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ABSTRACT 
 

This thesis offers an alternative to the conventional ‘social intelligence’ hypothesis: that 

the complexity of primate group emerges from dynamic, short term variation in partner 

availability and quality and that primate social cognition is geared to producing flexible 

responses to unpredictable contingencies. Using the theoretical framework that views 

cognition as being both ‘embodied’ and ‘embedded’ in the environment, agonistic 

interactions were examined with the aim to better explain complex signalling behaviour 

in male vervet monkeys.  Firstly, agonistic interactions with and without physical 

aggression were examined to assess the targets of male vervets during combat. The 

tactics employed by the partner, such as adjusting posture and relative orientation to 

partner, were also investigated.  This thesis also examines the influence of proximity on 

male behavior during agonistic interactions and interactions containing threats.  Lastly, 

threat displays were investigated further in order to test for evidence of them occurring in 

a ritualized manner. 
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CHAPTER ONE: 

THEORETICAL BACKGROUND 

 

1.1. Introduction:  

Primate social life is considered to be particularly complex relative to that of other 

mammals (Humphrey, 1976; Dunbar, 1998). For cercopithecine monkeys, groups are 

composed of different generations, and animals experience a constant flux of births and 

deaths, along with immigration and emigration by adult males (see e.g., Henzi and 

Barrett, 2007; Campbell, Fuentes, MacKinnon, Bearder & Stumpf, 2006 for review). In 

addition, fluctuations in ecological conditions can also influence patterns of social 

interaction by altering food availability and influencing factors like group spread and 

competition (e.g., Barrett et al., 2003), which in turn can lead to differences in the nature 

of social engagement. This inherently dynamic structure and its associated 

unpredictability, combined with the fact that animals that lived in groups are forced into 

competition with each other, are thought to have shaped the size and structure of the brain 

and the particular ways in primates might think about the world (e.g., Jolly, 1966; 

Humphrey, 1976; Byrne and Whiten, 1988). More specifically, it has been suggested that 

sociality has selected for abstract, conceptual knowledge and an ability to recognize and 

anticipate future events (e.g., Humphrey, 1976; Dunbar, 1998; Bergman, Beehner, 

Cheney & Seyfarth, 2003).  

There is, however, no unequivocal evidence to show that monkeys possess either 

the abstract, conceptual knowledge, nor the ability to recognize and anticipate their future 

needs, that is assumed to underpin this ‘social intelligence’ hypothesis (see Barrett, Henzi 
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& Rendall (2007) for a critique of this position).  An alternative hypothesis is that the 

complexity of primate groups emerges from dynamic, short-term variation in partner 

availability and quality and that primate social cognition is geared to producing flexible 

responses to unpredictable contingencies that will occur inevitably among long-lived 

social animals (Barrett et al., 2007). The theoretical basis for this view is that cognition 

should be viewed as both ‘embodied’, with knowledge fundamentally tied to physical 

acts, and ‘embedded’ or ‘situated’ in the environment (Clark, 1997; Griffiths & 

Scarantino, 2005). In this thesis, I investigate the social interactions of male vervet 

monkeys during the breeding season using this embodied and situated framework. More 

specifically, I investigate male-male agonistic interactions, including both physical 

confrontations and threat displays, in order to identify the body targets of male 

aggression; the tactics males use in fights; how proximity influences the use of threats 

and whether such interactions are ritualized or inherently unpredictable. In so doing, I 

consider the signal value of male threat displays and whether these represent the 

communication of resource-holding potential (RHP) or whether such signalling is only 

apparent, and represents male attempts to achieve a combat advantage over opponents 

(such that particular postures may serve as cues, but are not signals in a formal sense: 

Saleh, Alan, Bryning & Chittka, 2007) 

 

1.2. Signaling behaviour 

The embodied, embedded framework in which I situate my work contrasts with the 

standard view of signalling which tends to use a ‘conduit’ metaphor, and assumes that 

information is encoded by the signaller and decoded by the receiver in a manner that is 
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uninfluenced either by environmental contingencies or the emotional state of either 

animal. That is, although emotional state and the state of the environment might have an 

influence on the production of a signal or the likelihood of responding, they do not 

change the ‘message’ contained in the signal. This is captured in one of the standard 

definitions used in the signalling literature: a signal is a “packet of energy or matter 

generated by a display or action of one organism (the signaller) that is selected for its 

effects in influencing the probability pattern of behaviour of another organism (the 

receiver) via its sensory nervous system in a fashion that is adaptive either to one or both 

parties” (Hebets & Papaj, 2005). Rendall, Owren & Ryan, 2009 question the conduit 

approach inherent in such definitions, and have suggested replacing the term “receiver” 

with “perceiver”, which better captures what they term the “functional asymmetries” that 

exist between signallers and perceivers; that is, the way in which signallers and 

perceivers can sit at different points in an evolutionary dynamic, and may not be equally 

vested in the accurate transfer of information. In other words, the signals that animals use 

may be designed to influence the perceiver’s nervous system in direct ways that may not 

always be in the perceivers’ interests and, when they are, the details of signal design will 

not be arbitrary, as they are in language, but will be of central importance to the outcome 

of perceiving a call (Rendall et al., 2009). Alarm calls, for example, tend to share a 

common plosive quality that causes a startle effect in perceivers (which increases arousal 

and alertness), and is an acoustic feature that renders calls much more similar to each 

other than would be expected if they shared the language-like property of arbitrariness 

(and where one would predict such calls should diverge acoustically from each other as 

far as possible to avoid possible confusion: Rendall et al., 2009). In this study, I apply 
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similar reasoning to visual displays, viewing these as a means by which animals attempt 

to influence and manage each other’s behaviour rather than as attempts to inform them 

about some overt intention or decision to act (Owings & Morton, 1998).  

Signallers often use multiple modalities to signal, and multiple signals may also 

be produced via the same modality (Hebets & Papaj, 2005).  There have been various 

hypotheses put forward to explain the function of such “complex signals”. There is strong 

support for the “multiple messages” hypothesis, which, in the standard information 

formulation, suggests that multiple ‘packets’ of information are sent within the same 

signal. This packet can contain information regarding dominance, RHP, fitness, species 

recognition or location, and different aspects can be directed at different audiences. For 

example, the bright coloration of vervet male scrota has been hypothesized to signal 

dominance RHP to other males, as well as male RHP and genetic quality to females 

(Gerald & McGuire, 2007; Gerald, Ayala, Ruíz-Lambides, Waitt & Weiss, 2010; Henzi, 

1985).  Redundancy, or the sending of different signals with the same message, is also an 

element of complex signalling.  Redundancy can be illustrated via the “red white and 

blue” genital display of the male vervet, which involves indicating as aspects of RHP 

through the coloration of genitalia, and specific body movements/ postures adopted by 

the individuals engaging in the interaction (Struhsaker, 1967b).   

Other hypotheses to explain complex signalling include the idea that multiple 

signals can act as “back ups” for each other (which obviously relates to redundancy, i.e., 

if one signal fails there are others that can compensate), or can be viewed as components 

of a larger complex signal, with one element designed to enhance the others, allowing for 

more efficient, improved responses. That is, signals may amplify, alter, filter, or create a 
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context for concurrent signals (Hebets &Papaj, 2005).  For example, bowerbirds 

commonly entice their mates by drawing their attention to brightly coloured ornaments in 

their bower.  Once lured, the female places herself in the correct context for increased 

exposure to the male’s other signals and thus increases signalling efficiency for the male 

(Borgia, 1985).  It is easy to see how this can also explain the red, white and blue (RWB) 

displayed by male vervets, where particular postures help amplify the impact of bright 

genital coloration. As should be apparent, the idea that signals reflect an attempt to 

manage the behaviour of another individual, and that contextual variables have a great 

influence on signal ‘meaning’, can be allied to the conceptual framework of complex 

signalling, without any need to commit to the conduit metaphor of transmitted 

information, nor to assume that signals possess any semantic or ‘language-like’ 

properties.  

Individuals from a wide variety of species are able to produce complex signals 

based on the affordances and constraints of their social and physical world, and their 

developmental and evolutionary histories (Tinbergen, 1963; Barrett, 2011).  By 

considering the various modalities through which an organism can signal, the ways in 

which the environment constrains the signals, and the various ways in which individual 

signals may amplify and enhance each other, it is clear that one should perhaps expect a 

continuum of signals that reflect these kinds of influences, rather than a static array of 

stereotypical signals. This is not to say that stereotypical or ritualized signals do not exist, 

only that they form one end of a continuum and we should be open to the possibility of a 

flexible array of signals designed to manage and influence the behaviour of others, rather 

than a fixed ‘vocabulary’ of signals that have a precise “meaning” or goal. 
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Conceptualizing signals in this manner gets us away from more anthropocentric ways of 

thinking, and from seeing other organisms only in human terms.  

  

1.3. Threat Displays and Honesty 

 The spontaneous agonistic interactions engaged in by male vervet monkeys, 

ranging from actual physical aggression to the exchange of threats, form the focus of my 

thesis. In the context of the above discussion of signaling, the functional significance of 

threat displays is obviously of interest. Threat displays are generally conceived as a form 

of communicative device designed to allow individuals avoid the costs of aggression; 

individuals can mutually assess their resource holding potential (RHP) via such displays 

without having to pay the costs of combat. If threat displays always prevent fighting from 

taking place, however, this means that weaker males may win encounters, or at least 

avoid physical aggression, that they would otherwise lose if an actual fight were to take 

place. In other words, threat displays can be dishonest, and no longer convey reliable 

information about RHP. Zahavi (1975, 1977) suggested that displays of any sort would 

need to be costly to be reliable (i.e., they would function as handicaps), such that the 

costs of producing them would be disproportionately high for weak individuals, so that 

only high-quality individuals would be able to produce them, and this would ensure that 

signals remained reliable indicators of RHP.  

Enquist (1985), however, produced a theoretical model that demonstrated how 

cost-free signalling could evolve if certain key conditions were met. Most notably, he 

argued that it was the potential costs of having to fight against a stronger individual that 
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kept displays honest. More recently, Számadó (2008) argued that there is component 

missing from this model, in that Enquist (1985) did not fully specify the nature of the 

mechanism by which such potential costs could be realized.  Számadó (2008) remedied 

this by suggesting that proximity risk was the means by which displays could remain 

honest and cost-free in an evolutionary sense. Proximity works to keep displays honest 

because threats are only credible if they are made from a distance at which a male could 

actually employ his weaponry. This is because the function of a threat display is to 

convey information about the risk of an impending attack, i.e., the displaying individual’s 

willingness to fight. We can think of this in human terms: if an individual threatens to hit 

someone from less than a foot away it is obviously a more credible threat than if they yell 

their intention from 12 feet away. This is because, should their opponent choose to accept 

the challenge, the option to surrender or run away will no longer be available. Any 

individual who threatens an opponent must, therefore, be prepared to follow up a threat 

with an actual attack, and so risk retaliation. In this way, proximity risk maintains honesty 

and hence evolutionary stability, as only those males of sufficient quality to actively take 

on opponents will be willing to engage in threat displays. Számadó (2008) further 

demonstrates that honest signalling is only an EES within ‘the honest striking distance’ of 

the opponent (Számadó, 2008). Outside this zone, signals may be a mixture of honest and 

dishonest signalling – the “dishonest striking distance”—and beyond the dishonest 

striking distance; signals become completely unreliable and should not be used or, if they 

are, ignored. Proximity between opponents therefore becomes the crucial measure when 

analysing the frequency, effectiveness and reliability of threat displays (Számadó, 2008). 
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The honest striking distance is species-specific because it depends on an animals’ 

weaponry, which can vary in size and morphology. For example, some species use antlers 

as weapons, and hence antler length will determine the honest striking distance. The use 

of canines versus claws, or whether attacks are launched from a standing position or 

made on the run, similarly influence the extent of the honest striking zone.  Számadó’s 

(2008) point here is that Enquist’s model (1985) would be ineffective without taking into 

consideration the species-specific nature of weaponry and its influence on striking 

distance, as without proximity risk animals would have no means of assessing the 

credibility of a threat. 

According to Számadó (2008), threat displays were originally cues presented for 

fighting that have now been ‘frozen into signals’, which function to transfer information 

about RHP and aggressive intention. In contrast to this is the suggestion that “threat 

displays” may not be ritualized and communicative in this way, but instead represent 

actual attempts by individuals to exert influence over each other by aggressive means 

(i.e., individuals are engaged in actual combat), with the result that they become locked in 

an effective ‘stalemate’.  That is, male are, in fact, attempting to strike and block blows, 

using various combat tactics and counter-tactics (Pellis, 1997; Geist, 1974), and this 

jockeying for advantage gives rise to a situation in which males appear to be engaged in 

ritualized displays, because they do not actually make physical contact. As with 

Számadó’s idea of proximity risk, this hypothesis also predicts that threats should occur 

at close proximity, because they represent actual attempts to wound opponents. Here, 

however, the threat does not operate as a “conventional” communicative signal, and 

displays are, by necessity, “honest” because they represent physical acts of combat. 
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1.4. Targets and Tactics  

To expand on this idea, drawing mainly on Pellis’ work (e.g., Pellis, 1997), we 

can see that, historically, views of combat incorrectly concluded that a lack of escalation 

during physical aggression reflected evolutionary pressures acting on behalf of the 

species, as combatants would each hold back from striking any blow that might prove 

fatal to their opponent (that is, animals did not attempt to strike a fatal blow because this 

would be detrimental to the survival of the species as a whole if individuals killed each 

other over resources). Once properly evaluated, however, it becomes clear that there are 

many examples of combat fatalities in animals (Geist, 1967; cervids, caprinids), which 

occur at rates much higher than expected if animals were restraining themselves, and it is 

also clear that, when given the opportunity to do so, an animal will strike a mortal blow to 

its opponent (Geist, 1974). Combat is, therefore, a synergistic interaction of animals 

actively ‘doing their best to inflict harm... countered by the other’s defense’ (Pellis, 1997, 

pp.108).  Combat is therefore “selfish” and egocentric: neither individual is acting, or 

withholding acts, in order to ensure the other’s survival.  Although the interaction often 

appears to be a stalemate, this is simply due to the nature of combat, and the interplay of 

offensive and defensive tactics to inflict and avoid blows on a particular bodily target.  

Thus, as noted above, many animals appear to be behaving as if they are engaging in a 

‘ritualised’ interaction, such as a threat or dominance interaction, rather than in combat 

itself (Pellis, 1997).  It is important to note here that a position on the adaptive 

significance of the behaviour itself is not needed to investigate the ‘combat’ versus 

‘communicative’ elements of such displays  (Lauder, 1986). 
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By observing combat in muriod rodents, Pellis (1997) showed that postures 

traditionally assumed to be signalling a fully offensive or defensive state were actually 

postures used to gain tactical advantage. Pellis (1997) illustrates this using the “supine” 

posture, which is typically assumed to signal submission. As behaviour during an 

aggressive interaction is unavoidably contingent on what the other animal is doing, as 

well as what both of the individuals have just done, it requires that each individual adjust 

its tactics throughout the interaction in order to not be attacked, even if they are 

themselves attacker.  In line with this, supine postures do not merely signal submission 

(though it does provide optimal protection by blocking access to vital organs) because, in 

some cases, a supine position may actually better prepare an individual for attack.  In this 

sense, then, the goal of adopting a supine posture can only be understood fully if it is 

situated in the context of the interaction.  Likewise, we can consider the movements in 

vervet male-male interactions, such as threats, dominance and submission displays, to 

reflect goals that are situated in the context of the interaction, rather than reflecting a 

‘pre-formed’ intentional goal in each individual’s head. 

In similar vein, Moran, Fentress & Golani, (1981) investigated ritualized 

behaviour in wolves, and came to the conclusion that “communication is evidenced in 

this study (not by the assumptions) but by the set of spatiotemporal constraints on the 

behaviour of the individual ...” (Moran et al., 1981, pp.1162). They also pointed out that, 

“unintelligible gestures can now be understood in terms of straightforward regularities 

along several dimensions of movement in real and interaction space”.  In other words, 

behaviours that were originally described to be heavily specialized for communication 

could instead be shown to reflect the manner in which one animal adjusted its postural 
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and locomotor behaviour to reflect the movements of its partner in similar fashion to 

Pellis’ (1997) analysis.  

 Foundational to this approach, then, is the idea that animals are constrained by the 

ways in which their bodies move, as well as the weaponry available to them.  Following 

from this, individuals will also be constrained by the environment (social and physical) in 

which the interaction occurs.  This affects both their chosen target of attack, and the 

tactics that are available and favoured during combat.  Combatants may therefore rely on 

a simple rule of ‘given the context, use the quickest or most effective manoeuvre to gain 

access or evade contact’ (Pellis, 1997) when engaged in aggressive encounters, rather 

than having a fully specified set of tactics that are stored and employed in intentional 

fashion.   

 

1.5 A Situated Perspective 

Similar ideas regarding the ‘situatedness’ of behaviour had also been developed 

earlier by Hinde (1985) and have been expanded on more recently by Griffiths and 

Scarantino (2005). Hinde (1985) argued that emotions are a means by which individuals 

can negotiate their interactions; a point he illustrated using threat displays. His suggestion 

was that emotions need not always be ‘expressive’ of some inner (motivational) state, but 

may also be ‘strategic’, in the sense that an animal has no specific motivation, or goal-

state it wishes to achieve, but instead directs a behaviour toward another animal as a 

means to determine what it should do next. In the context of threat displays, Hinde (1985) 

noted that, immediately after issuing a “threat”, the displaying animal itself may often 
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flee (and do so quite frequently). Thus, the displaying animal may not be threatening as 

such, but simply uncertain about what it should do next. In such cases, which of the 

several possible responses an animal shows next will depend crucially on the behaviour 

of its rival (Hinde, 1985). Thus, as Griffiths and Scarantino (2005) note, it is 

“undetermined whether the bird (or monkey) is angry or afraid.  The identity of the 

emotion will be shaped through time by the responses received to the threat display.” 

