups that exhibit similar
directionality changes during the first session shows that even though different cells
exhibit different amounts of directionality throughout the session, there was an average
tendency to increase their firing rate in the preferred direction and decrease their firing
rate in the non-preferred direction during the first few laps. A substantial number of
cells, however, exhibited decreases in firing in the preferred direction or increases in
firing in the non-preferred direction while nevertheless increasing overall directionality,

due to even greater changes in the opposite direction.
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Figure 3.5 Remapping in individual fields
A. To observe the amount of rate remapping exhibited within individual fields, the directionality
index during the first 3 laps was plotted against the directionality index during the last 3 laps.
Significance of the directionality in individual fields was assessed with a x2 test. Fields were
classified based on whether they exhibited significant (p<0.05) directionality at the beginning or
end of the session or both, and are color-coded based on this classification. B-F. For each group
of fields, the average firing rates in each running direction are also displayed. Error bars
represent standard error of the mean. Additionally, 8 fields were identified that showed
significant directionality in the non-preferred direction at the beginning of the session.

We addressed the question of whether there may be some form of competition involved in the
change in firing rates over the first few laps by assessing whether directionality tended to
increase in the direction that was preferred on lap 1. In other words, we tested the hypothesis
that initially stronger inputs tended to get stronger while initially weaker ones tended to get
weaker. The average directionality during lap 1 was small, but significant (0.12 +/-SEM 0.045, t-
test: p<0.05). We computed the signed directionality index (CW rate - CCW rate) / (CW rate +
CCW rate) for each field for laps 1 and 14 on day 1 and performed a regression analysis. There
was a weak tendency for directionality to increase in the direction of the initial bias (R*=0.084,
F=13.1, p<0.001). This tendency was true even for the 3 rats that were actually visiting the track
for the first time (R?=0.081, F=8.05, p<0.01).
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Figure 3.6 Local cues and the development of directionality
Half of the circular track was enriched with small objects and textures (local cues). A. The mean
directionality index is plotted for fields expressed on the cue-rich and cue-poor halves of the
track. B. During the first lap, field directionality on the cue-rich and cue poor halves of the track
did not differ significantly (t-test, p=0.16). Over the session, fields on both parts of the track
became significantly more directional (paired t-tests, p<0.01); however, fields on the cue-rich
part of the track increased directionality less than fields on the cue-poor side, and directionality
was significantly different between regions on the last lap (t-test, p<0.001).

Place cells are known to express more bidirectional place fields when local cues
are present on the track (Battaglia et al., 2004). To assess how local cues affected the

development of directional firing in our experiment, half of the track had small objects
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or textures on it, and the other half was bare. During the first lap, fields on either side of
the track did not differ significantly (t-test, p=0.16), but by the end of the first session,
fields expressed on the cue poor half of the track showed higher directionality than
fields expressed on the half of the track rich in cues (t-test, p<0.001; figure 3.6). An
analysis of variance showed a significant effect of cue condition on the directionality
index (F=4.39, p<0.05), and a significant interaction between lap number and cue
condition (F=5.93, p<0.05). Another possible difference between the two halves of the
track was the rats’ behavior: they ran slower on the cue-rich part of the track, and
stepped over and around certain objects and textures in stereotyped ways (running
speed through fields on cue rich part of the track: 18.2 +/- 4.56 cm/s, cue poor part of
track: 29.5 +/- 7.99 cm/s, t-test: p<0.001). The specific stereotyped movements and the
sequence of movements, however, was different between the two running directions on
the cue-rich part of the track, and more similar (involving fewer specialized movements)

on the cue-poor part of the track.
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Figure 3.7 Directionality in an open field

A-B. Directionality index in fields expressed on an open-field platform during performance of a
shuttle task. Day 1 is the first day each rat ran more than 20 laps (This was actually day 2 in the
environment for one rat, and day 4 for the other rat. On this day, rat 4 ran 22 laps, 13 of which

were direct, and the rat 5 ran 25, 20 of which were direct.) The day after that, the rats ran 53
and 21 direct laps respectively, and the directionality index started low and increased by laps 18-

21. On the following day (3), the directionality index started as high as at the end of day 2, and
did not change throughout the session. B. Directionality index during the first 3 and last 3 laps of
each session. C. Paths run by one of the rats during the first 13 direct passes between the start
box (left) and the food dish (right). The position was sampled 5 times per second, excluding the
times when the rat was in the box or at the food dish, to test for variability (large dots). D.
Distribution of positions along the axis orthogonal to the direct path from food dish to box at the
sampled times is plotted for both rats. Paths toward the food dish and away from the food dish
are plotted separately. The distribution is wider on day 1 in both directions.
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Directional firing of place cells has also been shown when a rat’s path was not
physically restricted to a track, but the rat was trained to run a specified path in order to
receive rewards at known locations (Markus et al., 1995). To determine whether
directional firing in this case also develops from initially omni-directional place fields, we
trained rats to run back and forth between a home-box location and a food dish on a
circular open-field platform. It took the rats 2-4 days to learn the task, but as soon as
they were running >20 laps, we analyzed the directionality of their place fields. On the
first that day the rats ran more than 20 laps, the directionality index of the fields was
low and did not significantly change during the session (figure 3.7A). The day after that,
however, the directionality index started low and increased by the end of the session
(figure 3.7A&B; paired t-test between first 3 laps and last 3 laps: p<0.01). The following
days the directionality index started as high as at the end of day 2, and did not change
throughout the session. As in the circular track task, the speed of running through a field
affected the number of spikes fired during that pass slightly, but did not affect passes in
the two directions differentially. To determine why directionality only developed on the
second day of performing the shuttling task, we analyzed the variability of the paths the
rats took to the food dish (the paths for one rat are plotted in figure 3.7C). The first 13
direct laps were analyzed on each day for each rat. The position was sampled 5 times
per second during traverses to and from the food dish (excluding times the rat was in
the box or at the food dish). The position along the axis orthogonal to the most direct
path from home box to food dish (the ‘track’ axis) was analyzed. On the first day, the
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distribution of positions visited by both rats during their runs was wider than on the
following days (Brown-Forsythe test for equality of variances: p<0.001, multiple
comparison test shows that day 1 is significantly different from days 2 and 3, but day 3 is
not different from day 2). Even though the paths were more stereotyped when
directionality developed, and were different between the two running directions, the
difference in the paths did not predict the directionality index, as in the circular track
data. These results show that the differential rate remapping in opposite running
directions can develop not only on tracks that constrain the animal's trajectory, but also
in an open field environment that is repeatedly traversed along a particular path. In an
open field environment, however, the rate remapping develops only once behavior

becomes stereotyped.

DiscussIiON

The main finding is that, in rats running on a track, the firing of hippocampal place cells
is initially bidirectional, and gradually becomes highly unidirectional. This large increase
in directional selectivity involves gradual changes in firing rates in either or both running
directions, during approximately the first 5-10 laps on the first day of exposure to the
track. This effect is almost entirely due to positive and negative changes in direction-
specific firing rates of the neurons, and not to changes in the locations in which the
neurons fire (i.e., rate remapping). Thus, while retaining information about the

allocentric location of the animal, the network gradually differentiates the direction in
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which it is traveling on the track. This finding clarifies a long standing question of why
the firing of hippocampal neurons is different in different directions when the rat is
following a specified path (McNaughton et al., 1983a; Muller et al., 1994), but the same
in each direction when the rat is following random paths (Muller et al., 1987).

The formation of place fields has been hypothesized to depend on one of two separate
mechanisms: learning of the sensory details of the environment to construct a map and
triangulate one’s location in it, or a continuous updating of one’s movement trajectory
to calculate allocentric position in the environment (path integration), or some
combination of the two mechanisms. Models relying on the first mechanism rely on the
learning of associations between place cells and their sensory inputs in order to form
non-directionally specific place fields. For example, Sharp (1991) modeled a network
with sensory inputs relating to the egocentric distance and direction of landmarks
projecting to entorhinal and then hippocampal cells, and used competitive learning to
establish place fields. A prediction of this model was that place fields would initially be
directional, but become direction-independent after exploration in multiple directions.
Because exploration was restricted to two directions on a track, place fields on a track
would never become omni-directional in this model. Our data, however, show a pattern
opposite to that predicted by this model; place fields are initially omni-directional, and
increase their direction-specificity with experience. The current findings are more
consistent with models that rely on some form of path integration to determine the
initial location of place fields.
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The assertion that path integration determines the formation of place fields is
well supported with previous experimental evidence (reviewed in McNaughton et al.,
1996; 2006). For example, symmetry of sensory cues in an environment does not result
in symmetrical place cell firing (Sharp et al., 1990) and identical sensory environments
located at 180° rotated orientations (Fuhs et al., 2005), or in different rooms (Leutgeb et
al., 2005b) result in global remapping of place representations. Further, place fields do
not change location when lights are turned on or off (O'Keefe and Speakman, 1987;
Quirk et al., 1990; Markus et al., 1994). The inhibition (Kentros et al., 1998) or deficiency
(Barnes et al., 1997) of LTP does not disrupt the formation of place fields, but does
disrupt the recall of place cell associations with previously visited environments. Global
remapping is instantaneous when a large mismatch between sensory cues and
vestibular information occurs (Knierim et al., 1998), as is place field realignment to
moved landmarks (Gothard et al.,, 1996), further supporting that learning is not
necessary for the establishment of novel or changed place cell representations.

In the framework of path integration models, earlier hypotheses to account for
directionality along restricted paths involved a switch of ‘reference frames’ or maps
(now referred to as global remapping) at the arm ends; however, attempts to observe
the predicted complete discontinuity in firing patterns at arm-ends were generally
unsuccessful (Redish et al., 2000). The symmetrical firing observed during the first
traversal of a path, is consistent with typical, non-directional firing during random
foraging behavior, and also with the evidence that the selection of which hippocampal
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neurons are able to fire at a given location is determined on the basis of path integration
rather than exteroceptive cues (presumably by inputs from the medial entorhinal
cortex). When the animal travels the same route multiple times, however, it appears
that the firing of hippocampal cells gradually becomes conjunctive for the path
integrator coordinates and the direction-specific ‘local view’ (McNaughton et al., 1991).
The most plausible source of external landmark information to the hippocampus proper
is via the lateral entorhinal cortex (Burwell and Amaral, 1998; Si and Treves, 2009;
Renno-Costa et al., 2010; Deshmukh and Knierim, 2011). Lateral entorhinal cortex (LEC)
projects to the outer portions of the dendrites of DG and CA3 uniformly along the
transverse axis of hippocampus, and to the distal (i.e. nearest to subiculum) CA1 cells.
We observed strong increases in directional tuning in both CA3 and CA1 (including the
cells located in proximal CA1, which only get direct inputs from MEC and CA3), raising
the possibility that the directionality increase in CA1 is largely driven by changes in CA3
itself or in Schafer collateral synapses.

At present, one can only speculate about the possible mechanisms of the
increased directionality. The data appear to be generally compatible with the
observation that LEC inputs are capable of bidirectional weight changes (LTP/LTD;
McNaughton et al., 1978; Abraham and Goddard, 1983) and support the hypothesis that
the LEC to CA3 (and/or DG) connections which are active in a given direction either
increase or decrease according to some form of competition. Plausibly, the initial mean
weights of synapses driven by the novel cues, being drawn effectively at random from
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an existing weight distribution, would be approximately equal in the two directions
(central limit theorem). Whether the mean weights would increase or decrease might
depend on some form of competition (e.g., BCM rule), by which inputs causing strong
activation are strengthened whereas those causing weaker activation are weakened. We
did observe a slight tendency for directionality to increase in the direction of initial
preference, but it accounted for only 8% of the directionality variance by the end of
session 1. It is also possible that competition is influenced by the timing of inhibitory
inputs from interneurons driven at short-latency by other pyramidal cells (Csicsvari et
al., 1998; Marshall et al.,, 2002; Maurer et al.,, 2006b). In addition, the firing rates of
some hippocampal interneurons are strongly modulated by novelty (Wilson and
McNaughton, 1993; Nitz and McNaughton, 2004), which may have an important impact
on plasticity over the first few laps. In any case, if the magnitude and direction of weight
change is a random variable that is correlated over the active population of inputs onto
a given hippocampal cell for a given running direction, then the firing in opposite
directions would tend to diverge, resulting in increased directional bias.

On average, there was about a 50% increase or decrease in firing rate over time
in a given direction (figure 3.4A); however, there were cases of cells either starting out
or ending up with zero spikes in one direction. If the observed changes in firing are
indeed due to changes in LEC synaptic efficacy, the complete lack of firing in one
direction implies that, at least in some cells, MEC inputs alone are not sufficient to drive
spiking. Since MEC inputs are also known to exhibit plasticity, however, it is also possible
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that both sets of inputs may undergo experience dependent changes. The effect of local
cues on the track, however, which would likely reduce the net difference in external
input in the two directions, appears to indicate that the main changes are driven by
external inputs.

Other studies have shown that rate remapping occurs when the behavioral goals or
context, or internal state of the animal changes (e.g. Frank et al., 2000; Wood et al.,
2000; Bower et al., 2005). By teaching the rats a shuttling task, we modified their
behavioral goals. This change in behavioral context could explain why remapping
occurred in the same environment when the task changed from foraging for randomly
placed rewards and running between predictable reward locations (Markus et al., 1995).
In our results, this rate remapping didn’t occur until the task was so well learned that it
was performed stereotypically. This indicates that the development of directionality in
the hippocampus does not drive the change in behavioral strategy; instead it may be
driven by the shift to a different behavioral state. Some of the studies of rate remapping
at identical locations during running toward different goals have been interpreted to
mean that mnemonic coding, when it is task-relevant, exists in the hippocampus in
addition to spatial coding (Berke et al.,, 2009). Another interpretation, based on our
results, is that the ‘context’ encoded by the hippocampus can include the particular
trajectory being traversed, if traversal of the trajectories becomes highly stereotyped.
Studies of the initial place cell activity in these tasks should be performed to
differentiate between these two hypotheses. If the rate remapping occurs after the task
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is well learned, it would suggest that task demands, including goal locations, are actually
learned by a different structure, such as the striatum, and remapping in the
hippocampus is driven later by input relating to the task context. Some findings support
this second hypothesis, including that Berke et al. (2009) did not see rate remapping in
the initial learning trials of their cued goal maze task, even though in those trials the rat
was using its prior positions to plan a future route. Additionally, rate remapping of
overlapping positions in a sequence task does not occur when the overlapping parts of
the trajectories include more than one arm (Lenck-Santini et al., 2001; Bower et al.,
2005), and is not necessary for a rat to learn complex sequences (Bower et al., 2005).

