Show simple item record

dc.contributor.author Morris, Joy
dc.contributor.author Spiga, Pablo
dc.contributor.author Verret, Gabriel
dc.date.accessioned 2018-06-29T18:05:20Z
dc.date.available 2018-06-29T18:05:20Z
dc.date.issued 2015
dc.identifier.citation Morris, J., Spiga, P., & Verret, G. (2015). Semiregular automorphisms of cubic vertex-transitive graphs and the abelian normal quotient method. Electronic Journal of Combinatorics, 22(3), P3.32 en_US
dc.identifier.uri https://hdl.handle.net/10133/5146
dc.description Sherpa Romeo green journal. Open access en_US
dc.description.abstract We characterise connected cubic graphs admitting a vertex-transitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph. en_US
dc.language.iso en_US en_US
dc.publisher Electronic Journal of Combinatorics en_US
dc.subject Cubic graphs en_US
dc.subject Vertex-transitive graphs en_US
dc.subject Semiregular automorphisms en_US
dc.subject.lcsh Graph theory
dc.subject.lcsh Combinatorial analysis
dc.subject.lcsh Automorphisms
dc.title Semiregular automorphisms of cubic vertex-transitive graphs and the abelian normal quotient method en_US
dc.type Article en_US
dc.publisher.faculty Arts and Science en_US
dc.publisher.department Department of Mathematics and Computer Science en_US
dc.description.peer-review Yes en_US
dc.publisher.institution University of Lethbridge en_US
dc.publisher.institution University of Milano-Bicocca en_US
dc.publisher.institution The University of Western Australia en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record