(Griffiths & Scarantino, 2005, pp. 20).  In other words, as noted above with respect to 

postural aspects of behaviour, emotional displays are also ‘situated’ in the sense that each 

individual adjusts its behaviour according to the response of its partner and/ or other 

environmental factors. Another way to put it is that a threat isn’t a threat until another 

animal responds to it as such.  

In this view, behaviours that have classically been viewed as an involuntary 

expression of an animal’s physiological state of arousal can instead (and in line with the 

ideas expressed above) be viewed as signals that are designed to influence the behaviour 

of other organisms, or as ‘strategic’ moves in an ongoing transaction between them. As 

articulated by Griffiths and Scarantino (2005), a situated perspective on cognition stresses 

the necessary relationship between the structure of the social world and the nature of the 

emotions displayed. Emotions can be produced or brought about by social and physical 

contexts (i.e., the standard view that emotions are ‘expressive’), but they can also be used 

to influence the social environment itself and it is in this sense that they can be 

considered as ‘strategic’. Moreover, ‘strategic’ emotions do not need to be explained by 

complex cognitive mechanisms that are dependent on conceptual thought.  Using the 

example of a change in feeding behaviour by male chickens when females are present, 
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Griffiths and Scarantino (2005) illustrate how animals need not conceptualize a goal in 

order to bring forth complex behavioural variation in themselves and/or others. Samango 

monkeys also demonstrate these kinds of effects: males engage in highly aggressive 

behaviour with other males, but only during the mating season when females and 

multiple males are forced to coexist in close proximity to each other (Henzi & Lawes, 

1987).  Outside the mating season, the troop returns to its one-male status, and the other 

males similarly co-exist peacefully in all-male groups. 

 Griffiths and Scarantino (2005) stress that both the expressive and strategic use of 

emotion can occur within a single interaction, and need not do so in unison. This 

perspective builds upon Rendall et al.’s (2009) argument regarding signalling, as it takes 

into account the fact that signalling is not a closed system that remains unaffected by the 

environment.  If we accept that signals are “thrown out into the world” as a means to 

prompt a response from other individuals in an unpredictable manner (i.e., the reason for 

the “threat” is to reduce uncertainty about what the signaller should do next, but what the 

other animal does in response to the threat cannot, by definition, be predicted in advance), 

then we can view signalling systems as essentially open ended (Rendall et al., 2009).  

Vervet male interactions provide an excellent system into which to assess the value of 

this approach, as there seems to be no set pattern to the way in which agonistic 

interactions unfold. An emoter’s final ‘intentions’ need not be known when sending 

signals, nor are the interactant’s responses.  It is an ongoing process mediated by 

emotions, and the signal meaning produced is therefore ‘emergent’ and cannot be 

separated from its context or the males’ state of arousal.   
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 As noted above, Griffiths and Scarantino (2005) suggest that emotions can be 

seen as goal-oriented without being conceptual, using von Uexküll’s notion of the umwelt 

to do so (Uexküll, 1909).  Griffiths and Scarantino (2005) give the example of how the 

environment of a prey animal, such as a rabbit, affords escapable opportunities as the 

prey’s goals, and the animal perceives these as such.  The prey does not have to hold 

these goals in its head, however; rather, they emerge and exist in real time as the prey 

interacts with its environment (for example, when they are being chased by a predator).  

A rabbit being chased by a fox sees holes as “escapes” in a way that the fox does not 

merely due to the nature of being a rabbit and the effect of being chased.  One can make a 

similar argument for vervet males: a male interacting with other males need not hold their 

ranks in his head, but rather may only need to register his egocentric position in relation 

to each of them in real time, in the midst of interacting with them.  That is, males may 

take an essentially ‘second person’ perspective with respect to other individuals, rather 

than necessarily requiring 3rd party knowledge (Reddy & Morris, 2004). 

 

1.6. Other Views of Expressive Behaviour  

 Following on from the idea that there is a necessary relationship between the 

social world and emotional responding is Sheets-Johnstone’s (1999) concept that body 

movements are in themselves expressive.  This builds upon Darwin’s (1874) work, in 

which he showed how involuntary, spontaneous movement (i.e. pulling your hand away 

from a hot stove, running when an unfamiliar sound is heard) could be viewed as 

adaptive, as our bodies necessarily respond (act) to our emotions.  
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 As evidenced in the work presented by Sheets-Johnstone (Jacobson, 1967, 1970; 

Sperry, 1952; Bull, 1951 in Sheets- Johnstone, 1999), movement and emotion are 

intertwined, by which she means that they are joined, but not identical. Sheets-Johnstone 

(1999) further argues that movement is not only expressive, but also generative; that is, 

movement can produce emotion.   For example, generative emotion is the basis of affect 

induction theory, in which emotion is created via synchrony in movement (e.g., Conner, 

Smolker, and Bejder, 2006) and facial expressions (Bouguys, Bloem &Groothuis, 1995).  

It is in the entanglement of emotion and movement that we can see most clearly that the 

brain is first and foremost an organ that moves muscles.  In other words, the brain did not 

evolve to merely register representations about the world but, rather, it evolved for 

adaptive action and behaviour. Brooks (1989) illustrates this perfectly in his robotics 

work (also see Barrett, 2011).  By exploiting the structure of the environment, and that of 

their own bodies, Brooks creates robots that require very little in the way of central 

processing, but which are nevertheless very flexible as their behaviour is “coupled” to the 

environment, such that the environment forms part of the cognitive system and itself 

helps produce adaptive functional behaviour. 

Sheets-Johnstone (1999) suggests that movement and emotion are intertwined, 

mutually congruent, and experienced holistically. She suggests, therefore, that they are 

usually divisible only upon reflection.  The ability to divide movement from expression is 

possible during real time, but most often occurs as a learned response, by means of 

inhibition or redirection (replacing an emotional response and/or a movement).  

Examples of this from vervet behaviour may be their ability to control submissive acts, 

such as chutters and lipsmacking, rather than simply retreating when an individual of 
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higher rank is in proximity. In this sense, Sheets- Johnstone (1999) point is similar to 

both Griffith and Scarantino’s (2005) position and that of Hinde (1985): emotions can be 

expressive but also strategic. Sheets-Johnstone (1999) is also of the view that signals did 

not evolve for the purpose of communication first and foremost, but are more concerned 

with motivating action, a perspective similar to Pellis (1997) and Pelllis & Pellis (2011). 

In this way, we can see how researchers from a variety of perspectives, from ethology to 

philosophy, have converged on similar views with respect to the situated and embedded 

nature of emotion and behaviour.  

 

1.7. Aims of Thesis 

The aims of this these are, first, to assess the targets of combat, and construct a qualitative 

description of offensive and defensive tactics used during physical aggression.  Second, it 

aims to test whether males initiate and maintain certain orientations and postures that 

defend these targets against attack, and assess whether any such patterns show rank-

related effects. Third, to test whether contextual factors predict the occurrence of high 

aggression. Fourth, to test whether proximity influences male behaviour in agonistic 

contexts as predicted by Számadó (2008) and whether threat display curves (i.e., the 

probability of threat frequency with increasing distance) reflect differential performance 

of different threats at different distances. Fifth, and finally, to test whether male threat 

displays show any evidence for ritualization or whether they are inherently unpredictable.  
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CHAPTER TWO: 

METHODS 

 

2.1. Vervet Monkeys: General Overview 

Vervet monkeys (Chlorocebus aethiops) are medium-sized, semi-terrestrial monkeys 

belonging to the sub-family Cercopithecenae. They are found throughout Africa, from 

Senegal to Ethiopia and Sudan to the tip of South Africa (Tappen, 1960). Vervet 

populations are also found on the Caribbean islands of St Kitts, Nevis and Barbados as a 

consequence of human colonization (Fedigan & Fedigan, 1988).  Across Africa, they are 

found in a wide variety of habitats, ranging from semi deserts, to savannah, rainforest 

edge, gallery forests, and even urban areas, excluding only rain-forests and desert habitats 

(Chapman & Fedigan, 1984).  They are most common in riverine forest and woodland 

areas as they are thought to be heavily water-dependent, and thus require habitats that 

supply ready access to water (Wrangham, 1981; but see McDougall, Forshaw, Barrett & 

Henzi, 2010 who report that vervets can survive for at least a month in the absence of any 

free-standing water).  Potential predators of vervets include felines such as the lion, 

leopard, cheetah, caracal, African wild cat, serval, as well as the hyena, black backed 

jackal, baboon, raptor, and humans (Enstam & Isbell, 2002). 

 In contrast to the closely related forest-living guenons (monkeys of the genus: 

Cercopithecus), which tend to form one-male/multi-female groups, vervets live in multi-

male/multi-female groups, that range in size from 5 to 76 individuals, with a mean of 

roughly 25, and an adult sex ratio of 1M: 1.5F (Fedigan & Fedigan, 1988).  Females 

remain in their natal group throughout their lives, hence groups are matrilineally 
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structured and females tend to maintain their relative ranks throughout their lives as part 

of a stable, linear dominance hierarchy (Struhsaker, 1967a).  Males disperse from their 

natal units at or around sexual maturity (average age 5) and continue to transfer between 

troops approximately every three years throughout adulthood (Henzi & Lucas, 1980).  

This movement by males introduces less stability into male relationships and dominance 

hierarchies. Male dominance is regularly tested and re-negotiated with individuals from 

non-natal groups (Henzi & Lucas, 1980). Male adult vervets direct most of their 

aggression towards other males  (Baldellou & Henzi, 1992), and self-initiated displays of 

subordination by lower ranking to higher rankings males are common (Henzi, 1982). 

These self-initiated displays, or ‘homage’, are suggested to decrease potential aggression 

from higher ranking males. Males are generally tolerant of each other within troops, and 

male-male grooming, while making up a small proportion of their overall time budget, is 

observed (see e.g., Freeman, Sashaw, Barrett & Henzi, 2012).  

  Vervet monkeys are territorial, but the degree to which they defend their territory 

against neighbouring troops varies with seasonal fluctuations in resource availability 

(Chapman & Fedigan, 1984; Personal obs.). Inter-troop encounters at territory boundaries 

can therefore range from intensely agonistic to mildly associative. Territory sizes range 

from ≈ 0.32 km² on St. Kitts (Chapman & Fedigan, 1984), to 1.78 km² in Senegal 

(Harrison, 1983).  The size of territory reflects both habitat quality and vegetation type 

(De Moor & Steffen, 1972; Struhsaker, 1967a).   With respect to diet, vervets are 

opportunistic omnivores: they feed on a wide variety of plant species, insects and 

occasionally bird eggs and chicks (Struhsaker, 1967a).  Vervets also adjust their diets 

often according to seasonal fluctuations in availability, although they have strong 
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preference for plants and flowers (Fedigan & Fedigan, 1988).  Various species of Acacia 

are an important component of the African monkeys’ diet (eg. Acacia xanthophloia and 

Acacia tortilla) Struhsaker, 1967a; Whitten, 1983; Wrangham & Waterman, 1981). 

 

2.1.1. Physical Features 

 Vervet monkeys are mildly sexually dimorphic in size, with females 

approximately two thirds the size of males. Females reach an adult mass of 2.5-3.5kg and 

an average body length of 37cm, while males weigh 4.1-5.8 kg, with an average body 

length of 41 cm (Bolter & Zihlman, 2006; Turner, Anapol & Jolly, 1994, 1997).  Males 

can also be distinguished by a bright blue scrotum, which contrasts with a red penis and 

peranius and the white coat of their underside. The skin of a vervet monkey is black on its 

face, limbs and back, but light blue on the abdomen.  They are covered with a short coat 

of grey fur, which has a marked ‘grizzled’ appearance in males. Like all Cercopithecines, 

vervets possess cheek pouches and their ischial callosities are small and well separated.   

 

2.1.2 Behaviour during the Mating Season 

Vervet monkeys are seasonal breeders, with a clearly defined mating and breeding season 

among wild populations.  In Amboseli, Kenya, the May to October mating season occurs 

during the dry season, and the birth season is October to March, with a peak in November 

(Struhsaker, 1967b).  The vervets in our study population are similar to the Amboseli 

vervets, with copulations observed between April and August, with a peak in May 
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(Freeman, Pasternak, Rubi, Barrett & Henzi, 2012). During this period, in addition to 

actual copulations and copulation attempts, males are also observed probing a female’s 

ano-genital region, as well as following a female around for long periods throughout the 

day.   In addition, male-male behaviour changes markedly during the mating season. 

Males become more aggressive and impulsive, engaging in significant numbers of 

dominance interactions with other males (Henzi & Lucas, 1980).  This includes an 

increase in so-called dominance displays, threats, chases and fighting, as well as 

coalitions (Freeman et al., 2012).  There is also an increase in affiliative behaviour 

between males, most notably grooming.  The mating season is also a period of high male 

immigration and emigration.  This results in a higher proportion of new, peripheral males 

moving into and out of troops (“influx” males) (Struhsaker, 1967b; Lawes & Henzi, 

1995).  Both these factors may account for the rise of dominance interactions and 

aggression during the mating season, as the entry of new males and the emigration of 

resident males has a marked effect on the stability of the male dominance hierarchy. 

 

2.2 Study Site 

  I collected data as part of an ongoing study of the vervet monkey population in the 

Samara Private Game Reserve, Eastern Cape Province, South Africa (32022’S, 24052’E. 

Figure 2.1). The reserve comprises 34,000ha of mountains and nama-karoo grassland 

transected by the Milk River and its tributaries. Our study site is located in the north of 

the reserve where the river, which flows only intermittently, has not been dammed and 

where the monkeys have no access to artificial water sources. Such point sources of water 
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have been established away from the river and there are generally vervet groups 

associated with them. The area receives a declining average of 330mm rain per annum 

(Wet season: October-March; Dry season: April-September) and experiences a mean 

maximum temperature of 270C and a mean minimum temperature of 100C (Figure 2.2.). 

The coldest month is July when snow falls on the surrounding mountains (mean 

minimum: 40C), while December and January are the hottest (mean maximum: 340C). 

 

Figure 2.1. Location of the general study area (a) within South Africa and (b) in relation 
to the town of Graaff Reinet. The rectangle indicates the study site (enlarged in the inset). 
Adapted with permission from Pasternak (2011). 

 

 In addition to a variety of ungulates, the reserve has an established predator guild. 

Animals that prey on the study population include cheetah (Acinonyx jubatus Brookes), 
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caracal (Caracal caracal Schreber), black-backed jackal (Canis mesomelas Schreber), 

martial eagle (Polemaetus bellicosus Daudin), Verreaux’s eagle (Aquila verreauxii Less.) 

and both the giant (Bubo lacteus Temminck) and Cape eagle owl (Bubo capensis Smith).  

While there are no large constrictors in the region, venomous snakes were also a 

significant source of mortality.   

Figure 2.2. Long-term mean monthly rainfall and temperature (mean minimum ToC: 

dotted line; mean maximum ToC: solid line) data for the study site. Adapted with 

permission from Pasternak (2011). 

 

The mean size of vervet troops at Samara (based on counts of 29 troops) is 26.62 

individuals, which is comparable to other populations. Troops can, however, be 

distinguished by whether their ranges are centred on the river or whether their source of 
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water is artificial and maintained by humans. River troops (N=15) are significantly larger 

mean size (40.13+/-15.53 S.D.) than troops relying on human-provided water (N=14. 

Mean=12.14 +/-3.23 S.D.) (Pasternak, 2011). 

 

2.3. Study Animals 

 I collected data on males from two large, river-based troops (RST: N = ~ 72 

animals and RBM: N = ~ 48 animals) across the peak of 2009 and 2010 mating seasons 

(10 consecutive weeks from mid- April to Mid-June in each year).  The modal adult sex 

ratio (M/F) during 2009-2010 was 0.67 for RBM (NMALES=10, NFEMALES=15) and 0.43 for 

RST (NMALES=10, NFEMALES=23) (Pasternak, 2011).  Both troops were fully habituated to 

human presence, and have been so since 2008. 

 

2.3.1 RST 

 RST followed a generally predictable daily route, sleeping in the same sleep-site 

each night.  During the day, they remained close to the riverbed, feeding mainly on 

Acacia karoo.  The troop interacted frequently with RBM, as well as two other 

neighbouring troops (SWT and PCNC) and occasionally encountered a third troop 

(HCT).   During 2009, all standing water in RST’s territory dried up, and the troop 

moved beyond their normal range to an alternative water source (McDougall et al., 2010).  

This travel entailed crossing an open plain which left them more exposed to potential 

predator attacks.  The troop continued to frequent this alternative water site throughout 
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the 2010 mating season.  The home range of RST therefore expanded from 25 ha at the 

beginning of 2009 to 63.7 ha in 2010 (McDougall et al., 2010; Pasternak, 2011). 

 At the beginning of the 2009 mating season, RST was composed of 10 males and 

two sub-adult males.  As the season progressed, the troop gained eight extra troop males, 

while two resident males emigrated, although one of these returned to RST at the end of 

the mating season.  Four extra troop males remained in the troop for a significant period, 

but left within the bounds of the mating season.  Between the mating season of 2009 and 

that of 2010, another four males emigrated from RST, and two males immigrated into it.  

Thus, in 2010, 11 of the males from the previous year remained.  As the season 

progressed, one resident male emigrated and the troop gained four extra troop males, two 

of which left again during the mating season. At the end of the 2010 mating season, RST 

contained 12 males. 