Mehta et al., (1997) reported an experience-dependent place field expansion in CA1l,
with a center of mass shift in the direction opposite the direction of travel, when rats ran
unidirectionally around a track. This effect was subsequently shown to occur also in CA3,
in @ more long lasting form (Lee et al., 2004) and to be dependent (at least in CA1) on
NMDA receptor function (Ekstrom et al., 2001). The accepted view of the mechanism of
this experience dependent expansion and shift is that it reflects the development of
what Hebb (1949) referred to as a “phase sequence”. Synapses from cells that fire
earlier in a sequence onto cells firing later become asymmetrically strengthened through
spike-timing dependent LTP. In their discussion, Mehta et al. (1997) commented: “A
natural question is whether the observed asymmetry would cancel out if the rat ran
repeatedly back and forth along a route in both directions. It turns out that this
experiment is not possible because, under such circumstances, the hippocampus
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encodes the forward and return journeys using different sets of place cells.” The present
results show that this conjecture was incorrect; the forward and return journeys
apparently are encoded by the same set of place cells, but with substantially direction-
dependent firing rates, and we did observe a center of mass shift in both the preferred
and the non-preferred directions, on the first day. The fact that field expansion in both
directions didn’t cancel out the asymmetric center of mass shift, could be explained by
local feedback inhibition, an after-hyperpolarizing current, or another form of
depression in each place cell that does not allow a place cell that has recently fired to be
activated by connections from other currently active place cells. Another possible
implication of this result is that the synapses that mediate rate remapping are not the
same as the synapses that mediate the place field shift. Rate remapping typically
resulted in fewer spikes fired in the non-preferred direction, suggesting a synaptic
depression, yet the field shift is generally attributed to synaptic enhancement.

On the second and third days on the track, place field shift occurred only in CA1
cells, and only in the preferred direction, while directionality increased only slightly, and
in both CA1 and CA3 cells. The fact that place field expansion does not occur in CA3 on
later days is consistent with previous results (Lee et al., 2004) which suggest that the
underlying plasticity is more persistent in CA3 than CA1l. A possible explanation for the
lack of expansion in the non-preferred direction in CA1 on days 2 and 3 may be that

there was insufficient depolarization on the cells to induce LTP in the feed-forward

84



synapses from CA3. Of course, the foregoing proposals are speculative. Understanding
the specific mechanisms involved in these phenomena await further study.

In summary, during the first few traverses of a fixed route in space, place cell
activity is almost entirely determined by allocentric position; later the activity becomes
modulated by other factors, without significantly affecting the position dependence
(rate remapping). The shift is likely due to sensory information at a given position, but
could also be partially driven by internal state variables such as memory or goals, or the
behavior of the animal at particular locations. We presented evidence that directionality
does not develop until behavior becomes stereotyped, suggesting that the performance
of a specific task in an environment contributes to changes in place cell activity. Both
sensory and motor information makes its way into the hippocampus, in a highly
processed form, however. Recordings from the input structures to the hippocampus
(especially MEC and LEC) during performance of directional tasks in a novel environment

are needed to elucidate what drives the development of directionality of place cells.
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ABSTRACT

The hippocampal CA3 network may contribute to episodic memory by combining
spatial and contextual information using a dual coding scheme known (respectively) as
'global' and 'rate'-remapping. In CA3, global remapping exhibits attractor-like dynamics
whereas rate-remapping apparently does not, leading to the hypothesis that only the
former can be associatively retrieved. This question is key to the general hypothesis that
CAS3 serves as a general purpose autoassociator. We conducted large-scale single unit
recordings from CA3 of rats while they ran on a circular track in different directions (in
different sessions), and while they slept. We find that, during off-line, spontaneous
reactivation, separation of the two contextual memories associated with the same

spatial map occurs.
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INTRODUCTION

The hippocampus is thought to play a central role in the formation of episodic-
like memory. The general theory behind this idea is that the CA3 network of the
hippocampus is a general-purpose autoassociative network (Marr, 1971; McNaughton
and Morris, 1987; Treves, 1990; Treves and Rolls, 1992) capable of representing external
inputs and encoding them in an attractor framework (Hopfield, 1982; Amit and Treves,
1989) using Hebbian synaptic modification. This allows the whole of the hippocampal
representation of an event to be recalled from a reduced or distorted version of the
stored pattern, and results in a hysteresis effect whereby the entire system transitions
abruptly to a stored state once a critical similarity of the current and stored patterns is
achieved. It is generally believed that the spontaneous reactivation during sleep (Wilson
and McNaughton, 1994) of patterns stored autoassociatively in the hippocampus serves
to assist neocortical memory consolidation (Marr, 1971).

The hippocampus combines spatial and 'contextual' information by means of a
dual coding scheme in which the location and spatial extent of 'place fields' appears to
be determined by an internally generated mechanism based on path-integration
(McNaughton et al., 2006) signals, probably of medial entorhinal origin (Hafting et al.,
2005; Fyhn et al., 2007), whereas the intensity of 'in-field' firing is rapidly adjusted on
the basis of sensory and internal cues ('context'), probably conveyed via lateral
entorhinal cortex (Hargreaves et al., 2005; Lu et al., 2013). Rearrangement of place field

location due to changing position is now commonly referred to as 'global remapping’,
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whereas variations of in-field firing rates is called 'rate-remapping' (Leutgeb et al.,
2005b).

Rate-remapping has been observed in various different conditions, such as
changing wall colour (Leutgeb et al., 2005b), wall shape (Leutgeb et al., 2005b; Leutgeb
and Moser, 2007; Colgin et al., 2010; Lu et al., 2013), changing task demands (Allen et
al., 2012) or odors (Anderson and Jeffery, 2003), as well as internal variables such as
working memory and/or action plans (Wood et al., 2000; Bower et al., 2005). In a recent
study (Navratilova et al., 2012), we showed that the firing rate differences that occur
when a rat runs in opposite directions on the same track (McNaughton et al., 1983a) are
a result of rate-remapping. Place cells start out with almost symmetrical firing in the two
directions, presumably driven by path integrator input. The symmetry is rapidly broken
as a consequence of direction-dependent differences in external sensory input,
presumably arriving via lateral entorhinal cortex. Directional firing bias develops within
the first several laps and is maintained on subsequent days.

One well supported theory is that the path integrator mechanism is based on
prewired 'continuous attractor' dynamics in MEC (McNaughton et al., 1996; Redish et
al., 1996; Zhang, 1996; Samsonovich and McNaughton, 1997; Fuhs and Touretzky, 2006;
McNaughton et al., 2006) which give rise to grid cells at several spatial scales, and that
combining grid cell inputs at different spatial scales plays a dominant role in formation
of discrete place fields in hippocampus. According to this theory, if an animal explores
two spatially separate environments, the two representations formed in the
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hippocampus (CA3) will be statistically independent due to different ‘locations’ of
activation on the upstream continuous attractor manifold. Transitioning between the
two environments will cause an abrupt shift between the two neural representations
(global remapping). On the contrary, sensory/contextual changes within the same
environment are associated with the same set of active cells and are encoded by
changes in their firing rates (rate-remapping) but not locations.

Recently, Colgin et al. (2010) performed a test of whether both spatial and
sensory information can lead to attractor dynamics in CA3. They showed that when the
environmental cues were gradually morphed between two familiar end-points,
coherent, abrupt transitions occurred in CA3 only if the end-points had been previously
learned in different spatial locations and hence were associated with different global
mappings. They concluded that "associations among the represented features of the
two boxes were not sufficient to produce attractor dynamics in the hippocampus,
whereas associations between the features and an internal representation of relative
location produced strong attractor dynamics ", and thus, "the available evidence does
not favor the theory that CA3 is a standard autoassociative network whose purpose is to
encode associations among the sensory features of the environment". A major
implication of this conclusion is that spontaneous retrieval of recently experienced
patterns might contain only the spatial component of the activity and any component

due to rate-remapping would be lost. This result would present difficulties for most
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theories of the role of hippocampus in encoding episodic memories that occur at the
same place.

In the present study we performed a test of the hypothesis that both the spatial
and the rate-remapping components of firing (i.e., the full hippocampal code for the
episode) are reactivated during sleep. We took advantage of the pronounced rate
remapping that occurs during running in opposite directions around a circular track
(Navratilova et al., 2012). Essentially, we asked whether reactivation of firing rate
distributions that occurs during rest immediately after running in one direction is more
similar to the hippocampal activation for that direction than for the pattern during
subsequent running in the opposite direction. Rejection of the null hypothesis (no
difference) in the predicted direction would indicate that both the spatial and the

sensory features are retrieved in the hippocampus during off-line reactivation.

METHODS

Behavioral training and recording experiment. The animals used for this study were
individually housed and kept on a 12h dark/12h light cycle. The training and experiment
were conducted during the light phase. The animals were food deprived and kept at 85%
of their free feeding body weight in order to be motivated to run for food reward. All
animal protocols complied with Federation of Laboratory Animal Science Associations
(FELASA) guidelines under the guidance of the Neuro-Electronic Research Flanders

(NERF) and KU Leuven institutional animal care.
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Four Long Evans and 1 Wistar rat, between 3 and 5 months of age, were
pretrained to run back and forth on a linear track for food reward (chocolate sprinkles),
which was provided on each end of the track. Training took place once or twice daily for
about two to three weeks depending on how quickly the animal acquired the task.
During this training period a “hyperdrive” with twelve independently movable recording
tetrodes (Gothard et al., 1996) (<1MQ) and two references was implanted above the
right hippocampus (-3.8 AP, -3.0 ML relative to bregma). The tetrodes were lowered into
the cortex (1960 microns) right after surgery and then further down to area CA3 of the
hippocampus over the course of about two weeks. One tetrode was placed into layer
CA1 to record ripple events. Another tetrode was placed close to the hippocampal
fissure to record sharp wave events and was used as a visual guide during tetrode
turning. A differential signal was recorded from the corpus callosum and was used as
neutral reference throughout the recordings. The tetrode turning was based on
hippocampal, local field potential landmark features such as theta rhythm during waking
and movement and the occurrence of sharp waves and ripples during quiet wakefulness
and slow wave sleep (Buzsaki et al., 1992). The anatomical positions of the tetrodes
were confirmed histologically using Nissl stains.

Once all tetrodes were in the desired location, the experiment started. The
recordings were conducted in a different room than the pretraining, using a circular

track elevated ca. 15 cm above the floor with low (1 c¢cm) railings along the in- and
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outside (diameter: 170 cm). The room and experimental apparatus were novel on day
one of recording.

The recording procedure for four (3 animals) to five days (2 animals) was
conducted as follows. The animal first rested in a high-walled towel-padded black
wooden box, placed in the center of the track for about 45 minutes. It then ran the first
session of continuous laps in one direction for food reward at a fixed location on the
track. The animal ran a total of four sessions of 15 minutes with the first and last
sessions in the same direction (A, A’) and the second and third sessions (B, B’) in the
same direction but opposite to A. The running sequence was alternated between
clockwise (CW) - counter clockwise (CCW) - counter clockwise (CCW) - clockwise (CW)
and CCW-CW-CW-CCW over the course of 4-5 recording days. That is, CW-CCW-CCW-CW
was used on the days 1, 3 and 5 and CCW-CW-CW-CCW on the days 2 and 4. The reward
location remained the same for each animal. Between the run sessions the animal
rested for about 20 minutes in the box, and after the fourth session it rested for 45
minutes. The recording arena was surrounded by black curtains, which were not fully
closed, to allow the experimenter to go in and out between sessions. The gap in the
curtains at the door together with an illuminated emergency exit light above the door
also provided a constant distant cue for the animal to polarize the environment. In
addition, the experimenter sat on a chair close to the food dish to deliver the reward.

The light was dimmed during recordings.
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The thresholded spike signals were recorded with a Cheetah Data Acquisition

System (Neuralynx), digitized at 32 kHz and bandpass filtered between 600 Hz and 6 kHz.
The continuous local field potential traces (LFP) were filtered between 1 Hz and 300 Hz
and sampled at 2.4 kHz. The animal’s position was tracked at 60 frames/s using LEDs
mounted on the headstage that were detected by a color camera that was mounted on
the ceiling of the recording room (approximately 0.33 cm/pixel).
Spike sorting. Spiking activity was analyzed offline using an automated spike-sorting
algorithm (Klustakwik by K. D. Harris) to isolate units and separate them from noise. The
resulting clusters were manually refined using cluster cutting software (MClust 3.1SE by
A. D. Redish, with customizations by P. Lipa, S. Cowen, and D. Euston) in a
multiparameter space including features such as energy (area under the waveform),
peak-to-trough distance, principal component, time (to control for stability of the
recording of the unit over the entire length of recording) and cross correlograms. Only
units with less than 0.2 % interspike intervals (ISI) falling within 2 ms refractory period
were accepted. Also, the median of the z-scored waveforms of the last sleep session had
to be within 1 standard deviation of the median of the z-scored waveforms of the first
sleep session on at least three out of four channels to exclude units that underwent
drift. Units that fired with less than 0.05 Hz in any of the behavioral or sleep sessions
were excluded from the analysis except for the ripple characterization (see Cross
correlation analysis between CA3 unit activity and ripple peak times and Number of
spikes and proportion of active neurons per ripple), which left a total of 349 neurons.
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Place field analysis. The video tracked position of the rat during the run session was
extracted at each video frame by fitting a circle to the ring of LEDs on the headstage. The
2D position was deconstructed into a 1D position along the track. The food dish location
was defined as 0. The rat’s velocity was calculated by smoothing the 2-dimensional
position with a 1 s hamming window and calculating the distance the animal had moved
between subsequent frames. Any periods in which the animal moved less than 2 cm/s
were removed. Place fields were defined along the linearized track by smoothing (with a
hanning window of 7 bins) the firing rate in 5 cm position bins for each cell. The
smoothed firing rates were z-scored to 0 mean with a standard deviation of 1. Any peaks
exceeding a z-score of 2 for at least 6 cm were detected as fields. All adjacent bins on
either side of the peak were included until the z-score dropped to 0, which is where the
boundaries of the place field were set. Fields that were less than 20 cm apart were
merged and fields with peaks within 30 cm before or after the food dish location were
deleted. First, sessions of same direction were combined and then field boundaries were
determined in each direction independently. If the fields overlapped in the two
directions, they were matched and considered as one field. If no opposite direction
match was found, then the same boundaries were used for both directions. This
procedure ensured that all spikes of the fields were considered even when fields showed
a backward shift in the running direction. All fields detected by the algorithm were
checked manually and deleted if they did not show phase precession in at least one of
the two directions. Ca. 36.6% of fields detected by the automated algorithm were
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deleted in the manual step and a total of 260 fields remained. Ca. 6% of place field
boundaries were manually adjusted.