 

2.3.2. RBM 

 RBM varied its daily schedule throughout the mating season, using four different 

sleep sites.  This troop spent more time in open habitat and, like RST, they travelled to a 

new water site when other water sources in their range dried up during 2009. RBM 

regularly encountered five other vervet troops (PCNC, LDT, RST, SWT and HCT) with 

the latter two troops often being present at the water site.  As with RST, RBM home 

range was approximately 25 ha in 2009, but had increased to 167.1 ha in 2010 

(McDougall et al., 2010; Pasternak, 2011). 
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 Ten males were present in RBM at the beginning of the 2009 mating season. Four 

males then emigrated, with three returning by the end of the mating season.  RBM gained 

one influx male during the mating season; a male that transferred from RST. Between the 

2009 and 2010 mating seasons, five males emigrated from RBM. At the beginning of the 

2010  mating season, then, RBM contained four males from the previous season, and had 

gained one extra troop male. Two natal males also reached sub-adulthood, and were 

therefore included as part of the male hierarchy.  During the mating season, RBM 

experienced an influx of five extra troop males that joined for an extended period, four of 

which were still present at the end of the mating season. The two natal males transferred 

together to RST.  By the end of the 2010 season, eight males remained in RBM. 

 

2.4. Data collection 

2.4.1. Video-recordings 

 During both the 2009 and 2010 mating seasons, I collected video-recordings of 

male-male social interactions from both troops during dawn to dusk follows 

(approximately 6.30 to 17.30) on each day of data collection.  During the 2010 season, I 

also collected data on male spatial position using GPS (not presented as part of this 

thesis), which necessarily reduced the number of video-recordings collected relative to 

2009.  Troop follows alternated every two consecutive days, averaging 10 days of data 

collection on each troop per month.  On each day of data collection, individual males 

were followed and filmed at a distance of approximately five metres by myself and, 

during the 2009 season, a field assistant (David McCaffrey), who followed an identical 
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protocol. Filming began whenever another male was present in the vicinity and 

potentially able to interact.  Video-recordings were made using a Canon digital video 

camcorder (Model ZR950), and stored on tape during the 2009 season and on SD card 

during 2010. Males were selected according to a predetermined schedule generated prior 

to the beginning of data collection (usually the evening before). A random number 

generator was used to produce the order in which males were to be followed on any given 

day. If a focal male had not interacted with any other male after 10 minutes of continuous 

following, we moved onto the next male on the list. Males could be identified via 

distinguishing features, such as scars, unique facial and body markings, tail morphology 

and gait patterns. Additional information about an interaction, such as identification of 

individuals involved, location, time and date, were noted verbally on the video recording.  
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Table 2.1. Summary of males present in the two study troops (RST and RBM) during the 
2009 and 2010 mating seasons. 

SAMARA MALES 2009-2010 
 

Troop Male 
ID 

2009 
Rank 

2009 
David's 
Score 

2009 Mating 
season 
movement 

Non-mating 
season 
movement 
 

2010 Mating 
season 
movement 
 

2010 
Rank 
 

2010 
David's 
Score 
 

RST 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
RBM 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

OR 
AJ 
SP 
JU 
BU 
LA 
CH 
FO 
QU 
JA 
HX 
RI 
GO 
JI 
KO 
WA 
BO 
DO 
DY 
OZ 
PA 
MU 
TO 
GR 
  
CA 
AL 
VI 
IG 
FR 
DA 
LC 
ED 
JI 
HA 
CH 
TA 
WY 
BL 
ST 
KP 
EG 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
X 
X 
X 
X 
  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
X 
X 
X 
X 
X 
X 

14.03 
11.97 
11.87 
10.93 
10.88 
10.31 
9.47 
9.47 
9.43 
8.9 
8.9 
8.72 
8.72 
8.64 
8.31 
8.12 
8.1 
8.06 
7.31 
6.85 
X 
X 
X 
X 
  
7.77 
6.92 
6.32 
5.13 
4.71 
4.71 
4.5 
4.5 
4 
3.43 
3.09 
X 
X 
X 
X 
X 
X 

  
  
  
  
  

Transfer/Return 
Transfer out 
Extra 
  
Transfer in 
Extra 
Transfer out 
Transfer in 
Extra 
  
Transfer in 
Transfer in 
  
  
Transfer in 
  
  
  
  
  
  
  
  
Transfer/Return 
  
Transfer out 
Transfer out 
  
Transfer out 
  
Transfer in 
  
  

  
  
  
  

  
  
  
  
  

Transfer out 
  
  
Transfer out 
Transfer out 
  
  
  
  
  
  
  
  
  
  
  
  
Transfer in 
  
  
  
Transfer out 
  
Transfer out 
Transfer out 
Return 
  
Transfer out 
Return/Transfer 
out 
  

  
  
  
  
  
  
  

  
  
  

Transfer out 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Transfer out 
  
Transfer in 
Transfer in 
  
Extra 
  
  
  
  
  
  
  
  
  
  
  
  
Transfer in 
Transfer in 
Extra 
Transfer in 
Transfer in 
Transfer in 

2 
1 
6 
3 
5 
X 
X 
X 
X 
X 
X 
X 
4 
X 
8 
X 
7 
10 
X 
9 
13 
12 
11 
X 
  
2 
X 
1 
X 
X 
3 
X 
X 
X 
7 
X 
10 
6 
9 
4 
5 
8 

14.19 
19.46 
12.02 
13.02 
12.51 
X 
X 
X 
X 
X 
X 
X 
12.96 
X 
10.1 
X 
10.48 
8.9 
X 
9.94 
8.15 
8.56 
8.95 
  
  
7.65 
X 
7.97 
X 
X 
6.94 
X 
X 
X 
4.24 
X 
2.47 
4.76 
3.55 
5.36 
5.05 
4.07 
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2.4.2. Ad libitum records 

 A daily record was kept of general troop activity, general path travelled, extra 

troop interactions, as well as any behaviours of interest within the troop.  The latter 

included mating behaviour, as well as any displacements and supplants by the males. 

Wounds were recorded for all males.  Ad libitum samples do not yield random samples of 

behaviour of all troop individuals, but it was assumed that the random sampling of dyadic 

agonistic interactions was comparable to all samples of the dyad. 

 

2.5. Data Analysis 

In what follows, I provide details of the general analytical procedures followed. 

More specific methodological details are provided in the specific chapters in which a 

particular analysis appears. 

2.5.1. Assessment of Male Dominance Rank  

Dominance was calculated on the basis of summed interactions and 

supplants/displacements of one individual by another. Observed agonistic behaviour 

between males came from both 10 minute focal follows and ad libitum samples.  These 

data were combined data collected by other researchers at the site.  For 2009, data were 

also collected by Nicola Forshaw, Petra McDougall, Dave McCaffrey. Ranks were 

calculated using Normalized David Scores (De Vries & Stevens, 2006). A total of 979 

male-male interactions were recorded across both troops for 2009-2010.  David scores of 

males during the 2009 and 2010 mating seasons are given in Table 1. 
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2.5.2. Video Database Construction 

 Forty-six hours of video were collected in the field (2009), followed by an 

additional 6 hours in 2010.  I uploaded video recordings to computer using  Apple 

iMovie’09 (Version 8.0) software.  I then edited each video, removing footage that did 

not contain any male-male interactions and then converted recordings to mpeg files. I 

then labelled each video file with a unique identifying code, which I also entered into an 

Excel spreadsheet, along with information on the date and time of the recording, season 

(2009 or 2010), troop identity and identity of the data collector (AT or DM).  I then 

reviewed each video file and added further information on each behavioural interaction 

sequence to the spreadsheet. Specifically, I added a brief description of the interaction 

from start to finish, including details of dyadic displacements, male postures, displays, 

threats, fights affiliative behaviour and copulations, the distance between the males at 

each point in the sequence, and the identity and number of other monkeys present in the 

vicinity. In this way, I created a searchable inventory/database of all behavioural 

interaction sequences in my video library.   I used the ethograms developed by Struhsaker 

(1967b) and Henzi (1982) to describe and classify behaviours and interaction sequences 

(Table 2.2.). Both) Struhsaker (1967b) and Henzi (1982) placed behaviours in categories 

of ‘threats’, ‘dominance‘ and ‘submissive‘ behaviours, and I followed this convention in 

my descriptions, and present them as such in Table 2.2.  It is important to note, however, 

that as one of my aims in this thesis was to test whether particular behaviours really do 

constitute ‘threats’, for the purposes of analysis, I used more neutral behavioural 

descriptions to classify the behaviours when subjecting to detailed frame-by-frame 

analysis (see below).   
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2.5.3 Video Analysis 

 The video database contained a total of 291 dyadic interactions, 109 of which 

contained threat displays of some description. From these, I selected interactions that had 

been recorded in their entirety (i.e., from one male’s initial approach until the end of the 

interaction, when the males had moved apart by more than 10m), and which contained 

fights (i.e., one or both males struck a physical blow at the opponent), high aggression 

(i.e., males engaged in chasing and lunging behaviour, but failed to strike a blow) and/or 

threats (i.e., males engaged in behaviours defined as threats by Struhsaker, 1967b and 

Henzi,1982). This produced a sample of 90 interactions suitable for analysis, details 

which of which are given in Table 2.3.  
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Table 2.2. Ethogram for vervet monkeys used in this study.  Comparison was made 
between three field studies: Amboseli, Kenya (Struhsaker (1967b); Durban, South Africa 
(Henzi, 1982) and Samara, South Africa (this study). 

Category 
 

Behaviour Description Amboseli Durban Samara 

Threat 
  
  
  

 
Ground  
(eyelid flash, 
stare) 
 
Ground  
(crouch) 
 
Headbob 
 
 
 
Bipedal 
 

 
Exposure of lighter coloured eyelids; 
maintenance eye contact. 
 
 
Forequarters bent, usually while 
delivering an eyelid flash. 
 
Jerking, or bobbing head on a saggital 
plane, usually while delivering an 
eyelid flash. 
 
Jerking, or bobbing, the body from a 
quadrapedal to a bipedal position.  Can 
include delivering an eyelid flash. 

 
X 
 
 
 

X 
 
 

X 
 
 
 

X 

 
X 
 
 
 

X 
 
 

X 
 
 
 

X 

 
X 
 
 
 

X 
 
 

X 
 
 
 

X 

Submissive 
 
  

 
Vocalizations 
 
Cowering 

 
Lipsmacking; chuttering 
 
Subordinate individual lowers head/ 
body and avoids eye contact.  Usually 
includes submissive vocalizations 

 
X 
 

X 

 
X 
  
 

 
X 
 

X 

Dominance 
  
  
  

 
“Red, White, & 
Blue” Display 
 
 
 
 
Broadside 
 
 
 
 
Hand-on-Head 
 
 
 
 
Tree Display 

 
Dominant individual circles (or paces 
back and forth beside) subordinate 
individual with tail lifted, exposing 
genitalia.  Subordinate individual is 
usually sitting and vocalizing. 
 
Dominant individual stands 
perpendicular to subordinate, pauses, 
then moves on. Tail may be raised.  
Subordinate is usually sitting. 
 
Dominant individual places hand on 
subordinate individuals head.  These 
often occur in conjunction with RWB 
displays. 
 
Dominant male races through trees 
creating noticeable noise during inter-
troop encounters. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

X 

 
X 
 
 
 
 
 

X 
 
 
 
 
 
 
 
 
 

X 

 
X 
 
 
 
 
 

X 
 
 
 
 

X 
 
 
 
 

X 

Affiliative  
Grooming 
 

  
One individual combs through the fur 
of another individual, using its fingers. 
Removes parasites and debris from fur. 
 

     
X 
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Table 2.3. Sample size for behavioural interaction sequences analysed for this thesis. 

Category 
# of 

inter-
actions 

# males 

mean 
inter-

actions 
per 

male 

min # 
of 

inter-
actions 

per 
male 

max # 
of 

inter-
actions 

per 
male 

# dyads  

average 
# of 

inter-
actions 

per 
dyad 

min # 
of 

inter-
actions 

per 
dyad 

max # 
of 

inter-
actions 

per 
dyad 

Low intensity 
aggression 

(threats only) 
56 30 3.7 1 12 47 1.2 1 3 

High intensity 
aggression 24 21 2.3 1 7 21 1.1 1 2 

Fights 10 13 1.5 1 3 10 1.0 1 1 

 

 I subjected these video data to detailed frame-by-frame analysis, which included 

the use Eshkol-Wachmann movement notation (EWMN) (Eshkol & Wachmann, 1958; 

Moran et al., 1981; Pellis, 1997, 2011). In this system, individual movements are 

recorded as descriptive coordinates on an abstract sphere that represent the amount of 

movement made by individual limb segments.  Scoring was validated by Sergio Pellis 

recreating the movements from the notation alone, without any knowledge of the original 

behaviour. Importantly, EWMN permits the description of behavioural patterns to be 

described via different frames of reference: one can analyse the same movement “partner-

wise” (the descriptive coordinates are defined by the momentary position of the social 

partner), “environment-wise” (the descriptive coordinates are defined relative to the 

external environment), and “body-wise” (the descriptive coordinates are defined relative 

to the body of the individual being scored).   This enables the temporal and spatial 

structure of behaviour to be captured in an objective and systematic fashion.  Judgements 

or predictions about the goal of the behaviour can therefore be suspended until after the 

interaction is scored (Moran et al., 1981; Pellis, 2011).  
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 Partner-wise notation means that movements made and positions held are not just 

descriptive of one animal, but provide a measure of the movement of both individual, and 

I considered this to be particularly appropriate given my project aims.  I therefore used a 

modified (i.e., simplified) EWMN taking a partner-wise frame of reference to identify 

patterns of relational movement in male-male behavioural sequences. These were then 

used to formulate the specific hypotheses and predictions tested. 

 I used the software program ELAN (EUDICO Linguistic Annotator, Version 

4.1.0, Lausberg & Sloeties, 2009) to score the frequency and duration of a variety of 

absolute and relative measures of male-male engagement (not all of which were used in 

this thesis). Specifically, I recorded the following absolute measures:  

(i) Velocity: each male’s speed of movement, measured in body lengths travelled per 

second. 

(ii) Body posture: eight postures were scored and defined as follows:  

a. Sit-Hind: sitting with forearms off the ground, hind legs bent, with ischial callosities 

contacting the substrate.  

b.  Sit-Haunch: sitting with forearms touching ground, hind legs bent, with ischial 

callosities contacting the substrate. 

c. Legs-Up: sitting with callosities contacting the substrate, with arms and hind legs 

extended out in front. Legs often extended above chest height.  

d. Sit-Splay: Sitting with forearms off the ground, callosities contacting the substrate, and 

hind legs extended/ semi-extended exposing scrotal area. 
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e. Stand: adopts a quadrupedal posture, with arms and legs straight and contacting the 

substrate. 

f. Crouch: adopts a quadrupedal posture, with either/both arms and legs bent and 

contacting the substrate.  

g. Lying down: either prone, supine or on their side. 

h. Bipedal: standing vertically, with arms off the ground, and feet contacting substrate.  

(iii) Habitat location. This was categorized as follows: (a) Ground-Bush (animal was on 

the ground in area dominated by bush species) (b) Bush-1 (animal was in a bush 1-3 

metres in height (c) Bush-3 (animal was in a bush above 3m in height) (d) Ground-

Tree (animal was on the ground in area dominated by tree species) (e) Tree-1 (animal 

was in a tree 1-3m in height) (f) Tree-3 (animal was in a tree above 3m in height) (g) 

Tree-5 (animal was in a tree above 5m in height). 

(iv)  Number of other individuals present: the number of other male, female and 

juvenile monkeys present in the video. 

I also took three relative measures based on my modified EWMN, following Moran et al. 

(1981):  

(i) Relative distance: the distance between individuals measured in monkey body 

lengths, ranging from 0-8. See Figure 2.3. 

(ii) Point of opposition: the point on each animal's body to which the social partner was 

nearest. This does not necessarily imply any physical contact between the 

interactants. Changes in point of opposition can be produced by movements of either 
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or both animals, and a single change in opposition could result from a number of 

distinct combinations of movements by each interactant. Point of opposition was 

scored as follows: 0 = head, 1 = shoulder, 2 = torso, 3 = haunch, 4 = rear. See Figure 

2.3. 

(iii)  Relative direction: the orientation of each animal described relative to the 

simultaneous orientation or angle of the social partner. This was scored by, 

figuratively speaking, superimposing the body position of Male 1 directly on top of 

Male 2 and then scoring the relative orientation as follows:  1800  =  the first male is 

oriented 1800 degrees relative to the second male in schematic space, in an anti-

parallel position. In reality, the males would be facing each other; 1350 = the first 

male is oriented at 450 toward the head of the second male, in reality, the first male 

would be oriented away from the second male; 900 = the first male’s is oriented in 

schematic space perpendicular to the second male’s body. In reality, the first male 

would be perpendicular to the second male; 450 = the first male is oriented at 450 in 

schematic space toward the second male’s haunch. In reality, the first male would be 

facing toward the second male’s head; and 00 = the first male is oriented at 00 relative 

to the second male in schematic space in a parallel position. In reality, the males 

would be facing away from each other. Changes in this variable could be the result of 

movements by either animal or both animals simultaneously. See Figure 2.3. As noted 

above, details of the specific analyses used to test hypotheses and predictions are 

presented in the relevant data chapter. 
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Figure 2.3. Illustration of measures used in the Modified EW annotations. Direction 
captures the relative angle between the opponents, opposition captures the closest relative 
body part, and relative distance between individuals.   
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CHAPTER THREE: 

WOUNDS AND WEAPONRY 

 

3.1 Introduction 

 As explained in Chapter One, understanding the extent to which threat displays in 

male vervets reflect a “strategic” versus “expressive” use of emotion (or both) requires 

some consideration of whether threats are conventional signals, indicating the potential 

for aggression (communication hypothesis), or whether they are aggressive acts in and of 

themselves (combat hypothesis). A combat hypothesis predicts that the function of the 

manoeuvres used during a threat display should directly benefit the threatening individual 

in offensive terms (increasing their ability to injure their opponent) or defensive terms 

(protecting themselves from attack) (Pellis, 1997).  In contrast, a communication 

hypothesis holds that the function of manoeuvres used during a threat display are 

designed to inform the opponent of the threatening individual’s resource holding potential 

(RHP). As such, the signals used need not necessarily include any elements drawn from 

actual fighting tactics: any display that indicates male strength or endurance could 

function effectively under such circumstances.   