Spatial correlations. The spatial correlations were computed by correlating the linearized
spatial maps of a cell in sessions of same or different running directions with each other.
For different running directions, sessions A and B and sessions B’ and A’ were compared.
Population vector correlations in the mazes. The similarity of the spatial maps for same
and different running directions was estimated by computing the population vector
correlations. The linearized spatial maps of all n cells were used to construct an n cells
(rows) by t spatial bins (columns) matrix of firing rates for each condition (A, A, i.e. first
and last session and B, B’, i.e., second and third session). For the different direction
comparison, the two sessions of same running directions were combined (A and A’, as
well as B and B’) and the rows in the spatial matrices were normalized by their
maximum. The bins within the field boundaries in B (combined with B’) were flipped and
shifted. The amount by which the fields were shifted was determined by what shift
resulted in the highest mean spatial correlation over all cells per data set. All cells within
one data set where shifted by the same amount. The population vector correlations
were computed for each position bin in one spatial matrix with all position bins in
another spatial matrix.

Global remapping simulation. Global remapping was simulated by moving the place
fields of one direction randomly around the track and calculating the spatial
correlations. This procedure was repeated 1000 times.
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Directionality index. The directionality index was computed by taking the absolute
difference of the mean place field firing rates of a cell in the two running directions
divided by the sum of the mean place field firing rates in the two directions of
comparison. The DI can range between 0 and 1, with 0 indicating identical rates in the
two directions of comparison and 1 indicating maximally different rates in the two
directions of comparison. Note that O DI can only occur in the limit of zero sampling
error.

EEG analysis. The LFP signal recorded in the hippocampal fissure was filtered offline
between 6-10 Hz to determine the theta signal. To identify ripple events, the local field
potential recorded in the cell layer of CA1 was band pass filtered offline between 100
and 300 Hz and the envelope of the signal was determined by a Hilbert transform and
smoothed using a 30 ms sliding time window. Ripples were detected when the signal
continuously exceeded the mean + 2 SD for at least 15 ms. Ripple epochs that were
closer than 25 ms were merged.

Rate reactivation analysis. The mean firing rates of all neurons on each recording day
were computed for each maze session during running periods (speed of rat > 2cm/s) and
for each sleep session during ripple periods. As the firing rate distribution is lognormal
(Figure 4.2e), the mean rates were log transformed. The data of all rats were combined.
The correlations between the log transformed firing rate vectors during sleep 2 was

computed with the preceding (A) and following maze session (B).
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Cross correlation analysis between CA3 unit activity and ripple peak times. Spike times of
individual CA3 neurons (n = 1058) were cross-correlated with the ripple peak times
recorded on that day as reference events. The correlograms were computed with a bin
size of 5 ms over a window of 400 ms centered around 0. The mean and standard error
of the mean per bin were computed.

Number of spikes and proportion of active neurons per ripple. The number of spikes that
occured per ripple was summed regardless of neuron identity. The proportion of active
neurons per ripple was calculated by taking the ratio of the number of neurons that fired

during a ripple over all simultaneously recorded neurons.

RESULTS

To test whether hippocampal CA3 neurons reactivate the sensory/contextual
modulation of their rates within a stable spatial map, we recorded from five rats (346
neurons) while they were running on a circular track for 15 minutes per session in
clockwise and counter clockwise directions in an A-B-B’-A’ paradigm (A’ and B’ are
repeated recordings in the A and B directions). Sleep epochs were recorded while the
animal was resting in a box in the center of the track (but not on the track) between run
sessions for 20 minutes (S2-S4). Sleep sessions before the first (S1) and after the last
running session (S5) were 45 minutes long. It should be stated here that ‘sleep’ is used
as a label for epochs before and after run sessions and does not exclude possible awake

periods during these epochs.
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Firing rates encode running direction within a stable spatial code

CA3 neurons with place fields on the circular track show direction dependent
firing rate differences (Figure 4.1). The selected examples (Figure 4.1) show phase
precession in their fields in both direction but the absolute rates are direction specific.
The location is largely constant except for an asymmetry due to phase precession
effects. For a quantitative assessment of whether the spatial maps for the two running
directions are not different (i.e., no global remapping, Figure 4.2a-c), we assessed the
similarity using population vector correlations. For same direction comparisons (Figure
4.2a, A with A’ and Figure 4.2b, B with B’) the population vector correlations show a
narrow band with values close to 1 along the diagonal. This indicates that both field
locations and within field firing rates are similar in repeated recordings in the same
direction. Correlation values further away from the diagonal correspond to positions
further apart on the track and therefore appear more and more dissimilar. For different
direction comparisons (Figure 4.2c, A vs. B), all rows in the binned spatial maps of all
cells were normalized by their maximum to alleviate the influence of rate difference and
to emphasize the similarity of the two spatial maps. The bins within field boundaries in
one direction were flipped and rotated by an optimal amount assessed per data set to
compensate for the field asymmetry. This improved the spatial correlations significantly
(0.06 + 0.30 compared to 0.18 + 0.36 after flipping and rotating, p<0.000001, ttest, one-

tailed), especially compared to a simulated global remapping situation, in which the
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fields in one direction where randomly shifted along the track (0.0009 * 0.30,

p<0.000001, ttest, one-tailed).
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Figure 4.1 Rate remapping in different running directions on a circular track
Six examples taken from 2 different rats on 3 different days to illustrate the rate differences
within place fields in different directions (indicated by colors blue and red). For each neuron the
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normalized (i.e., occupancy corrected) firing rate is plotted in the two directions (blue and red
dashed lines in first row) against the linearized position in cm on the track. The reward location
is at 0 cm. The theta phases of the spikes discharged in the two directions are plotted below.
Two full cycles of theta phase are plotted for illustration purposes. Arrows over theta phase
plots indicate running direction. Theta phase plots are not occupancy corrected, which is why
there is an accumulation of spikes around the reward zone at the beginning of the track.
Next, we quantified the effect of rate remapping using a directionality index
(Leutgeb et al., 2005b; Navratilova et al., 2012) that measures the similarity of firing
rates of a cell in two conditions. We calculated the DI by comparing the mean firing rates
within the place fields in opposite directions (Figure 4.2d, crosses) with the mean firing
rates within the place fields in same directions (Figure 4.2d, diamonds). The DI for
opposite directions is significantly different from the DI for same directions already on
the first day (Wilcoxon rank sum test, one-tailed, p <0.0001). Thus, the rate-remapping
was established on the first day (Leutgeb et al., 2005b; Navratilova et al., 2012) and

increased over subsequent recording days (Wilcoxon rank sum test, one-tailed, p

<0.00001 for opposite vs. same direction), reaching about a 2-fold difference.
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Figure 4.2 Similarity between spatial maps, directionality index, lognormal firing rate
distributions and reactivation of rate remapping
a) The population vector correlations of the binned spatial maps of all neurons of the pooled
data of all rats in session A and A’ (repeated recording in the same running direction) and B and
B’ (b) are plotted with cool — warm colorscale ranging between
-0.17 and 0.97). Population vector correlations of corresponding positions on the track (plotted
along diagonal) show the highest values, while the values decrease with increasing offset
between population vector locations. c) The population vector correlation matrix for sessions in
opposite directions after normalizing each row to their maximum, flipping spatial bins within
field boundaries and alignment of fields, shows lower values along the diagonal as well as a
broader band. This effect arises from differences in firing rates as caused by rate remapping,
asymmetric field expansion and phase precession effects, which result in place fields in opposite
directions being offset slightly when the rat's head is taken as the position reference (Skaggs et
al., 1996), Figure 14E). However, the spatial structure of field location in the two directions is
preserved. d) The directionality index (DI) is plotted for all animals pooled over 5 recording days.
The mean and SEM of the Dl in the different direction comparison (crosses, A vs B and A’ vs B’)
and same direction comparison (diamonds, A vs A’ and B vs B’) are plotted. e) The firing rate
distribution of all recorded neurons is plotted for all behavioral (red and blue solid and dashed
lines) and all sleep sessions during ripple events (black and grey solid, dashed and dotted dashed
lines). Note the log scale on the x-axis. f) The mean firing rates of all cells of session A, B and
sleep 2 of all animals were pooled and log transformed. The correlation between S2 and A (open
circles) as well as between S2 and B (closed circles) were computed over 5 recording days. The
correlations between S2 and A are significantly higher than between S2 and B (Wilcoxon rank
sum test, one-tailed, p=0.03).
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Reactivation in CA3 includes contextual modulation of firing rates

To determine whether the firing rates are faithfully reactivated in sleep after
behavior, we tested the following null hypothesis. If CA3 only reactivates the spatial
information, which is identical in both sessions, we expect that activity in session A
explains activity in the following sleep (S2) no better than activity in the subsequent run
session B (order: A — sleep (S2) — B). The specific alternative hypothesis is that both
spatial and rate-remapped components are reactivated and therefore activity (i.e., firing
rates) in A explains activity in subsequent sleep better than activity in B does. As the
firing rate distributions in behavior and sleep are lognormal (Figure 4.2e), we computed
the correlations between the log transformed mean firing rate vectors (Battaglia et al.,
2005; Mizuseki and Buzsaki, 2013) during running periods in sessions (A and B) and
during ripple periods in sleep S2 (Figure 4.2f). The correlation r(S2, A) was significantly
higher than r(S2, B) (Wilcoxon rank sum test, one-tailed, p=0.03) over the course of all
five recording days. On day 1, the difference between r(S2,A) and r(S2,B) is the smallest
(0.53 and 0.63, respectively). On that day, rate remapping was also the least expressed
(Figure 4.2d). On days 2-5, values for r(S2,A) ranged between 0.34 and 0.62 and values
for r(S2,B) fell between 0.06 to 0.12. We can therefore reject the null hypothesis. The log
transformed mean rate correlations between the remaining sleep and maze sessions are

included in the Appendix.
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A classical approach to assess reactivation is to compute the pairwise correlation
coefficients between neurons during sleep and behavior (Wilson and McNaughton,
1994; Kudrimoti et al., 1999). In our case, the critical comparisons would be the
correlation coefficients for neuron pairs in maze A and for neuron pairs in S2 (same for
maze B and S2). However, this approach is biased towards rejecting the null hypothesis
due to the asymmetry of place fields (Mehta et al., 1997), which can result in differences
in the overlap of neighboring fields in opposite running directions, even in the absence
of rate remapping. In figure 4.3., the schematic illustrates that two asymmetric place
fields (neuron 1 in blue and neuron 2 in green) with constant firing rates in the two
directions (i.e., no rate remapping) and constant Euclidean distance between their peak
firing positions (double sided arrow) in the two directions and different tuning curves,
show different amounts of overlap (red filled area). This would affect the correlation
coefficients for this neuron pair in the two directions differently, suggesting rate
remapping, when there is none. We computed the analysis and obtained significant
results consistent with our conclusion; however, given the potential bias we decided to
not rely on this approach.

Another type of analysis that seeks to identify recurring patterns or sequences of
neural activity has been developed using Bayesian decoding (Davidson et al., 2009),
combinatorial methods (Lee and Wilson, 2002), or template matching (Tatsuno et al.,
2006). These methods have not been applied to this data as the place field
representation in most data sets is too sparse to design a useful template or use
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Bayesian decoding. The attempt was made to detect sequences according to Lee and
Wilson’s (2002) method, however, in data sets with >15 place fields the number of
possible combinations calculated to assess significance exceeds our current
computational power. As the scientific question in this study is addressable with a
simple correlation between mean firing rates of neurons in behavior and sleep, which
gives a robust result, this was the method of choice. In addition, it is reasonable to
assume that the spatial sequences are identical, albeit in reverse order. A simple
reversal of the sequence in the opposite direction would likely introduce a certain
degree of error due to phase precession effects. It is therefore not a straightforward
comparison to match sequences of opposite running directions with sequences in sleep

and likely gives a noisier result than a simple rate correlation.
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Figure 4.3 Asymmetry of place fields and its effect on their overlap
Two asymmetric place fields of two neurons (blue and green) are drawn on the track (x-axis) that
show expansion of the field opposite to the animal’s running direction (black arrow on top left
and right of schematic). The two fields show different tuning, but each shows the same tuning
and firing rate (on y-axis) for both directions. The Euclidean distance (double sided arrow)
between their peak firing locations (dashed line) is kept constant in the two directions. The area,
in which the firing of the two place cells overlaps, is indicated in red and differs in the two
directions. This difference will affect the correlation coefficient between the neuron pair in the
two directions and bias the result toward finding a difference between the two directions and
rejecting the null hypothesis, when it is true (i.e., the individual neurons do not show rate
remapping).
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Figure 4.4 Relationship between CA3 unit activity and ripple events
a) The proportion of neurons active out of the total number of simultaneously recorded neurons
in any given sharp wave/ripple (SPWR) is plotted as the probability distribution and the
cumulative probability distribution (inset). The activation probability among the recorded cells
per ripple is extremely low. b) The probability distribution of the total number of spikes per
sharp wave ripple shows that the majority of ripples in CA1 entrain only very few spikes in the
recorded CA3 population. c) CA3 unit activity cross correlated with peak ripple times in the EEG
with a bin size of 5 ms. The mean and SEM are plotted for each bin. CA3 neurons show elevated
firing within a window of -25 to +75 ms around the peak of ripple oscillations recorded in the
CA1 pyramidal layer. The broad peak of the cross correlogram is likely due to the differences in
the timing of spikes in CA3 b and c.

CA3 unit activity was very sparse during sharp wave ripple complexes. The
proportion of active cells and the number of spikes fired was extremely low (Singer and
Frank, 2009). Elevated firing was observed within a time window of about 100 ms
(between -25 ms to +75 ms) around the peak times of CA1 ripples (Figure 4.4 c). The
peak firing occurred between 0 and 25 ms after the peaks of the detected ripples in
pyramidal layer CA1. The broad peak in the spike timing likely reflects the fact that the
recording tetrodes were located in CA3 b and c, which show an offset in spike timing
relative to CA1 ripples (Csicsvari et al., 2000). The peak firing rate was around 0.7Hz,
which is considerably lower than in CA1 (Csicsvari et al., 2000), but is consistent with

previous reports (Csicsvari et al., 2000). This effect might imply that the ripple selection

108



criterion may have been fairly stringent, which possibly caused the loss of spikes fired
around the edges of the ripple events, especially around the onset of ripples. Relaxing
the thresholds for start and end times of ripples could potentially help to get more
accuracy for CA3 firing rates during ripples. Nevertheless, the result clearly indicates that
firing rates during ripples in S2 resemble more closely the preceding experience (Figure

4.2f).