 As put forward by Számadó (2008), however, the key element that keeps threat 

displays honest is inter-individual proximity. Males should therefore display at a distance 

that represents a credible threat: that is, displays should occur within a radius dictated by 

the nature of male weaponry. Furthermore, Szamado (2008) argues that an individual 

should indicate both its readiness and willingness to attack, such that threatening 

individuals should deploy their weaponry in much the same way that they would during 
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an actual fight. Both hypotheses, therefore, predict that the relative distance between 

opponents is key to determining whether ‘threat displays’ occur, and that such displays 

should reflect actual fighting tactics.  If males display at distances beyond the range at 

which they can present a credible threat, their displays can be considered as ‘dishonest’ 

and opponents should disregard them.  

 One important point to make, then, given this assessment, is that the combat and 

communication hypotheses are not necessarily mutually exclusive; that is, a display of 

weaponry at the appropriate proximity may well function, in an evolutionarily sense, to 

keep displays honest by indicating readiness to fight, but, of course, males that are 

displaying their weaponry in such a fashion may not be simply displaying their future 

willingness to fight, but may be engaged in actual aggressive combat behaviour. That is, 

the immediate function of the behaviour may also be to attack and cause injury to the 

opponent. Given that the opponent is attempting to achieve something similar, then, as 

males simultaneously attempt to block their opponents while attempting to deliver a 

strike themselves, this give rise to what appears to be well-balanced, ‘ritualized’ threat 

behaviour (Pellis, 1997).  In this way, the evolutionarily functional analysis maps onto 

the “immediate” functional analysis of Pellis, with proximity as the link.   

 In addition, if we take on board Griffiths and Scarantino’s (2005) ‘situated 

cognition’ approach, we need to consider the possibility that the occurrence and outcome 

of particular types of male-male interactions may be influenced, or even determined, by 

contextual factors. Along these lines, Reinhart, Pellis, Theirry, Gauthier, VanderLaan & 

Vasey (2010) showed how the differences in the target and tactics used during play 

fighting by Japanese versus Tonkean macaques could be traced to differences in social 
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structure, with the more ‘despotic’ Japanese macaques displaying a more competitive 

play fighting style compared to the more ‘egalitarian’ Tonkean macaques, which show a 

more cooperative play-fighting style (see also Pellis, OBrien, Pellis, Teitelbaum, Wolgin 

& Kennedy (1988) for an example of house cats in changing targets and tactics in 

different predatory settings). In the case of male vervets, it seems reasonable to 

hypothesize that elements of the social situation relating to mating effort could affect the 

nature of male interactions; these would include factors such as the number of females 

present (which may increase male willingness to escalate aggressively and drive their 

opponent off, if this increases the chances of mating access); the number of other adult 

males present (which may decrease male willingness to escalate by increasing the risk of 

coalition formation by their opponent); and habitat type (which could, for example, 

impede males’ ability to escape their opponent or increase the likelihood that other 

animals can see the interaction, leading to ‘audience effects’).  The relative rank of males 

can also be considered as a factor as, although not contextual in a standard sense, it 

reflects the relation between two males, rather than some absolute quality of the males 

themselves (although, of course, their position in the hierarchy may depend on such 

qualities). For example, low ranking males may initiate interactions with higher ranking 

males as dominance challenges (which would then lead to such males securing a higher 

probability of mating), and so these kinds of interactions may be more likely to escalate 

into actual aggression as there is more at stake. Rank distance between males may be key 

in this respect: more closely ranked males may also be better matched physically, and so 

more likely to engage in physical tests of the relationship, compared to more distantly 

ranked animals, where the bounds of the relationship are more clearly marked and/or low 
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ranking males are more likely to de-escalate aggression because of the risk of other males 

supporting the dominant in a coalition (which is the most common pattern seen in male-

male coalition formation: Bissonette et al., unpublished).  

   

3.2. Wounds as Predictors of Targets during Combat 

 Identifying those area(s) of the body that form the target(s) during combat is a 

natural first step in any analysis of this kind, as a proper understanding of the nature of 

the target area allows one to predict the range of bodily actions and responses that males 

are likely to produce as they attempt to reach the target and protect their own target areas. 

Identifying the target area also allows for an assessment of whether, when in proximity, 

individual males are always attempting to inflict injury, or whether they are producing 

some form of ritualized display designed to signal submission, or otherwise allow males 

to assess their relative RHP. 

 Previous studies have used wound counts as a means of identifying the possible 

target areas on the assumption that wounding will occur more frequently in those regions 

that are actively attacked by opponents during actual fighting and during play fighting 

(e.g., Geist, 1967, 1986; Foreman & Brain, 2006; Pellis, 1997 [combat]; Pellis & Pellis, 

1997; Reinhart et al., 2010 [play fighting]). I follow a similar procedure here, with the 

assumption being that the primary target should receive the most hits.  It is important to 

remember, however, that as an agonistic encounter involves the inter-play between two 

partners with the intention to inflict harm (unlike play fighting), individuals will not 
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always reach their preferred target because of the defensive manoeuvres of the social 

partner which may influence the number of hits that meet the preferred target area. 

 Targets are generally species-typical because differences in morphology and 

weaponry both enable and constrain the possibilities for particular kinds of movement or 

forms of attack, thereby making certain areas of the body more vulnerable to injury and 

easier to target. Cervids, for example, possess antlers and are thus able to deliver an 

effective blow to their opponents body, but their ability to both restrain an opponent and 

deliver a blow is greatly constrained compared to, say, rodents and primates, whose paws 

and hands give them greater freedom to hold, pin and push a partner (Geist 1974,1986). 

Another example is the lack of upright defensive postures in guinea pigs, which is 

suggested to reflect the relative weakness of this species’ hindimbs and their large body 

mass (Grant and Mackintosh, 1963). Even within specific taxa, where morphology is 

often similar, there can be variation in target location. Pellis & Pellis (1997) demonstrate 

that, during play-fighting, ring-tail lemurs target the torso, specifically the back, while 

Patas monkeys target the head and neck in addition to the forelimbs, and spider monkeys 

bite any exposed body area within reach.  Spider monkeys grapple with their partners 

using all four limbs plus the tail (which, being prehensile, can be used as an extra-limb), 

which may reflect the greater arboreality of spider monkeys compared to Patas and ring-

tails, both of which are highly terrestrial, and can more effectively target specific areas 

using a standing or bipedal posture more effectively.  Given the terrestrial habits of vervet 

monkeys, and the nature of their weaponry, which consists of their teeth and hands, I 

predict that, like Patas monkeys, vervets will target the head and neck area, and the 

forelimbs, and that wound distribution will reflect this choice of target. 
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3.3. Targets and Tactics used during Combat 

 As the above example illustrates, an understanding of a species’ morphology and 

habits not only informs us of their preferred targets, but also of the various tactics they 

will favour during physical interactions.  Pellis (1997), in a study of muroid rodents, 

showed how variations in the biomechanics of an animal’s body can affect the tactics 

used to ward off an opponent, specifically, the tendency to rotate to a supine position 

(i.e., for the animal to lie on its back), and so remove the target area (the rump) from 

attack.  Whereas hamsters make frequent use of this tactic during aggressive encounters, 

voles do so only rarely.  Pellis (1997) compared six rodent species (montane voles, 

prairie voles, house mice, grasshopper mice, golden hamsters and Djungarian hamsters) 

on their tendency to rotate to a supine position and an index of their body proportions 

(head and body length divided by body weight). Low ratios are indicative of a squat body 

shape, whereas high ratios indicate an elongated body. Hamsters were found to have the 

smallest body ratios and the highest tendency to rotate to supine, whereas the reverse 

pattern was true for voles. Pellis (1997) explained this pattern by suggesting that, as 

rotations begin at the head and move down the body, longer-bodied animals would take 

longer to recruit the pelvis and so complete the rotation. Frame-by-frame analysis of 

rotations in prairie voles and golden hamsters showed that this was the case: the shorter 

bodied hamsters recruited the pelvis an average of 20s faster than the voles, and were 

able to withdraw their rump faster when using a supine defense. For the longer bodied 

voles, rotating laterally, rather than rolling over, allowed them to administer a retaliatory 

bite more quickly, in one fluid movement, whereas for the hamsters, a similar move 
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requires a sequence of body movements to precede the bite. The use of a supine defense 

tactic is clearly related to body morphology, regardless of whether it occurs due to 

inherent advantages, or because the alternatives are less viable. 

 In the vervet case, the ability to strike a blow with the forearms is enhanced when 

animals are standing bipedally, even though this exposes the more vulnerable torso. I 

therefore predict that blows will be struck from a bipedal position, and that opponents 

will use tactics designed to protect their head and neck. As described in chapter 1, the 

brightly coloured genitalia of male vervets have been shown to play a role in signalling, 

and higher-ranking males more frequently display to lower-ranking males (Henzi, 1982). 

The genital region is also highly vulnerable to damage, however, and one would predict 

that males would attempt to prevent other males from attacking this area. Accordingly, 

we can predict that males will use tactics designed to protect their genitalia, namely, 

maintaining a face to face orientation, and that males that are being attacked will be more 

likely to adopt postures (e.g., sitting down or resting on their haunches) that obscure their 

genitals from their opponent and/or to hold such postures for longer durations. This, in 

turn, suggests that although target location can be predicted to be the head, neck and 

shoulders, as seen in the similarly terrestrial and closely related Patas monkey, it is 

possible that this target arises because males are attempting to protect more vulnerable 

areas of the body, i.e., that, in a sense, the head, neck and shoulders form a secondary 

target as males orient themselves in ways that preclude attacks to the vulnerable genital 

regions. Given Henzi’s (1982) findings, it also seems reasonable to predict that relatively 

lower ranking males will be more likely to adopt and hold such postures, relative to their 

higher ranking opponents. 
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3.3. Overview of chapter 

The goals of this chapter are to: (i) assess the targets of combat during fights, (ii) provide 

a qualitative description of offensive and defensive tactics used by males during highly 

aggressive interactions (i.e., those involving physical contact and/or chases), (iii) test 

whether males initiate and maintain a particular orientation and/or adopt certain postures 

during such encounters (iv) determine whether there are any contextual factors that 

predict the occurrence of high physical aggression (chases and fights) compared to 

encounters that involve threat displays alone and, finally, (iv) conduct an initial test to 

determine whether proximity is a factor influencing male behaviour in an agonistic 

context, as predicted by Szamado (2008). 

 

3.4. Methods: 

 Two habituated troops of vervet monkeys (RST and RBM) were followed during 

two mating seasons (April through July 2009/ 2010) and interactions between males were 

video taped using a semi-systematic focal sampling procedure (see Chapter 2 for details).  

All videos were compiled into a database and general information about the interaction 

was recorded: time, date, duration of interaction, focal monkeys’ I.D., general location, 

activity, number of individuals within range of the interaction, and a brief description of 

the interaction itself.  

3.4.1. Identifying Targets 
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 Ninety agonistic interactions in total were of sufficient quality to be analysed in 

detail using a modified version of EWMN. Measures included duration of various 

postures held, distance travelled by each individual, direction (relative orientation 

between partners), opposition (closest body part between partners) and relative distance 

between opponents. ELAN, an annotation program, was used to score and notate the 

videos. See Chapter 2 for more details. Of these, 34 were considered to be high-intensity 

interactions, meaning they contained symmetrical and asymmetrical aggression, in which 

both males participated either in a defensive and/ or offensive fashion, as well as 

interactions in which only one male exerted aggression (such as a chase scenario). Of 

these 34, ten interactions included one or more hits, meaning that an individual either 

directed or made contact with their opponent using their forearm or teeth. These 

interactions were assessed separately on a frame-by-frame basis in slow-motion to 

identify target location.   A hit was scored when contact was made with the opponent’s 

body, as well as in cases where the attacker was clearly lunging at a specific body target. 

(following Reinhart 2008 p. 29). Hits were categorized according to location on the body 

as follows:  Body/Torso; Forelimbs; Head/Neck/Shoulder; Hind limbs. In addition, 

measures of postural changes, relative opposition scores, and relative distance between 

opponents were used to construct a qualitative description of fights and sequences of high 

aggression, and also to test hypotheses concerning male tactics (See Chapter 2 for more 

details). Sample sizes vary slightly depending on analyses. 

3.4.2. Wound Counts 

During both 2009 and 2010, general information on wounds for both males and 

females (I.D., date, location on body and severity of wound) was collected by all 



 

   46"

researchers working at Samara (Nicola Forshaw, Petra McDougall, Dave McCaffrey and 

myself in 2009; Graham Pasternak, Natalie Freeman, Ria Boner, Tricia Rubi and myself 

in 2010). From these data, wounds were categorized in the same fashion as hits, i.e., 

according to location on the body as follows:  Torso/Tail; Forelimbs; Head/Neck/Shoulder; 

Hind limbs. Wound location counts were also compared quantitatively between males and 

females for the Samara vervets, and also to hit counts on the body for males. 

 

3.5. Results 

3.5.1. Wound Location 

A total of 110 wounds were recorded at Samara. These did not occur at random (Χ2 = 

27.7, df= 3, p <0.001), but occurred in higher proportions on the body/tail (45%), as well 

as the head/ neck/ shoulder region (27%) (Figure 3.1).  

 

 

 

 

 

Figure 3.1. Wound frequency by body location for Samara vervets (Nwounds = 110). 

When the data were partitioned by sex, however, male wound frequency diverged from 

this general pattern, revealing a higher proportion of wounds on the head/neck/shoulder 
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region and the forearms compared to females (Figure 3.2. Χ2 = 16.8, df= 3, p <0.001; 

males N= 73 wounds; females = 37 wounds).  Wounds were also calculated by randomly 

selecting a wound per individual in order to negate the possibility of one highly wounded 

individual biasing the data (Figure 3.3, males N= 23 wounds; females = 20 wounds).  

This confirmed the pattern in the group data. 

 

Figure 3.2. Wound frequency (%) by body location for male and female vervet monkeys 
at Samara (Nmales = 73; Nfemales = 37). 

 

Figure 3.3. Wound frequency (%) per individual by body location for male and female 
vervet monkeys at Samara (Nmales = 23; Nfemales = 20). 
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3.5.2. Confirmation of Targets 

As noted above, ten interactions included actual hits, with 18 hits recorded in total. The 

majority of hits targeted the H/N/S region (n = 13, 72%), with the remaining hits targeted 

at the torso and tail region (n = 5, 18%).  There were no hits recorded to the fore- or 

hindlimbs (Figure 3.4). Hit locations were not randomly distributed across the body (X² = 

25.1, df = 3, p <0.001), although this result should be treated with caution as some 

expected values were slightly below five in this analysis. Combining the data to form two 

categories of hits to the anterior region of the body (head-neck-shoulder and forelimbs) 

versus the posterior region (torso-tail and hindlimbs) produced a marginally significant 

result (X² = 3.56, df = 1, p <0.059). 

   

 

 

 

 

 

Figure 3.4. Percentage distribution of hits across body locations for male vervets (N = 
18). 

 

 In order to compare the distribution of hits to wounds, the data were again 

combined into two categories of anterior and posterior body regions due to small sample 
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size and expected values falling below five. The frequency distribution of hits did not did 

not differ significantly from that of wounds (Figure 3.5. X² = 1.80, df = 1, p = 0.179). 

 

 

 

 

 

Figure 3.5. Frequency distribution of hits (N =18) and wounds (N =73) to the anterior 
and posterior regions of the body for male vervets. 

 

3.5.3. Description of High Intensity Aggressive Encounters 

 For those interactions in which males ended up chasing each other in an 

overtly aggressive manner (i.e., not ‘false chases’: Henzi, 1985), but no contact 

aggression occurred, the most common response to an approach was for the 

opponent to adopt either a standing (11/23) or sitting posture (11/23 cases). In the 

remaining case, the male responded to the other’s approach by immediately 

adopting a bipedal stance.  Once males were in proximity, an average of two 

threat behaviours, as defined by Struhsaker (1967b) and Henzi (1982), were 

exchanged before a chase occurred.  In total, 90 threats were exchanged during 21 

of these encounters:  46% were solely eye-lid flashes, 23% involved headbobs 

with or without eyelid flashes, and in 31% males adopted a bipedal stance with or 

without eyelid flashes. In two cases, interactions did not appear to involve threat 
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displays before chases occurred.  During these interactions, one male approached 

the other with increasing speed and, once in close proximity (~5 monkey lengths), 

the male being approached ran in the opposite direction.  It was unclear whether 

the male chasing intended to attack.  

 For interactions in which actual physical contact occurred, all but one 

involved some form of threat behaviour prior to the chase and/or strike.  Twenty-

two threats in total were exchanged (36% eye-lid flashes; 32% headbobs and 32% 

bipedal). In the one interaction that did not involve any form of threat display, the 

males were already in close proximity (1-3 monkey lengths) when filming began.  

Before the altercation occurred, Male JI placed his hand on the head of Male ED 

who offered submissive vocalizations in response; JI then groomed Male ED 

before moving off.  Upon a second approach, Male JI immediately chased and 

exchanged blows with ED, who defended and counter-attacked before fleeing. 

Twelve of the males involved in fight interactions adopted a bipedal stance when 

striking their opponent, with three males standing quadrupedally and three males 

adopting a sitting posture. A total of 18 physical strikes were recorded across 10 

interactions.  Strikes were exchanged in only two of the interactions. A mean of 

1.8 blows were struck per interaction, with a maximum of four blows struck in a 

single interaction. On average, the first blow was struck 4.2 seconds after the 

interaction began. In six cases, a strike brought the interaction to an end, with the 

attacked male either fleeing from the opponent (3/6 cases) threatening back and 

continuing to exchange threats without hitting before one of the males sat (2/6 

cases) or by the opponent sitting (1/6 cases). In the remaining four cases, the male 
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struck more than once before the opponent fled (2/4) or the opponent struck back 

(2/4). 