DiscussIiON

CA3 has been shown to encode contextual information flexibly onto a single
spatial map without affecting other independent spatial maps (Gothard et al., 1996;
Anderson and Jeffery, 2003; Leutgeb et al., 2005b; Leutgeb et al., 2007; Allen et al.,
2012). In addition, it has been demonstrated that CA3 reactivates pattern sequences in
sleep after the experience, but lack of perfect fidelity in this reactivation and the
apparent lack of attractor dynamics for the sensory components during waking, left
open the question of whether reactivation during sleep contains both sensory and
spatial components, or only the latter. We found that firing rates in sleep were
significantly more similar to the previously experienced episode than to a future episode
of identical spatial content with different sensory context, confirming that both
determinants of the collective activity are reactivated.

How can the present result be rationalized with the apparent lack of attractor

dynamics for sensory/contextual information in CA3? Recent experimental evidence
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showed that there are abrupt attractor-like transitions in the population output of CA3
in response to sensory input that is gradually morphed between two spatially
independent stored memories (Leutgeb et al., 2005b; Leutgeb et al., 2007; Colgin et al.,
2010), whereas spatially overlapping but visually distinct memories cause diverse and
non-coherent changes in CA3 neuron firing (Leutgeb et al., 2005b; Leutgeb et al., 2007;
Colgin et al., 2010; Lu et al., 2013). Some cells do show abrupt transitions but do so at
different points, some cells show smooth transitions and others show hysteresis; but as
a population the transition in the output appears gradual. This suggested that there
might not be attractor dynamics for spatial/contextual information in CA3. Recent
modelling studies, however, suggest that episodic memory could possibly be supported
by a combination of discrete and continuous attractor dynamics (Renno-Costa et al.,
2014; Solstad et al., 2014). The possibility of discrete attractor dynamics in the recurrent
collaterals of CA3 and hysteresis effects in some cells suggests that different
sensory/episodic events that occur in the context of the same spatial map may be stored

in the synapses of CA3 neurons and be amenable to retrieval during off-line reactivation.

CONCLUSION

This study shows that CA3 combines and stores spatial and episodic components
of memories. It is able spontaneously to retrieve specific episodic information related to

a single spatial location. Rate remapping therefore may be an effective way of encoding
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and separating different experiences associated with the same location and using this

separation to index the different memory components in the neocortex.
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ABSTRACT

Characterization of synaptic connectivity is essential to understanding neural
circuit dynamics. For extracellularly recorded spike trains, indirect evidence for
connectivity can be inferred from short-latency peaks in the correlogram between two
neurons. In spite of their predominance in cortex, however, significant interactions
between excitatory neurons (E) have been hard to detect because of their intrinsic
weakness. By taking advantage of long duration recordings, up to twenty-five hours,
from rat prefrontal cortex, we found that 7.6% of the recorded pyramidal neurons are

connected. This corresponds to approximately 70% of the local E-E connection
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probability that has been reported by paired intracellular recordings (11.6%). This value
is significantly higher than previous reports from extracellular recordings, but still a
substantial underestimate. Our analysis showed that long recording times and strict
significance thresholds are necessary to detect weak connections while avoiding false
positive results, but will likely still leave many excitatory connections undetected. In
addition, we found that hyperreciprocity of connections in prefrontal cortex that was
shown previously by paired intracellular recordings was only present in short-distance,
but not in long distance (~300 microns or more) interactions. As hyperreciprocity is
restricted to local clusters, it might be a minicolumnar effect. Given the current surge of
interest in very high-density neural spike recording (e.g., NIH BRAIN Project) it is of
paramount importance that we have statistically reliable methods for estimating
connectivity from cross-correlation analysis available. We provide an important step in

this direction.

INTRODUCTION

Characterization of synaptic interactions on a large scale is essential to
understand information processing in neural circuits. In an attempt to characterize local
circuit dynamics, combined electrophysiological and imaging techniques have started to
map out neocortical circuits (Bock et al., 2011; Ko et al.,, 2011). With recent

developments in multi-electrode recording technology, it has also become possible to
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monitor large numbers of neurons simultaneously with high temporal resolution
(McNaughton et al., 1983b; Csicsvari et al., 2003a; Buzsaki, 2004). Even though this
number is still small relative to the total number of neurons, one advantage of ensemble
recordings is that it can greatly facilitate the study of spike-train interactions, because
the number of neuron pairs increases as the square of the number of units recorded.
The obtained spike trains are often analyzed by cross correlations to infer synaptic
interactions (Alonso and Martinez, 1998; Ostojic et al., 2009). The cross correlogram, a
well-established technique to investigate temporal relationships between neural spikes,
describes the co-variance between the binned spike trains of two neurons at various
time lags (Perkel et al., 1967b; Kirkwood, 1979; Aertsen and Gerstein, 1985; Brown et al.,
2004). A plausible argument for synaptic connectivity can be made from the presence of
short-latency peaks in the correlogram within the range of central glutamatergic EPSP
and gabaergic IPSP rise times (Csicsvari et al., 1998; Bartho et al., 2004; Fujisawa et al.,
2008).

Despite the potential usefulness of the cross-correlation method, the detection of
excitatory interactions between pyramidal neurons (E-E interaction) has been difficult
(Bartho et al., 2004; Fujisawa et al., 2008), because these interactions are generally
weak (McNaughton, 1980; Mason et al., 1991; Deuchars et al., 1994; Markram et al.,
1997; Thomson and Deuchars, 1997; Reyes and Sakmann, 1999; Thomson et al., 2002).
Excitatory synaptic strength of intracellularly measured cortical connections has been
shown to follow a lognormal distribution (Song et al., 2005), suggesting that a very small
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number of strong connections are embedded in a large number of weak connections. In
addition, the duration of typical ensemble recordings is not long (up to a few hours). The
consequence is a limited sampling of spike occurrences and also a poor sampling of the
possible state-space occupancy distribution (Perkel et al., 1967a, b). Cells are tuned to
respond to a given set of input vectors and some vectors in the set may never occur
during the sampling epoch. Thus, for some connected cells in the sample, the input
which brings them close enough to threshold to allow synaptic interaction may not
occur during the sampling period. In other words, the effective contribution of cell A to
the firing of cell B is not independent of the activity of other cells in the network. Hence,
some connections may not be visible in spike cross-correlograms from a given sample
epoch.

To explore these issues, we analyzed neural ensembles from rat prefrontal cortex
and estimated the asymptotic detection probability of excitatory connections and

investigated the nature of the distribution of the detected excitatory connections.

MATERIALS AND METHODS

Recording experiment. Twenty-five hour continuous, multi neuron recording data sets
were collected from three adult male Brown-Norway/Fischer 344 hybrid rats that were
trained to run a spatial sequence task (Euston et al., 2007) and were also subjected to a
novel object exposure procedure (Tatsuno et al., 2006). The recording sessions were

divided into two 12h sleep/rest sessions interrupted by 1h behavior, which was either
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the sequence task or the novel object exposure, to yield a total recording duration of
25h per recording session. The animals were implanted with a hyperdrive with 12
independently movable tetrodes (Gothard et al., 1996) (<1MQ impedance) in the left
medial prefrontal cortex (3.2 mm AP, 1.3 mm ML relative to bregma) to record from
dorsal anterior cingulate cortex (ACd) and prelimbic cortex (PL). The tetrodes were used
to record extracellular single units. The anatomical positions of the tetrodes were
confirmed histologically.

Two additional probes were placed 4-5 mm deep in the medial prefrontal cortex to
record a differential reference signal. The animal’s position was tracked at 60 frames/s
using LEDs mounted on the headstage that were detected by a color camera that was
mounted on the ceiling of the recording room (approximately 0.33 cm/pixel). The
thresholded signals were recorded with a Cheetah Data Acquisition System (Neuralynx),
digitized at 32 kHz and bandpass filtered between 600 Hz and 6 kHz. Local field potential
(LFP) data were filtered between 1 and 475 Hz and sampled at 2 kHz.

Animal care and surgeries were conducted in accordance with National Institutes of
Health guidelines and approved Institutional Animal Care and Use Committee protocols.
After surgery, rats were administered 26 mg of acetaminophen (children’s Tylenol;
McNeil, Fort Washington, PA) and also received 2.7 mg/ml acetaminophen in the
drinking water for 1-2 d after surgery. In addition, they were given oral ampicillin on a 10

d on/10 d off regimen for the duration of the experiment.
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Spike sorting. Spiking activity was analyzed offline using an automated spike-sorting
algorithm (KlustaKwik by K. D. Harris) to isolate units and separate them from noise. The
resulting clusters were manually refined using cluster cutting software (MClust 3.0 by
A.D. Redish, with customizations by P. Lipa, S. Cowen, and D. Euston) in a multi-
parameter space including features such as energy (area under the waveform), peak to
trough distance, principal component, time (to control for stability of the recording of
the unit over the entire recording duration) and cross correlograms. In addition, all units
were verified by waveform visualization software (WaveformCutter 1.0 by S. Cowen).
Only units with less than 0.3% interspike intervals (ISl) falling within 2 ms refractory
period were accepted.

During long recording times, the position of the electrode can shift and,
consequently, the shape of the recorded waveform can change. This can lead to errors
in spike sorting and can cause false temporal firing relationships between neuron pairs.
For this reason, we only included neurons that show good isolation and little variance in
their waveforms and z-scored peak amplitudes over the entire length of recordings
(Figure 5.1a). As a measure for the stability of the neurons, we calculated the fractional
change of firing rate between the first and the last 4 hour periods. We found that the
fractional change for the majority (95%) of the neurons that were selected by the first
criteria was less than 80%, suggesting that the neurons were stable for the 25 hour

period of recordings.

117



In addition, inspired by the recent finding by Mizuseki and Buzsaki (2013) that
the distribution of firing rates follows a lognormal distribution in the hippocampal
formation, we also calculated the distribution of firing rate of our data. Figure 5.2c
shows the firing rate distribution during the first and last 4 hours of recording. We found
that not only does the firing rate follow a lognormal distribution, but also the shape of
the distribution did not change between the two periods. We also confirmed that the
firing rate calculated of the entire recording follows a log-normal distribution.

Neuron classification. Neurons are classified into excitatory, inhibitory or unclassified
based on statistical dependency with other neurons. Firstly, for each reference neuron,
cross correlations against all other neurons were calculated with a bin size of 1 ms and a
window size of +/-50 ms. Secondly, each cross correlation was converted to a z-score
with its mean and standard deviation. This alleviated the problem of spike rate
differences. Next, we calculated the moving average (window size: 15 ms) of the z-
scored cross correlations and subtracted it from the original signal to obtain a detrended
z-scored cross correlation. This procedure removed modulations in intermediate
temporal ranges that are slower than monosynaptic interactions. Correlations that
showed putative common input (measured as a peak or trough encompassing lag [-1:1])
were excluded from further cell classification analysis. Cross correlation pairs that did
not contain relevant information were also removed (if none of the z-scored correlation
values within [-4, 4] exceeded 2 or -2, the pair was removed). Finally, the average cross
correlation of the remaining pairs was calculated (Figure 5.1b). Mean and one standard
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deviation of the average cross correlation for the bins outside of [-4, 4] ms were used as
a threshold to determine whether a bin within [1, 4] ms has a relevant correlation signal
for cell classification; if at least one bin exceeded the upper threshold (mean + 1std) and
no bin undershot the lower threshold (mean — 1std), the reference neuron was classified
as a putative excitatory neuron. If at least one bin undershot the lower threshold (mean
- 1std) and no bin exceeded the upper threshold (mean + 1std), the reference neuron
was classified as a putative inhibitory neuron. Otherwise, the reference neuron was left
unclassified. We also inspected all individual cross correlations visually to verify whether
the decision of the algorithm we applied on the average detrended z-scored cross
correlations was consistent with the judgment made by human observers. In summary,
this procedure aims at classifying a reference neuron based on the average statistical

influence of the reference neuron to all possible postsynaptic target neurons.
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Figure 5.1 Neuron classification
a) Stability of neurons and cleanness of clusters recorded on the same tetrode. Average
waveforms (top two rows), autocorrelograms (AC, two middle left panels), cross correlogram
(CC, middle right panel) and time plots (two bottom panels) of two excitatory neurons recorded
on the same tetrode are depicted. The percent of spikes within 2 ms of refractory period
included in the cluster and the firing rate are indicated above the autocorrelograms. Both
clusters show distinct waveforms (each waveform is depicted for a 1 ms window) and have clean
refractory periods (0.02% and 0.03%, respectively, spikes within 2 ms of refractory period). Their
cross correlogram is reciprocally significant (EE2) at a significance threshold of @ = 107° (grey
horizontal line). b) Classification of neurons. In the left column, the average z-scored cross
correlations of three different neurons, without the detrending procedure, are depicted in blue.
In the right column, the corresponding detrended average z-scored cross correlations are
plotted. The black horizontal dashed line depicts the mean, the red horizontal dashed lines
depict one standard deviation above and below the mean, respectively, and the green line is the
moving average of the z-scored cross correlation computed with a moving window of 15 ms. The
vertical black dashed lines represent the limits of the window of interest between 1 and 4 ms,
within which short-latency peaks or troughs are assessed for classification. The top row
represents an unclassified neuron that, without detrending, would have been classified possibly
falsely as excitatory. The middle row shows an inhibitory neuron that without detrending, would
have been classified as excitatory. The last row represents an excitatory neuron that would have
been left unclassified without detrending.

Cross correlation analysis. All simultaneously recorded neurons from each animal were
cross correlated with each other with a bin size of 1 ms. The cross correlation values
were normalized by the firing rate of the reference neuron. This procedure resulted in
n*(n-1)/2 correlation pairs (n = number of recorded units. Self-correlation was
excluded). For each neuron pair, the spikes of one spike train were jittered randomly
within an interval of [-5, 5] ms to break up the short-latency relationships between
spikes. The bin size and jitter interval were chosen based on synaptic integration times in
frontal cortex neurons in vivo (Leger et al., 2005). Then, the jittered spike trains were
cross-correlated with a bin size of 1 ms. This procedure was repeated 1000 times to

compute a surrogate data set of cross correlations. Various significance thresholds (a-
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levels) were computed from the distribution of jittered data to detect peaks or troughs
with short latency and duration (€2 ms) in the cell pair correlations (Bartho et al., 2004;
Fujisawa et al., 2008): a levels used are 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 5x1073, 2x1073,
1x1073, 5x107*, 2x107™*, 1x10™*, 51075, 2x1075, 1x107° and the global
min/max value (referred to as absolute limit: abs) which corresponds to the overall
maximum and minimum values of all bins in the surrogate data set. If a single bin
exceeded the significance level within the first 4 ms before or after lag 0, the correlation
was scored as significant excitation and the pair was considered monosynaptically
connected. Similarly, if two neighboring bins undershot the significance level within the
first 4 ms before or after lag 0, the connection was scored as significant inhibition
(Bartho et al., 2004). This way, significance was tested for both possible directions of
interaction between the two neurons. To verify our method and temporal window
within which we assess significance of the short-latency peaks, we repeated the same
analysis as described above for 4 ms windows around +/- 25 ms and +/- 50 ms.

The length of the recording period used for the cross correlogram calculation was
varied from one hour to 25 hours with one-hour increments. Firstly, for each hour
segment and for a given significance level a, we constructed a matrix of significant cross-
correlations for all possible non-overlapping blocks (i.e. 25 blocks for 1 hour segments,
12 blocks for 2 hour long segments, etc.). This resulted in a matrix with an entry for each
significant correlation type EE1, EE2, EI1, EI2, IE1, II1, EU1 and IU1; EE1 represents
unidirectional excitation between two excitatory neurons; EE2 represents reciprocal
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excitation between excitatory neurons; El1 represents unidirectional excitation from an
excitatory neuron onto an inhibitory neuron; EI2 represents reciprocal connection
between an inhibitory and an excitatory neuron; IE1 represents unidirectional inhibition
from an inhibitory neuron onto an excitatory neuron; Il1 represents unidirectional
inhibition between two inhibitory neurons; EU1 represents unidirectional excitation
from an excitatory neuron onto an unclassified neuron; 1U1 represents unidirectional
inhibition from an inhibitory neuron onto an unclassified neuron. Since swapping
reference- and target-neurons results in the mirror image of the original cross
correlogram, only the upper triangle of the result matrix was considered. We then
summed the number of significant correlations for each correlation type. In order to
estimate the distribution of the number of detected correlations for each hour segment,
we used bootstrapping with replacement (Mooney, 1993; Hoffman and McNaughton,
2002). The matrix was randomly resampled with replacement as many times as needed
to obtain 1000 samples for each hour segment. For instance, for the 1-hour segment,
each upper triangle of the 25 result matrices was resampled 40 times. For the 25 hour
segment, only one result matrix was obtained and was therefore resampled 1000 times.
The median, 84" and 16" percentile were calculated to characterize the distribution. For
the tetrode-wise analysis, the connection matrix of each tetrode was resampled with
replacement 1000 times. The result was summed across tetrodes and data sets. Again,
the median, 84" and 16" percentile of the bootstrapped sample distribution were
calculated.

123



The experimentally derived detection probability of excitatory connections p for

the significance level a and the recording length of n hours was defined as

_ H#(EE1) + 2x#(EE2)
Pa = 2N ’

(1)

where #(EE1) is the number of significant unidirectionally connected pairs, #(EE2) is
the number of significant reciprocally connected pairs, and N is the total number of
neuron pairs.

Extrapolation by fitting the statistical power function using simulated annealing. In order
to investigate how the experimentally derived detection probability of weak E-E
connections p# may improve beyond the recording duration of 25 hours, we applied
curve fitting based on statistical power. To obtain a reasonable estimate, we used a
framework for the case that both the data from the alternative hypothesis and the data
from the null hypothesis follow the normal distribution with a known standard

deviation. The statistical power function, defined as the probability of rejecting the null

hypothesis when the alternative is true, is written as:

power =1- ncdf(cutoﬁ" | yl,%), (2)
n

where the cutoff is the threshold value for rejecting the null hypothesis when the

alternative is true, y, is the mean of the alternative hypothesis (the mean peak cross-
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correlation value within -4 to +4 ms excluding 0), ¢ is the standard deviation of the null

and alternative hypotheses, n is the sample size (the length of recording (hours)), and

1 =0
f e 2 dr. (3)

nedf = p=F(x|u,0)=
o271

Using the significance level a, the cutoff is written:

o
cutoff =ninv(1—a,uo,T), (4)
n

where p, is the mean of the null hypothesis (chance-level cross-correlation value

estimated by spike-jittering) and

ninv = x = F™'(p| ,0) = {x: F(x| 4,0) = p}.  (5)

Plugging equation 4 into equation 2 yields:

power =1- ncdf(ninv(l -a, ‘uo,%),‘ul,%). (6)
n n
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We conjectured that the probability of detecting a significant cross correlation
between two neurons, if a connection exists and the conditions for its making a
contribution to post-synaptic spiking are realized, follows the same form of statistical
power. The fitted detection probability of excitatory connections C} for the significance

level a and the recording length of n hours can be obtained as:

C: =CEE, - power =CEE,

1- ncdf(ninv(l -a, yo,%),ul,%)), (7)

where CEE, is the asymptotic detection probability of excitatory connections p}} at the
significance level . Finally, in order to obtain a better fit, the significance level a and
the standard deviation o in the right hand side in equation 7 were treated as fitting

parameters ay,qrqm and 0pqaram, respectively. This gives the final fitting equation:

C! = CEE
‘ “ Jn Jn

o o
1- ncdf(ninv(l — Oy » Mg s — 2" }ﬂl’ param )] (8)

In summary, CEEy, Qparam and Opgrqm in €quation 8 were optimized to fit the
data of the experimentally derived detection probability of weak E-E connections pj.
This yields the fitted detection probability of excitatory connections C%. Note that in a

standard testing of a normal mean with a known standard distribution, @ and apqrqm
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are identical and they represent the significance level of the test. Similarly, o and
Oparam are identical and they represent the standard distribution of the null and
alternative hypotheses. In this study, however, a,4,qm Was separated from a and
Oparam Was separated from o, and they were treated as fitting parameters. This
distinction was necessary to obtain a good fit to our experimental data. We speculate
that it might be partly due to the fact that y, follows a skewed continuous distribution
rather than a normal distribution. Given the fact that many different fitting functions
were indeed able to fit our experimental data almost equally well, but would produce
greatly different asymptotes, we chose a fitting function that is based on statistical
power.

Actual curve fitting was conducted by simulated annealing (Metropolis et al.,
1953; Kirkpatrick et al., 1983) using MATLAB Global Optimization Toolbox (MathWorks).
Simulated annealing is a well-established, general optimization method that has been
used as a powerful optimizer for n-body problems including the classic traveling
salesman problem (Metropolis et al., 1953; Kirkpatrick et al., 1983). The method can be
pictured as the physical process of first heating a material and then lowering the
temperature slowly, which corresponds to minimizing the system’s energy. More
precisely, at a sufficiently high temperature, the system is slightly perturbed and the
change of energy, A E, is calculated. The new state is accepted if AE is negative. If the
energy increases, the new state is accepted under a certain probability (p = exp[—AE/

(kgT)] where kg = Boltzmann constant and T = temperature) to avoid that the system
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gets stuck in local minima. This process is repeated many times at the current
temperature. The temperature is slowly decremented until the system is frozen
(Kirkpatrick, 1983). The method may not find the optimum solution but is most likely to
find one of the near-optimum solutions. We ran 1000 optimization trials to select the
best parameter values that would give the least sum of squares. See table 2 for
optimization results for all a levels. The r-squares, R%aiex and RZA”ExTT, were computed to
estimate the goodness of fit of the optimized function to the data.

Calculation of the effect size h. In order to compare the size of the short-latency peak
across neuron pairs, we introduced the effect size h that was defined as the normalized
significant peak,

hpeak — HUjitter

h= 9)

Ojitter
where hpeqr is the height of the maximum peak in the cross correlogram in [-4,-1] ms and
[1,4] ms (i.e., the maximum peak taken of this 8 ms window) for unidirectional excitatory
connections (EE1) and the height of the maximum peaks in the cross correlogram in [-4,-
1] ms and [1,4] ms for reciprocal excitatory connections (EE2) (i.e. the maximum peak
taken of each 4 ms window), and Wjitter and Ojitrer are the mean and the standard
deviation of the jittered data for the corresponding cross correlation, respectively

(Fujisawa et al., 2008).
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RESULTS

Long-term recordings of 25-hour length were analyzed using cross correlations to
identify excitatory connections between prefrontal putative pyramidal neurons. Six data
sets obtained from three rats that were subjected to both a repeated sequence running
task and novel object experience, were analyzed (Two novel-object data sets were
described previously (Tatsuno et al., 2006)). Table 5.1 shows the number of neuron pairs
in each session. In total, we analyzed 237 neurons and 4787 correlation pairs. An
example of units included in the analysis is shown in Figure 5.1a. We classified the
neurons into excitatory (54%), inhibitory (8%) and unclassified neurons (38%) based on
their overall short latency effects on postsynaptic neurons (see methods, Figure 5.1b), as
the different classes were not unambiguously differentiable based on their waveform
characteristics. This may be due to our recording parameters, e.g. using a rather tight

band-pass filter between 600 Hz-6 kHz, which affects the shape of the recorded spikes.
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a) EE1 connections b) EE2 connections
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Figure 5.2 Examples of cross correlograms for detected excitatory connections, firing rate
distribution and the distribution of the jitter corrected effect size
Examples of cross correlograms between two putative pyramidal neurons that are
unidirectionally connected (a, EE1 connections) or reciprocally connected (b, EE2 connections).
In the top row, cross correlations for 1 hour long spike trains and in the second row, cross
correlations for the same neurons pairs for 25 hour long spike trains are shown with a window
size of 20 ms and a bin size of 1 ms. The red horizontal lines depict the significance level (a =
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abs) determined by 1000 spike-jittered cross-correlations. Note the improved signal to noise
ratio in the 25 hour cross correlograms (middle row), which enables the detection of small, short
latency peaks. The bottom row shows the jitter corrected correlograms for 25 hours obtained by
subtracting the mean of the jittered cross correlograms of each cell pair from the original cross
correlogram (middle row). c) The distribution of firing rate probability among all neurons for the
first 4 hours (black) and last 4 hours (pink) of recording. The firing rate distribution for both
recording intervals is lognormal. Note the log scale on the x-axis. d) The distribution of the jitter
corrected effect size for EE1 and EE2 connections. The distribution of the jitter corrected peaks
of the significant cross correlations is lognormal as previously shown by Mizuseki et al. (2013).
The peaks of the neuron pairs shown in a) and b) are indicated in the plot.

Changes of detection probability over various lengths of recordings

Significant excitatory connections between neuron pairs were detected by using
a spike train jitter method (Bartho et al., 2004; Fujisawa et al., 2008). As the threshold
for significant interactions is chosen somewhat arbitrarily by the experimenter and
influences the size of the type | error (false-positives), we investigated a wide range of
significance levels; 16 different a levels ranging from 0.5 to absolute limit (abs). The
absolute limit is derived from the absolute maximum value of all bins in the jittered data
for each neuron pair and represents the strictest a level. Note that it is not much smaller
than 10~ (the smallest used before abs).

Figures 5.2a and 5.2b show four examples of cross correlograms between two
putative pyramidal neurons with the absolute limit. While no significant short-latency
peak was detected with a one-hour recording (Figure 5.2a, b, top row), it was detected
with a 25-hour recording (Figure 5.2a, b, middle row). The reduced fluctuations in the
correlogram reflect the improved signal to noise ratio and enable the detection of small

peaks. As expected, longer recording times increase the chance of detecting weak
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excitatory connections. In addition, we also calculated the jitter-corrected cross
corelograms (Figure 5.2a, b, bottom row) (Hirabayashi et al., 2013; Mizuseki and Buzsaki,
2013). This is obtained by subtracting the mean jittered cross correlations for each bin
from the original cross correlation. The results show that the significant peaks clearly
stand out. The firing rate distribution of the analyzed data set follows a lognormal
distribution as previously shown (Mizuseki and Buzsaki, 2013) and does not change
between the first and last 4 hours of recordings (Figure 5.2c). The distribution of the
jitter corrected significant peaks follows a lognormal distribution as well (Figure 5.2d),

which is also consistent with previous findings (Mizuseki and Buzsaki, 2013).

Table 5.1 The number of neuron pairs, significant excitatory connections and the
experimentally derived detection probability of excitatory connection pairs
The number of neuron pairs, the number of unidirectional excitatory connections (EE1), the
number of reciprocal excitatory connections (EE2) and the number of unconnected neuron pairs
(NO) as well as the connection probability (detection probability of excitatory connections, p5s,
equation 1) for the 25 hour recordings are reported in 3 different ways in order to compare
them to intracellular recording studies (Song et al., 2005) and to extracellular recordings
(Fujisawa et al., 2008 and the counting method in this paper, in which we only consider
excitatory neurons across all tetrodes). Therefore, all three columns contain our data, simply
reported according to three different counting methods, which are detailed below.

Formula for calculating the number of neuron pairs for Song et al. (2005) criteria:
Nt

. nEE,i(nEE,i — 1)
# of neuron pairs = Nyygyrr = > )

i=1

where ngg ; is the total number of excitatory neurons within tetrode i and Ny is the total
number of tetrodes.
Formula for calculating the number of neuron pairs for our criteria:

. n,.(n.. —1
# of neuron pairs = Nyjgx = N (1 1) ,

2
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where p,., is the total number of excitatory neurons.
Formula for calculating the number of neuron pairs for Fujisawa et al. (2008) criteria:

)

. n,(n,-1
# of neuron pairs = Ny =“”(+,

where 1, is the total number of all recorded neurons, including inhibitory and unclassified

neurons.
The formula for calculating the connection probability of excitatory neuron pairs pZ was
provided by equation (1) in the main text.