 More generally, during encounters that involved physical aggression, opponents 

adopted an “anti-parallel” or face-to-face position. In the majority of such encounters, 

one male lunged at the other, removing its forearms from the ground and attempting to 

attack with teeth and front limbs (70% of cases).  Seventeen percent involved males in a 

sit-hind posture, again with forelimbs off the ground; in the remaining 13% of cases, the 

male launched a successful attack from a quadrupedal stance.  

 Individuals under attack generally responded by adopting either a standing 

posture, or jumping back from their opponent, twisting or spinning, so removing the 

target areas beyond the reach of the attacker.  Males would also attempt to bite or swat 

their opponent in retaliation. When doing so, males would attempt to maintain a face-to-

face orientation, and adopt either a bipedal posture or a sit-hind posture, both of which 

leave the arms free either to defend against further attack (by blocking a strike by the 

opponent) or to launch one of their own, while simultaneously restricting the initiator’s 

ability to reach the assumed target (H/N/S). Males would also adopt a sit-haunch position 

in response to hits, in which the forequarters remain on the ground. This allows the 

animal to block access to sensitive areas such as stomach, groin and reproductive organs, 

while maintaining eye-contact with the opponent, and permitting tracking of their 

movements. Dropping down into a sit-haunch posture also serves to remove the target 

region away from the attacker, especially if the opponent is standing bipedally. A crouch 

posture was also seen under such circumstances, which can be viewed as a more extreme 

version of the sit-haunch posture, providing even better protection to sensitive regions of 
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the body. Such postures are more obviously defensive than bipedal, sit-hind or standing 

postures, and they may also signal submission; sitting haunch ended three of the 

interactions in which a single blow was struck.  Having said this, it is also true that 

tracking of the opponent occurred in all situations that males adopted a sit-haunch 

posture.  It is possible, therefore, that a sit-haunch posture could be a counter-tactic, 

leaving the individual protected but capable of launching its own attack. Finally, males 

would sometimes flee from an attacker altogether, especially if successful bites and swats 

were taking place. Under such conditions, males would often receive further blows to the 

tail and hindquarters. Indeed, all such wounds seen on the tail in this study were incurred 

in this fashion. 

 

3.5.4. Tactics used during High Intensity Aggressive Encounters 

 As noted above, during high intensity encounters, males would monitor each other 

continuously and attempt to strike from a face-to-face position. To quantify this, for each 

encounter, I combined opposition and direction scores in a manner that allowed me to 

calculate the duration that males spent in each of three orientations relative to each other: 

anterior-anterior, A-A (males maintain a face-to-face position); anterior-posterior, A-P 

(one male is oriented toward the other male’s haunches from behind); anterior-side, A-S 

(one male is oriented toward the others male’s torso and or haunches from the side, i.e. is 

oriented at a 900 angle).  Males spent significantly longer in an A-A orientation than 

either an A-P orientation (matched pairs t-test: t33 = -1.71, p = 0.048) or A-S orientation 
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(t33 = -3.12, p = 0.002), and they spent significantly longer in an A-P orientation than an 

A-S orientation (t33 = -4.12,  p = 0.0001) (Figure 3.6).  

 

  

 

 

 

 

Figure 3.6. Duration (s) spent in Anterior-Anterior, Anterior-Posterior and Anterior-Side 
orientation during high intensity aggressive encounters (N =34). Bars represent means +/- 
1 standard error. 

 

 Also as noted above, males appear to use certain postures, such as crouching or 

sit-haunch, in a defensive manner, serving to protect more vulnerable regions of the body, 

like the stomach and genitalia. Given this, I tested the prediction that lower ranking males 

would be more likely to adopt such postures during aggressive encounters and/or that 

they would hold them for longer durations.  I assigned an ordinal rank to the males in 

each dyadic encounter (i.e., scoring the higher ranking male as 1, and the lower ranking 

male as 2) and calculated the overall frequency with which each male adopted a given 

posture (it should be noted that, in this analysis, some males are represented more than 

once, but as these were distributed equally over higher and lower ranking positions, this 
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should not introduce any systematic error; nevertheless, the results should be treated with 

some caution).   

  

 

 

 

 

 

Figure 3.7.  Frequency with which crouch and sit-haunch postures were adopted by 
males holding the relatively higher-ranking position in an interaction (ordinal rank = 1) 
versus males occupying the lower-ranking position (ordinal rank = 2) males. Bars 
represent means +/- 1 standard error. 

 

Males in the lower-ranking position adopted the more defensive crouch and sit-

haunch postures significantly more frequently than males in the higher-ranking position 

(Fig. 3.7. Crouch: t58 = 1.64, p = 0.05; sit-haunch: t58 = 2.03, p = 0.02), whereas there was 

no significant difference in the adoption of more offensive attacking postures like bipedal 

standing and sit-hind (Fig 3.8. Bipedal: t58 = 1.06, ns; sit-hind: t58 = 0.57, ns).  
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Figure 3.8.  Frequency with which sit-hind and bipedal postures were adopted by males 
holding the relatively higher-ranking position in an interaction (ordinal rank = 1) versus 
males occupying the lower-ranking position (ordinal rank = 2) males. Bars represent 
means +/- 1 standard error. 

 

 Similarly, if we consider the duration for which such postures were held 

(calculated as the total length of time that males spent in a given posture over the course 

of an interaction), males in the relatively lower-ranking position maintained the sit-

haunch posture for longer than males in the higher-ranking position (Figure 3.9. Sit-

haunch: t58 = 1.93, p = 0.05; Crouch: t58 = 2.29, p = 0.02), whereas there was no 

difference for either sit-hind or bipedal postures  (Figure 3.10:  Sit-hind: t58 = -0.63, n.s.; 

Bipedal: t58 = 0.46, n.s.).  
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Figure 3.9.  Duration that crouch and sit-haunch postures were held by males in the 
relatively higher ranking position in an interaction (ordinal rank = 1) versus males 
occupying the lower-ranking position (ordinal rank = 2) males. Bars represent means +/- 
1 standard error. 

 

 

 

 

 

 

Figure 3.10.  Duration that sit-hind and bipedal postures were held by males in the 
relatively higher ranking position in an interaction (ordinal rank = 1) versus males 
occupying the lower-ranking position (ordinal rank = 2) males. Bars represent means +/- 
1 standard error. 

 

3.5.5. Contextual Factors Influencing the Occurrence of High Intensity Aggression 

Male Rank: Using the full dataset, I investigated whether male rank (in the form 

of normalized David Scores) was a predictor of whether an interaction escalated into 

sit-haunch 

crouch 
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high-intensity aggression. Specifically, I considered whether the rank distance between 

opponents predicted whether interactions would involve either a chase and/or fight. To do 

so, I combined chases and fights into one category of high-intensity aggression (Level 1) 

and categorized all the remaining threat interactions as low-intensity aggression (Level 

2). In this way, I was able to conduct an ordinal logistic regression, with a binomial 

probability distribution and logit link function. Level of intensity was entered as the 

dependent categorical variable, with normalized rank distance as a fixed effect, and Actor 

I.D. (i.e., the male who initiated the interaction) and Reactor I.D. as random effects. Rank 

distance was not a significant predictor of level of aggression (Fig. 3.11.  Fixed effects: F 

1, 87 = 2.48, n.s.).  

 

 

 

 

 

 

Figure 3.11. Normalized rank distance plotted against aggression level (1 = high-
intensity aggression; 2 = low-intensity aggression). An ordinal logistic regression, with a 
binomial probability distribution and logit link function was conducted with level of 
intensity entered as the dependent categorical variable, normalized rank distance as a 
fixed effect, and Actor I.D. (i.e., the male who initiated the interaction) and Reactor I.D. 
as random effects.  
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Number of Males, Females and Habitat Type:  An ordinal logistic regression on the full 

dataset revealed that there was also no significant effect of the number of other adult 

males in the vicinity, adult females or habitat location (woodland, bush and open ground) 

on the occurrence of escalated aggression (Full model:  X²4 = 5.48, p = 0.21).  

 

3.5.6. Male-Male Proximity Effects  

 Using the full dataset, I investigated the mean distance at which one male changed 

his posture in response to the approach of another male toward him was 2.71 monkey 

lengths (S.E. = +/- 0.17). There was no significant influence of aggression intensity on 

the distance at which a male adjusted his posture (Fig. 3.12: t88 = -0.3.76, n.s.).  

 

 

 

 

 

 

 

 

 

Figure 3.12.  Distance (in monkey lengths) at which first change in posture occurred at 
the approach of another male. Bars represent means +/- 1 standard error. 

 

 Standard least squares regression was used to investigate whether there was any 

rank effect on the distance at which the first posture change took place, with rank 
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distance (calculated from normalized David’s scores) entered as a fixed effect, and actor 

I.D. and reactor I.D. entered as random effects. There was no significant effect of rank on 

the distance at which the first posture change occurred (Fig. 3.13. F1,87 = 0.009, n.s.). 

 

 

 

 

 

 

Figure 3.13.  Normalized rank distance plotted against the distance (in monkey lengths) 
at which a male first changed posture on approach by another male. Standard least 
squares regression was used to investigate whether there was any rank effect on the 
distance at which the first posture change took place, with rank distance (calculated from 
normalized David’s scores) entered as a fixed effect, and actor I.D. and reactor I.D. 
entered as random effects. There was no significant effect of rank on the distance at 
which the first posture change occurred. 

 

3.6. Discussion 

 My results show that male vervets at Samara show a prevalence of wounds to the 

head, neck and shoulder, as well as the torso/tail regions. They also displayed wounds to 

the forearms and hindlimbs. This stands in contrast to previous reports of wounds in 

vervet monkeys, which documented that wounds occurred most frequently on the tail and 

hindquarters (Struhsaker, 1967b; Henzi 1982). Henzi (1982) also found that the pattern of 

wounding between males and females was almost identical, with the vast majority of 
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wounds occurring on the hindlegs and tail, i.e., similar to the pattern shown by females at 

Samara. This suggests a difference in the mode of engagement shown by males across 

these studies.  Wounds to the hindquarters of the body are most likely to be received 

when one animals turns tail and runs from its opponent, whereas wounds to the head, 

neck and shoulders occur when animals maintain a face-to-face orientation, and lunge 

toward each other.  I also showed that, during actual fights, the majority of blows struck 

the head, neck and shoulder region, in clear preference to the posterior regions of the 

body (although the sample size was small, and should perhaps be treated somewhat 

cautiously).    

 If we assume that this pattern of actual hits is indeed representative of the Samara 

population, it suggests that Samara males are more likely to engage opponents in face to 

face combat compared to the animals studied by Struhsaker (1967b) and Henzi (1982). 

This could reflect enlarged group size and concomitant intensified competition for mates 

experienced by males in this population. As Freeman et al., (2012) documented (and I 

witnessed myself), there can be large influxes of new males into the troops during the 

mating season at Samara, which reduces the stability of the dominance hierarchy and 

intensifies competition over fertile females. Under such conditions, males may engage in 

many more bouts of active combat and, with higher benefits to be gained, may be 

prepared to stand their ground for longer, paying the relatively higher costs of engaging 

aggressively, rather than attempting to avoid aggression and retreating.  Interestingly,  

Lawes  and Henzi (1995) found a pattern of wounding similar to that of Samara males in 

a study of male samango monkeys (Cercopithecus mitis); a species that also experiences 

intense influxes of males into groups during the mating season.  Lawes  and Henzi (1995) 
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suggested that the pattern seen in samangos reflected their social structure, which consists 

of one-male units. They argued that, as males usually do not co-reside in groups, except 

during the mating season, males lack the ability to negotiate social space with their 

competitors in any kind of non-aggressive ritualized form, and so end up engaging in 

potentially damaging fights. Given that vervet monkey males reside together year round, 

and clearly possess more ritualized displays, as documented comprehensively by Henzi 

(1981, 1985), it suggests that this explanation may not be the whole story for samangos, 

and may have more to do with male cohort size, competitive intensity and rank 

uncertainty between males. Such factors may lead males to more actively contest 

resources, rather than non-aggressively avoiding such competition, or using more 

formalized means to decide disputes. New males immigrating into a group represent an 

unknown quantity and may result in more aggressive challenges for rank than are seen 

among males that have been co-resident in a troop for a longer period. Larger cohorts of 

male may also inherently be more unstable. These possibilities could be tested by more 

systematic comparison of male cohorts of different sizes, both across different species, 

different groups of the same species, and across mating seasons within a group. It would 

also be interesting to determine whether there are any seasonal fluctuations in patterns of 

wounding; that is, whether during the non-mating season males are more likely to retreat 

from aggressive animals, risking bites to the rear rather than standing to engage in active 

combat. 

 Although a clear case can be made for the head, neck and shoulder as the primary 

target of male vervet monkeys (a pattern which also fits with that the closely related 

patas, as well as the samango), it is perhaps worth pointing out that attempting to bite or 
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swipe the head area of an opponent places males at a high risk of receiving a wound of 

their own. That is, directing one’s own weaponry toward the region of the opponent’s 

body that sport the very same weaponry could be viewed as rather counter-productive, if 

we assume males are attempting to inflict the most damage with the least risk. (Of course, 

at least some biting and swiping movements made by males will be defensive, rather than 

offensive, aimed at warding off their opponent, but this doesn’t detract from the fact that, 

when males go on the defensive they lunge towards their opponents’ head and neck.)  

Given this, it seems possible that the head, neck and shoulder become targets because 

males may be highly motivated to protect more vulnerable areas of the body, like the 

genitalia, from attack. As the data showed, although males remained oriented in a face-to-

face position for the majority of time during an interaction, they nevertheless achieved 

and maintained an anterior-posterior and anterior-side orientation at times. In addition, 

males were seen to adopt a crouching or sit-haunch posture that brought their body lower 

to the substrate, and obscured the genital region from view. The lower-ranking male in a 

given interaction was also significantly more likely to adopt such postures.  As there are 

clear disadvantages to theses postures from an offensive perspective -- it would take 

longer for a male to get into position to strike a blow, and males may more readily 

telegraph their intention to strike from this kind of posture -- it seems unlikely that these 

can be viewed as attacking manoeuvres, and are best seen as defensive. Lower-ranking 

males are also known to adduct their testes into their body cavity during social encounters 

with higher-ranking males, and more dangerous/fear-inducing situations are more likely 

to lead to testis adduction in all males (Henzi, 1981), suggesting that males are sensitive 

to threats to the genital regions, and take action to prevent it. One possibility, then, is that 
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males maintain a face-to-face orientation in order to keep their hindquarters out of the 

reach of their opponent’s weaponry, and this results in the head, neck and shoulder region 

becoming the target area. That is, the hindquarters and genitalia represent the ‘preferred’ 

target, but lack of access to this area results in bites to non-preferred targets.   

 Certain aspects of the displays that high-ranking males perform around lower-

ranking males support this interpretation, most notably, the ‘red-white-and-blue’ (RWB) 

display and the ‘broadside’, described by Henzi (1982). In the RWB display, one male 

circles around the other “confidently” (p.140), holding the tail aloft, and displaying the 

brightly coloured scrotum and extended, erect penis. The subordinate male also turns and 

circle around on his own axis in response to the displaying male, in order to keep the 

displaying male in view, and also ensure that his own genitalia are not exposed and 

vulnerable to attack. Henzi (1985) also reports that subordinate males in such a position 

often sit-haunch, and usually adduct their testes. In a broadside display, a more dominant 

male approaches a more subordinate male, and then turns to stand at 90o to it, often 

taking a few steps past, so that the erect penis and scrotum is highly visible to the 

subordinate. Again, this display leads subordinates to adopt more hunched postures and 

back away from the displaying male (Henzi, 1985).   

 From these descriptions, it is clear that males can engage in ways that do appear 

to be quite ritualized, and do not seem to represent a form of stalemate or dynamic 

equilibrium between males who are actually attempting to inflict wounds. Indeed, Henzi 

(1985) describes the subordinate males response to dominant males (particularly testes 

adduction) as ‘homage’; a way for subordinate males to indicate and emphasize to 

dominant animals that the “relational ‘rules’” (p. 144) of social engagement are being 
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adhered to.  By the same token, Henzi (1985) suggests that the displays of dominant 

males, which notably involve the erect penis (as well as abducted testes), function to 

‘teach’ subordinates the significance of the signal, as the extended penis is highly 

correlated with the giving of aggression (Henzi, 1985). The bright colours of the 

genitalia, in this reading, may thus serve as ‘amplifiers’, increasing the detectability, 

memorability and discriminability of the display (Hebets & Papaj, 2005) (the fact that 

genital colouration alone cannot elicit appropriate responses from males, reported by 

Henzi (1985), supports this interpretation.)  As Pellis (1997) has suggested, many forms 

of ritualized aggressive behaviour may be movements seconded from those used in 

combat; in the case of vervets, the heavy emphasis on the genitalia, with active display by 

dominant animals, and, in particular, the hiding and obscuring of the genitalia by 

subordinates, which mimics the tactics used in actual fights, suggests this could be true of 

vervets as well. As such, the genitalia may be more of a focus of aggression than the 

actual pattern of wounding and successful hits seen in this study would suggest. Henzi 

(1985) argues that scrotal and penile signalling likely evolved from preadaptations for 

sex. While this is no doubt true, it also seems possible that male combat tactics have 

played a role in determining the specific manner in which these signals are deployed.  