Counting method

Data Sets zﬁng et SPtrjssnt :J.Jlsawa et
# of neuron pairs 36 276 820*
# of EE1 connections 5 6 6
Novel # of EE2 connections 1 1 1
iair:f unconnected 30 969 813*
Rat pZ5 (connectivity)**  0.10 0.01 0.00
1 # of neuron pairs 22 210 528*
# of EE1 connections 9 12 12
Sequence # of EE2 connections 2 3 3
iair:f unconnected 1 195 513*
pZ5 (connectivity)**  0.30 0.04 0.02
# of neuron pairs 26 153 780*
# of EE1 connections 2 2 2
# of EE2 connections 1 1 1
Novel # of unconnected
pairs 23 150 777%
Rat pZ5(connectivity)**  0.08 0.01 0.00
2 # of neuron pairs 5 55 325*
# of EE1 connections 1 1 1
Sequence # of EE2 connections 0 0 0
iair:f unconnected 4 54 324
pZ5 (connectivity)**  0.10 0.01 0.00
Rat | Novel # of neuron pairs 77 253 903*
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3 # of EE1 connections 4 4 4
# of EE2 connections 0 0 0
# ‘ of unconnected 73 249 899*
pairs
pZ5 (connectivity)**  0.03 0.01 0.00
# of neuron pairs 109 496 1431*
# of EE1 connections 6 10 10

Sequence # of EE2 connections 9 3 3

# ‘ of unconnected 100 483 1418*
pairs
pZ5 (connectivity)**  0.11 0.02 0.01
Tojcal # of neuron 575 1443 4787*
pairs

*includes inhibitory and unclassified neurons as well as excitatory neurons, while all other
counts contain excitatory neurons only
** a =abs

The experimentally derived detection probability of excitatory connections p for
the significance level a and the recording length of n hours was given by equation 1. To
make the results comparable to paired intracellular recordings between pyramidal

neurons (Song et al., 2005), N was taken as the total number of possible excitatory
neuron pairs (N ;. = 1443, Table 5.1). In addition, since intracellular recordings are
typically done in slices and are limited to a smaller volume of tissue, we also calculated
N as the number of possible excitatory neuron pairs per tetrode (N .+ = 275, Table
5.1). While the results for both N . and N, ., are presented, we consider that
N ,jgrr is more directly comparable to previous intracellular recordings (Song et al.,

2005). The results of detection probabilities normalized by all recorded neuron pairs
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(Bartho et al., 2004; Fujisawa et al., 2008) (N ,, = 4787), including connection types

other than excitatory interactions are shown in Figure 5.9.
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Figure 5.3 The experimentally derived detection probability
a) (Top) The experimentally derived detection probability p} of excitatory connections. The
median (circles) and 16™ and 84™ percentile (shaded area) of the detection probability are
plotted for recording lengths of 1-25 hours. The data in the left plot was normalized by the total

number of possible excitatory neuron pairs ( NAIlEx) and the data in the right plot by the total

number of possible excitatory neuron pairs per tetrode (N ;- 7). The results for four different

significance a-levels (color coded) are shown: 0.05, 0.01, 10°, abs (note: the curves for the latter
two levels largely overlap). The detection probabilities (C%, solid lines) were extrapolated until
asymptote (CEE,) as estimated by the fitting of the statistical power function. The gray dashed
horizontal line at 11.6% denotes the local connectivity as detected by Song et al. (2005) between
pyramidal neurons in layer 5 of rat visual cortex. The blue dashed line indicates the asymptote as
approached by a=107. All R*values indicating the goodness of fit are between 0.98 and 0.99.

(Bottom) The fitted detection probabilities (C}) divided by CEE,, are plotted for NA”EX

normalization (left) and for NAHEXTT normalization (right). b) The asymptotes (CEE,) are plotted
against the a levels on a log-log scale. Open squares and asterisks correspond to CEE,,

normalized by N,z and by N ;- -, respectively. Both ways of CEE,, estimation seem to
approach a lower limit. Triangles and circles correspond to CEE, normalized by NAllEx and by

NAlIExTT' respectively, for the alternative window at +/- 50 ms. CEE,, approaches zero as a

becomes stricter. This is expected because no monosynaptic interactions are expected to be
detected in the time interval of +/- 50 ms.
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Figure 5.3a (top panels, data points) shows how the experimentally derived detection
probabilities of excitatory connections pJ; changes from one hour recordings to 25 hour
recordings for four representative « levels: 0.05, 0.01, 10™ and the absolute limit. The
data points represent the median and the background band shows the range for the g4t
and 16™ percentile estimated by bootstrapping. The detection probabilities increased

with longer recording times for both ways of calculating the connection probability. For

a = 0.05, the detection probability increased from 6.7% (N ,,;z.) and 8% (N ,z.r) for

one hour long recording segments to 16.4% (N ;) and 25% (N ;. 77) for 25 hour long
recording segments, respectively. For &« = 0.01, the detection probability increased
from 1.6% (N ;) and 2.9% (N ) to 7.2% (N e ) and 17.6% (N s )

respectively. For the stricter a values, 10” and the absolute limit, which show very

similar trends for both ways of normalization, the detection probability increased from

0.1% (N ;) and 0.5% (N . rr), t0 1.7% (N 4z, ) and 7.6% (N yz.17), respectively.

Table 5.2 Optimization results for fitting the statistical power function to the experimental
data
a) Optimization results for fitting the statistical power function (equation 8) to the experimental
data pjg for all investigated a levels. The table shows the optimization results for all 16 « levels
using simulated annealing for fitting the data pZ} normalized by the number of excitatory neuron

pairs per tetrode ( N,z 7). The left column represents the significance thresholds (a) that were

applied to count the number of significant cross correlations. The parameter CEE, ajer (the
asymptotic detection probability of excitatory connections pg), dparam, aexrr @s Well @s Sparam, anexrr
were optimized using simulated annealing. g and p4 were estimated from the data; g is the
mean of the jittered cross correlations of all EE pairs. p; is the mean of the peaks within the
window [-4;4] of all significant EE cross correlations. LSS (least sum of squares)aexrt Shows the
smallest LSS that was used to select the best fit out of the 1000 optimization trials. R%AlearT
provides a measure for the goodness of the optimization result. b) The table shows the
simulated annealing optimization results for all 16 a levels for fitting the data normalized by the
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total number of excitatory neuron pairs (NA”EX).CEEO,, AllEss Oparam, Allex AN Sparam, aliex Were

optimized using simulated annealing. The columns for a, pg, ¢4, LSS and R%uie, are as described

in a).
a)
a CEEO!, Olparam, Ho Hq Gparam, I-SSAIIExTr R2AIIExTr
AIEXTT AlEXTT AlIEXTT
0.5 46.29 0.415 1.83 2.2 0.267 62.649 0.36
0.2 39.18 0.470 1.83 2.2 1.042 20.919 0.94
0.1 30.09 0.271 1.83 2.2 0.691 10.824 0.98

0.05 24.73 0.166  1.83 2.2 0.631  8.583 0.98

0.02 21.39 0.090 1.83 2.19 0.612  6.378 0.99

0.01 19.01 0.060 1.83 2.2 0.582  4.222 0.99

5x10°  18.13 0.040 1.83 2.2 0.572 3.806 0.99

2x10°  17.43 0.032 1.83 2.2 0.606  4.147 0.99

1x10°  16.74 0.026 1.83 2.2 0.617 3.488 0.99

5x10*  14.70 0.020 1.83 2.2 0.578  2.834 0.99

2x10*  11.63 0.014 1.83 2.2 0.508  3.092 0.99

1x10*  10.73 0.012 1.83 2.2 0.507 2.555 0.99

5x10°  10.20 0.009 1.83 2.2 0.487 3.307 0.98

2x10°  9.45 0.010 1.83 2.2 0.506  2.507 0.98

1x10°  8.85 0.009 1.83 2.2 0.489 2.952 0.98

abs. 8.56 0.007 1.83 2.2 0.470  3.056 0.98

b)
a CE EO(, AllEx Olparam, Ho 258 Gparam, LSSA“EX R2AIIEx
AllEx AllEx
0.5 57.02 0.7 1.83 2.2 0.804 4.706 0.97
0.2 37.85 0.49 1.83 2.2 0.913 5.264 0.98
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0.1 25.53 0.35 1.83 2.2 0.864  2.539 0.99
0.05 17.00 0.22 1.83 2.2 0.741 1.858 0.99
0.02 10.94 0.11 1.83 2.19 0.649 1.577 0.99
0.01 8.06 0.06 1.83 2.2 0.577 1.383 0.98
5x10°  8.02 0.06 1.83 2.2 0.573 1.739 0.98
2x10°  5.34 0.02 1.83 2.2 0.583  0.478 0.99
1x10°  4.76 0.02 1.83 2.2 0.629  0.214 0.99
5x10°  4.21 0.02 1.83 2.2 0.637  0.189 0.99
2x10"  3.27 0.02 1.83 2.2 0.603  0.102 0.99
1x10*  2.65 0.02 1.83 2.2 0.603  0.056 0.99
5x10°  2.53 0.01 1.83 2.2 0.554  0.063 0.99
2x10°  2.18 0.01 1.83 2.2 0.529  0.083 0.99
1x10°  2.15 0.01 1.83 2.2 0.535 0.076 0.99
abs. 1.97 0 1.83 2.2 0.455  0.112 0.99

Curve fitting and extrapolation of the relationship between statistical power and

sample size

Next, we investigated how the detection probability of excitatory connections
between putative pyramidal neurons would improve beyond the recording duration of
25 hours. The fitting of equation 8 was applied to the experimentally derived detection
probabilities pZ with 16 different a levels (0.5 to the absolute limit) to obtain the fitted
detection probabilities C} beyond 25 hours. The optimization results are summarized in
Table 5.2. Figure 5.3a (top panels) show the fitted results for 4 representative

significance thresholds (a levels for 0.05, 0.01, 10® and abs). The corresponding power
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function, defined by C} /CEE,, where CEE, is the asymptotic value of p}}, was also
obtained (Figure 5.3a, bottom panels). We found that the fitted functions converge to
different asymptotic values of the experimentally derived detection probability of
excitatory connections pJ but the difference becomes very small for stricter « levels (10°

> and absolute limit). There indeed appears to exist a lower limit asymptote as the

threshold becomes stringent (~2% (N ;) and ~8.5% (N ,;z.77)), indicated by the blue
dashed lines in the plots. The CEE, values for the stricter a levels (~2% with N ;.. and

~8.5% with NAllExTT) reach about 20% and 70% of the local connectivity as reported by
Song (Song et al., 2005), respectively. As was discussed in the previous section, we
consider that N,z 7 is more directly comparable to their study. Therefore, we conclude

that approximately 70% of local E-E connections could be detected by long extracellular

recordings.
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Figure 5.4 The relationship between the significance level a and the fitting parameter a,4am
The relationship between the significance level @ and the fitting parameter @, 4yqm , Obtained
from equation 8. Asterisks depict the results obtained with NA”EX and open squares depict the

results obtained with NA”EXTT. Aparam deviates gradually when a gets smaller. This is likely due
to the fact that p is not a single value, but a distribution, which is not accounted for in equation
8. However, @ and apqrqm Maintained a monotonically decreasing relationship. This suggests
that separating apqram from a does not violate the original relationship of @ = aparam
substantially.
For a levels of 0.05 and 0.01, the power function (C} /CEE,) approaches 1 more quickly
than that of 10™ and absolute limit (Figure 5.3a, bottom panels); approximately 90% of

power could be achieved with 20 hours of recording. However, their detection

probability also increases quickly and exceeds Song et al.’s (2005) detection probability

of 11.6%; a = 0.05 with N, normalization and a = 0.05 and 0.01 with Nz
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normalization (Figure 5.3a, top panels). Since intracellular recordings have intrinsically a
higher chance of detecting monosynaptic connections, as the presynaptic neurons are
stimulated and even subthreshold responses in the postsynaptic neurons recorded, the
overshoot for a levels 0.05 and 0.01 suggests that these acceptance criteria detect

excessive false-positives.
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Figure 5.5 The distribution of effect sizes for short-range and long-range connections
The distribution of effect sizes (h) for short-range (a) and long-range (b) connections plotted for
four different a values. The distribution of effect size for both unidirectional and reciprocal
connections (EE1 and EE2) recorded within tetrodes (a) and between tetrodes (b) for four
different a levels (0.05, 0.01, 10” and abs) are depicted. The number of peaks included as well as
the medians of the distributions are indicated above each histogram. The median is also plotted
as a green vertical line. The results for a levels 10® and absolute limit are comparable. The
distributions of effect size for a levels 0.05 and 0.01 are also similar. The insets show the
difference between the most stringent group (a abs) and the less stringent groups (a levels 0.05
and 0.01). These counts correspond to weak effect sizes (< 5) and most likely false-positives. The
strong effect sizes (>10) are found in correlations between excitatory neurons recorded on the
same tetrode, indicating that the strongest connections are mostly local.
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To assess how the same asymptote could be possibly reached, CEE, are plotted against
the a levels in percent on a log-log scale (Figure 5.3b). We found that as a levels get

stricter, the slope of the consecutive data points for both ways of the CEE, estimation
gets increasingly smaller (open square and asterisk correspond to N ;.. and N p

normalization, respectively). This result indicates there is a lower limit asymptote. In
contrast, when choosing a window of identical size at longer latency lags (+/- 50 ms), the

CEE, estimation approaches zero almost following a diagonal line (open circle and open
triangle correspond to N ;. and N,z - normalization, respectively). A similar result

was also obtained for the latency lags of +/- 25 ms. These results demonstrate that the
windows at the latency lags outside of monosynaptic interactions (e.g., +/- 25 ms or +/-
50 ms) do not contain monosynaptic interactions.

In the final form of the fitting function (equation 8), the significance level a was
treated as a fitting parameter @44, to obtain a better fit. We confirmed that a and
(Aparam Were monotonically related, indicating that fitting ay,4,qm does not violate the
original relationship of @ = apqrqm significantly (Figure 5.4). However, apqrqm deviates
gradually when a gets smaller. This could be due to the fact that y; will follow a skewed
distribution, which is not accounted for in equation 8. Equation 8 would need to be
rewritten accordingly but it is beyond the scope of the present paper. Taken together,

these results show that our method using short-latency peaks of cross correlations with
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strict a levels and using the approach of fitting a statistical power function is valid for

detecting monosynaptic E-E interactions and estimating their asymptotic detection

probability in local networks.
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Figure 5.6 The distribution of effect sizes for unidirectional connections (EE1) and for
reciprocal connections (EE2) within and between tetrodes
The distribution of effect sizes (/) for unidirectional connections (EE1) within (a) and between
(b) tetrodes and for reciprocal connections (EE2) within (c) and between (d) tetrodes for « levels
0.05, 0.01, 10” and abs. The significance levels as well as the median of the distributions are
indicated above the histograms. The insets show the difference between higher « (0.05, 0.01
and 10”) and a abs, indicating the amount of likely false-positives included in the counts. The
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strongest effect sizes of unidirectional connections seem to be distributed among short-range
connections rather than long-range connections (a). The long-range connections appear to be
predominantly single directed excitatory connections (b). As the significance level is determined
by a jitter method over a distribution of 1000 jitter trials that can differ for different a levels, it is
possible that not all pairs detected with a abs are included in the pairs detected with a 10~°
(even though they are mostly identical). In other words, occasionally a few more pairs can be
detected with a abs than with @ 10~>, which in the extreme case leads to no peaks detected at a
107, but still two peaks detected at a abs (d). Reciprocal excitatory connections seem to be
mostly local (c) and according to a levels 10~> and abs, there are hardly any reciprocal excitatory
connections detectable between excitatory neurons recorded on different tetrodes (d). This also
suggests that the peaks in a levels 0.01 and 0.05 are likely to be false-positives.