 Clearly, determining whether or not the genitalia or the head region represent the 

preferred target of vervet males requires further study. One way to test this would be to 

investigate more comprehensively the contexts and causes of wounding: do all tail and 

torso wounds arise as males are running away from their opponents, or do some occur 

when one male manages to evade the other’s defences? Also, one could assess whether 

males work to maintain a face-to-face orientation because they are attempting to keep 
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their opponent’s face continually in the visual field (Powers, 1973), or whether they are 

attempting to manoeuvre around their opponent, while their opponent attempts to do the 

same, so that the face-to-face orientation arises as by-product of this jockeying for 

position. The fine-grained patterns by which males track and respond to the other’s 

movements should reveal which of these is the case. For example, tracking opponent 

head position, and keeping the perception of the opponent’s head stable, should produce 

smaller angular deviations from a central plane by the actor’s body, whereas attempting 

to move around the opponent’s defences and contact the posterior end of the body should 

result in larger angular deviations. Investigation specifically of genital signalling by 

Samara males would also pay dividends, both to assess whether Henzi’s findings that 

adduction is associated only with subordinate males in social situations, and that penile 

extension is associated with aggression, are also true for the Samara population, and also 

to investigate how genital signalling is linked to both combat and threat displays more 

generally.   

 With respect to determining factors that influence the likelihood of escalated 

aggression, I found no relationship between intensity of aggression and the distance at 

which one male responded to the approach of another, suggesting that males probably do 

not approach others in ways that give off cues about aggressive intent. This may be 

because such cues are not possible (which seems unlikely, given that studies of humans 

have shown that emotions are discriminable from gait e.g., Dittrich, Troscianko, Lea & 

Morgan, 1996; Alaerts, Nackearts, Meyns, Swinnen & Wenderoth, 2011) or because 

males do not give off any such cues because they do not approach other males with any 

such intentions; rather these arise in the course of the interaction. What I did find, 
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however, was that males began to mount an active response to another only once the male 

had approached to within 2-3 monkey lengths. This suggests that Szamado’s (2008) 

predictions regarding proximity as an influence on threat displays is worth considering in 

more detail, and I pursue this further in the next chapter.   

 My results also showed that rank distance between two males was not a predictor 

of the level of aggression seen in an interaction, nor was rank distance a predictor of the 

distance at which a male would respond to the approach of another. Interestingly, when I 

initially ran the analysis on aggression level without including random effects, the effect 

was significant, but this vanished completely once male identity had been accounted for. 

While this was not due to the over-representation of a single male in the dataset, it does 

suggest that individual differences between males have a large influence on how an 

encounter develops. That is, rank is only one facet of a male’s identity or personality, for 

want of a better term, and does not capture the experiential factors that might lead males 

to respond differently to circumstance. Such experiential factors can be long-term (such 

as developmental history, and previous social experience, e.g., Strum 1983), but may also 

reflect short-term experiences, such as previous encounters with particular males, 

occurrence of inter-group and territorial encounters, recent mating success, health status 

(including presence of wounds), all of which will influence the males emotional state, and 

hence threshold for engaging in certain forms of behaviour. Of course, this is precisely 

what Griffiths and Scarantino (2005) mean when they say that emotions and behaviour 

are situated.  Understanding how situatedness influences male-male encounters may 

therefore require an additional, more systematic, form of data collection: focal samples 

conducted on males to record maintenance activities and social interactions in more 
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detail, would give more context to their behaviour in social encounters than is possible 

with the semi-systematic approach to data collection used here.  

 Similarly, the lack of a relationship between habitat, number of other males 

present and number of females present during an interaction on the level of aggression 

displayed does not mean that contextual factors do not play a role in male-male 

encounters, only that the measures used here may have been too crude and lacking the 

necessary resolution. For example, the number of other animals present was scored from 

the video and may not be an accurate count of the number of animals present in the 

vicinity that could influence male behaviour; perhaps males are also sensitive to the 

identity of the animals present, to animals they can hear and not see, or to their relative 

position in the troop (centre versus periphery). Equally, the analysis itself may have been 

too crude: correlating gross contextual factors with the outcome of an interaction may 

miss many relevant features of the situation. Nevertheless, one has to start somewhere, 

and determining whether any obvious influences like habitat structure or presence of 

other individuals provides a good starting point: had any of these shown a significant 

relationship, it would have provided useful pointers as to where the analyses should then 

head. The lack of any such relationship is also useful, as it suggests a more refined 

approach may be needed, with more detailed data collected on context.  

 One other possibility, however, is that male-male interactions are simply not very 

predictable events. While particular contextual factors may predict the likelihood that an 

interaction of some kind occurs, its time course and outcome may not roll out in any 

predictable fashion because, being primates, males are not confined to any kind of 

classical ‘signal-releaser’ style interaction, as seen for example in amphibians, fish and 
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insects. Instead, male interactions may be inherently protean, and contingent on moment 

by moment changes in male emotional state, which may reflect the current information it 

can pick up from its opponent.  

 In the next chapter, then, I investigate whether male-male agonistic interactions 

show any temporal predictability; specifically, whether the use of particular threat-related 

postures and facial expressions can predict the response shown by their social partner, 

and whether proximity influences the frequency and nature of threat displays in a manner 

consistent with Szamado’s (2008) theoretical work.  
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CHAPTER FOUR: 

PROXIMITY AND PREDICTABILITY 

 

4.1. Introduction 

 Threat displays have attracted attention from evolutionary theorists over the years 

because they raise inherently interesting questions about their evolutionary stability 

(Maynard & Smith, 1973; Zahavi, 1975: Enquist, 1985; Hinde, 1985; Miller, 1997; 

Számadó, 2008). The function of a threat display is to reduce the probability of actual 

fighting taking place, and hence reduce the costs of incurring potentially damaging 

injury. Threat displays thus represent a means by which males can assess their respective 

RHPs and make decisions about whether or not they should escalate an encounter 

(Számadó, 2008). This means that, if threat displays work, then all individuals should use 

them. If, however, all individuals use them, then they no longer convey useful 

information (i.e., they are no longer reliable) because there appears to be nothing to 

prevent weak individuals from using such displays dishonestly (Számadó, 2008). That is, 

if threat display always prevent fighting from taking place, weaker males will be able to 

produce such displays as effectively as stronger individuals, and win encounters that they 

would otherwise lose if an actual fight were to take place.   

Zahavi (1975, 1977) therefore suggested that threat displays would need to be 

costly to be reliable (i.e., they would function as handicaps), such that the costs of 

producing them would be disproportionately high for weak individuals, and only 

individuals who could bear these costs would produce such signals, thus ensuring 

reliability. Enquist (1985), however, formulated a model to show that cost-free signalling 



 

   70"

could evolve provided certain key conditions were met, and argued that it was the 

potential costs of having to fight against a stronger individual that kept displays honest, 

and hence evolutionarily stable. Számadó (2003, 2008) has pointed out that Enquist 

(1985) left unanswered the question of where this potential cost came from. Számadó’s 

(2003) solution was to suggest that the cost of threat displays was inherent to the situation 

in which individuals found themselves. That is, signal reliability/honesty is maintained by 

the inherent risk of threatening an individual that might be willing to retaliate and fight 

back. Taking this further, Számadó (2008) suggested that it was “proximity risk” that 

ensured reliability. More specifically, he suggested that threat displays are only credible 

within a certain distance of the opponent, and that this threshold distance is strongly 

related to the weaponry and species-specific fighting techniques. As such, honest 

signalling is only an EES within a certain distance from the opponent (Számadó, 2008) – 

the “honest striking” distance. Outside of this zone, signals may be a mixture of honest 

and dishonest signalling – the “dishonest striking distance”—and outside this zone, 

signals are unreliable and should not be used. In other words, the function of a threat 

display is to convey information about the risk of an impending attack, i.e., the displaying 

individuals willingness to fight.   

 As discussed more fully in Chapter One, theorists have also argued that threat 

displays cannot be interpreted as such until the animal at which they are directed has 

made a response; a threat only becomes a threat once the other animal has behaved in a 

manner suggesting that the behaviour was seen as threatening (i.e., by escalating the 

interaction, by fleeing the interaction, by adopting postures that protect vulnerable body 

parts etc). Hinde (1985) and Griffiths and Scarantino (2005) have argued that not all 
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“threat displays” are driven by the need for one animal to display its RHP to another in a 

competitive situation; rather, one animal may be in a state of uncertainty regarding 

another’s motivation/emotional state, and so it ‘throws something out into the world”, 

behaviourally speaking, in order to provoke a response and acquire more information 

about how it should continue to act.  In this way, threats displays and aggressive 

interactions are emergent properties of an ongoing situation, and do not necessarily 

reflect the execution of a pre-exisiting intention to attack in the head of one, or both, of 

the males.  In other words, not all “threat displays” produced by males are necessarily 

threat displays in the sense used by Számadó (2008); rather, they are behaviours by which 

males can acquire further information about the nature of the situation in which the male 

finds himself, and so decide how to behave. This suggests that the use of threat displays 

may be more variable than Számadó (2008) implies, and that interactions need not follow 

a set ‘ritualized’ pattern, in which the actions of one male trigger a specific kind of 

response in the other.  Male-male threat interactions of the kind recorded here may well 

be of this unpredictable nature, given that, as already discussed, male vervets do possess 

certain kinds of ritualized behaviours that appear to function as a way for males to 

recognize and acknowledge their relative ranks. That is, males appear willing and able to 

use ritualized behaviour on some but not all occasions.  Threat displays of the kind 

studied here, that do not involve any heavily ritualized elements, might therefore be 

expected to be much less predictable because they are, in essence, information-seeking 

exercises. 

 In the previous chapter, I identified the targets and tactics used by vervet males 

during high-aggression encounters, and showed that contextual factors, such as the 
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number of females or other males present, and male dominance rank, had no influence on 

their outcome. I also suggested that the reason for the latter finding was that male-male 

aggressive interactions are not particularly predictable events. Building on this, and 

incorporating the theoretical insights of Számadó (2008), Hinde (1985) and Griffiths & 

Scarantino (2005), my aims in this chapter are (a) to test the prediction that vervet 

monkeys should have a low distance threshold for the ‘honest striking distance’, given 

their use of teeth and hands as weaponry, and the nature of the tactics used in fights and 

(b) to test whether male threat interactions show any evidence of being ritualized; that is, 

whether the behaviour of each male is dependent on that of the other throughout the 

sequence of interaction. More specifically, I test the predictions that (i) the production of 

threat displays should peak at a distance of 1-2 monkey lengths and decline with 

increasing distance between opponents; (ii) that this pattern can be broken down by the 

nature of the threat display used; specifically, that bipedal bobs, which place a male in a 

striking posture and indicate willingness to fight, should peak at the closest distances and 

drop off quickly, whereas those threats that do not involve the presentation of weaponry 

to the same degree – specifically eyelid flashes and head-bobs – should occur at a lower 

frequency at the closest proximity, and a higher frequency at longer distances. That is, the 

threat display curve will arise because of differential performance of different kinds of 

threats at different distances; (iii) that, as males target the head/neck/shoulder region, and 

spend significantly longer holding a face-to face orientation during high-intensity 

aggressive interactions, males should also be more likely to produce threats while in a 

face-to-face orientation, as another means of indicating their willingness to fight, and that 

this should also vary with distance; and (iv) that male threat displays will show no 
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evidence for ritualization; instead threat interactions will show evidence indicating that 

males are ‘prospecting’ or seeking further information about their competitors.  

 

4.2. Methods 

 Two habituated troops of vervet monkeys (RST and RBM) were followed during 

two mating seasons (April through July 2009/ 2010) and interactions between males were 

video taped using a semi-systematic focal sampling procedure (see Chapter 2 for details).  

All videos were compiled into a database and general information about the interaction 

was recorded: time, date, duration of interaction, focal monkeys’ I.D., general location, 

activity, number of individuals within range of the interaction, and a brief description of 

the interaction itself.  

 

4.2.1. Characterizing and Scoring Threat Behaviours 

 Ninety agonistic interactions in total were of sufficient quality to be analysed in 

detail using a modified version of EWMN, with 87 containing threat behaviours that 

could be analysed for the purpose of this chapter. Measures included frequency of various 

postures held, direction (relative orientation of partners), opposition (closest body part 

between partners) and relative distance between opponents. ELAN, an annotation 

program, was used to score and notate the videos. See Chapter 2 for more details.  

 Threat behaviours were divided into three broad categories of eyelid flashes, head-

bobs, and bipedal bobbing threats.  These categories were based on those identified in 



 

   74"

previous studies (Struhsaker, 1967b; Henzi, 1982; Fedigan & Fedigan, 1988), and 

considered the most practical means by which to apply Számadó’s (2008) model, as these 

provide an ordinal scale of threat intensity. Eye-lid threats are considered the least intense 

form of threat, head-bobs are intermediate and bipedal bob displays are considered most 

intense, as these place the animal in a position where its weaponry is on display, and 

willingness to attack is indicated (given the findings in the previous chapter where 70% 

of all successful strikes against an opponent took place from a bipedal position). Video-

taped interactions were scored according to the sequencing of these behaviours, along 

with sit and stand postures and tabulated accordingly for analysis.  For ease of 

computation, sit postures included sit-hind, sit-haunch and crouch as one category of 

defensive posture.  Behaviours were recorded by intensity of threat and, if there was no 

threat, by posture.  This meant that when behaviours occurred at the same time (i.e. eyelid 

flash and stand posture or bipedal and eyelid flash) only the threat behavior was recorded 

in each case, and not the posture as well.  Analyses of information and entropy measures, 

and long-range correlations were conducted with the assistance of Dr. David Lusseau, 

University of Aberdeen, using code written in Visual Basic. Long-range correlations were 

calculated using a dedicated code in R written by Dr Lusseau (see appendix 1).  

 

4.2.2. Information measures & Conditional Entropy 

The information content of state sequences performed by two actors can be 

inferred from the transition probabilities (p) between states, under the assumption of 

different orders in the sequences (0-order, 1st order, and 2nd order). Here, the individual 
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initiating the sequence will be labelled as the “Actor” and the other individual involved in 

the interaction will be labelled as the “Reactor”. Entropic measure of information content 

(i.e., measures of uncertainty) can be derived from these sequences using Shannon’s 

information theory (Shannon, 1948; See Barrett et al., 2012 for an application of this to 

behavioural interactions). It should be noted that the use of the word ‘information’ should 

not be taken to mean “knowledge”, as we usually understand it, but rather the number of 

possibilities that can maximally exist; that is, in everyday language, information places 

constraints on our choices (an ‘informed choice’ is one where we have been able to 

eliminate certain options), but in the information theory sense, information refers to the 

maximization of a number of choices (see Steinberg & Conant 1974; Hanser, Doyle, 

McCowan & Jenkins, 2004 for more details).  

We can derive the Shannon entropy, H(x), contained in the emission rate of states 

(0-order) from a set x of behaviours (when x represents a set of n states and y a set of m 

states) as follows: 

 

H x = − !!!"#!!!!!
!       (1) 

 

(in bits), where !! = !!
!!!

 and ai is the number of times state i was observed. A bit, as 

formulated by Shannon & Weaver (1949), is a unit of information equivalent to the 

amount of information required to choose between two equally likely alternatives. A 

choice between four equally likely alternatives would require two bits of information, and 
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a choice between n alternatives would require log2 n bits. In a simple system, where all 

events are equally likely, the selection of one event requires log2 n bits of information. 

With each bit of information received, there is a decrease in uncertainty about the event 

that occurred. As alternatives in the real world are usually not equally likely, the 

probabilities that each event will occur have to be taken into account, which give rise to 

equation (1) above. In a system where one possibility is much more likely than any other, 

H(x) will be lower than in a system where events are more equiprobable, and in a system 

where an actor always sends the same message, there will be no uncertainty about what 

the actor will do, hence no information is transferred and so H(x) = 0. In other words, the 

more choices there are, the more uncertainty there will be about which one will be 

chosen, and therefore the more information will be conveyed with each signal (Steinberg 

& Conant 1974).  H(x) is therefore a measure of diversity, and depends on the number of 

choices that are possible, and the way those choices are made (Steinberg & Conant, 

1974).  

The joint entropy of the sequence of states emitted by an actor and a receiver (1st 

order) can also be estimated: 

! !,! = − !!"!,! !"#!!!!" !     (2) 

 

where !!" =
!!"
!!"!"

 and aij is the number of times state j was observed following state i. 
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This joint entropy measure can be used to estimate the conditional entropy, which 

in essence represents the ability to predict what a receiver will do given the behaviour of 

the actor:   

! !|! = ! !,! − !(!)        (3) 

 

As H(y|x) approaches zero, the following act is completely determined by the preceding 

one. In other words, there is no information contained in the transition between acts. We 

can then further assess the constraints placed on a succeeding act by the preceding one by 

estimating the transmission strength, T, normalised by the ‘information’ content of 

preceding acts, t:  

 

! !;! = ! ! − ! !,! + ! !       (4) 

 

        and !(!;!) = ! ! !! !,! !!(!)
!(!)     (5) 

 

This ratio (i.e., ! !;! !
!(!)  ) will give a value of 0 if the immediate subsequent actions 

of the two animals are statistically independent of each other. The closer the ratio 

approaches 1 (i.e., as the value for T(x;y) approaches the value for H(y)), the more likely 

it is that the act of y is determined by the preceding action of x. Thus, the amount by 
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which this value exceeds 0 and approaches H(y) is a measure of the constraint placed on 

the actions of one animal by the immediately preceding actions of the other (Steinberg & 

Conant 1974). 

 

Finally, it is possible to estimate the amount of information the receiver receives when 

the actor performs a particular act, J, from: 

 

! !;! = !!!(!;!)!       (6) 

 

Hence, we can calculate the signal strength of each act by normalising this information to 

how often the act is performed, using the following equation: 

 

!!! !;! = !!|!
!!|!
!!!        (7) 

where !!|! =
!!"
!!

. 

 

These notions can then be extended to estimate the information value of 2nd-order 

assumptions on the act sequences (the actor influences the receiver who in turn influences 

the actor). We define first x2 as the set of k states the actor can perform following the 

receiver to give: 
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! !! = − !!!"#!!!!!
!       (8) 

 

The resulting joint entropy is then given by: 

 

! !,!, !! = − !!"#!"#!!!!"#!,!,!      (9) 

where !!"# =
!!"!
!!"#!"#

 

 

And the transmission of x2 given that y and x was performed first is given by: 

 

!(!,!; !!) = ! !,! !! !,!,!! !!(!!)
!(!!)

      (10) 

 

4.2.3. Long-term correlations 

 Following the method of Ferrer and Lusseau (2006), S = {si,...,sj,...,sn} can be 

defined as the set of behaviours we wish to analyse, where n = 6 in our vervets for the 

purposes of this analysis (i.e., directed approach; eye-lid flash; head-bob; bipedal stance; 

sit; stand: see Table 4.1). Nij(d) and pij(d) are defined as the number of times and the 

proportion of times, respectively, that the behaviour, si, has appeared at temporal distance 
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d before the behaviour, sj, within our collection of sequences. The temporal distance is 

defined in terms of position in the sequence of behaviours, i.e., each behaviour can be 

considered as a time step in the sequence. This gives:  

!!"(!) =
!!" !

!!",!"∈!!!" !
     (10) 

 

!!!(!) and !!!(!)!are defined, respectively, as the proportion of times that si has appeared 

at temporal distance, d,  before and after any element of S in the collection of sequences.  

This gives: 

!!!(!) = !!"!"∈! (!)     (11) 

and: 

!!!(!) = !!"!"∈! (!)     (12) 

The information transfer between patterns at temporal distance d is defined as:  

!(!) = !!"!",!"∈! (!)log !!"(!)
!!!(!)!!!(!)

       (13) 

 

I(d) is therefore a measure of the correlation between behavioural patterns (i.e., recurring 

patterns in the sequence of behavioural events, and not a measure of the correlation 

between behavioural events themselves; these just provide the information for calculating 

the correlation seen between patterns: Ferrer and Lusseau, 2006).  Rank distance between 

males was also included in the analysis to see if this had influence on information 
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transfer. The observed patterns were then compared to the mean and 95% confidence 

intervals for 1000 randomly permuted versions of the data set (Ferrer and Lusseau, 2006).  

 

4.3. Results 

4.3.1. Threat Displays by Distance 

The mean number of threat displays performed per interaction declined 

significantly with distance between opponents (Fig. 4.1.  rs = -0.964, n = 7, p < 0.001).  

Partitioning the data by threat type showed the same pattern of decline across all three 

threat categories (Fig. 4.2. a-c. Eyelid flash:  rs = -0.929, n = 7, p < 0.001; Head-bob:  rs = 

- 0.964, n = 7, p < 0.001; Bipedal: - 0.982, n = 7, p < 0.001). (Analyses were conducted 

on mean values using Spearman rank correlation with distance coded as an ordinal 

measure; non-independence of data points precluded ANOVA or regression on the full 

data set. The full data set was, however, used to generate the graphs to provide both mean 

and standard error values for illustrative purposes.)  

Using the full dataset (excluding two high-intensity interactions that did not 

contain any threats) to compare the frequency of the different types of threat in very close 

proximity (i.e., one monkey length), I found no significant difference between eye-lid 

flashes and bipedal stance threats (matched pairs t-test:  t86 = 1.292, ns), nor was there 

any difference between bipedal stance displays and head-bobs (t86 = -0.725, ns). There 

was, however, a significant difference between eye-lid flashes and head-bobs (t86 = - 

2.295, p = 0.013).  



 

   82"

Figure 4.1. Mean frequency of threat behaviours (eyelid flashes; head-bobs; bipedal 
stance) plotted against proximity between opponents (measured in monkey lengths). 
Points represent mean +/- 1 S.E.  

 

Figure 4.2. Mean frequency of (a) eyelid flashes (b) head-bobs and (c) bipedal stance 
threats plotted against proximity between opponents (measured in monkey lengths). 
Points represent mean +/- 1 S.E. 



 

   83"

 

4.3.2. Threat Displays by Orientation 

For the 56 interactions that contained no physical aggression or contact, males 

were significantly more likely to threaten their opponent while in a face-to-face 

orientation (anterior-anterior, A-A) than in either an anterior-posterior (A-P) orientation 

(matched pairs t-test: t55 = -6.247, p < 0.0001) or an anterior-side (A-S) orientation (t55 = 

-4.963, p < 0.0001), but there was no difference between threats oriented A-P compared 

to A-S (t55 = 1.527, ns) (Figure 4.3).  

Figure 4.3. Frequency of threats produced by opponent in an anterior-anterior (face-to-
face) orientation (AA), anterior-posterior orientation (A-P) and anterior-side (AS) 
orientation. Bars show mean +/- 1 S.E.  

 

To investigate whether there was any effect of distance on the number of threats 

produced in each orientation, I created two categories “Close” (all threats occurring in 1-

2 monkey lengths) and “Distant” (all threats occurring in 6-7 monkey lengths).  In the 
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close category, there was a significant difference in the number of threats produced in an 

A-A orientation compared to an A-P orientation (t55 = -4.255, p < 0.0001) and to an A-S 

orientation (t55  = -3.629, p < 0.0003) but no difference between an A-P and A-S 

orientation (t55 = 0.903, ns) (Figure 4.4a). By contrast, there was no significant difference 

in the number of threats across orientations for the distant category (A-A vs. AP: t55 = -

1.84, ns; A-A vs. A-S: t55 = -0.851, ns; A-P vs. A-S: t55 = 0.629, ns) (Figure 4.4b).  

 

Figure 4.4. Frequency of threats produced by opponent in an anterior-anterior (face-to-
face) orientation (AA), anterior-posterior orientation (A-P) and anterior-side (AS) 
orientation in (a) close proximity (1-2 monkey lengths) and (b) at a distance (6-7 monkey 
lengths). Bars show mean +/- 1 S.E.  Note difference in the scale of the y-axis. 

 

4.3.3. Information Measures and Signal Strength 

Table 4.1 presents a summary of the behavioural sequences used for information 

and entropy analyses. Data show all 87 interactions scored by the first three moves in a 

sequence, i.e., Actor-Reactor-Actor. Full sequences of behaviour used in analyses are 

presented in Appendix 2.  In total, 343 behavioural events were scored. 
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To begin, a 1st-order sequence analysis was run (actor-reactor). This revealed that 

the information content of the signal sent by the Actor, H(actor) = 1.89 bits,  from a 

maximum of  log2 (4) = 2 bits. That is, the observed value is quite close to the maximum 

possible value, indicating a lot of information is transferred when the first individual acts. 

As inspection of Table 4.1 shows, the possible choices an actor can make are not all 

equally likely, but directed approaches, bipedal bobbing and eye-lid threats are all more 

likely than head-bobs, and occur at approximately the same frequency.  In contrast, the 

information content of the signal sent by the reactor, H(reactor) = 2.065 bits, from a 

maximum of log2 (5) = 2.32 bits. Thus, there is more uncertainty about what the reactor 

will do compared to the actor.  

Following equations (2) to (6), the joint entropy, H(actor, reactor) was calculated, 

giving a value of 3.84 bits, which results in a conditional entropy value, H(actor|reactor), 

of H(actor, reactor) – H(actor) = (3.84-1.89) = 1.96 bits.  That is, even when the initial act 

is known, there is a high level of uncertainty about what the next act will be (i.e., the 

value is not particularly close to zero). As noted above, the conditional entropy value 

permits an estimate to be made of normalized transmission strength, by calculating the 

ratio of T(actor;reactor) to H(reactor). T(actor;reactor) = H(reactor) + H(actor,reactor) – 

H(actor) = 2.065 – 3.84 + 1.89 = 0.115.  This gives a value of T(actor;reactor)/H(reactor) 

= 0.115/2.065 = 0.0556 or 5.6%: very little information is transferred in each actor-

reactor sequence, and hence there is a very small reduction in uncertainty. Calculating the 

value for 2nd order sequences (actor-reactor-actor) gave a value of 17.1% for transmission 

strength, which indicates a greater reduction in uncertainty compared to actor-reactor 

sequences, but still represents a rather weak signal (i.e., much closer to zero than to 1). 
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Table 4.1. Summary data of sequences of behavioural interactions of male vervet 
monkeys used for information and entropy analyses. Data show all 87 interactions scored 
by the first three moves in a sequence, i.e., Actor-Reactor-Actor’s response. Full 
sequences of behaviour used in analyses are presented in Appendix 2.  In total, 343 
behavioural events were scored. 

 ACTOR RESPONSE 

ACTOR REACTOR BP EF HB SIT STD TOTAL 

A* BP* 1 1 0 0 1 3 

EF* 0 0 0 1 9 10 

HB* 0 0 0 0 0 0 

SIT* 1 10 1 2 21 35 

STD* 8 16 1 0 14 39 

BP BP 6 1 0 1 7 15 

EF 1 0 0 1 15 17 

HB 0 0 0 0 5 5 

SIT 1 2 0 0 3 6 

STD 3 3 1 1 12 20 

EF BP 1 3 0 0 12 16 

EF 0 0 0 6 20 16 

HB 0 0 0 2 3 5 

SIT 1 4 5 5 25 40 

STD 7 10 7 9 22 55 

HB BP 1 1 0 1 4 7 

EF 0 0 0 3 6 9 

HB 0 0 0 2 5 7 

SIT 1 3 0 1 5 10 

STD 2 2 3 3 8 18 

TOTAL 34 56 18 38 197 343 

*A = approach; B = Bipedal; EF = Eyelid flash; HB = Head-bob; SIT = Sit; STD = Stand. 
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Table 4.2 presents the signal strengths calculated for individual signals sent by 

Actors and Reactors. For Actors, a directed approach represented the strongest signal, 

followed by a bipedal stance. Eyelid-flashes and head-bobs were much weaker signals 

than either of these two. That is, an actor approaching an opponent or adopting a bipedal 

stance (at any point in the interaction) had the greatest effect on reducing uncertainty 

about what the receiver would do next.  For Reactors, the strongest signal was eyelid 

flashing – which represented a very strong signal relative to all the others – followed by 

adopting a standing posture. That is, the uncertainty surrounding what the Actor would do 

next based on the Reactor response was much greater for eyelid flashing than any other 

display produced by receivers. It should be noted that it is the pattern of values relative to 

each other that is important here, and not the absolute values of the signal strengths.  

 

Table 4.2. Signal strengths for displays by Actors and Receivers.  

I.D. BEHAVIOUR SIGNAL STRENGTH 

ACTOR Approach 0.0515 

Bipedal 0.0399 

Eyelid Flash 0.0018 

Head-Bob 0.0138 

REACTOR Bipedal 0.0224 

Eyelid Flash 0.0855 

Head-Bob 0.0283 

Sit 0.0114 

Stand 0.0330 
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4.3.4. Long-range correlations 

Figure 4.5 shows the long-range correlations calculated for the 87 behavioural 

sequences that contained threat behaviours and could be scored completely from start to 

finish. More specifically, this shows the information content of the correlation between 

actor and receiver behaviour, that is, the dependency of what the receiver will do 

depending on the actor’s behaviour. The x-axis represents the steps separating two events 

in the sequence (i.e., the actor’s behaviour at time t, the reactor’s behaviour at t+1, the 

actor’s behaviour at t+2 etc), and the y-axis, I(d), represents the information transfer 

across steps in bits. To interpret the graph, we look for the first step at which the observed 

information content (indicated by the open circles) falls to levels similar to what we 

would expect at random (indicated by the lines representing the mean and 95% 

confidence intervals calculated by randomly permuting the data). If threat interactions 

between males were ritualized and predictable, the graph would show a smooth decay of 

I(d) as the distance between steps increased, and these values would all be greater than 

chance. As is apparent, for vervet males, the graph does not show this pattern, and falls to 

random after only one step (i.e., this is the only this point falls outside the 95% 

confidence limits. The point that does so at around Step 35 represents a spurious 

correlation produced by boundary effects; that is, as we get to very long distances 

between steps, there are fewer data, and a greater possibility of significant correlations by 

chance.) In other words, the event correlation is only a single bit, and how males engage 

with each other is highly unpredictable following their initial engagement on the first 

step. There was no influence of rank distance on any correlation at any distance. In 

essence, then, males are throwing out behaviours with a certain probability, but the 
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manner in which they do so is not predicted by the events that happened in the previous 

time step, bar the very first one. 

 

Figure 4.5. Long-range correlations calculated from sequences of male-male threat 
interactions. Sequence length (x-axis) runs from 1 to 39 steps, and I(d) (y-axis) is given in 
bits. Open circles represent observed data; solid lines represent the mean and 95% 
confidence intervals of 1000 randomly-permuted data sets. Analysis run by Dr David 
Lusseau, University of Aberdeen, using the R statistical package.  

 

4.4. Discussion 

 My results show that (a) proximity risk influences the threat displays of male vervet 

monkeys but that (b) such threat displays appear not to be ritualized, and are largely 

unpredictable beyond males’ initial engagement with each other.   

 All threat displays showed a decline with decreasing proximity between opponents, 

with a much higher frequency occurring at the closest distance of one to two monkey 

lengths. As predicted by Számadó (2008), then, proximity risk influences the production 

of threat displays. Interestingly, however, the prediction that the display signalling 

greatest willingness and readiness to fight, the bipedal bobbing stance, did not show a 
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different pattern to the other two kinds of threat recorded here. Bipedal bobs, head-bobs 

and eyelid flashes all showed a similar pattern of decline with distance, with a higher 

frequency at close proximity. In addition, bipedal bobs were no more common than 

eyelid flashes in very close proximity, whereas one would expect their frequency 

increase, if males are solely indicating their willingness and preparedness to fight. Indeed, 

the only significant difference found was between eyelid flashes and headbobs. As such, 

these findings suggest other factors come into play when males engage each other in 

close proximity, and although the results are fully consistent with Számadó’s (2008) 

predictions, it is also apparent that there is more to the story than proximity risk alone. 

 Also as predicted, I found that males were significantly more likely to threaten 

opponents from an A-A orientation, than from an A-P or A-S orientation, and that they 

were much more likely to do when in very close proximity than they were when further 

apart. Again, this is consistent with Számadó’s (2008) ideas concerning proximity risk: 

males should indicate willingness and readiness to fight and, given that an A-A 

orientation is strongly associated with active aggression, the adoption of such a posture 

while producing threats would present a reliable signal of impending aggression, and 

willingness to back it up. At the same time, and as discussed previously, males who are 

genuinely attempting to engage each other in an aggressive interaction would reach a 

kind of ‘stalemate’ through jockeying for position (Pellis, 1997), giving rise to a situation 

in which it appeared that males were simply threatening each other, but were, in fact, 

attempting to strike a blow. It is also the case, of course, that if threats are to be perceived 

by a potential opponent then they have to be produced where the opponent can see them, 

and this would also account for an A-A orientation being the most common. This latter 
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point brings in Griffiths & Scarantino’s (2005) arguments regarding the very nature of a 

‘threat behaviour’. That is, if a threat is only a threat if the other animal responds in a 

particular way, then by definition, the majority of threats should occur face-to-face as this 

increases the probability that they will be seen clearly by the opponent and responded to 

accordingly. None of these explanations are mutually exclusive, however, and perhaps 

suggests that attempts to understand the nature of male non-vocal communication and 

combat should move away from trying to identify a single underlying explanation for the 

pattern shown. Instead, it may be more productive to recognize that all of the above are 

likely to play a role, and so consider ways in which the relative influence of these factors 

could be teased out more effectively.  

  The fact that all three kinds of threats showed the same pattern of decline with 

distance further suggests that the production of different kinds of threat behaviour cannot 

simply be explained by differences in levels of male arousal. That is, if threat behaviours 

represented a hierarchy of intensity, with eyelid threats as the lowest, and bipedal threats 

as highest, on the basis of their resemblance to actual fighting postures, and presumably 

male willingness to fight, this would provide a proximate reason for why threat displays 

should vary in relation to distance. The closer a male is to a potential opponent, the 

greater the chance of successful retaliation by the male, the higher the arousal of the 

approaching male, and hence the more likely he will be to produce a threat display that 

reflects high arousal. As all threat displays showed the same pattern, however, an 

explanation that considers only proximity as the explanation for male arousal will not 

suffice. Instead, it suggests that other factors must play a role. As discussed in the 

previous chapter, these could be contextual factors that were not picked up by my method 
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of data collection, or they may be factors relating to individual identity, and to the 

opponent’s response to an approach.  This in turn suggests that a certain degree of 

unpredictability is a key feature of male vervet interactions, and this was borne out by the 

information analyses and long-range correlations.  