False-positives and the distribution of effect size

We investigated whether the connections detected by less stringent a levels
(e.g., 0.05 and 0.01) were contaminated by false-positives by plotting the distribution of
the effect size h (equation 9). The distribution of the effect size within tetrodes (short
range) and between tetrodes (long range) for four representative « levels (0.05, 0.01,
1075 and abs.) are plotted in Figures 5.5a and 5.5b, respectively. Both unidirectional
(EE1) and reciprocal excitatory connections (EE2) are included in the analysis. The results
show that the distributions for the stricter a levels (107> and abs) were almost identical
and contained strong effects only (two most right panels in Figure 5.5). On the contrary,
less strict a levels (0.05 and 0.01) contained additional large counts of smaller effect
sizes (two most left panels in Figure 5.5). Subtraction of the most stringent distribution
(a = abs.) from less stringent groups (@ = 107>,0.01 and 0.05) confirmed that the
stricter a levels (107° and abs) are very similar to each other but less stringent « levels

(0.05 and 0.01) have higher counts of weak effect sizes (Figure 5.5, insets). This is likely
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due to peak counts being contaminated by a large proportion of false-positives. Since
false-positives would occur randomly, their distribution is expected to be Gaussian-like,
which is consistent with what we obtained (Figure 5.5, insets). In addition, most of the
stronger effects are found in short range interactions (within tetrodes, Figure 5.5a), not
in long-range interactions (between tetrodes, Figure 5.5b), suggesting that the strongest
connections are mostly local. We also investigated the distribution of the effect size for
unidirectional (EE1) and bidirectional connections (EE2) separately; Figure 5.6a for EE1
(within tetrodes), Figure 5.6b for EE1 (between tetrodes), Figure 5.6¢ for EE2 (within
tetrodes) and Figure 5.6d for EE2 (between tetrodes). We found that the majority of
strong effects for both EE1 and EE2 are local and that the long-range excitatory

connections are predominantly unidirectional (EE1).
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Figure 5.7 Counts of unconnected and excitatory connected neuron pairs relative to the
random-connection null hypothesis
The counts of unconnected (NO), single directed excitatory (EE1) and reciprocal excitatory (EE2)
neuron pairs for 5 representative a levels (left to right; 0.5, 0.05, 0.01, 10 and abs), relative to
the prediction of the random-connection null hypothesis are shown. The connection probability
pZ5 as well as the a levels are indicated above the individual bar plots. The absolute counts of
connections are indicated above the bars. Error bars represent the 2.5"and 97.5" percentiles of
the medians of 1000 bootstrapped distributions. The dashed horizontal lines at 4 and 8 indicate
the expected counts of observed EE2 connections relative to the null hypothesis in the Song et
al. (2005) and Wang et al. (2006) studies. For stricter a levels (abs and 10), reciprocally

connected excitatory neuron pairs (EE2) with the N,z ;» normalization are 4.6-5.6 times more

likely than expected. This is in the four to eight times range calculated from Song et al. (2005)
and Wang et al. (2006). As a becomes less stringent (0.01, 0.05 and 0.5), the difference becomes
less striking because more false-positive counts are likely to be included. The counts of single
directed excitatory neuron pairs (EE1) and of unconnected neuron pairs (NO) are close to the
expected numbers.
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Hyperreciprocity in mPFC

Further support of the conclusion that less stringent a levels (e.g., 0.01 and 0.05)
are massively contaminated by false-positives came from comparing the counts of
significant connection pairs at different a levels and the number of connection pairs
predicted by a random connection assumption (Figure 5.7). Given that a network is
randomly connected by a connection probability p}; (equation 1), the expected number
of unconnected pairs is N(1 — p%)?, the expected number of unidirectionally connected
pairs is 2NpZ (1 — pZ) and the expected number of reciprocally connected pairs is
N(p2)2. Song et al. (2005) reported that the count of reciprocally connected excitatory
neuron pairs (EE2) in rat visual cortex is four times higher than the number predicted.
Wang et al. (2006) report 3.5 times and 7.9 times more EE2 connections than predicted
in visual cortex and prefrontal cortex, respectively, in young ferrets. The ratios of
observed EE2 to predicted EE2 are comparable in visual cortex for both rodent studies (4
in rat and 3.5 in ferret). EE2 connections are twice as likely in ferret medial prefrontal
cortex than in visual cortex (7.9/3.5 = 2.3) and if the relationship holds true for rat, we
would expect the EE2 connection probability in rat medial prefrontal cortex to be up to 8
times higher than predicted by a random connectivity assumption. Based on these
considerations, we predicted that the EE2 connection in rat medial prefrontal cortex
would be four to eight times higher than predicted. For the stringent a levels of the
absolute limit and 10”, we found that medians of observed EE2 connections are 4.6 and

5.6 times higher than the number predicted, respectively (Figure 5.7, right columns). In
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addition, their 95% confidence intervals (Figure 5.7, error bars) overlap with the
predicted four to eight times range, suggesting that these results are consistent with
what we predicted based on the numbers by Song et al. (2005) and Wang et al. (2006).
However, for less stringent a levels, the difference between observed EE2 counts and
predicted EE2 counts became lower than predicted; 3.2 times for &« = 0.01, 2 times for
a = 0.05and 1.3 for a = 0.5 (Figure 5.7, left three columns). Furthermore, their 95%
confidence intervals do not overlap with the four to eight times range, except for
a = 0.01, where there is a small overlap, indicating that the statistics of the observed
EE2 connections were different for less stringent a levels. Because false-positives
detected in cross correlograms are expected to occur randomly, the observed decrease
of hyper-reciprocity suggests that more false-positives are included if less stringent a
levels were used. We therefore conclude that stricter a levels together with long-term
recordings are necessary for reliable detection of weak E-E interactions in extracellular

recordings.
Excitatory connectivity in mPFC is predominantly local

The relationship between local excitatory connectivity (within tetrode

connections, normalized by NAllExTT) and total excitatory connectivity (within and

between tetrode connections, normalized by N, ) can be further investigated by

plotting them against each other for different « levels (Figure 5.8). For stricter a levels,

observed connections were localized within the upper-left triangle, suggesting that
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predominantly local connections were detected. With increasingly relaxed « levels the
difference between local and total connectivity disappeared (at @« = 0.2), indicating that
the difference was masked by an increasing number of false-positives. Interestingly,
total connectivity became larger than local connectivity for & = 0.5. If there was a
general tendency of underestimating the local connectivity and overestimating the total
connectivity, then this could explain why the total connectivity is larger than the local
connectivity for ¢ = 0.5. One could speculate that over-elimination of spikes during
spike sorting resulting in decreased correlations (Cohen and Kohn, 2011) could lead to
the observed effect as this would affect the detection of significant cross correlations
within tetrodes more than between tetrodes. Incapability of recording overlapping

spikes within tetrodes may also enhance this tendency.
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Figure 5.8 Number of excitatory connections per tetrode versus the total number of excitatory
connections

The number of excitatory connections per tetrode (local connectivity, normalized with N ;- 1)

is plotted against the total number of excitatory connections (total connectivity, normalized with
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N ;) for all investigated « levels. The red diagonal dashed line indicates equal probability

between local and total connectivity (including within and between tetrode connections). The
detected connections are predominantly local.

Various types of excitatory connections are the most abundant in mPFC and their

detection probability increases with sample size.

In addition to E-E interactions (EE1 and EE2), our 25-hour recordings also allowed
us to investigate six additional connection categories (El1, EI2, IE1, 111 and EU1 and U1,
see methods); Although, 112, reciprocal inhibition between putative inhibitory neurons,
could be defined as well, we excluded this connection probability from our analysis
because its cross-correlation cannot be easily distinguished from the case of common
inhibitory input. The detection probabilities of connection categories involving excitatory
neurons (EE1, EE2, El1, EI2, IE1 and EU1) change with increased recording duration for
two representative a levels (10® and abs., Figure 5.9). Note that the normalization by all
recorded neuron pairs (N4;) was used because all neuron types (excitatory, inhibitory
and unclassified) were included. We also found that EE1 (Figure 5.9b) and EU1 (Figure
5.9g) are the most abundant connection types followed by EE2 (Figure 5.9¢), El1 (Figure
5.9a) and EI2 (Figure 5.9d), suggesting that excitatory interactions are the major portion
of cortical connections in rat prefrontal cortex. Inhibitory interactions, IE1 (Figure 5.9¢),

11 (Figure 5.9f) and IU1 (Figure 5.9h), are detected much less frequently.
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Figure 5.9 Detection probabilities over different hour segments for different categories of
connection types
Significance thresholds (@ 10” and abs) are color coded and indicated at the bottom right of the
figure panel. The median of the bootstrapped detection probabilities, normalized by the total
number of neuron pairs (4787) including excitatory, inhibitory and unclassified neurons for 1 to
25 hours are plotted for the two different significance thresholds for eight different types of
connections: a) unidirectional excitation from an excitatory neuron onto an inhibitory neuron,
El1; b) unidirectional excitation between two excitatory neurons, EE1; c) reciprocal excitation
between excitatory neurons, EE2; d) reciprocal connection between an inhibitory and an
excitatory neuron, EI2; e) unidirectional inhibition from an inhibitory neuron onto an excitatory
neuron, IE1; f) unidirectional inhibition between two inhibitory neurons, 111; g) unidirectional
excitation from an excitatory neuron onto an unclassified neuron, EU1; h) unidirectional
inhibition from an inhibitory neuron onto an unclassified neuron, IU1. The most abundant



connection types in mPFC are excitatory connections (a-d, g). Their detection probability
increases with longer recording times except for EI1, which seem to be already reliably detected
at shorter recording times (a). Inhibitory connections are rarely detected in our data set and
their detection probability does not improve significantly with longer recording times.

DISCUSSION

Pyramidal neurons are the most abundant cell type in neocortex. Pyramid-
pyramid connections (E-E interactions) provide the majority of intracortical and
extracortical projections. However, most E-E synapses are extremely weak
(McNaughton, 1980; Mason et al.,, 1991; Deuchars et al., 1994; Markram et al., 1997;
Thomson and Deuchars, 1997; Reyes and Sakmann, 1999; Thomson et al., 2002). With
long-term continuous recordings, we tried to capture weak connections between
pyramidal neurons. As opposed to most electrophysiological studies that generally
record for about 0.5 - 2 hr per session, we were able to detect excitatory interactions
between putative pyramidal cells in 8.5% of cell pairs with recording lengths up to 25
hours. This connection probability of 8.5%, estimated using the number of putative
excitatory neuron pairs per tetrode, corresponds to approximately 70% of the local E-E
connections reported in Song et al. (2005). As was discussed, this normalization is
considered to be most comparable to Song et al. (2005). The smaller connection
probability (2%) found for the total excitatory connectivity indicates that on average the
connection probability falls off with distance (Song et al., 2005; Fujisawa et al., 2008). In
addition, 1 hour fragments of our recordings yielded a consistent number of
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monosynaptically coupled pairs (0.2% for strictest « levels: abs and 10 and 1.04% for a
0.01; counts were normalized using all recorded neuron pairs, Figure 5.9) to previously
reported studies (0.2 - 0.8%; (Csicsvari et al., 1998; Bartho et al., 2004; Maurer et al.,

2006b; Fujisawa et al., 2008).
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Figure 5.10 The cross correlogram matrix for all simultaneously recorded neurons
a) The cross correlogram matrix for all (n=54) simultaneously recorded neurons in one session
(rat 3, sequence task). Red dashed lines indicate correlations between neurons recorded on the
same tetrode. Different colors denote different types of connections (see figure legend for
Figure 5.9) based on significant short-latency peaks or troughs in the cross correlogram at « abs.
(b) Schematic mapping of the connections in the cross correlogram matrix in a) between the
neurons recorded on 5 different tetrodes. This animal had a ‘split bundle’ hyperdrive with 6
recording tetrodes targeting the hippocampus (not included in this paper) and 5 tetrodes
targeting the medial prefrontal cortex (shown in b).

The strength of a pyramidal-pyramidal connection is partly determined by the location
of the synapse and the type of receptors activated (Deuchars et al., 1994). For instance,
since lateral connections between pyramidal neurons in cortex are predominantly on
distal parts of the dendrites, they are weakened as the potential propagates towards the
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soma. Those inputs are nearly only transferred if they coincide with other inputs
(Deuchars et al., 1994). Therefore the E-E interactions detected by relatively short
duration electrophysiological recordings are presumably the strongest ones. However,
those are embedded in a much larger matrix of weak connections, which are difficult to
capture with extracellular recordings that only detect action potential transmission.
With regard to successful spike transmission, pyramidal — interneuron pairs have been
shown to be more reliable (Mizumori et al., 1989; Marshall et al., 2002; Holmgren et al.,
2003; Swadlow, 2003). Using a less stringent detection threshold such as 1%, as used in
many previous studies, is therefore less likely to be severely affected by false-positives.
A higher convergence of excitatory inputs among pyramidal neurons is necessary to
bring a postsynaptic pyramidal neuron to firing threshold (McNaughton et al., 1981;
Markram et al., 1997). In this respect, long-term recordings dramatically increased the
detection probability of the statistically rare E-E events.

In Figure 5.5, we reported that most connections are local, i.e. both pre- and
postsynaptic neurons are within the recording radius of a single tetrode. In the
hippocampus, monosynaptically coupled pairs of pyramidal neurons and interneurons
were also more frequently observed on the same tetrode than on different tetrodes
(Csicsvari et al., 1998; Maurer et al., 2006b). Connection strength tends to cluster
around a few neurons (Bartho et al., 2004; Song et al., 2005; Fujisawa et al., 2008), often
referred to as hub neurons. We also observed that many connections converge onto a
few neurons. The majority of detected connections are local (Figure 5.10a, Figure 5.11),
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recorded on the same tetrode (Figure 5.10a, red dashed lines). A schematic diagram
created from Figure 5.10a also confirmed that there exists a hub neuron (Figure 5.10b,
neuron #16). Its inhibitory property (a hub neuron is an inhibitory neuron) is consistent

with previous studies (Bartho et al., 2004; Fujisawa et al., 2008).
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Figure 5.11 Summary of local and long-range connections per dataset
The number of significant excitatory connections within (same TT) and between (different TT)
tetrodes for the individual data sets for aabs. Numbers are given in absolute (y-axis) and percent
(written on bars) values.

In this study, we showed that the detection probability of weak E-E connections
can be significantly improved by long-term recordings (25 hours) due to the substantially
improved signal to noise ratio reflected in smoother cross-correlation signals for 25
hours compared to 1 hour long recordings (Fig. 5.2). We were also able to detect the
hyperreciprocity of excitatory connections in medial prefrontal cortex with our long-
term extracellular recordings (Song et al., 2005; Wang et al., 2006) (Fig. 7). This strongly

suggests that connectivity is not random, but highly structured. Despite the fact that
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increased recording times improve the detection of connections among excitatory
neurons, extracellular recordings still underestimate the local connectivity as is reported
by paired intracellular recordings. At best, they identify about 70% of local excitatory
connections at an « level that is strict enough to exclude most type | errors (Fig. 3). This
limitation can be partly attributed to the fact that extracellular recordings in behaving
and resting animals are bound to the brain state spaces visited over the duration of
recordings, which the experimenter has only limited control over. In contrast, through
direct stimulation of the presynaptic neuron, any subthreshold response in the
postsynaptic neuron can be monitored in paired intracellular recordings. In addition, our
analysis indicates that, in order to estimate reliably an asymptotic value for the local
connectivity, stable recordings of at least 20-25 hours, ideally longer, have to be used.
This can be a challenge under many experimental conditions. A further caveat of the
correlation method is the fact that the nature of the measure is a correlation and
therefore reflects synaptic interactions only indirectly. Consequently, the cross
correlation analysis of extracellularly recorded spike trains should not be considered a
definitive tool for estimating connectivity and should be used with caution. In spite of
this caveat, the method can provide important preliminary information for within- and
inter-regional circuit connectivity and changes in their connectivity due to experimental
manipulations that may not be obtainable with other current methods.

The cross correlogram, like all other statistical methods, has limitations in terms
of its applicability to the interference of causal interactions from spike-train data. Firstly,
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the method assumes that the spike trains are stationary, meaning that their stochastic
properties do not change over time. This assumption is not always easy to justify; for
example, with repeated stimulus presentations neurons tend to adapt their responses
(Fairhall et al., 2001). Secondly, cross correlations are affected by firing rate differences
between the neurons (de la Rocha et al., 2007; Amari, 2009). Appropriate normalization,
however, can alleviate this problem (Hirase et al., 2001). It has been proposed that the
information-geometric measure could be an alternative correlation measure that is
statistically orthogonal to the change of firing probability (Amari and Nagaoka, 2000;
Amari, 2001). In addition, recent theoretical studies show that an information-geometric
measure could be more directly related to synaptic interactions (Tatsuno and Okada,
2004; Tatsuno et al., 2009; Nie and Tatsuno, 2012) and that it can be applied to non-
stationary data (Shimazaki et al., 2012). Other promising methods would include a
Bayesian approach (Brown et al., 2004; Eldawlatly et al., 2010) and a regularized logistic
approach (Zhao et al., 2012). These measures may perform well in identifying causal,
non-linear relationships between neurons. Further investigation of long-term
electrophysiological data by such statistical methods would promote the detection of
neural interaction and hence contribute to the understanding of the circuit dynamics

underlying complex behavior.
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Chapter 6 General Discussion

SUMMARY

The hippocampus as a main player in episodic memory formation has been
described as a structure that forms a conjunctive representation for space and context.
Earlier studies however, suggested that the contextual component might not actually be
stored in an associatively retrievable form. Here it was shown that the contextual
component of the code is learned through experience and can be retrieved in
subsequent sleep. The spatial component is thought to be determined by intrinsic
dynamics, such as path integration, in a specially configured network for generating a
coordinate representation. The combined hippocampal output pattern can be
understood as an index code that is stored in distributed neocortical modules and can
be used to retrieve different memory attributes stored there. Through coordinated
reactivation of neurons in different cortical columns, the connectivity matrix in the
cortex can be modified to optimize storage capacity. However, in chapter 5, the
challenges of measuring the excitatory connectivity matrix from extracellular spike train
correlations was shown. The difficulty is due to the inherent weakness of excitatory
connections in neocortex. This hurdle was to some degree overcome by using long

sampling times (25 hours), but this places a serious limit on the temporal resolution over
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which plastic changes might be assessed with these methods, and, moreover, achieving

stability over such long recording times is technically difficult.

DiscussIiON

It is generally accepted that the hippocampus contributes to the encoding and
retrieval of episodic memory. However, how the hippocampus fulfills this role is still
poorly understood. A large body of evidence supports the notion that the hippocampus
forms spatial maps for different environments in a retrievable manner. However, little is
known as to whether the hippocampus can retrieve different events associated with

identical spatial information, which is a critical feature for episodic memory.

Understanding rate remapping in the context of attractor dynamics

Area CA3 has often been proposed to act as an autoassociator network (Marr,
1971; McNaughton and Morris, 1987; Treves, 1990; Treves and Rolls, 1992), which
creates representations by binding together external input features through hebbian
connections to form discrete attractors representing the collective of stimulus features
(Hopfield, 1982; Amit and Treves, 1989). A degraded or fractionated version of the
stored pattern can then be sufficient to retrieve associatively the entire pattern
(referred to as pattern completion or error correction) (Hopfield, 1982). In a recent
study, Colgin et al. (2010) tried to understand why it is that in some cases attractor

dynamics (i.e., abrupt transitions between network states) are observed in the output of
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CA3 and in other cases not. To address this issue, two familiar representations were
morphed successively over a series of intermediate shapes (Leutgeb et al., 2005a). Two
groups of animals were familiarized with the end shapes according to two training
paradigms. The critical difference between the two training regimes was that, in one
scenario, the end shapes (square and circle) were acquired at a common spatial location,
and in the other, they were acquired in different spatial locations. The general
autoassociation theory predicts attractor dynamics during the morph sequence in both
cases. According to the attractor-map theory, the cue configuration in the first training
paradigm should be associated with identical path integrator coordinates, while in the
latter the cue configuration should be associated with different path integrator
coordinates. In the common location training, gradual transitions were observed,
suggesting that contextual cues are insufficient for associative recall. Attractor dynamics
were only observed when the end shapes were associated originally with different
spatial coordinates, indicating that differences in spatial input are necessary for
associative retrieval of the two maps. From this study, it was concluded that the
attractor dynamics observed in the hippocampus do not result from hebbian
associations between external input features within the hippocampus (CA3) that form
discrete attractors, but rather from a continuous attractor network upstream in the
medial entorhinal cortex onto which landmark features can be linked (McNaughton et
al., 2006). The assumption that a continuous path integration system rather than cue
configurations are determinant of hippocampal spatial maps was already based on data
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from previous studies that show the persistence of place fields against cue removal
(O'Keefe and Speakman, 1987) and in darkness (Quirk et al., 1990; Markus et al., 1994),
or the realignment of fields following conflicting configurations of vestibular and visual
cues (Knierim et al., 1998). Coherent realignment in grid fields with simultaneous global
remapping in CA3 between representations associated with light and dark (Fyhn et al.,
2007), but no change in the grid population response during rate remapping, further
strengthened the support for the attractor-map based theory of path integration. Grid
cells show the same grid phase and orientation relative to landmarks independent of the
animal’s starting position (Hafting et al., 2005). Once external cues have been anchored
to path integrator coordinates, they can exert strong control over which representation
is retrieved without active locomotion of the animal between the two environments
(Wills et al., 2005; Colgin et al., 2010; Jezek et al., 2011). Such linking between spatial
and contextual information could take place in the hippocampus (Rolls et al., 2002;
McNaughton et al., 2006; Solstad et al., 2014). However, it is not clear whether the rate
distributions that differentiate cue configurations within constant maps (i.e., rate
remapping) are stored and retrieved within CA3 or whether they are reinstated during
behavior due to external input from e.g., lateral entorhinal input (Lu et al., 2013). In
chapter 4, | addressed the question whether the rate distributions for different running
directions with identical spatial information are reactivated in sleep when external input
is largely absent. The presented results clearly indicate that the firing rate distribution
during sharp wave ripple complexes is explained significantly better by the preceding
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running direction than by the following and not yet experienced running direction on the
respective recording day. Significant rate differences are observed on the track already
on the first day; however, the differences become more pronounced on subsequent
days. This implies that rate remapping develops with increasing experience within the
first day, which has also been demonstrated in chapter 3. Similarly, the firing rates
during sharp wave ripple complexes are better correlated with the firing rates during the
preceding run session than with the ones in the following run session on days 2-5. This
suggests that the active group of CA3 cells reinstates the firing rate distribution
associated with the experienced context.

A proposed mechanism could be as follows. An initially generic, non-directional
map is created for the space, based on path integrator input from medial entorhinal
cortex. Upon repeated traversing through the space in opposite directions, a different
distribution of synaptic input from lateral entorhinal cortex in response to the two
different contexts/cue configurations associated with the two directions drives the firing
rates of CA3 cells within their place fields up and down. Fewer local cues on the track
will make the “local view” more different. This results likely in more heterogeneous
lateral entorhinal cortex input in the two directions and increased directionality of the
hippocampal place fields (Battaglia et al., 2004a). Upon repeated activation of place
cells, the synaptic weights at the LEC-CA3 (and possibly LEC and DG) synapses are
adjusted and eventually could activate the map based on the cue configuration. In
addition, sequential activation of CA3 neurons will lead to plasticity between neurons
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with neighboring fields at the recurrent collaterals and adjust the synaptic weights. The
two firing rate distributions are thought to be stored associatively within CA3 that could
form discrete context attractors within a continuous spatial attractor framework
(Renno-Costa et al., 2014; Solstad et al., 2014). Solstad et al. (2014) constructed a model
that could achieve the experimentally observed population and single cell responses in
the morphing experiment (Leutgeb et al., 2005a; Colgin et al., 2010) during rate
remapping. They demonstrate that a recurrent system such as CA3 can exhibit a smooth
transition as averaged population response along the morph sequence and yet show
hysteresis and abrupt transitions in individual cell responses, typical for discrete
attractor states. This model reconciles that CA3 acts as an autoassociative network,
forming discrete attractor states for context, but does so within a continuum of spatial
attractors, likely located in MEC. Thus, rate remapping can be understood as switching
between context attractors within a single spatial map. This enables the network to use
maps flexibly and update them rapidly on a one-trial basis (Monaco et al., 2014) without
affecting members of different maps encoding remote locations as has been reported in
cases when short cuts or local barriers were introduced (Muller and Kubie, 1987;

Alvernhe et al., 2008; Alvernhe et al., 2011).
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Is there simultaneous reactivation of multiple episodic events encoded through rate

remapping?

An interesting follow up question on the presented result is whether multiple
events anchored to the same spatial map can be retrieved at the same time or whether
the most recent entry overwrites the previous one. With the data at hand, | could
explore potentially whether two memories (context A and B, with context referring to as
running direction) can coexist in the synaptic network of CA3. Hippocampal ensembles
are organized on a theta time scale (phase precession/sequence compression) during
behavior. A theta cycle matches approximately the duration of a sharp wave ripple
complex, in which place cell sequences are faithfully expressed during reactivation in
sleep (Skaggs and McNaughton, 1996; Nadasdy et al., 1999; Lee and Wilson, 2002; Ji and
Wilson, 2007). First, hippocampal activity could be parsed into theta cycles in both
running directions. Each theta cycle would constitute a number of cells (N) x number of
bins (T) matrix (NxT). Similarly, place cell activity during sleep sessions could be parsed
into sharp wave ripple complexes, creating NxT matrices for each sharp wave ripple
complex. The sharp wave ripple complexes of a sleep session (e.g., the last sleep session
in the day that occurs after both running directions have been experienced twice) could
then be used as templates and ‘moved’ along the theta cycles of each running direction
to find the best match (i.e., highest correlation value between sharp wave ripple matrix
and theta cycle matrix) according to a template matching procedure (Tatsuno et al.,

2006; Euston et al., 2007). The distributions of best matches of sharp wave ripple
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complexes with session A and with session B could be compared and tested whether
they are significantly different. However, there may be a large number of sharp wave
ripple complexes that are unrelated to A and B.

Alternatively, a classification approach such as the k-nearest neighbor
classification algorithm could be applied (Cover and Hart, 1967). In this analysis, each
sharp wave ripple complex would be assigned to the category of its nearest neighbor or
the majority vote of k nearest neighbors based on a distance metric (e.g., Mahalanobis
distance). Three categories could be defined. Sharp wave ripple complexes that are
‘close’ to theta cycles in A or B could define the first two categories. The last category
would contain all sharp wave ripple complexes that are neither close to context A nor B.
Those sharp wave ripple complexes are presumably replaying a different event. This
type of analysis could reveal whether, within one sharp wave ripple complex, one
context representation dominates reactivation as is the case in theta cycles in which
information about only one environment is expressed (Jezek et al., 2011). Future
experiments could address the capacity of the network by exposing the animal to a
number of different contexts and test how many episodic memories can be
unambiguously retrieved within a common spatial map. A difficulty with all these
analyses is the extreme sparsity of the CA3 output (i.e., very few cells are active over the
time frame of a theta cycle or a sharp-wave ripple). With even ~100 simultaneously

recorded neurons, observing even 2-3 neurons coactive within a sharp-wave ripple is
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rare. This makes vector matching very noisy. Perhaps when we are able to record from

>100 neurons, these problems may be alleviated.

CONCLUSION

The reactivation of the rate distribution in the hippocampus supports the notion
that reactivation processes play a role in memory formation and consolidation. One
function of CA3 may be to encode indices to access distributed data stored in the cortex
and assist in episodic recall. It remains to be explored whether multiple episodic events
linked to the same place can coexist in the network at the same time or whether the

most recent representation erases the previous one.
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Recording sequence and mean firing rate correlations between maze and sleep sessions

a) The sequence of sleep and behavioral sessions during recording. A and A’ are sessions in the
same running direction and B and B’ are sessions in the same running direction, opposite to A. b)

The mean firing rates of all cells for sessions A, A’, B and B’ as well as for sleep sessions 1, 3, 4
and 5 of all animals were pooled and log transformed. Sleep sessions 1 and 5 were truncated to

the last and first 20 minutes, respectively, to include a comparable amount of data as in the

other comparisons. The log transformed mean firing rates during ripple events in S1 with A and
B, S3 with A and B, S4 with A’ and B’ as well as S5 with A’ and B’ are shown. Open circles denote
comparisons with running sessions A or A’ and closed circles denote comparisons with running
sessions B or B’. S1 shows weak correlations with either behavioral session (Wilcoxon rank sum
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test, one-tailed, p=0.15), which is likely due to the fact that the animal has not been on the track
yet. On day 5, however, the correlation between S1 and A may reflect 24-hour retention. There
is a significant tendency for the mean firing rates in S3 (Wilcoxon rank sum test, one-tailed,
p=0.008) and a weaker tendency for S4 and S5 to be more similar to the previous than to the
following run session (Wilcoxon rank sum test, one-tailed, p=0.11 in both cases).
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