 Both of these analyses indicated that, after the initial engagement occurs between 

males, the nature of the ensuing interaction has a great deal of unpredictability, and 

shows none of the characteristics expected from a ritualized display. If one compares the 

transmission strength shown by male grasshoppers, for instance, the amount of 

information transferred in actor-reactor sequences is in the region of 40% (Steinberg & 

Conant, 1974), which is considerably higher than the 5% observed in my study. This in 

turn suggests that Griffiths & Scarantino’s (2005) ideas concerning ‘emotions in the 

wild’, building as it does on Hinde’s (1985) earlier work has some currency, and that 

certain behaviours may reflect the ‘strategic’ use of emotions by males, and that they are 

not simply expressive. More specifically, it suggests that, following a directed approach 

of one male to another – which represented the strongest signal for an initiator – a male 

may be able to predict that a potentially tense situation is about to arise, but no more. A 

male’s response may then be geared to behaving in such a way as to acquire more 

information about the other (and equally the same is likely to be true of the opponent), 

rather than producing a particular kind of signal selected to trigger a particular kind of 

response. In other words, it seems possible that, as Gibson (1979) suggested, perception 

is a highly active process of making information available to an organism, and that the 

postures and behaviours produced are geared toward acquiring further information. It is 

notable, for example, that behaviours like head-bobs and adopting a bipedal stance are 
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used in a variety of other contexts where the situation is ambiguous and more information 

would be useful. For example, animals frequently adopt a bipedal posture on hearing 

certain kinds of alarm calls, or when they hear screams from other troop members. They 

also seem to engage in head-bobbing under circumstances where visibility tends to be 

poor (such as in dense bush). It may be that, while such behaviours function as threats, 

they do not represent ‘threat displays’ as we usually understand them (i.e., as signals 

specifically selected to convey information about another individual’s motivation or 

RHP), but are simply the most effective behaviours to use in contexts where gathering 

more information is crucial, such that they become strongly associated with aggression 

for male-male dyads. In other words, they can used as signals (that is, predictors) of 

likely aggression, but they are not themselves signals of aggressive intent. This 

interpretation fits well with the pattern of results seen, where head-bobs and bipedal 

stances were weak signals in terms of reducing uncertainty about what would happen 

next, which is what one would predict if such “signals” are, in fact, a means by which 

males can make more information available to themselves, and adjust their behaviour 

accordingly. We shouldn’t, in other words, expect behaviours like these to have strong 

signal strength, because they represent males ‘putting out feelers’ to assess the other 

male, and not necessarily prompt him to make a particular kind of response.  

This, then, gives an extra twist to Hinde’s (1985) and Griffiths & Scarantino’s 

(2005) ideas regarding emotional displays, in that ‘strategically’ produced emotional 

responses, that reflect male uncertainty, need not always be for the purpose of prompting 

an active response in another, but are actions “for the self”, so to speak. An individual 

may be able to acquire further information from the other simply by taking a closer look, 
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or looking from a different angle, both of which behaviours like head-bobbing and 

bipedal bobbing afford.  This could provide further information on factors like, say, 

muscle tonus, that could act as cues to the other’s emotional state, and likely responses 

(i.e., they could allow males to acquire information that the other animal gives off 

inadvertently), and also more overt signals like tail position, or genital state (adducted 

testicles; erect penis).  If this seeking of information can explain some of the behaviours 

produced in a sequence, then a low transmission strength would be expected: what a male 

does following one of these ‘information gathering’ behaviours by an opponent need bear 

no relation at all to the nature of the information gathering or, to put it another way, one 

male’s behaviour may effectively be independent of the other’s during a portion of a 

sequence. As described in the methods, statistical independence of behaviours leads to 

transmission strengths close to zero.  

It would be interesting to test this idea more thoroughly by attempting to 

differentiate between behaviours that could be classed as ‘information gathering’ rather 

than information transmitting, and to see how these relate to behaviours that are more 

clearly geared to producing a response in the other. Eyelid flashing, for example, which 

emerged as a strong signal seems much more obviously aimed at producing some kind of 

response in the other, as evidenced by the ease with which a human observer can induce a 

response in a vervet by performing the behaviour (and it is well known that the vast 

majority take direct eye-contact, a corollary of eyelid flashing as a ‘direct threat’: 

Struhsaker (1967b).  From these results, then, we can formulate the further hypothesis 

that bipedal stances and head-bobs are information- gathering behaviours, and that eyelid 

flashing is a response-inducing behaviour.  
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 The other point to be made here is that the lack of predictability in male-male 

interactions is perhaps a means by which we can more precisely quantify what we mean 

by behavioural flexibility or plasticity (Logue, Mishra, McCaffrey, Ball & Cade, 2009; 

Sih, Bell & Johnson, 2004). These are terms that are frequently bandied about when 

discussing primate behaviour but are rarely defined precisely or operationally.  The 

approach used here, however, was able to quantify the lack of ritualization in behavioural 

sequences, via calculation of long-range correlation and transmission strength (which 

corroborated each other), and suggests a promising means by which the ‘protean’ nature 

of primate interaction can be measured.  

Of course, this requires some confidence in the assessment that the behavioural 

sequences analysed capture the situation in a way that maps on accurately to real-life. In 

this analysis, for example, sit postures were lumped together for ease of analysis, but if 

sit-haunch does have a signal value that is different from a sit-haunch posture, either in 

degree or kind, then the lack of predictability in the sequence may result from the lack of 

resolution in the data, and not from any genuine unpredictability in the nature of male-

male engagement. Similarly, higher intensity of threats were considered irrespective of 

lower threats (bipedal with eyelid flash= bipedal) and threats were considered 

irrespective of the posture in which they occurred (eyelid flash while standing= eyelid 

flash), again for ease of calculation, and it may be that they have different functions or 

signal values when this is taken into account which, again, may lead to the calculation of 

higher transmission strengths if they were more finely differentiated. This is clearly 

something that would be very interesting to consider further, and conduct more detailed 

analysis to ensure the lack of predictability stems from the animals and not the analyses. 
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It seems reasonable, however, to hypothesize that there will be genuinely high levels of 

unpredictability in male-male interactions, and the task before us is to understand exactly 

how this is brought about, and why.   



 

   97"

CHAPTER FIVE 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Overview of the Present Study 

 In this thesis, I have shown that, during high aggression interactions, vervet males 

at Samara preferentially target the head/ neck/ shoulder area as indicated both by wound 

counts, and behavioural responses.  This finding differs from previously reported wound 

data from other study sites, which suggest that both male and females received= most 

wounding on the haunch and tail.  The finding that males at Samara show a different 

pattern to males elsewhere, and to females at Samara, suggests a difference in the fighting 

strategies of males; this in turn will most likely be linked to increased social group size, 

and hence more intense male-male competition, at Samara, compared to other study sites. 

Vervet groups at other sites are, on average, much smaller (average= 25) than the ones 

studied at Samara (average= 60) and differ in sex ratio (average general= 0.67; Samara= 

0.55 increasing during breeding season to 0.71).  Previous data across various primate 

species (Cords, 2000) has shown that variation in the number of males correlates with 

differences in social structure, such as levels of male-male affiliative behaviour and 

aggression, both within and between species.  Ordinal rank of males in an interaction was 

found to predict the type and duration of postures adopted, in a manner that suggested 

that males were perhaps moving in relation to each other in ways designed to protect their 

more vulnerable genitalia, and that the head/shoulder/neck was a secondary target. Rank 

distance, habitat type, and number of individuals in the vicinity of male-male agonistic 

interactions did not predict whether interactions would escalate into physical aggression. 
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 As predicted by Számadó  (2008), proximity was found to influence the likelihood 

of threat behaviours, although it was not found to explain the variation in the type of 

threat displays and context in which they occurred.  Threat displays appear not to occur in 

a ritualized fashion, but rather to unfold in an unpredictable manner. Information analysis 

and long term correlations revealed that, after the first step in an interaction, there was no 

predictability in what males would do in response to each other.  

 

5.2 Implications of the Present Study 

 Számadó (2008) predicted that proximity would have an effect on threat displays as 

this is the mechanism by which the honesty of the threat can be maintained.  My findings 

supported this, but proximity did not explain variation of different types of threats.  There 

was some indication that eye-threats functioned in a communicative fashion: they had the 

strongest signal strength with respect to what the other individual would do, and were 

clearly directed at other indivduals. In contrast, behaviours like bipedal bobbing and 

head-bobbing seemed to be ‘information-gathering’ or ‘prospecting’ behaviours produced 

by males to assess an opponent more fully, or trigger a response in an opponent that 

would indicate something about the opponent’s likely state or manner of response. This 

fits well with the idea that certain emotional behavioural responses may be strategic 

(Griffiths & Scarantino, 2005; Hinde, 1985). Further research is needed to test these ideas 

more fully. It is possible, for example, that the relatively crude resolution of the scoring 

used here missed certain features to which males are responsive, and more fine grained 

scoring could lead to more predictabilty in males’ interactions. Equally it is possible that 

males are also able to pick up on the inadvertant cues that males produce with respect to 
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aspects like muscle tonus, startle responses and the like, and so the monkeys themselves 

may have been picking up on more predictability than the analyses here allowed.  More 

detailed analysis will help identify whether certain behaviours are more adequately 

described as ‘prospecting’ rather than threats, and also to determine whether male 

interactions are truly unpredictable. 

 If it can be shown that a lack of predictability in male interactions is genuine, then it 

may be that Miller’s (1997) ideas regarding primate ‘proteanism’ have some currency in 

explaining the patterns shown.  Miller (1997) argues that proteanism occurs as a counter-

measure to predictable complex cognitive behaviour.  That is, animals behave in a 

genuinely unpredictable manner in the sense that they have not been selected to behave 

predictably, even to themselves. By allowing for genuine unpredictability, there is no 

opportunity for individuals to signal their intentions to others, either overtly or covertly, 

because the individuals themselves would be unaware of any specific intention. Such a 

strategy could indeed be useful in situations of high competition, such as interactions 

between male vervet monkeys during the mating season. It could pay males to ensure 

their responses are unpredictable, for example, as a means for higher-ranking males to 

ensure that lower-ranking males are kept permanently on edge, and under higher stress 

levels, as these may affect their ability to obtain successful matings. This could be 

achieved both by ensuring that low ranking males must remain continually wary around 

other males whose response they cannot predict, and also because stress may affect male 

physiology adversely by increasing levels of corticosteroids (Sapolsky, Romero & 

Munck, 2000) or, as Henzi (1982, 1985) has suggested, by increasing the frequency of 

abduction of the testes into the body cavity, which potentially could have an adverse 
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effect on semen quality, and influence mating success in that way. Miller (1997) further 

speculates that long term, cooperative interactions between individuals will lessen the 

occurrence of unpredictability. It may therefore be valuable to compare the interactions of 

females with those of males, as the greater long-term familiarity should produce lower 

levels of ‘proteanism’ in their interactions according to his hypothesis.  

 It is also possible, however, that males interactions are only unpredictable during 

times of social upheaval, like the early stages of the mating season, when new males 

(influx males) arrive and disrupt the male hierarchy. Such males are also an unknown 

quantity for resident males, and what appears to be ‘deliberate’ unpredictability may 

simply be a lack of familiarity. Linked to the above discussion of group size as a mediator 

of the quality of male interactions, it is also true that males at Samara will interact with a 

higher proportion of unknown males than is typical for a vervet troop, and this could 

easily change the ways in which males would conduct themselves when interacting with 

other males.  It is possible, then, that a lack of ritualization in threat displays found at 

Samara may be due to this effect. More systematic sampling of male dyads, both familiar 

and unfamiliar over the course of the mating season would help to address this issue: one 

would predict lower levels of unpredictability among familiar males and a decrease in 

unpredictability over the course of the mating season for initially unfamiliar males 

(familiar males could here act as a baseline against which to compare unfamiliar male 

dyads).   

 Miller (1997) attributes the current lack of concrete evidence for social proteanism 

to the difficulty of recording such behaviour unless one is actively attempting to record 

such unpredictability (i..e, most studies focus on the central tendency in behaviour rather 
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than variation per se).  In this respect, the use of a technique like Eshkol-Wachman 

movement notation, as employed here, may be particularly useful as it provides an 

objective tool to measure patterns of movements in  a way that lends itself well to 

information analysis.  

   

5.3. Future directions: 

5.3.1.Testing unpredictability 

 As noted above it is possible that male-male interactions are not entirely 

unpredictable, but follow a pattern that has not been picked up by the current study due to 

a lack of resolution in the data.  In future, it would be beneficial to conduct a more 

detailed analysis considering more fine grained analyses of factors, such as eye gaze, 

scrotum abduction, penile extensions (Henzi, 1982), and also refining categorization of 

posture and environmental contexts. 

 

5.3.2. Effects of group composition 

 Investigating the effect of male cohort size across different groups, as well as over 

the course of the mating season, within the same group may establish a clearer 

understanding of the role male cohort size plays in determining the nature of male-male 

interaction.  

 

5.3.3. Ritualization of displays 

 Having established a general understanding of spontaneous interactions that contain 

high aggression and threats, I have established a foundation to compare these 
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unpredictable events with assumed ritualized interactions, such as the “red-white-and 

blue” and “broadside” displays.  The proximate mechanisms behind these displays have 

not yet been examined in detail.  Conducting a more detailed analysis of these behaviours 

in the same fashion used here to study spontaneous agonism has the potential to offer a 

clearer understanding of whether such behaviours are indeed ritualized or represent a 

combat-driven ‘stalemate’ or, if they are indeed ritualized, then the origins of their 

communicative function can be explored with respect to spontaneous agonistic 

interactions, and whether ritualized displays have been co-opted from these. 

 

5.3.4. Triadic Interactions 

 Finally, it would be relevant to consider triadic and polyadic interactions. In 

particular, extending these findings to triadic interactions presents an opportunity to focus 

on the dynamics of coalition formation, whereby two males join forces to defeat another.  

During coalitions, males are faced with the dilemma of regulating two diametrically 

opposed kinds of affect in partners versus opponents (simultaneously displaying 

coordination signals to one male while directing threatening cues to another).  This also 

provides an opportunity to ask questions concerning audience effects during interactions 

and the maintenance of proximity to relevant social actors (e.g. coalition partners, fertile 

females).  One proposal is that males predict the trajectories of other animals so they can 

intersect with them, such that coordination requires cooperation between individuals.  

Alternatively, males may use simplified rules such that coordination and cooperation is 

an emergent property of individual decision-making (e.g. similar to patterns seen in fish 

shoals).  Finally, males may be entirely opportunistic with respect to their coalition 
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partners, and so need not track them through space. Such data could also be tested against 

current theoretical models dealing with signalling honesty in relation to proximity, and 

how this might be expected to differ in triadic interactions.  
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APPENDIX 

1. R Code for Calculation of Long-Range Correlations  

(Courtesy of Dr David Lusseau, University of Aberdeen) 

 

v<-read.table("vervetseq.txt",header=T) 

shannon<-function(v) 

{ 

rep<-length(unique(v$beh)) 

sample<-max(v$sequence) 

count<-as.data.frame(table(v$sequence)) 

nd<-array(0,dim=c(rep,rep,max(count$Freq))) 

for (i in 1:sample) { 

s<-subset(v,sequence==i) 

for (j in 1:(count$Freq[i]-1)) { 

for (k in j+1:count$Freq[i]) { 

nd[s$beh[j],s$beh[k],k-j]= nd[s$beh[j],s$beh[k],k-j]+1 

} 

} 

} 

pd<-array(0,dim=c(rep,rep,max(count$Freq)-1)) 

pp<-array(0,dim=c(rep,max(count$Freq)-1)) 

pm<-array(0,dim=c(max(count$Freq)-1,rep)) 

for (i in 1:max(count$Freq)-1) { 

pd[,,i]<-nd[,,i]/sum(rowSums(nd[,,i])) 

pp[,i]<-rowSums(pd[,,i]) 
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pm[i,]<-colSums(pd[,,i]) 

} 

I<-array(0,dim=c(1,max(count$Freq)-1)) 

 

 

for (i in 1:(max(count$Freq)-1)) { 

lp<-log(pd[,,i]/(pp[,i]*pm[i,]),base=2) 

lp<-pd[,,i]*lp 

lp[lp=="NaN"]<-0 

lp[lp=="-Inf"]<-0 

lp[lp=="Inf"]<-0 

I[i]<-(sum(sum(lp))) 

} 

I 

} 

Iobs<-shannon(v) 

######randomisation##### 

rep<-length(unique(v$beh)) 

sample<-max(v$sequence) 

count<-as.data.frame(table(v$sequence)) 

Irand<-array(0,dim=c(1000,max(count$Freq)-1)) 

vrand<-v 

for (i in 1:1000) { 

for (j in 1:sample) { 

vrand[vrand$sequence==j,]$beh[2:(count$Freq[j]-1)]<-
sample(vrand[vrand$sequence==j,]$beh[2:(count$Freq[j]-
1)],size=length(vrand[vrand$sequence==j,]$beh[2:(count$Freq[j]-1)]),replace=FALSE) 
#keeping approach as the first event 
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} 

Irand[i,]<-shannon(vrand) 

} 

 

 

############################ 

colMeans(Irand) 

IrandCI<-apply(Irand, 2, quantile, probs = c(0.025, 0.975)) 

#######KL divergence##### 

v$step<-0 

for (i in 1:sample) { 

v[v$sequence==i,]$step<-seq(1,count$Freq[i]) 

} 

receiver<-table(subset(v,step==2)$beh)/sum(table(subset(v,step==2)$beh)) 

sender<-table(subset(v,step==3)$beh)/sum(table(subset(v,step==3)$beh)) 

seqrec<-seq(4,max(v$step),2) 

seqsen<-seq(5,max(v$step)-1,2) 

KLsend<-array(0,dim=c(1,(max(v$step)-1-5)/2)) 

KLrec<-array(0,dim=c(1,(max(v$step)-4)/2)) 

r<-1 

s<-1 

for (i in seqrec) { 

kl<-
receiver*log(receiver/(table(subset(v,step==i)$beh)/sum(table(subset(v,step==i)$beh))),b
ase=2) 

kl[kl=="NaN"]<-0 

kl[kl=="-Inf"]<-0 

kl[kl=="Inf"]<-0 
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KLrec[r]<-sum(kl) 

r<-r+1 

 

 

 

} 

for (i in seqsen) { 

kl<-
sender*log(sender/(table(subset(v,step==i)$beh)/sum(table(subset(v,step==i)$beh))),base
=2) 

kl[kl=="NaN"]<-0 

kl[kl=="-Inf"]<-0 

kl[kl=="Inf"]<-0 

KLsend[s]<-sum(kl) 

s<-s+1 

} 

plot(1:length(KLsend),KLsend) 

plot(1:length(KLrec),KLrec) 

###and then separate by rank difference 
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APPENDIX 

2. Complete sequence of behaviours used in the information and entropy 

analyses 
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